
Event-B Support for RTOS Applications

Miguel Costa1 and Fábio Sousa2

Supervisor: Leonel Braga (Altreonic)
Co-Supervisor: José Nuno Oliveira (DI Uminho)

University of Minho

Abstract. OpenComRTOS is a commercial RT operating system for
embedded systems. Rodin is an Eclipse-based tool for formal modelling
in Event-B. Both are the subject of a project proposed by Altreonic to
MFES students of University of Minho whose main goal is to create a
bidirectional connection between these two tool-sets.

1 Introduction

OpenComRTOS [1] is a commercial network-centric, formally developed real-
time operating system, aimed primarily at the embedded systems market. Rodin1

[2] stands for Rigorous Open Development Environment for Complex Systems
and it is an Eclipse-based tool for formal modelling in Event-B.

This document reports on the work developed in a project proposed by Al-
treonic to the students of the Formal Methods for Software Engineering (MFES)
course of the University of Minho. The main goal of this project is to cre-
ate a bidirectional connection between OpenComRTOS Visual Designer and
Rodin/Event-B [2]. The main purpose of OpenComRTOS is to provide a soft-
ware runtime environment supporting a coherent and unified systems engineering
methodology based on so-called interacting entities. In order to develop appli-
cations for this RTOS, Altreonic provides a tool named OpenComRTOS Visual
Designer, which purpose is to allow the software developer to define the topology
and the application of his system. The Rodin platform is based on Eclipse.

The subject proposed by the Altreonic company includes the exploitation
of the B/Event-B language capabilities, and the integration of the latter with
OpenComRTOS Visual Designer in such a way that properties of Real-time (RT)
systems (such as eg. deadlocking) can be checked in Event-B. In the initial steps
of the work the subject was refined to assess the correctness of system interac-
tions, ensured by checking safety property conditions related to the interacting
entities.

At the heart of this project lays the implementation of an automated pro-
cess for converting OpenComRTOS Visual Designer projects onto models in the
Event-B language (and vice-versa). The goal of this transformation is to as-
sess the correctness of the system interactions, and to correct any undesired
behaviour identified, thus implicitly offering a bidirectional connection between
OpenComRTOS Visual Designer and Rodin.

1 http://www.event-b.org/install.html

http://www.event-b.org/install.html
http://www.event-b.org/install.html


2

2 Introduction to OpenComRTOS Visual Designer

OpenComRTOS Visual Designer is toll designed to help the user (a software en-
gineer) to develop and deploy real-time applications for OpenComRTOS. Open-
ComRTOS is a distributed RTOS and it provides a build-in router and commu-
nication layer. While hidden from the application programmer, this allows tasks
to synchronise and to communicate transparently across a network of processing
nodes. This provide that one node can be part of local network that is connected
through internet with another cluster at the other side of the world. This sup-
ports a transparent distributed operation however is an option that does not
prevent using OpenComRTOS Visual Designer on a single CPU.

Put in a simple way, a Task will be running on a computing device (CPU
+ RAM + Peripherals + etc.), called a “Node”. There may exist many tasks
running on a single node. These tasks may be run independently or may syn-
chronise and communicate with each other.
The means of communication, synchronisation and to data exchange is provided
by the OpenComRTOS through the meta-concept of hubs, each hub has specific
behaviour and they are independent from the tasks.

OpenComRTOS Visual Designer supports the following types of hubs: port,
event, semaphore, resource, FIFO, and memory pool. Each hub provides the fol-
lowing distinct synchronisation semantics: wait, non wait, and wait with timeout.
In order to build a new application the user can simply drag and drop onto an
empty canvas the hubs he needs for his application. The hubs can be later be
linked to the tasks which will make use of them. The result of this process is
the generation of source code with the configurations and the definitions of the
functions that will be part of the application.

3 Introduction to Event-B in Rodin

Event-B is a formal method for system-level modelling and analysis. Event-B is
a notation and method developed from the B-Method and it is intended to be
used with an incremental style of modelling. The idea of incremental modelling
has been taken from modern programming languages that come with integrated
development environment that make it easy to modify and improve programs.
Key features of Event-B are: the use of set theory as a modelling notation, the
use of refinement to represent systems at different abstraction levels, and the
use of mathematical proof to verify consistency between refinement levels.

The Rodin Platform is an Eclipse-based IDE for Event-B that provides ef-
fective support for refinement and mathematical proof. The platform is open
source, contributes to the Eclipse framework and is further extendable with
plug-ins. This work has been sponsored by the DEPLOY project2.

2 http://www.deploy-project.eu/

http://www.deploy-project.eu/
http://www.deploy-project.eu/


3

3.1 Event-B Modelling in Rodin

Every Model in Robin is composed of 2 separate components, the context and
the machine. However, it is possible to use just the machine component as the
main and only element of the model. The contexts describes static elements of
a model, elements that will be set in each model trace executed. Machine de-
scribes the dynamic behaviour of a model by means of variables whose values
are changed by events. A central aspect of modelling a machine is to prove that
the machine never reaches an invalid state, i.e., the variables always have values
that satisfy the invariant. Machines can also make use of the sets, constants, and
axioms declared in contexts.

A context has the following components:

– Sets, using constants.
– Constants, in which each constant must be given axioms.
– Axioms, are a list of predicates. They describe what can be taken for granted

when developing a model. The axioms can be later used in proofs that occur
in components that use this context. Each axiom has a label attached to it.

– Theorems, Axioms can be marked as theorems. In that case, is declared that
the predicate is provable by using the axioms that are written before the
theorem. Theorems can be used later in proofs just like the axioms.

– Extends, a context may extend an arbitrary number of other contexts. Ex-
tending another context A has the effect that we can make use of all the
constants and axioms declared in A and we can add new constants and
axioms. As in object oriented programming languages.

The order of the axioms and theorems matter because the proof of a theorem
or the degree to which an expression is well-defined may depend on the axioms
and theorems that are already written. This is necessary to avoid circular rea-
soning.

An machine consists briefly of:

– Sees, can use the context’s sets, constants and axioms in a machine by declar-
ing it in the Sees section. The axioms can be used in every proof in the
machine as hypothesis.

– Variables, the values of the variables are determined by an initialisation and
can be changed by events. Together they constitute the state of the machine.
Each variable must be given a type. This definition is achieved by the use
invariants.

– Invariants, these are predicates that should be true for every reachable state.
Each invariant has a label.

– Events, an event can assign new values to variables. The guards of an event
specify under which conditions it might occur. The initialisation of the ma-
chine is a special case of an event which set ups the machine’s initial config-
urations.

A good tutorial can be found here[3]



4

4 Development

The work was scheduled as follows. The first stage of this project wast to con-
duct a research on the Event-B language concerning its expressiveness power
and tooling-support. Documented in 4.1. Parallel to this, work was carried out
on understanding the OpenComRTOS Visual Designer tool, by modelling the
behaviour of some Hubs (base elements found in the OpenComRTOS Visual De-
signer and OpenComRTOS) and correspondent connection methods to be used
in the construction of small models, with no more than 3 to 4 elements. Some
of these models can be found in the appendix section 8.2 and a example of a
OpenComRTOS Visual Designer diagram in appendix section 8.1.

During the analysis of the models created in Visual Designer, the presence
of undesired behaviour was immediately identified and described in section 4.2.

Modelling a global model containing all the OpenComRTOS Visual Designer
elements in a arbitrary number was the next step taken. The step was immedi-
ately followed by automatising the process of converting OpenComRTOS Visual
Designer projects onto Event-B models compatible with Rodin. The creation of
this global model is described in the section 4.3 and the automation process is
described in the section 4.5.

Such automatised process allows an increase and diversification on the num-
ber of cases to be studied. It allows also the evaluation of the capacity of Event-B
in detecting undesired behaviour that is described in section 4.4

So that the bidirectional connection between OpenComRTOS Visual De-
signer and Rodin can be done one of the following two different paths can be
chosen:

– Using the model created in Event-B and identify the problems and correct
it directly in the OpenComRTOS Visual Designer.

– Using the model created in Event-B and identify the problems and correct
in the Event-B model, and afterwards convert it to the C programming
language to be interpreted by OpenComRTOS Visual Designer.4.6

4.1 Event-B: Syntax and Tooling-support

Event-B language is a very powerful language that relies on set theory and
first order logic, such as B Language, but it uses event logic, which is what
differentiates it from the B-language.

Several platforms were found during the execution of this project, namely
Rodin[2], Atelier B3 and ProB4. The chosen modelling tool for Event-B for this
project was Rodin, for the simple fact that it is better documented in the Event-
B.

3 http://www.atelierb.eu/outil-atelier-b/
4 http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_

and_Model_Checker

http://www.atelierb.eu/outil-atelier-b/
http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_Checker
http://www.atelierb.eu/outil-atelier-b/
http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_Checker
http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_Checker


5

To learn how to use this language in the context of this tool a tutorial5 for
Event-B was followed, and a Cheat sheet6 was kept in hand the.

4.2 Problem Analysis

From a first analyse it became clear that in each OpenComRTOS Visual Designer
project, the diagrams representing the connections between tasks may contain
undesired behaviour. Let us consider as a first example a diagram with four tasks
and four ports using the wait synchronisation mechanism (see figure 1). As we
shall soon see, in this simple example, it is possible to reach a state of deadlock.

Task 3

Task 2Task 1

Task 4

6

6

?

?

- -

� �

Port2����
Port4����

Port3����

Port1����

Fig. 1: Diagram with 4 Tasks and 4 Ports

Let us now suppose that the following four events occur:

– Task 1 requests to write on Port 1.

– Task 2 requests to write on Port 2.

– Task 3 requests to write on Port 3.

– Task 4 requests to write on Port 4.

As can be seen in figure 2, after the events mentioned above the system blocks
because all the tasks are waiting to synchronise but none of them can continue
without being unlocked.

5 http://handbook.event-b.org/current/files/EventB-Summary.pdf
6 http://handbook.event-b.org/current/files/EventB-Summary.pdf

http://handbook.event-b.org/current/files/EventB-Summary.pdf
http://handbook.event-b.org/current/files/EventB-Summary.pdf
http://handbook.event-b.org/current/files/EventB-Summary.pdf
http://handbook.event-b.org/current/files/EventB-Summary.pdf


6

Task 3

Task 2Task 1

Task 4

6

?

-

�

Port2����
Port4����

Port3����

Port1����

Fig. 2: System blocked - deadlock

A system that will not block does not ensure a well behaved system (such
aslive lock). In the previous example, if it is considered any type of synchronisa-
tion mechanism with the repeated behaviour such as defined in 4.2, the system
will achieve a state of live lock.

4.3 Event-B Specification of OpenComRTOS Projects

OpenComRTOS Visual Designer projects contain different elements, but just
some of them were the focus of our work in this project. This targeted/studied
elements can be divided in three different types:

– Tasks

– Hubs

• Port

• Fifo

• Semaphors

– Synchronisation mechanisms

• Wait

• Wait and timeout

• No Wait

After the analysis of some models, in section 4.2, the next step was start to
model the Hubs in Rodin. For all of the synchronisation mechanisms(Wait, Wait
with timeout, Non wait). It was created one model for each hub, respectively
Port(Tasks and Ports), Semaphore(Tasks and Semaphores.), and Fifo(tasks and
Fifos). In the end, they were merged into a single Event-B model capable of
representing an arbitrary number of tasks and hubs.



7

Hubs and Synchronisation Modelling Methods The use of models will
enable a deeper analysis of the behaviour of the system. For this purpose was
decided that the following concepts must be modelled:

– Representation of different connections.
– Representation of different synchronise methods.
– Representation of connected nodes.
– The effect of synchronisation methods on the tasks.

To achieve this, synchronisation methods are the most important elements in the
models and the ones that need to be model more concretely as possible. Time
duration of synchronisation is not important point but the order in which the
system call and events happens.

Task The operations related only to tasks were abstracted and model as vari-
ables which hold the state in which the task is. That state can be:

– Idle, the task is executing something and is not trying synchronise.
– Wait, state in which the tasks wants to synchronise with a semaphore using

the wait semantics.
– WaitT, state in which the task wants to synchronise with a semaphore using

wait with the timeout semantics.
– Non Wait, state in which the tasks wants to synchronise with a semaphore

using the non wait semantics.
– Wait w, state in which the tasks wants to synchronise with a fifo or a port

using the wait semantics to write.
– WaitTime w, state in which the tasks wants to synchronise with a fifo or

port using wait with timeout semantics to write.
– NoWait w, state in which the tasks wants to synchronise with a fifo or port

using non wait semantics to write.
– Wait r, state in which the tasks wants to synchronise with a fifo or port

using wait semantics to read.
– WaitTime r, state in which the tasks wants to synchronise with a fifo or port

using wait with timeout semantics to read.
– NoWait r, state in which the tasks wants to synchronise with a fifo or port

using non wait semantics to read.

Port Ports were model as simple connection channels. A port does not preserve
order of call requests and the synchronisation needs to exist when one task wants
to read and another one to write. The events that can be triggered from a task
are:

– Desire to synchronise using the wait semantics is trigger by the follow meth-
ods:
• PortReadWait, to receive information.
• PortWriteWait, to send information.



8

The task that requests this method can only unblock if it is able to synchro-
nise with other task.

– Desire to synchronise using the wait with timeout semantics is trigger by the
follow methods:
• PortReadWaitTime, to receive information.
• PortWriteWaitTime, to send information.

The task that requests this method can only unblock if it is able to synchro-
nise with other task, or by the one of the following methods:
• PortTaskTimeOutW,
• PortTaskTimeOutR,

These methods introduce the concept of a timeout, which indicates how
much time is the caller willing to wait to achieve synchronisation.

– Desire to synchronise using non wait semantics is trigger by the follow meth-
ods:
• PortTask Read NW, to receive information.
• PortTask Write NW, to send information.

The task that requests this method does not block and it will only synchro-
nise if it exists other task waiting to synchronise. In the event of not existing
tasks waiting to synchronise, the following triggers will be available.
• PortTask Write NW fail.
• PortTask Read NW fail.

These methods represent that request has timed out.

– In every case, if the synchronisation is successful the trigger is
• PortSync.

Fifo FIFO Hub was modelled as a bounded circular array. The first elements
entering in the array are the first ones to be removed.

– Desire to synchronise using the wait semantic is trigger by the follow meth-
ods:
• fifo rd w, to receive information.
• fifo wr w, to send information.

The task that requests this method can only unblock if it is able to synchro-
nise with the FIFO. Synchronisation depends on the existence of an empty
slot for a new element in a send information event, or on the existence of
data in the array if trying to read information.

– Desire to synchronise using the wait with timeout semantics is trigger by the
follow methods:
• fifo rd wt, to receive information.
• fifo wr wt, to send information.

The task that did synchronise using one of this methods can only unblock if
synchronise successful with the FIFO or by one of the follow methods
• fifo sync wr wt fail.



9

• fifo sync rd wt fail.
These methods represent the times out of the request.

– Desire to synchronise using the non wait semantics is trigger by the follow
events:
• fifo sync rd nw, to receive information.
• fifo sync wr nw, to send information.

The task that requests this method does not block and it can only synchro-
nise if it exists other task waiting to synchronise. If there are no tasks with
which to to synchronise the following triggers that represent that request
timed out will be available:
• fifo sync rd nw fail.
• fifo sync wr nw fail.

These methods represent that request has timed out.

– In all cases if synchronisation is successful is trigger by
• fifo syn wr w wt.
• fifo syn rd w wt.

Semaphore Semaphores are simple structures with a variable, this variable is
the number of increments made to that semaphore. A task can ”ask” a semaphore
to increment the variable or to share/give the information about the variable.

– Desire to synchronise using the wait semantics is trigger by the follow events:
• Task Want 2 Sync Sem Wait, if the semaphore is free the task just asks

to synchronise;
• Task Sync AfterWait Sem Wait, if the semaphore is busy the task just

stays in queue to synchronise;
• Task Sync Sem Wait, Semaphore allows task to synchronise.

The task that requests this method can only unblock if the synchronisation
with the Semaphore is possible.

– Desire to synchronise using the wait with timeout time semantics is trigger
by the follow events:
• Task Sync Sem WaitTime FREE, if the semaphore is free the task asks

to synchronise with a given timeout;
• Task Sync AfterWait Sem WaitTime, if the semaphore is busy the task

stays in queue to synchronise for a given timeout;
• Task Sync Sem WaitTime BUSY, if the semaphore is waiting to syn-

chronise with a task that just timed out.;
The task that requests this method can only unblock if the synchronisation
with the Semaphore is possible. If the tasks times out the following triggers
will be available
• Sem Sync TimedOut
• Task TimedOut

These methods represent that request has timed out.



10

– Using the non wait semantics when tasks ask directly to the semaphores to
increment or to share its variable value.
• Sem ShowInfo NoWait Free and SemIncrement NoWait Free, if the semaphore

is free this events can occur at the moment;
• Sem ShowInfo NoWait Busy and SemIncrement NoWait Busy, if the semaphore

is busy this events can’t occur at the moment.

To synchronise the Semaphore will need to be free and after a successful syn-
chronisation the task can ask the Semaphore to increment its variable or to share
its value before.

4.4 Safe Condition

To ensure the system is well behaviour one needs to ensure that the cases such
as the ones found in the section 4.2 do not happen. Its only possible to enquire
such properties using Temporal Logic.

Rodin has support for Temporal Logic through the plugin ”ProB”. Docu-
mentation about the use of Temporal Logic in Rodin is almost nonexistent, the
only reference that could be found was http://www.stups.uni-duesseldorf.

de/ProB/index.php5/LTL_Model_Checking and it is not related to Rodin.
Initial tests show that the plug-in does not work properly in the matter of Tem-
poral Logic and for that reason it is impossible to verify such properties. This
is a big setback, blocking part of the development of this project. An new set of
tools will be needed to pursue this objective.

The results that we observed when trying to check LTL properties made us
wonder if the problem is related to the initialisation event. An counter-example
was always popping up, an empty set implying some expression.

Before the initialisation event the variables were not assigned. So it is assumed
that the error stems from that event.

Linear-time temporal logic (LTL)7 is a modal temporal logic with modali-
ties referring to time. In LTL, one can encode formula about the future of paths,
e.g., a condition will eventually be true, a condition will be true until another
fact becomes true.

Pseudo examples could be:
G((∀t.TaskStatus(t) == wait) ==> F (event(PortSync with t))), this would
mean: for all states if task t enters in wait status, eventually the event of syn-
chronisation referent to task t will happen .

4.5 From Visual Designer to Rodin

To allow the conversion of OpenComRTOS Visual Designer projects into Rodin
models two programs have been created.

7 http://en.wikipedia.org/wiki/Linear_temporal_logic

http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking
http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking
http://en.wikipedia.org/wiki/Linear_temporal_logic
http://en.wikipedia.org/wiki/Linear_temporal_logic


11

The main program(named rtos2rodin.c) is written in C code(C Programming
Language8). rtos2rodin.c is responsible for generating the Rodin model files (con-
texts and machines) from OpenComRTOS Visual Designer project files.
The other program is a bash script file which is responsible for extracting the
information about the elements(Hubs, tasks) and their connections, from the
OpenComRTOS Visual Designer project files.

Fig. 3: Conversion Process

Extract the Data from the projects There are two different ways to extract
data from a Visual Designer project:

1. Dynamic filter
2. Static filter

A dynamic filter would analyse every XML file from the OpenComRTOS
Visual Designer project and then get the information about every element, con-
nection and task.

A static filter retrieves the information directly from C files. This one is the
implemented and was chosen over dynamic filter as the difficulty to parse the
XML over C code would be greater for us and the information retrieved would
be the same.
The implementation of this filter is based on a bash script. Using the egrep
command, usually found in Unix systems. This command is a simple text filter
which looks for patterns which match the system calls to hubs in C file.

8 http://en.wikipedia.org/wiki/C_(programming_language)

http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)


12

The bash script removes also repeated information and extracts the data to
individual files. This individual files contain the information of each element,
task or connection in the project.

For instance, if a project contains tasks, fifos, ports, semaphores, and the
tasks are connected using any of the hubs, the filter will write the following files:

– t.txt
– p.txt
– f.txt
– s.txt
– c.txt

Here is a example of a t.txt(tasks) file:

TaskEntryPoint1
Task2
Taskers
TaskOfDuty

Conversion Process After creating a project in OpenComRTOS Visual De-
signer some files related to that project will be created. Therefore the user should
copy only the C files created to the folder where the conversion program is cur-
rently located.

The conversion program(rtos2rodin) can be executed in terminal as follows:

$ . / r t o s 2 r o d i n . c

During the execution of the program the user will be asked to give a name to
the Rodin model to be generated.

Afterwards the program will finish the conversion and a new folder will appear
in the current directory, with the name given by the user. The new folder can
now be imported to Rodin platform.
Once generated, the project can be imported to Rodin. Next there is a list of
steps to achieve this task:

1. Run the Rodin platform executable
2. Press ’File’ tab

(a) Import
(b) General → Existing Projects into Workspace
(c) Browse the file
(d) Press ’Finish’.

3. Press ’Project’ tab
(a) Select the project to clean
(b) Press ’OK’.

4. Build the project
(a) Right click in the project
(b) Press ’Build Project’ option.

These steps can be also followed from the figures in the appendix section 8.4.



13

rtos2rodin - Functional Behaviour The program rtos2rodin will only work
properly with the help of the filter(bash script). If the filter is missing the pro-
gram will not work properly and any attempt to generated a the Rodin project
will generated models without any task or element.

After a few investigations over the Rodin model files it was easy to notice
that Rodin model files are written in XML(Figure 10).
With the knowledge of the XML structure of the Rodin files, devising a method
to generate the model files is became simpler. With the information about the
elements, tasks and connections the program rtos2rodin will create the files con-
text.buc and machine.bum. These files contain the information about the context
and the machine, respectively.
An example of a Rodin tags.

<org . eventb . core . guard name=”∗” org . eventb . core . l a b e l=”grd2 ”
org . eventb . core . p r e d i c a t e=”new value = TRUE −>
peds go = FALSE”/>
</org . eventb . core . event>

4.6 From Rodin to Visual Designer

The accomplishment of this task was highly dependent on the plugins available
to Rodin whose goal is to generate C source code from Event B models.

Unfortunately, this point could not be achieved because of the lack of working
source code generators. A further explanation on this matter will be given in
section 5.2.

5 Rodin Platform Tool Evaluation

5.1 Global Aspects

Event-B is a very powerful formal modelling language, which Rodin takes lever-
age of it. The syntax of Rodin is simple, intuitive and allows the user to easily
create complex expressions. Nevertheless, some limitations and constraints dur-
ing the course of this project were found. Specifically, additional features to this
tool and interactions with external tools, such as source code generation and the
integration with temporal logic provided by the tool ProB.

A minor aspect, definitely not crucial, is the editor. In the early use of
the editor this presents itself helpful, but shortly after the beginning of the
project it becomes unusable. Simple operations like copy and paste of elements,
adding new fields, need a correct clicking in specific points in the editor. Also
the auto-interpretation that combines characters sometimes works erroneously,
which might be counter productive. An existence of an option to interpret pure
ASCII text would be interesting.
A new version of Rodin was released while creating this report.



14

5.2 Code Generation

One of the goals of this project was to convert Rodin models to OpenComRTOS
Visual Designer projects. These projects are constituted of C source code files.
Due to this reason, Rodin plug-ins9 to generate that C code from Rodin models
were the focus of our search.

Code Generators available for Rodin :

– EB2ALL10;
– Tasking Event-B11;
– B2C12.

EB2ALL supports automatic source code generation from Event-B to C, C++,Java
and C#.

From the official website13, “The EB2ALL tool is still in development stage,
we are releasing all the EB2C, EB2C++, EB2J and EB2C# tools as beta version
before final release of the EB2ALL for collecting the bugs.”web page14

From the list of modules provided by this plug-in, the suitable one is EB2C.
The steps for the installation of this tool are provided in the section ”Download”
→ ”EB2C” → ”Installing The EB2C Plug-In”.15

We were able to install EB2C using the guidelines provided in the official
documentation, but unfortunately we could not have the same success running it.
An error message would pop up, as you visible in Figure 4. Several Rodin models
were used with the purpose of discarding any incompatibilities with Event-B
models, but the result would be always the same: an error message and no
output files generated.

From an official paper[4]: “This is our first step towards source code genera-
tion from the Event-B formal specification, and our aim is to improve this tool
to meet the industrial requirements”.
It would be helpful to know what should be understood by “industrial require-
ments” in this context, but we could not get more details with regards to this
matter.

Tasking EventB supports generation of multi-tasking Java, Ada, and OpenMP
C code from Event-B.

We haven’t found any manual for the installation of this tool and the files
available on the GIT repository seem to be plug-ins that are already installed,
which did not help in the installation of this feature in Rodin.

9 http://wiki.event-b.org/index.php/Rodin_Plug-ins
10 http://eb2all.loria.fr/
11 http://wiki.event-b.org/index.php/Code_Generation
12 http://wiki.event-b.org/index.php/B2C_plugin
13 http://eb2all.loria.fr/
14 http://eb2all.loria.fr/
15 http://eb2all.loria.fr/

http://wiki.event-b.org/index.php/Rodin_Plug-ins
http://eb2all.loria.fr/
http://wiki.event-b.org/index.php/Code_Generation
http://wiki.event-b.org/index.php/B2C_plugin
http://eb2all.loria.fr/
http://eb2all.loria.fr/
http://eb2all.loria.fr/
http://eb2all.loria.fr/
http://eb2all.loria.fr/
http://wiki.event-b.org/index.php/Rodin_Plug-ins
http://eb2all.loria.fr/
http://wiki.event-b.org/index.php/Code_Generation
http://wiki.event-b.org/index.php/B2C_plugin
http://eb2all.loria.fr/
http://eb2all.loria.fr/
http://eb2all.loria.fr/


15

Fig. 4: Error when running EB2C tool.

B2C translates Event-B models to C source code, which may then be compiled
using external C development tools [5].

By Following the manual16 [6], the installation process became an easy pro-
cess, but for a proper installation it is recommended the usage of considerable
old versions of Rodin and Java.

Installing Rodin is easy but the installation of java was a bit tough and
the system warned that the installation might not succeed because it was old
for the computer system and that version of java would not work properly in
new Microsoft Windows systems, as the tool is only available under Microsoft
Windows Platforms.

Although the installation of the Rodin platform and java was completed,
there was no success while running it unfortunately, as we can see in the Figure 5.
The manual does not provide any other way to run this source code generation,
so this tool couldn’t also be used.

5.3 Choosing a source code generator

From the experience with the tools we found during this project to perform
source code generation we would make the following recommendation. If a new
and working version of any of these tools were released we would strongly rec-
ommend to use the EB2ALL tool for source code generation. Even knowing that
the tools aren’t working it’s possible to analyse the method they generate the
code, just by following their papers. The tool Tasking Event-B don’t provide a
paper with the method they generate code, so just by analysing the two remain-
ing tools (EB2ALL and B2C) the EB2ALL tool has a easier way to generate

16 http://deploy-eprints.ecs.soton.ac.uk/84/2/Midas_Deploy.pdf

http://deploy-eprints.ecs.soton.ac.uk/84/2/Midas_Deploy.pdf
http://deploy-eprints.ecs.soton.ac.uk/84/2/Midas_Deploy.pdf


16

Fig. 5: Error when running Rodin.

code. This generation method can be found in their papers. The method used
to generate in this code can be found in[4].

6 Useful tips and tricks

6.1 ProB tool

After downloading the Rodin platform it is highly recommended to install in the
Rodin environment the tool ProB17.

To install this tool in Rodin environment just open the ”Help” tab and press
”Install New Software...”(Figure 6). Afterwards type in the ’Work with’ section
the tool you desire to be added to Rodin(Figure 7).

These tools provide additional features to users like: the possibility to run
a animation/model checking, but the most important is to check certain prop-
erties like find the existence of blocked states(deadlocks), invariant violations,
etc(Figure 20).

The figures about the execution of ProB in Rodin can be found in the ap-
pendix section 8.5.

17 http://wiki.event-b.org/index.php/ProB

http://wiki.event-b.org/index.php/ProB
http://wiki.event-b.org/index.php/ProB


17

Fig. 6: Help → Install New Software

Fig. 7: Installing the new tools

7 Conclusion and Future Work

The research that was put in place to integrate OpenComRTOS Visual Designer
with Rodin and Event-B led us to model the various hubs and interactions. This
has allowed us in the identification of undesired behaviours. Such behaviours
came from synchronisation methods and communication relation between tasks.

A set of tools have been developed to implement the bidirectional transfor-
mations between OpenComRTOS Visual Designer and Rodin with the intent to
check the correctness of system although the bi-directionality was not achieved
due to lack of proper tools to generate proper source code from formal models
written in Event-B and the functionality to check Temporal Logic properties.



18

As future work will be to extend this project to the remaining Hubs that
weren’t modelled yet, which also implies upgrade the filter to recognise the new
hubs added. Also add the feature recognise the connection names and system
calls from XMLs created by OpenComRTOS Visual Designer, such feature will
allow rename of connection names and system call by Altreonic without need to
change the filter source code. Its also important to overcome barriers founded
by the complemented tools in Rodin, even if that means change the modelling
language being used so it would be possible to generate source code and check
LTL properties.



19

References

1. Altreonic: OpenComRTOS-Suite Manual and API Manual
2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. STTT 12(6) (2010) 447–466
3. Jastram, M.: Rodin User’s Handbook
4. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer (2013)
5. Wright, S.: Automatic generation of c from event-b. In: Workshop on Integration

of Model-based Formal Methods and Tools. (February 2009)
6. Wright, S.: MIDAS: A Formally Constructed Virtual Machine



20

8 Appendix

8.1 Example of a OpenComRTOS Visual Designer diagram

Fig. 8: Example of a OpenComRTOS Visual Designer diagram



21

8.2 Other defined models

(a) Diagram of model with 2 Ports/Tasks

(b) Diagram of a model with 2 Ports/Tasks

Fig. 9: Other model examples



22

8.3 A XML Rodin file

Fig. 10: Example of a Rodin file (machine.bum)



23

8.4 Importing a Rodin project

Fig. 11: ’File’ tab → Import...

Fig. 12: Existing project



24

Fig. 13: Browsing the project

Fig. 14: ’Project’ tab → Clean...

8.5 Execution of ProB



25

Fig. 15: Cleaning the project

Fig. 16: Build the project



26

Fig. 17: Run ProB for a model

Fig. 18: Animation of the ProB execution



27

Fig. 19: Check Proprieties

Fig. 20: A few proprieties that can be checked


	Event-B Support for RTOS Applications

