
Cohesive Project Report

Optimization of C Code for Critical

Systems

Formal Methods Software Engineering

Master in Computer Engineering
University of Minho 2013/2014

Grupo

João Carlos Alves da Cruz

July 13, 2014

1

Optimization of C Code CONTENTS

Contents

1 Introduction 4

2 Project 5

2.1 Problem Description . 5
2.2 Project Description . 5
2.3 Tasks . 5

3 SCADE Suite KCG C Code Generator 7

4 Optimization Technique 8

5 Explored Tools 9

5.1 Introduction . 9
5.2 Frama-C . 9
5.3 CIL . 9
5.4 ANTLR Grammars for C Code 10
5.5 Libclang . 10
5.6 Flex . 12

6 Application 13

6.1 Introduction . 13
6.2 Main Program . 13
6.3 Application Interface . 14

7 Verification Method 19

7.1 Introduction . 19
7.2 Composition Technique . 19

8 Case Study 21

8.1 Transformation on the .cpp file 21
8.2 Transformation on the .h file . 23
8.3 Case of Study Compound Code to CBMC 24

9 Conclusions 26

10 Thanks 27

2

Optimization of C Code LIST OF FIGURES

List of Figures

1 KCG C Code Generator transformation 7
2 Clang AST . 11
3 Program Architecture . 14
4 Interface Main Panel . 15
5 Interface Optimization Module Area 16
6 Interface Input File Area . 17
7 Interface Action Area . 18
8 Case of Study: file .cpp . 21
9 Case of Study: file optimized .cpp 22
10 Case of Study: file .h . 23
11 Case of Study: file optimized .h 23
12 Case of Study: cbcm compound program 24
13 Case of Study: cbcm compound program 25
14 Result from CBMC . 25

3

Optimization of C Code 1 INTRODUCTION

1 Introduction

The methodical and rigorous development of software systems is a complex
task. Therefore the software engineer must be gifted with skills and techniques,
that allows solving a problem in the best possible way. Software engineering for
life critical systems is particularly complex and this is where Formal Methods
emerge.

In today’s industry, Formal Methods have been used for increasing the re-
liability of systems, especially in systems whose failure may result in death or
serious injury to people. The software designed for these systems demands the
use of a rigorous mathematical verification process. It is through these mathe-
matical models that we are able to predict the behaviour of the programs before
its implementation by reasoning and calculating the models.

It is in this sense and in the context of the Formal Methods in Software
Engineering course, inserted in the Master in Computer Engineering of Minho
University, that came up the possibility to do this Project has come up, together
with Efacec , whose topic is ”Optimization of C Code for Critical Systems”.

The Software Systems development process defines the set of tasks and results
that give rise to a software product. To explain the development of this project,
this report is divided in three main steps : the Specification, the Development
and the Validation.

The first step is Specification, where the goals of this project are explained,
more precisely the features of the system and its restrictions. This step will be
covered by the second, third and fourth sections of this report.

The second step is Development, which corresponds to the productive com-
ponent, since the architectural conception until the coding language, justifying
all the options and decisions that were made during this project. This step will
be covered by the fifth, sixth and seventh sections of this report.

Finally the third step is Validation, where it is verified if what was actually
developed corresponds to what was specified and works as intended. This step
will be covered by the eighth section with a Case of study.

4

Optimization of C Code 2 PROJECT

2 Project

2.1 Problem Description

Efacec offers a complete solution for railway signalling systems, including a
software system responsible for the implementation of signalling rules, known as
interlocking. Interlocking is one of the most critical elements within a signalling
system, thus requiring a complex verification and validation process, in order to
ensure that no hazard situations can be triggered by errors contained within this
software system.

The development of interlocking system follows the model-driven development
and it is made by using SCADE tool. At first, a model of the interlocking system
is created. Then, this model is tested and verified to be correct regarding its
functional requirements. At last, a C program is automatically generated from
the provided model.

However, the generated C code is not optimized, which it is unacceptable
when the target system has limited and expensive resources. The target systems
are automatons with restrictions regarding memory and processing resources.

2.2 Project Description

The C code generated by KCG (the SCADE tool that generates C code)
contains a lot of unnecessary variables, required only to map the generated code
back to the model but not for the program logic. The removal of these variables is
a key optimization, representing an important improvement concerning memory
resources. Its implementation does not seem to be complex, nevertheless and
since this is a critical system, it is required to ensure that the optimization process
does not affect the behaviour of the program. In this context, Efacec proposes a
project consisting of two main steps:

• Step 1: to implement an optimization technique which relies on the re-
moval of unnecessary variables within the code generated by the KCG tool;

• Step 2: to verify that the C program resultant from the optimization
process is functionally equivalent to the one not optimized.

2.3 Tasks

• To familiarize with SCADE and KCG tools;

• To understand the optimization technique concerning the removal of un-
necessary variables;

• To create a tool that automatically applies the mentioned optimization
technique, which should only require a C program as input;

5

Optimization of C Code 2 PROJECT

• To provide a method that allows to verify if the optimization process does
not interfere with the program functionality;

• To provide a case study where the previous tasks can be demonstrated;

• To write a project report.

6

Optimization of C Code 3 SCADE SUITE KCG C CODE GENERATOR

3 SCADE Suite KCG C Code Generator

In this section the tool SCADE Suite KCG C Code Generated will be pre-
sented and briefly explored. This tool is used by Efacec to generate C code from
models provided by them, as explained in the previous section.

Figure 1: Connection made between models and code by KCG

SCADE Suite KCG, as the name indicates, is a C code generator, which has
been certified for IEC 61508 at SIL 3, and for CENELEC EN 50128 at SIL 3/4.
SIL is a measurement of safety system performance and stands for Safety Integrity
Level, and according to railroad standards (EN50126, EN50128 and EN50129),
SIL 4 is the maximum security level.

In the context of this project, it is important to become familiar with this code
generator for the application development and as we shall further see to verify
the transformation process required. So what is important to retain is that the
C code provided by SCADE Suite KCG has the following important properties:

• Optimized code for all constructs;

• Static memory allocation;

• No pointer arithemetic;

• No recursion, bounded loops only;

• Bounded execution time.

7

Optimization of C Code 4 OPTIMIZATION TECHNIQUE

4 Optimization Technique

In this section, the specific Optimization technique will be exhibited, accord-
ing to the specifications provided by Efacec. As mentioned before, the transfor-
mation relies on the removal of unnecessary variables in the generated code, but
the question is how to identify which variable is unnecessary and which one is
not.

So, the program that will implement the optimization technique has to per-
form the desired behaviour :

1. The program receives two input files : one file with ”.cpp” extension and
another file with the same name but with ”.h” extension;

2. In the *.cpp input file, identify any variables whose name start with “ L”
and are assigned only once in the code;

3. Replace all variables identified in the previous step and remove the cor-
responding assignment instruction. The replaced code must be between
parentheses;

4. Remove the declaration instruction, in the *.h file, for every variable that
was replaced;

After studyin these specifications some code special cases should be carefully
analysed, and according to Efacec the desired behaviour should be:

• In the following case, when the same variable is assigned in the if state-
ment and in the else statemet, the variable cannot be removed because
it is assigned more than one time, although the instructions are mutually
exclusive.

if(....)

{_Lxxxx= y; }

else

{_Lxxxx= z;}

• The second case is the following situation, when there is the possibilty to
perform a substitution inside another substitution:

_Lxxx1 = _Lxxx2;

_Lxxx3 = _Lxxx1;

_Lxxx4 = _Lxxx3;

And the expected result should be:

_Lxxx4 = ((_Lxxx2))

8

Optimization of C Code 5 EXPLORED TOOLS

5 Explored Tools

5.1 Introduction

In order to find a viable tool that automatically applies the mentioned tech-
nique, a set of tools were assessed and tested. In this section, we present a simple
definition of what each tool does and the advantages such tools would bring for
this project in case they were used, pointing out the reasons why those tools were
or were not useful for the project. The tools that have been explored are : Frama-
C, CIL (C Intemediate Language), ANTLR Grammars for C code, libCLANG
and finally the chosen tool Flex. In short terms, this section represents all the
paths taken during the project and at the same time justifies the advantages and
the disadvantages of each path.

5.2 Frama-C

Frama-C1 is a suite of tools dedicated to the analysis of the source code of
software written in C. It gathers several static analysis techniques in a single
collaborative framework.

Frama-C is organized with a plug-in architecture. Plug-ins interact with each
other through interfaces defined by the kernel. The three most famous plug-ins
are: Value Analysis, Jessie and Wp.

The reasons why Frama-C was explored the first time are the Value Analysis
plug-in, which could be useful to identify the variables we want to remove and
the Slicing plugin, for Code Transformation. Besides Frama-C provides a set of
good advantages such as:

• Static analysis of source code;

• Ready-made parser;

• Powerful semantic information like the notion of variables, function, types;

Unfortunately, Frama-C was not useful essentially for one reason: the plug-in
Slicing, slices the code according to a user-provided criterion, but the optimization
that is intended is very specific and the program cannot cope with that. In other
words, there is no way to specify to Frama-C the kind of slice that is requested.

5.3 CIL

CIL2 is an Infrastructure for C Program Analysis and Transformation and
stands for C Intermediate Language. The main advantage of CIL is that it com-
piles all valid C programs into a few core constructs with a very clean semantics

1http://frama-c.com/index.html
2http://kerneis.github.io/cil/

9

Optimization of C Code 5 EXPLORED TOOLS

and has a syntax-directed type system that makes it easy to analyse and manip-
ulate C programs. Basically, CIL is a highly-structured ”clean” subset of C.

The idea of using CIL, was the possibility of having the AST (Abstract Syntax
Tree) representation of the code and with that the parser development would be
much easier.

The downside of this tool, relatively to the required optimization, is compiling
C to the CIL process. This process is made by a set of transformations that are
applied to a C program to convert ir it to CIL, but some of these transformations
will eliminate declarations, change the variables names, change the type defini-
tions from structures, unions, and other modifications that were not required.
Even if the transformation process succeds in the future, during the certification
of the transformation problems may appear, because the comparison between the
two programs, the one optimized and the one not optimized will be very difficult
to make.

5.4 ANTLR Grammars for C Code

Another path explored during this project was the possibility of making an
ANTLR Grammar for C Language. The idea appeared because of all the ad-
vantages that a C code Grammar has, such as : direct access to the AST of
the C program, the transformation process and code generation would be very
easy to implement with ANTLR and total liberty and control over the specific
optimization process. This control is very important, especially in the certifica-
tion process. Therefore, some ANTLR Grammars for C code were found3 online
and tests but with no satisfying results. Most of the grammar was unfinished
in the way that it did not cover all the complete C language. Then, the idea of
creating a new grammar for this project came up, but after some research the
conclusion was that making a grammar for the complete C Language is a very
complex process.

5.5 Libclang

Clang4 is a compiler front end for the C, C++, Objective-C and Objective-
C++ programming languages and it uses LLVM as its back end. Clang provides
infrastructure to write tools that need syntactic and semantic information about
a program.

LibClang is a C Interface to Clang and was tested because it provides a
relatively small API which could be useful for parsing a source code into a Clang
AST, loading an already-parsed AST and travesing the AST. The Clang AST
is different from others ASTs produced by other compilers, it has a powerful

3http://www.antlr3.org/grammar/list.html
4http://clang.llvm.org/docs/index.html

10

Optimization of C Code 5 EXPLORED TOOLS

semantic representation and the number of provided features for each AST Node
(called CXCursor) is very useful.

Clangs AST nodes are modelled on a class hierarchy that does not have a
common ancestor. Instead, there are multiple larger hierarchies for basic node
types like Decl and Stmt. Many important AST nodes derive from Type, Decl,
DeclContext or Stmt, with some classes deriving from both Decl and DeclContext.
In the following picture a simple example of a Clang AST is presented.

Figure 2: Abstract Syntax Tree of Clang

The reasons why the CLANG was left behind are:

• The tool its very hard to install, with many potentially problematic de-
pendencies which will led to problems when linking the program to the
Interface;

• LibClang parser it is too smart and the types from KCG are not accepted;

• Some barriers were found with the generation of the Optimized Code;

Despite the disadvantages listed above, CLANG is very powerful and very
useful in our transformation tool. The semantics it offers is immense and all
API provided allows to do many things. With a bit more study and due to its
enormous complexity the Clang could be used for this project and future work
should be greatly facilitated.

11

Optimization of C Code 5 EXPLORED TOOLS

5.6 Flex

Flex5 is a fast lexical analyser generator. It is a tool for generating programs
that perform pattern-matching on text.

The flex program reads user-specified input files, or its standard input if no
file names are given, for a description of a scanner to generate. The description
is in the form of pairs of regular expressions and C code, called rules. Flex
generates a C source file named, ”lex.yy.c”, which defines the function yylex().
The file ”lex.yy.c” can be compiled and linked to produce an executable. When
the executable is run, it analyses its input for occurrences of text matching the
regular expressions for each rule. Whenever it finds a match, it executes the
corresponding C code.

Let us see a very simple example:

%%

[0-9]+ { printf(" Flex recognized the %s number!",yytext); }

%%

In the example, only one rule is provided to Flex with a regular expression that
says to find one or more (by the symbol ”+”) digit between 0 and 9, and a
C code action that says to print out its value every time the indicated pattern
appears. The yytext is a variable provided by Flex, which stores the tokens that
were recognized.

The reasons why Flex was viable are:

• It is a tool that gives us more control on what we want to recognize on a
file, in this case we can specify directly the kind of variables we want to
analyse (L);

• The possibility to erform easy generation of code to an output file;

• Easy to install and use;

• Using Flex we lose some semantic information, but in this case it is not a
big problem;

• We can benefit from the fact that the code we are going to optimize is a
code generated by a tool;

5http://flex.sourceforge.net/

12

Optimization of C Code 6 APPLICATION

6 Application

6.1 Introduction

The Application consists of one User Interface, that was developed in Java, us-
ing the NetBeans IDE and is linked to a program that performs the optimization
technique written in C. Therefore, in this section the program will be explained to
detail in order to understand how Flex was used to perform the desired transfor-
mationd mentioned in the Optimization Technique section. The the Application
Interface will be ilustrated.

6.2 Main Program

Firstly, for simplification purposes, the term valid variable refers to a variable
that respects the substitution invariant, this is, the variable name starts with
” L” and is assigned only once in the input code. As mentioned before the main
program receives as an input two files: one with the ”.cpp” extension and another
with ”.h” extension.

The program uses a pipeline of four flex filters. To support this pipeline
two hashtables are declared, one for the valid variables and one for the invalid
variables. The name of the variables is used by the hashtable as the key to match
the value assigned to that variable. In the invalid variables hashtable, the value
of each variable is NULL because that is not necessary to store it.

1. aalex - the first flex file is responsible for reading the ”.cpp” file, identifying
assignment instructions and stroring the valid and the invalid variables.

Between the aalex and bblex the program executes a substitution algorithm,
on the valid variables hashtable. What the algorithm does is travel the
valid variables hashtable and for each variable, it sees if in his value exists
some valid variable name that could be substituted. While this is true, it
performs the substitution directly in the mentioned hashtable, when it is
not, it moves on for another valid variable, until it reaches the end. Next
an example is presented as well the final result.

This algorithm is required because from now on only one travel to the source
code is needed to substitute the valid variable name for its final value. All
this work can only be possible to do with hashtable because the order in
which the variables appear on the code is irrelevant, such can be explained
by the valid variable invariant: only once is assigned.

2. bblex - the function of this second flex file is to perform the substitution
of the valid variables. This is done by reading the ”.cpp” input file and

13

Optimization of C Code 6 APPLICATION

Figure 3: Program architecture with the flex pipeline

generating a ” tem.cpp” file which is exactly like the input but with all the
final substitutions already made;

3. cclex - the third flex file is responsible for reading the ” tem.cpp” file
generated before and for removing the assignment instructions which have
the valid variable, by checking the valid variables hashtable;

4. ddlex - finally the last flex file, whose mission is to read the input file with
the ”.h” extension and to remove the declarations instructions of the valid
variables substituted before.

To perform this pipeline of flex file a main C code file is presented.

6.3 Application Interface

The Application Interface for this project is very simple to understand and
was built according to all specifications provided by Efacec.

The main panel shown is the next picture is composed by three main areas.

The first, is the Optimization Module area, where the user selects the opti-
mization he intends to make.

14

Optimization of C Code 6 APPLICATION

Figure 4: Application Interface Main Panel

The second, is Input File area where the user selects the ”.cpp” file he intends
to optimize.

The last one, is the Action area where the user run the program.

15

Optimization of C Code 6 APPLICATION

Figure 5: Optimization Module selection

16

Optimization of C Code 6 APPLICATION

Figure 6: Input File selection

17

Optimization of C Code 6 APPLICATION

Figure 7: Run the program area

18

Optimization of C Code 7 VERIFICATION METHOD

7 Verification Method

7.1 Introduction

Reached this stage, and after the transformation program was explained as
well as the Interface for the Application, it is time to visit the Step 2 proposed of
the project: to verify that the C program resultant from the optimization process
is functionally equivalent to the one not optimized.

From this moment is where Formal Methods actually begin to make sense,
more specifically a field in Formal Methods called Software Formal Verifi-

cation. As result, we nedd to provide a method that allows to verify if the
optimization process does not interfere with the program functionality and the
method that was explored is called the Composition Technique.

Therefore, in this section we will explain this Composition Technique and
present a simple example. This technique can be proved by using a Bounded
Model Checker called CBMC

6.

7.2 Composition Technique

According to the notion of equality of programs, two programs are equal if
for all initial states, the execution of both results in the same final state or none
of them ends.

This composition technique is done by making a program that is the compo-
sition of two programs whose equivalence we are trying to prove, renaming all
variables in one of the programs.

Let us consider the following example of a cycle:

for (k=i ; k<=j; k++) {

b += k;

a *= k;

}

Which can be refactored to this equivalent code, since there is no interaction
between the a and b variables:

for (k=i; k<=j; k++) b += k;

for (k=i; k<=j; k++) a *= k;

In order to use the composition technique mentioned before, the folowing
program can be done, and the order of the programs is irrelevant:

6http://www.cprover.org/cbmc/

19

Optimization of C Code 7 VERIFICATION METHOD

for (k=i; k<=j; k++) b += k;

for (k=i; k<=j; k++) a *= k;

for (ks=is ; ks<=js; ks++) {

bs += ks;

as *= ks;

}

As the name space of both is disjoint, the sequential execution allows to think
about the independent execution of each program but connecting the initial and
the final variables values of both programs.Now to prove this equality we have to
appeal to a verification tool such as CBMC.

CBMC is a Bounded Model Checker that allows verifying array bounds (buffer
overflows), pointer safety, exceptions and user-specified assertions.The veri-
fication is performed by unwinding the loops in the program and passing the
resulting equation to a decision procedure.

All we have to do is say to CBMC that the initial state and the final state of
the compound program must be equal. To do this comunication with CBMC in
the source code we will use two built-in modeling primitives:

• CPROVER assume (expression) - this primitive restricts program
traces to those satisfying the assumption;

• assert(expression) - this primitive specify the properties we want to
check;

And from the example before, the compound code that is sent to CBMC is:

int a,b,as,bs,ks,k,i,is,j,js;

int main () {

__CPROVER_assume(k==ks && i==is && j==js && a==as && b==bs);

for(k=i ; k<=j ; k++) b += k;

for(k=i ; k<=j ; k++) a *= k;

for(ks=is ; ks<=js ; ks++) { bs += ks; as *= ks; }

assert(k==ks && i==is && j==js && a==as && b==bs);

}

20

Optimization of C Code 8 CASE STUDY

8 Case Study

8.1 Transformation on the .cpp file

In this section a Case of Study is presented, as a way to verify if what was
actually developed corresponds to what was specified and works as intended.

Therefore, the example we will explore is a real test file provided by Efacec.
First let us take a look to an excerpt of ”caseofstudy.cpp” file, presented in the
following picture.

Figure 8: File ”caseofstudy.cpp” before transformation

21

Optimization of C Code 8 CASE STUDY

Although this excerpt not be completed, it is possible to see cleary that exists
variables that obey to the invariant, so they can be substituted such as L151,
L129 and more. But there is also some variables that did not obey to the
invariant such as L136 and L144, so they cannot be substituted.

In the next picture is presented the ”caseofstudy optimized.cpp” file, after
running the program. As we can see, the substitutions were made and the as-
signmet instructions were removed. It is also possible to see that the invalid
variables were not substituted.

Figure 9: File ”caseofstudy optimized.cpp”

22

Optimization of C Code 8 CASE STUDY

8.2 Transformation on the .h file

Next are presented the transformations that the file ”caseofstudy.h” suffered.
The desire transformation is the removal of the variables that were substituted
before, so we can see that the invalid variables declaration instruction was not
been removed in the ”caseofstudy optimized.h” file, as expected. We can look
particularly for the L136 and L144 variables.

Figure 10: File ”caseofstudy.h” before transformation

Figure 11: File ”caseofstudy optimized.cpp”

23

Optimization of C Code 8 CASE STUDY

8.3 Case of Study Compound Code to CBMC

Now let us see the syntax of the coumpound program resulting the pre-
vious transformation. As mentioned before, the program have the compound
code resulted by composing the code of ”caseofstudy.cpp” file and the ”caseof-
study optimized.cpp” file. The code of the compound program is large , so we
only will present the built-in primitives of CBMC.

Two programs are equal if for all initial states, the execution of both results
in the same final state or none of them ends. Therefore, is that we will say to
CBMC, the variable have the same value before execute the compound program
(assume expression) and have to be the same value again after(assert expression).

As we can see in Figure 14 , the result from CBMC to the compound program
from Case of Study is VERIFICATION SUCCESSFUL.

Figure 12: Defining the initial state

24

Optimization of C Code 8 CASE STUDY

Figure 13: In the end the execution has the same final state

Figure 14: In the end the execution has the same final state

25

Optimization of C Code 9 CONCLUSIONS

9 Conclusions

• The transformation is made according to all specifications provided by
Efacec;

• The application interface its simple and functional, and already set for
future work, with the possibility of inserting new optimization modules;

• For all the tests that were made the feedback from the application was
positive;

• There are still some small edges missing filing, like for example the user
choose the path for the output files, etc;

• All the tests that, using this technique, on real test files provided by Efacec,
were made by manually built the composition program;

• The main goal for near future is add to our application the step 2 auto-
matically, so that in the future, the application can provide not only the
transformed code files but also the file with the compound code, already
set to be proved by the CBMC;

• The application will be to perform the required transformation but also
will be able to provide an important element for the certification of the
transformation;

• We really believe that this technique can actually solve the certification
problem because the compound code is an element generated in the process
whose verification ensures the equivalence between the two programs;

26

Optimization of C Code 10 THANKS

10 Thanks

In this section just want to give a word of thanks for the help obtained, the
availability, constant encouragement and all the suggestions and criticisms to
Professor Jorge Sousa Pinto, to the Efacec external supervisors João Martins e
Helder Azevedo and also to Professor José João Almeida.

27

