
HSMTLib

Interacting with SMT Solvers in Haskell

Nuno Laranjo and Rogério Pontes

Informatics Department, Minho University, Portugal

Abstract With the constant improving in performance of the SMT
solvers [5] and with the initiative SMT-LIB [1] that aims to define a
common standard, their use is expanding to several areas with new appli-
cations emerging. HSMTLib is a Haskell library capable of communicat-
ing with several SMT-LIB2 compliant solvers. This library facilitates the
creation of applications that need to interact with SMT solvers by pro-
viding an API which conforms to the SMT-LIB2 standard. Two modes
of operations are available, online mode where the solver is kept running
externally and script mode which launches the solver only when needed.
The response from a solver is converted into a Haskell data type mak-
ing it easy to create an interactive program. Three solvers are currently
supported, Z3, MathSAT and CVC4.

1 Introduction

The Satisfiability Modulo Theories (SMT) problem is a generalization of the
Boolean satisfiability (SAT) problem which has the focus on proving the sat-
isfiability of logical formulas in regard to specific first-order theories. Theories
are expressed in classical many-sorted first-order logic with equality. A theory
defines the vocabulary of the logical language (stating its sorts, functions and
predicates) and its semantics. A combination of several theories (possibly with
some restrictions is called a logic. For instance, Ints is the theory of integers and
ArrayEx is the theory of applicative arrays with extensionality, while AUFLIA is
the logic that combines the Ints and ArrayEx theories restricted to linear integer
arithmetic and arrays with integer indices and values.

SMT solvers have gained enormous popularity over the last decade. They
have been applied with success in several domains in computer science and are
the subject of very active research. Popular SMT solves include CVC4 [2], Z3
[8], Yices [6], MathSAT [4] and Alt-Ergo [3], among many others.

The SMT-LIB1 is an initiative aimed at facilitating research and development
in SMT. One of its main goals is to provide standard rigorous descriptions of
background theories used in SMT systems and to promote a common input and
output format for SMT solvers. This standardization allowed the creation of a
benchmarking framework for the assessment and comparison of different solvers

1 http://smt-lib.org

(its performance w.r.t. each logic) and gave rise to the SMT competition, SMT-
COMP2.

A program that may have to deal with several logics can improve its per-
formance if it can connect to different SMT solvers, in order to work with the
solver that has better performance with the logic being used at moment. With
this in mind the library was developed to facilitate the comunication with mul-
tiple solvers.

Usually SMT solvers provide a native API, most commonly, for C, and there
are some wrappers for other programming languages. However this raises the
problem of being solver specific. The Haskell Z3 package3 is one of those wrappers
that creates a library to interact with the Z3 solver in Haskell by wrapping the
native C API. To surpass the limitation of being solver specific HSMTLib was
constructed with generic methods and follows a similar approach to the smt-Lib
package package4 which provides tools for parsing SMT-LIB2 files creating an
Abstract Syntax Tree (AST) that can be used to create scripts.

Many software need to interact with SMT solvers. An example is the Haskell
SBV5 package that allows to express properties about Haskell programs and
automatically prove them correct with the help of an external SMT solver. An-
other project is LiquidHaskell6 which is a static verifier for Haskell, based on
Liquid Types (refinement types extending the base type system with refine-
ment predicates drawn from decidable logics). Another example is Cryptol7 is
a domain-specific language for specifying cryptographic algorithms. Cryptol has
verification features that use SMT solvers to check properties about the pro-
grams. All these examples testify the growing usage of SMT solvers and the
need for a library which facilitate the interaction with them. This is the main
goal of the Haskell package we have developed, to provide easy interaction with
multiple solvers.

HSMTLib provides an API based on the functions and AST defined by SMT-
LIB, additionally, it offers a high-level API in order to simplify the creation
of expressions and to simplify common tasks. We provide a uniform way of
interacting with different solvers and two different modes of interaction. The
library also has tools to parse the answers returned by the solvers and turn
them into a Haskell data type.

The remaining of this document is organized as follows. In the next section
we present the inner architecture of HSMTLib and describe in some detail every
layer of the library. Section 3 is devoted to a use case example where we show
how the library can be used to interact with the solvers. Section 4 describes the
tests made to the library and Section 5 conclude.

2 http://smtcomp.org
3 https://hackage.haskell.org/package/z3
4 https://hackage.haskell.org/package/smt-lib
5 http://hackage.haskell.org/package/sbv
6 http://goto.ucsd.edu/ rjhala/liquid/haskell/blog/about/
7 http://cryptol.net/

2 HSMTLib description

The code in development is hosted at Github8 and the last stable version can be
downloaded from Hackage or installed via Cabal. The library also has haddock
documentation available at Hackage9 and some additional tutorials are available
in the Github Wiki10.

Due to the modular nature of Haskell, the library is divided in four parts as
shown in Figure 1. The API layer is the module that interacts with the software
and therefore is the most interesting to the developer. The API layer is itself
splited in two sub-layers, a lower level API and a higher level API as explained
below.Then there is the solver layer which implements the functions defined in
the lower level API using functions provided by the communication layer which
handles the interaction with the solvers. There are two modes of interaction with
the solvers: the online mode where the solver is kept running externally and the
script mode which launches the solver only when needed. Finally, there is the
response layer which is responsible for parsing the response from the solver and
turn it into a Haskell data type. Let us now explain each of these modules in
more detail.

Figure 1: HSMTLib architecture.

8 https://github.com/MfesGA/Hsmtlib
9 https://hackage.haskell.org/package/Hsmtlib

10 https://github.com/MfesGA/Hsmtlib/wiki

2.1 API layer

The datatype Solver at Listing 1 aggregates the set of possible commands to
send to the solver defined by SMT-LIB in all interaction modes and uses the
SMTLib2 package11 in order to construct the expressions to be sent to the solver,
additionally numerous auxiliary functions are provided in order to create the
most common expressions, for example addition of integers or selecting a value
from an array.

data Solver = Solver

{ setLogic :: Name -> IO Result

, setOption :: Option -> IO Result

, setInfo :: Attr -> IO Result

, declareType :: Name -> Integer -> IO Result

, defineType :: Name -> [Name] -> Type -> IO Result

, declareFun :: Name -> [Type] -> Type -> IO Result

, defineFun :: Name -> [Binder] -> Type -> Expr -> IO Result

, push :: Integer -> IO Result

, pop :: Integer -> IO Result

, assert :: Expr -> IO Result

, checkSat :: IO Result

, getAssertions :: IO Result

, getValue :: [Expr] -> IO Result

, getProof :: IO Result

, getUnsatCore :: IO Result

, getInfo :: InfoFlag -> IO Result

, getOption :: Name -> IO Result

, exit :: IO Result

}

Listing 1: Avaliable commands to send to the solver

Both the defined API and the auxiliary functions provided by the SMTLib2
package are what we call the low level API. This API was the first to be em-
bodied in the library and the aim of it is to be used by software that generates
the expressions and uses the library to communicate with the solvers. If the user
intends to write source code, it will be easier if he uses what we consider the high
level API, which contains functions designed to provide some common function-
ality, for instance mapDeclConst found at Listing 2 declares a list of constants
of the same sort.

In order to select the solver to use and its interaction mode there is the
function startSolver defined in Listing 3 which returns an abstraction of a solver
that is later passed to the other commands. The function receives as arguments
one of the available solvers, the mode of operation (online or script), the logic

11 https://hackage.haskell.org/package/SMTLib2

mapDeclConst :: Solver -> [String] -> Type -> IO ()

mapDeclConst _ [] _ = return ()

mapDeclConst solver (x:xs) y =

declConst solver x y >> mapDeclConst solver xs y

Listing 2: Definition of the function mapDeclConst

to be used in the solver, and two extra optional parameters. The first, Maybe
SolverConfig allows the user to use a solver with a different configuration (note
that by doing this the new configuration may alter the behavior of the solver and
the library may not work as expected). The last parameter allows the user define
where the script will be created in script mode and is ignored in online mode.
If Nothing is passed to this last two parameters the library uses the predefined
configuration for the solvers.

startSolver :: Solvers

-> Mode

-> Logic

-> Maybe SolverConfig

-> Maybe String

-> IO Solver

Listing 3: Type of the function startSolver

To illustrate the use of the library the Listing 4 presents a working program,
which initiates the Z3 solver in online mode, declares the constant x and y of
type Int, asserts that if x is greater than y then y is less than x, checks for
satisfiability of the formulas asserted and finally exits the solver. The function
main returns a value of type Result that will be explained in subsection 2.4.
Also the function ct used at line 11 is part of the high-level API and is used to
declare a constant.

2.2 Solver layer

The solver layer is the core layer since it binds all the other layers, by imple-
menting the API defined in the API layer and by using the functions specific to
each solver provided by the communication layer. It also uses the response layer
to turn the string that comes from the communication layer into an Haskell data
type.

At this level, for each solver supported there is a source file which contains
its standard configuration and implements the functions defined in the data
type Solver, presented at Listing 1, according to the solver specific behavior and
supported modes of interaction.

1 import Hsmtlib

2 import Hsmtlib.Solver

3 import Hsmtlib.HighLevel

4 import SMTLib2.Int

5 import SMTLib2.Core

6

7 main :: IO Result

8 main = do

9 solver <- startSolver Z3 Online QF_IDL Nothing Nothing

10 mapDeclConst solver ["x", "y"] tInt

11 assert solver $ ct "x" ‘nGt‘ ct "y" ==> ct "y" ‘nLt‘ ct "x"

12 checkSat solver

13 exit solver

Listing 4: Example of the library.

A solver configuration is a simple record, solverConfig as shown in Listing 5,
which has the path to the solver and the flags to set the desired behavior.

data SolverConfig = Config

{ path :: String

, args :: [String]

}

Listing 5: Solver configuration record

An alternative configuration can be used when a solver is initialized, by giving
the function startSolver a value of this data type. In Listing 6 it is shown how to
create a configuration different from the predefined one. In this case each query
is killed after 2 seconds. The configuration can be later used as input in the
function startSolver.

2.3 Communication layer

This module offers two ways of interacting with the solvers. In online mode the
interaction is made by forking a solver as an external process and communicating
via pipes. Subsequently each interaction with the solver sends the command as
a string by pipe and then blocks until a response is given. The alternative mode
of operation is script mode where each time the program needs to communicate
with a solver it initiates an external solver, passes the file that contains the input
for the solver as an argument and then waits for the solver to end and reads the

import HSMTLib2

import HSMTLib2.Solver

z3Timeout :: Maybe SolverConfig

z3Timeout = Just $

Config { path = "z3"

, args = ["-smt2","-in", "-t:2"]

}

Listing 6: Add Timeout

output. This last mode simple uses the function readProcess12 from the Haskell
Process library.

Since some solvers offer similar ways of interaction we only need a general
function for each type of communication. However for those solvers that have an
alternative behavior, this module also offers specific functions for the solvers. To
be more concrete to use online mode with Z3 or MathSAT only one function is
needed, but CVC4 presents different behaviors in Windows and Linux therefore
the need for a specific solver functions arises.

2.4 Response layer

According to the AST defined by SMTLib2 we use parsec13 to construct the
AST from the string obtained by communication layer. For most responses no
extra work is done, for functions that do not demand feedback such as setLogic
or push, the returned values are either Success, Unsupported or Error with a
message. For those commands that do demand an answer the AST is returned
expect for the command getValue. When a command to check the satisfiability
is issued the results are, as expected, Sat, Unsat or Unknown.

For the command getValue the response layer attempts to give a special result
not defined in the standard. For this particular result the library goes through
the AST, and collects the values it can turn to a simpler type, for example if the
value of a function is requested the result is a value type Res, shown in Listing
7, with the name of the constant and the value retrieved. When the result of
an array is detect, it is turned into a map which associates the name of the
array with another map that is itself an association between the position in the
array and the value. Before delivering the final result, it unites all the maps in a
single one. For all the values for which the previous algorithm does not work it
simply returns the AST created by parsec. In the case that multiple values are
requested a list of results is returned.

12 http://hackage.haskell.org/package/process-1.2.0.0/docs/System-
Process.html#v:readProcess

13 http://www.haskell.org/haskellwiki/Parsec

All commands return a value of type Result, presented in Listing 7, which
has a constructor for each command. For instance the command getUnsatCore
returns a CGUC (Command Get Unsat Core) with the constructed AST.

data Result = CGR GenResponse

| CGI GetInfoResponse

| CCS CheckSatResponse

| CGAssert GetAssertion

| CGP GetProofResponse

| CGUC GetUnsatCoreResponse

| CGV [GValResult]

| CGAssig GetAssignmentResponse

| CGO GetOptionResponse

| ComError String -- Error comunicating with the smt or Parsing

Listing 7: Result data type.

data GValResult = Res String Value

| VArrays Arrays -- (Array Name,(Position, Value))

| Results [GValResult]

| Synt GetValueResponse (Syntax tree)

Listing 8: Result of getValue.

If the example presented in Listing 4 was executed the answer would be

Main > main

CCS Sat

CGR Success

The first CCS Sat, means the result from the command Check Sat(CCS) solver
is Sat. The second result, CGR Success, is the result from the command exit
solver which is show by GHCi14 because it is the result from the function main
and reports to the user that the solver was successfully terminated.

3 Use case example: VCGen

We will now illustrate the use of HSMTLib with a slightly bigger example. De-
ductive verification based on Hoare logic, to prove the correctness of imperative
programs w.r.t. some specification, is usually done via a Verification conditions

14 http://www.haskell.org/ghc/docs/latest/html/users guide/index.html

generator (VCGen) that generates proof obligations to be discharged by a proof
tool. Here it is shown how to operate with HSMTLib to communicate with a
SMT solver to discharge the verification conditions (VCs) generated by a VC-
Gen for a small While language (the full code is available at Github15) The VCs
are encoded in the data type LogExp, presented in Listing 9, which supports
all common logic connectors and quantifiers. For the sake of simplicity the only
predicates considered are the usual relational operators between integers. The
type AExp which is not presented here is a simple type that encode arithmetic
expressions over integers.

data LogExp = BConst Bool

| Not LogExp

| Forall String LogExp

| Exists String LogExp

| LogBin LogOp LogExp LogExp

| IneBin IneOp AExp AExp

data LogOp = And | Or | Imp

data IneOp = Lt | Gt | Leq | Geq | Equal | Diff

Listing 9: Syntax in Haskell.

Consider the following annotated program where the assertions ”pre:” ”inv:”
and ”pos:”, are the pre-condition, the invariant of the loop and the post-condition
respectively.

pre: x > 100;

while(x < 1000){

inv: 100 < x && x <= 1000;

x = x + 1;

}

pos: x > 1000;

The VCs generated by the VCGen algorithm based on the weakest precon-
dition [7] are the following

1. x > 100⇒ 100 < x ∧ x ≤ 1000
2. 100 < x ∧ x ≤ 1000 ∧ x < 1000⇒ 100 < x+ 1 ∧ x+ 1 ≤ 100
3. 100 < x ∧ x ≤ 1000 ∧ ¬(x < 1000)⇒ x = 1000

These VCs are terms of type LogExp.
Taking into account that the function assert from the HSMTLib API takes

as input values of the type Expr, the type LogExp needs to be converted so
the VCs can be asserted. This conversion can be done by using the functions
provided by the SMTLIB package as shown in Listing 10.

15 https://github.com/MfesGA/Vcgen

import SMTLib2 as SL

import SMTLib2.Core as C

createSexpr :: LogExp -> SL.Expr

createSexpr (BConst b) = boolToExpr b

createSexpr (Not a) = C.not (createSexpr a)

createSexpr (S.Forall s expr) = forall [bind s tInt] (createSexpr expr)

createSexpr (S.Exists s expr) = exists [bind s tInt] (createSexpr expr)

createSexpr (LogBin logop expr1 expr2) = logBinToExpr logop expr1 expr2

createSexpr (IneBin ineop axp1 axp2) = ineBinToExpr ineop axp1 axp2

logBinToExpr :: LogOp -> LogExp -> LogExp -> SL.Expr

logBinToExpr And expr1 expr2 = C.and (createSexpr expr1) (createSexpr expr2)

logBinToExpr Or expr1 expr2 = C.or (createSexpr expr1) (createSexpr expr2)

logBinToExpr Imp expr1 expr2 = createSexpr expr1 ==> createSexpr expr2

boolToExpr :: Bool -> SL.Expr

boolToExpr True = true

boolToExpr False = false

ineBinToExpr :: IneOp -> AExp -> AExp -> SL.Expr

ineBinToExpr Equal aexp1 aexp2 = aExpToExpr aexp1 === aExpToExpr aexp2

ineBinToExpr Diff aexp1 aexp2 = aExpToExpr aexp1 =/= aExpToExpr aexp2

ineBinToExpr Lt aexp1 aexp2 = nLt (aExpToExpr aexp1) (aExpToExpr aexp2)

ineBinToExpr Gt aexp1 aexp2 = nGt (aExpToExpr aexp1) (aExpToExpr aexp2)

ineBinToExpr Leq aexp1 aexp2 = nLeq (aExpToExpr aexp1) (aExpToExpr aexp2)

ineBinToExpr Geq aexp1 aexp2 = nGeq (aExpToExpr aexp1) (aExpToExpr aexp2)

Listing 10: Maping LogExp to Expr.

The Listing 11 contains some functions which can be used to construct the
VCGen. Let us now explain each of these functions.

To use a SMT-Solver to check the validity of a logical formula φ we need
to check the satisfiabillity of ¬φ since φ is valid iff ¬φ is unsatisfiable. After
converting the condition its negation must be asserted in the SMT solver by using
the function assert as presented in function assertExpr. Moreover, the constants
used in the formula must be declared. The function getConstants collects the
constants used in a formula in a list of strings and MapDeclConst makes the
declaration of the constants as integers in the solver which is exemplified in the
function decConstants. Function check makes the constant declaration the assert
of the formula and asks for a satisfiability check to the solver.

If the examples were executed with the negation of conditions 2 and 3 pre-
viously presented it would return the result CCS Unsat which means that they
are valid. The first condition would return CCS Sat which means there exists a
model in which the condition does not hold. In order to get a model the function
getValue could be used and it would return

assertExpr :: Solver -> LogExp -> IO Result

assertExpr solver expr = assert solver $ createSexpr expr

decConstants :: Solver -> LogExp -> IO Result

decConstants solver expr = mapDeclConst solver (getConstants expr) tInt

check ::Solver -> LogExp -> IO Result

check solver expr =

decConstants solver expr >> assertExpr solver expr >> checkSat solver

getValX :: Solver -> Result

getValX solver = getValue Solver [ct "x"]

Listing 11: Auxiliary functions

CGV [RES "X" (VInt 1001), Synt []]

giving the value 1001 to x.

4 Testing the library

HSMTLib was tested by two methods. In the first a collection of tests written by
hand were created using the HUnit16 package in order to test specific parts of the
code, mainly the commands that demand a value such as getValue. The second
consisted on parsing some benchmarks provided by SMT-LIB and converting
them into a Haskell program which uses our library.

From the battery of tests several errors were detected, CVC4 has a different
behavior both on Linux and Windows. On Linux, when communicating by pipes,
the command sent to the input pipe also appears in the output pipe, creating the
need to discard the first result read from the pipe. However on Windows such
behavior does not happen. Only the most recent version of CVC4 is supported
(version 1.3), due to the fact that previous version behave in a different manner.
On Z3 in script mode an unwanted behavior is still present in the library, when a
value is requested from the command getValue the response is given in separate
lines which makes impossible to decide in the current state which output is the
correct. As a result of not being able to get the correct value when requesting
several values using the command getValue, it is advised to request one value at a
time. MathSAT does not present problems in online mode on both Windows and
Linux, although script mode is not supported in either platform. This feature is
not implemented as a result of not having an option to give a file and needing
to redirect the file to its input. Even though we initially supported Yices [6] and
Alt-Ergo [3], through our testing they behaved very different from what were
expected and even being capable of interacting with them by pipes or files, their
response was not compliant with SMT-LIB2 standard.

16 https://hackage.haskell.org/package/HUnit

5 Conclusion

As exposed, HSMTLib provides a set of functions to easily interact with SMT-
solvers and two modes of interaction with predictable behavior. The library was
tested by different methods and is currently compatible with Z3, MathSat and
CVC4. Additional solvers can be included as long as they follow the guidelines
of SMT-LIB, otherwise the addition of a new one might need some extra work
especially in the communication layer.

The approach taken in splitting the library in several layers allows a lot of
flexibility to add additional features. For instance, adding support to the native
Z3 API. In order to achieve this goal, first a wrapper needs to be created for all
functions provided by Z3 native API which would be added to the communica-
tion layer and then map them to the SMT-LIB functions which would be done
in the solver layer. Both API and response layer would remain untouched.

A few improvements could be done in the response layer, since the same
response from different solvers might create a different syntax tree and all this
cases should be covered in order to give a consistent answer across all solvers.

We believe the library is ready to be used by other software and free the user
from repeating the task to create software that interacts with the SMT solvers
and focus on creating the tool he expected. Software such as Liquid Haskell,
Cryptol and the SBV package are examples of applications that could use this
library. HSMTLib can also be used as a more friendly way to create expressions
for asserting or declaring functions that are much easier to read and think about
than the S-expressions that need to be written to send to the solver.

In the next version we plan to run multiple solvers concurrently in order to
either issue the same command or a different one to each solver. This means we
could take advantage of the individual strength of each solver. For instance, one
solver might not be able to answer a query while another solver could.

We also plan to add stable support to Yices, Boolector and Alt-Ergo.

References

[1] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB Standard
Version 2.0.” In: Department of Computer Science The University of Iowa
Tech Rep (2010), pp. 1–43. url: http://goedel.cs.uiowa.edu/smtlib/
papers/smt-lib-reference-v2.0-r10.03.30.pdf.

[2] Clark Barrett et al. “CVC4.” In: CAV. Ed. by Ganesh Gopalakrishnan and
Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp. 171–177. isbn: 978-3-642-22109-5.

[3] François Bobot et al. The Alt-Ergo Automated Theorem Prover. http://
alt-ergo.lri.fr/. 2008.

[4] Marco Bozzano et al. “MathSAT: Tight Integration of SAT and Mathemat-
ical Decision Procedures.” In: J. Autom. Reasoning 35.1-3 (2005), pp. 265–
293.

http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.03.30.pdf
http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.03.30.pdf
http://alt-ergo.lri.fr/
http://alt-ergo.lri.fr/

[5] David R Cok. “The SMT-LIBv2 Language and Tools : A Tutorial.” In:
Language c (2011), pp. 2010–2011.

[6] Bruno Dutertre and Leonardo de Moura. “The YICES SMT Solver.” In:
Citeseer (2006), pp. 1–5. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.85.7567&rep=rep1&type=pdf.

[7] Maria João Frade and Jorge Sousa Pinto. “Verification conditions for source-
level imperative programs.” In: Computer Science Review 5.3 (2011), pp. 252–
277.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver.” In: TACAS. Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963.
Lecture Notes in Computer Science. Springer, 2008, pp. 337–340. isbn: 978-
3-540-78799-0.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7567&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7567&rep=rep1&type=pdf

	HSMTLib

