
July 3, 2014

Extending PROVA for Ontology
Definition and Exchange

MFES Cohesive Project: Milestone 4

Group D

Let’s go Back

➔ Extend PROVA to support Ontologies
◆ Study the concept of Ontology and the Web

Ontology Language.
◆ Study PROVA and its Boilerplates.
◆ Make a useful translation between OWL and

PROVA.
◆ Construction of a OWL parser to make the

previous translation possible.

Main objective of the project

➔ Representation of knowledge as a set
of concepts of a specific domain.

➔ Like a bag of terms and relations.

What is an Ontology?

Biology

➔ Instance of the set theory.
➔ Classes/Subclasses are just sets.
➔ Thing is the superset representing the

universe and Nothing the empty set.

Web Ontology Language (OWL)

➔ Classes can have attributes.
➔ There are relations between the classes.
➔ Individuals are members of the classes.

Web Ontology Language (OWL)

➔ Many way of representing the same
ontology.

➔ Different syntaxes to represent an Ontology
(RDF only, OWL + RDF).

➔ The approach of our parser is to parse just a
subset of OWL.

Web Ontology Language (OWL)

➔ An innovative tool for development of high
assurance systems.

➔ Capable of analyzing textual requirements (with
a proper syntax).

PROVA: A new modeling tool

➔ Front End provides a user-friendly way to model the
system.

➔ Middle Tier receives the boilerplates and translate
them to be sent to the Back End (Haskell).

➔ Back End receives the requirements and gives them
to a SMT Solver that will return SAT or UNSAT +
Model (Haskell).

PROVA: Structure

➔ “Standardized pieces of text for use as clauses in
contracts or as part of a computer program”

➔ Used to express requirements
➔ There are three types:

◆ Structural
◆ Operational
◆ Behavioral

PROVA: Boilerplates

➔ Written in Haskell to fit into PROVA’s back end.
➔ OWL Haskell representation was defined.
➔ Use of HXT library to help the parsing process.

OWL parser

OWL Haskell :: Ontology
data Ontology = Ontology {

entities :: [Entity],

oProperties :: [Property],

dProperties :: [Property],

individuals :: [Individual]

} deriving (Show, Eq)

 OWL Parser:
Error Handling

OWL parser: error handling

➔ Easier to debug the parsed ontology
➔ Attribute of tags not processed by the parser are

caught by the error handling system
➔ Errors are exported to a file

"Invalid attribute type : " ++ attribute ++ ", line : " ++ line

data Error = Error {
 type_ :: String

 } deriving (Show,Eq)

OWL parser: error handling

➔ Error data only contains the type of error
➔ Indicate the attribute and the line where the

error is caught

getOwlClass :: ArrowXml t => t XmlTree Error

getOwlClass = atTagE "owl:Class"

 >>>

 proc cl -> do

 attribute <- (getAttrl>>>getAttrName) -< cl

 line <- xshow (this >>> changeChildren (take 1)) -< cl

 returnA -< Error { type = errorOwlClass (qualifiedName
attribute) line }

OWL parser: error handling

errorOwlClass :: String -> String -> String

errorOwlClass "rdf:about" _ = []

errorOwlClass "rdf:ID" _ = []

errorOwlClass [] _ = []

errorOwlClass attribute line = "Invalid attribute type : " ++
attribute ++ ", line : " ++ (rmvExtraTag line)

Valid parsed attribute

Not a valid parsed attribute

OWL parser: error handling

XML code :

Output :

OWL parser: error handling output

<owl:Class href:about="&camera;Damien">
</owl:Class>

<owl:Class rdf:IDe="&camera;Vasco">
</owl:Class>

Invalid attribute type_ : href:about, line : <owl:Class href:about="http://www.xfront.com/owl/ontologies/camera/#Damien"
/>
Invalid attribute type_ : rdf:IDe, line : <owl:Class rdf:IDe="http://www.xfront.com/owl/ontologies/camera/#Vasco"/>

From OWL to PROVA

➔ All entities are subsets of Thing:
◆ Gen “A” idenP “Thing” idenP

➔ So the Thing must be declared:
◆ Mult mSome (set ("Thing") [])

Entities

<owl:class rdf:ID=”C”>

<owl:equivalentClass>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="A"/>

<owl:Class rdf:about="B"/>

</owl:intersectionOf>

</owl:equivalentClass>

</owl:class>

Entities: Example

Inv "C" (

SCmpF Is (Intersect (set "A" []) (set "B" [])) (set "C"[])

)

and

Gen “C” idenP “Thing” idenP

Entities: Example

Inv "C" (

SCmpF Is (Intersect (set "A" []) (set "B" [])) (set "C"[])

)

and

Gen “C” idenP “Thing” idenP

Entities: Example

Entities: Example

Entities: Example

➔ ObjectProperties are relations, so the boilerplate
to be used is the ASSOC using the function has.

➔ DataTypeProperties are attributes - we should
use the ATTR boilerplate, but it only supports
integer attributes, so it was dealt as a relation.

Properties

<owl:ObjectProperty rdf:about="#R">

<rdfs:domain rdf:resource="A"/>

 <rdfs:range rdf:resource="B"/>

</owl:ObjectProperty>

Properties: Example

has "A" (From 0) NotFixed "R" "B"

Properties: Example

➔ The strategy is the same as Alloy - we declare
the singletons, via MULT with multiplicity one.

➔ And we say that the singleton is in the set to
which it belongs.

Individuals

<owl:NamedIndividual rdf:about="#c">

<rdf:type rdf:resource="C"/>

</owl:NamedIndividual>

Individuals: Example

Mult (mOne) (set ("c") [])

and

Gen "c" idenP "C" idenP

Individuals: Example

mainBPlateGen :: [Ontology] -> [Boilerplate Name]

mainBPlateGen [(Ontology { entities = e, oProperties = op,
dProperties = dp, individuals = ind})] =

[Mult mSome (set (Boilerplates.Id.mkName "Thing") [])]

++ (bplateGenEntities e)

++ (bplateGenObjectProperties op)

++ (bplateGenIndividuals ind)

Generator of Boilerplates

Conclusions
Future Work

➔ We learnt about Ontology and Web Ontology
Language.

➔ We strengthened our knowledge in Haskell
➔ We learnt about PROVA’s implementation, but it

was difficult due to the lack of documentation.
➔ However the last point was a little relieved,

thanks to our external supervisor.

Conclusions

➔ A wider coverage of OWL by our parser.
➔ Complete the translation between OWL and

PROVA:
◆ OneOf Case.
◆ And others.

Future Work

One Last Thing...

July 3, 2014

Extending PROVA for Ontology
Definition and Exchange

pg25300 Damien Vaz pg25340 Yoan Ribeiro

MFES Cohesive Project: Milestone 4

Group D

