
Optimization of C code for
Critical Systems

02/07/14 University of Minho - Group G

University of Minho
Master in Computing Engineering
Formal Methods in Software Engineering
Project Presentation : Final Milestone

“Technology that moves the world ”

Hélder Afonso – João Cruz

Problem Introduction
•  Efacec offer a complete solution for railway signaling systems, including a

software system responsible for the implementation of signaling rules
named interlocking

•  Interlocking system requires a validation and verification process

Model of the
interlocking

system

Pr

og
ra

m

Model of the
interlocking

system

Tested and
verified to
be correct

Code
generated
from the
model

02/07/14 University of Minho - Group G

Project Description

02/07/14 University of Minho - Group G

•  The C code generated contains a lot of unnecessary variables, not
required for the program logic

•  The removal of these variables is an essential optimization.

•  The optimization technique is very simple : eliminate transitivity between
unnecessary variables

•  But this is a critical system…

type a, b, c;
/…
b = c;
/…
a = b;
/…

type a, c;
/…
a = c;
/…

Project Steps

02/07/14 University of Minho - Group G

Step 1: Implement an optimization technique which relies on the removal of
needless variables within the code generated by the KCG tool. How?

Step 2 : Verify that the C program resultant from the optimization process
is functionally equivalent to the one not optimized. How? Formal Methods?

Project Steps

02/07/14 University of Minho - Group G

Step 1: Implement an optimization technique which relies on the removal of
needless variables within the code generated by the KCG tool.

1.  Design an application interface
2. Create a program that implements the optimization technique, with
the following desired behavior:

•  In the *.cpp input file, identify any variables whose name start with

“_L” and are assigned only once;
•  Replace all variables identified in the first step and remove the

corresponding assignment instruction;
•  Remove the declaration instruction, in the *.h file, for every variable

that was replaced;

Explored Tools

02/07/14 University of Minho - Group G

In order to find a viable tool, we have assessed and tested the following :

•  Static analysis of source code
•  Powerful semantic information
•  Benefit from ready-made parser
•  Not useful because of the code generation and the very specific

optimization that is pretended

•  Facilitate program analysis and transformation
•  Problem with CIL specific language manipulation
•  Transformation from C to CIL change instructions
•  Generation of the C code optimized still a problem

Explored Tools

02/07/14 University of Minho - Group G

ANTLR Grammars for C Language

•  Building a grammar for the complete C Language is very complex;
•  It would be very useful because we have direct access to the AST;
•  The Optimized Code generation it would be very easy;

CLANG : libCLang

•  Provides infrastructures to write tools that need syntactic information

about the program
•  Provides a very good parser with a rich AST and node semantics
•  Types from input files not accepted by libCLang
•  Unfortunately the generation of code is a problem, and the tool its very

hard to install, with many potentially problematic dependencies

Explored Tools

02/07/14 University of Minho - Group G

Flex

Flex is a fast lexical analyzer generator. It´s a tool for generating programs
that perform pattern-matching on text.

•  It is a tool that gives us more control on what we want to recognize on a

file, in this case we can specify directly the kind of variables we want to
analyze (_L)

•  Perform easy generation of code to a output file
•  Easy to install and use
•  Using Flex we lose some semantic information, but in this case it´s not a

big problem
•  We can take profit that the code we are gone to optimize it’s a code

generated by a tool

Lexical Analyzer Flex

02/07/14 University of Minho - Group G

How does it work?

•  Flex can be seen as a filter, or a tokenizer;
•  It works based on rules, where each rule is a pair of regular expression

and C code action.
•  Flex generates as output a C source file witch can be compiled and linked

with the flex runtime library to produce an executable.
•  When the executable is run, it analyzes its input for occurrences of the

regular expressions. When it find one, executes the action C code.

Simple example :

%%
[0-9]+ { printf(“ It´s the number %s ”, yytext); }
%%

Back to the project…

02/07/14 University of Minho - Group G

•  To implement our optimization technique, we use a pipeline of four flex
filters as follows:

1.  aalex: first flex file, responsible for identify assignment instructions and

for storing the variable and its value, if they obey to the invariant;

2.  bblex: its function is to perform the substitution of the valid variables
(variables that obey to the invariant) and generate a *_temp.cpp file

3.  cclex: responsible for reading the *_temp.cpp file generated before and
removing the assignment instructions which have the valid variable;

4.  ddlex: receives the input file *.h and removes the declaration
instructions of the valid variables

Program Architecture

02/07/14 University of Minho - Group G

aalex bblex

ddlex

cclex

Data
Tables

*.h *.cpp

opt.h opt.cpp

*_temp.cpp

3

1 2

4

Project Steps

02/07/14 University of Minho - Group G

Step 2 : Verify that the C program resultant from the optimization process
is functionally equivalent to the one not optimized.

•  Bounded Model Checker CBMC
•  Composition Technique:

According with the notion of equality of programs, two programs are equals
if for all initial states, the execution of both result in the same final state.

This composition technique its done by making a program that is the
composition of two programs whose equivalence we are trying to prove,
renaming all variables in one of the programs.

As the name space of both are disjoint, the sequential execution allows to
think about the independent execution of each program but connecting the
initial and the final variables values of both programs.

Composition Technique

02/07/14 University of Minho - Group G

So we can do something like this :

int main(){

 // Initial Program received in the input file

// Optimized Program after the execution of the application

assert(…);
}

On the assert content we have to say that each variable value in the first
program must be equal to the renamed correspondent variable value in
the second program.
Now to prove this equality we have to appeal to a verification tool like
CBMC.

Example

02/07/14 University of Minho - Group G

We can see the following example of a cycle :

for(k=i ; k<=j ; k++) {
 b += k;
 a *= k;

}

Which can be refactored to this equivalent code:

for(k=i ; k<=j ; k++) b += k;
for(k=i ; k<=j ; k++) a *= k;

Example

02/07/14 University of Minho - Group G

So the compound code could be something like this :

int a, b, as, bs, ks, k, i, is, j, js;

int main () {

 __CPROVER_assume(k==ks && i==is && j==js && a==as && b==bs);

for(ks=is ; ks<=js ; ks++) {

 bs += ks;
 as *= ks; }

for(k=i ; k<=j ; k++) b += k;
for(k=i ; k<=j ; k++) a *= k;

assert(k==ks && i==is && j==js && a==as && b==bs);

}

Conclusions

02/07/14 University of Minho - Group G

In the case of the first step of this project relative to the transformation
process:

•  The transformation is made according to all specifications provided by

Efacec;
•  The application interface its simple and functional, and already set for

future work;
•  For all the tests that were made the feedback from the application was

positive;
•  There are still some small edges missing filing, like for example the user

choose the path for the output files, etc;

Conclusions

02/07/14 University of Minho - Group G

•  All the tests that, using this technique, on real test files provided by

Efacec, were made by manually built the composition program;

•  The main goal is add this “manually work” to our application, so that in
the future, the application can provide not only the transformed code
files but also the file with the compound code, already set to be proved
by the CBMC;

•  The application will be able to the required transformation but also will
be able to provide an important element for the certification of the
transformation;

•  We really believe that this technique can actually solve the certification

problem because the compound code is an element generated in the
process whose verification ensures the equivalence between the two
programs;

Optimization of C code for
Critical Systems

02/07/14 University of Minho - Group G

University of Minho
Master in Computing Engineering
Formal Methods in Software Engineering
Project Presentation : Final Milestone

“Technology that moves the world ”

Helder Afonso – João Cruz

