< 1 educed

ENGINEERING MADE BETTER

Extending PROVA for Ontology
Definition and Exchange

MFES Cohesive Project: Milestone 4

July 3, 2014 Group D

Main objective of the project

- Extend PROVA to support Ontologies

€ Study the concept of Ontology and the Web
Ontology Language.
Study and its Boilerplates.

€ Make a useful translation between OWL and

Construction of a OWL parser to make the
previous translation possible.

What is an Ontology?

-> Representation of knowledge as a set
of concepts of a specific domain.
-> Like a bag of terms and relations.

U

Web Ontology Language (OWL)

-> Instance of the set theory.

-> Classes/Subclasses are just sets.

- Thing is the superset representing the
universe and Nothing the empty set.

Web Ontology Language (OWL)

-> Classes can have attributes.
-> There are relations between the classes.
-=> Individuals are members of the classes.

Web Ontology Language (OWL)

> Many way of representing the same
ontology.

-> Different syntaxes to represent an Ontology
(RDF only, OWL + RDF).

-> The approach of our parser is to parse just a
subset of OWL.

: A nhew modeling tool

=> An innovative tool for development of high
assurance systems.

=> Capable of analyzing textual requirements (with
a proper syntax).

: Structure

-> Front End provides a user-friendly way to model the

system.

-> Middle Tier receives the boilerplates and translate
them to be sent to the Back End (Haskell).

-> Back End receives the requirements and gives them
to a SMT Solver that will return SAT or UNSAT +

Model (Haskell).
.

HASKELL

: Boilerplates

-> “Standardized pieces of text for use as clauses in
contracts or as part of a computer program”
-> Used to express requirements

-> There are three types:
€ Structural e
& Operational
€ Behavioral

OWL parser

-=> Written in Haskell to fit into 's back end.

= OWL Haskell representation was defined.
-> Use of HXT library to help the parsing process.

OWL Haskell :: Ontology

data Ontology = Ontology {

entities :: [Entity],

oProperties :: [Property],

dProperties :: [Property],

individuals :: [Individual]
} deriving (Show, Eq)

OWL Barser:
Error Handling

OWL parser: error handling

-> Easier to debug the parsed ontology

-> Attribute of tags not processed by the parser are
caught by the error handling system

-> Errors are exported to a file

OWL parser: error handling

data Error = Error {
type_ :: String ;
} deriving (Show,Eq) l

"Invalid attribute type : " ++ attribute ++ ", line : " ++ line

-> Error data only contains the type of error
- Indicate the attribute and the line where the
error is caught

:::: <<:)) ll') (Y Y

OWL parser: error handling

getOwlClass :: ArrowXml t => t XmlTree Error
getOwlClass = atTagE "owl:Class”
>>>
proc cl -> do
attribute <- (getAttrl>>>getAttrName) -< cl
line <- xshow (this >>> changeChildren (take 1)) -< cl

returnA -< Error { type = errorOwlClass (qualifiedName
attribute) line }

OWL parser: error handling

errorOwlClass :: String -> String -> String Valid parsed attribute
errorOwlClass "rdf:about" _ = []

errorOwlClass "rdf:ID" _ = []

errorOwlClass [] _ = []

errorOwlClass attribute line = "Invalid attribute type : " ++ [L
attribute ++ ", line : " ++ (rmvExtraTag line) |

Not a valid parsed attribute

OWL parser: error handling output

XML code:

<owl:Class href:about="&camera;Damien">
</owl:Class>

<owl:Class rdf:IDe="&camera;Vasco">
</owl:Class>

Output :

Invalid attribute type : href:about, line : <owl:Class href:about="http://www.xfront.com/owl/ontologies/camera/#Damien"
/>

Invalid attribute type : rdf:IDe, line : <owl:Class rdf:IDe="http://www.xfront.com/owl/ontologies/camera/#Vasco"/>

Entities

-> All entities are subsets of Thing:
¢ Gen “A” idenP “Thing” idenP

-> So the Thing must be declared:
€ Mult mSome (set ("Thing") [1)

Entities: Example

<owl:class rdf:ID="C">
<owl:equivalentClass>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="A"/>
<owl:Class rdf:about="B"/>
</owl:intersectionOf>
</owl:equivalentClass>
</owl:class>

Entities: Example

Inv "C" (
SCmpF Is (Intersect (set "A" []) (set "B" [])) (set "C"[])

)

and
Gen “C” idenP “Thing” idenP

Entities: Example

Inv "C" (
SCmpF Is (Intersect (set "A" []) (set "B" [])) (set "C"[])

)

and
Gen “C” idenP “Thing” idenP

Entities: Example

Class { name = "A", axioms = [] } Gen "A” idenP
"Thing” idenP
Class { name = "A", axioms = [SubClass{ super| Gen "A” idenP "B”
= Class { name = "B", axioms = []}}] } idenP

Class { name

"A", axioms = [SubClass{ super
= Restriction { onProperty = "R", valuesFrom

=AllValuesFrom, value = B }] }

Gen name idenP B

[R]

Class { name
classes

"A", axioms
Class { name

}

[DisjointWith{
oy

"B", axioms

Disj ["A","B"]

Class {name

"A", axioms=[EquivalentTo{
classEqui

Class { name = "B", axioms

013}

Gen "B” idenP "A”
idenP, Gen "A” idenP
"B” idenP

Class {name = "A", axioms=[EquivalentTo{

classEqui = AnonClass { operation
Intersection0f { setIi = Class {name= "B",
axioms = [] }, setI2 = Class {name = "C",

axioms = [1} }}] }

Inv "A” (SCmpF Is
(Intersect (set "B” [])
(set "C" [])) (set "A”

)]

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation
Intersection0f { setIi = Class {name= "B",
axioms = [] }, setI2 = Restriction
{onProperty = "R", valuesFrom

Inv "A” (SCmpF Is
(Intersect (set "R”
(C7)) (set "B)
(set "A” [))

AllValuesFrom, value "¢} 1 }

Entities: Example

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation =
Intersection0f { setIi1 = Class {name= "B",
axioms = [] }, setI2 = Restriction
{onProperty = "R", valuesFrom =
SomeValuesFrom, value = "C"} }}1 }

Inv "A” (MultF
mSome (Intersect (set
"R" ([“C“])) (Set "B"

1))

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation =
Intersection0f { setIi1 = Class {name= "B",
axioms = [] }, setI2 = Restriction
{onProperty = "R", valuesFrom =
SomeValuesFrom, value = "C"} }}]1 }

Gen "A” idenP "B”
idenP, (Inv "A”
(MultF (mJust (v))
(the "A” ["R”™])))

Properties

-> ObjectProperties are relations, so the boilerplate
to be used is the ASSOC using the function has.

=> DataTypeProperties are attributes - we should
use the ATTR boilerplate, but it only supports
integer attributes, so it was dealt as a relation.

Properties: Example

<owl:0ObjectProperty rdf:about="#R">
<rdfs:domain rdf:resource="A"/>
<rdfs:range rdf:resource="B"/>

</owl:0ObjectProperty>

Properties: Example

has "A" (From ©) NotFixed "R" "B"

Individuals

-> The strategy is the same as Alloy - we declare
the singletons, via MULT with multiplicity one.

-> And we say that the singleton is in the set to
which it belongs.

Individuals: Example

<owl :NamedIndividual rdf:about="#c">
<rdf:type rdf:resource="C"/>
</owl:NamedIndividual>

Individuals: Example

Mult (mOne) (set ("c") [])
and
Gen "c" idenP "C" idenP

90*000

Generator of Boilerplates

mainBPlateGen :: [Ontology] -> [Boilerplate Name]

mainBPlateGen [(Ontology { entities = e, oProperties
dProperties = dp, individuals = ind})] =

[Mult mSome (set (Boilerplates.Id.mkName "Thing") [])]
++ (bplateGenEntities e)

++ (bplateGenObjectProperties op)

++ (bplateGenIndividuals ind)

op,

Conclusions

= We learnt about Ontology and Web Ontology
Language.

We strengthened our knowledge in Haskell

We learnt about PROVA’s implementation, but it
was difficult due to the lack of documentation.
However the last point was a little relieved,
thanks to our external supervisor.

N

Future Work

-> A wider coverage of OWL by our parser.
-> Complete the translation between OWL and

€ OneOf Case.
€ And others.

One Last Thing...

< 1 educed

ENGINEERING MADE BETTER

Extending PROVA for Ontology
Definition and Exchange

pg25300 Damien Vaz pg25340 Yoan Ribeiro

MFES Cohesive Project: Milestone 4

July 3, 2014 Group D

