Using Cryptol to explore elliptic curve-based
random-number generators

MFES — Formal Methods for Software Engineering
Cohesive Project

Ana Paula Carvalho! and Catarina Correia?
! Minho University, Portugal
pg25335@alunos.uminho.pt
2 Minho University, Portugal
pgl19643@alunos.uminho.pt

Abstract. Internet security is an issue that recent news have given spe-
cial focus to. To tackle how this works behind the curtain, this project
aims at exploring the Dual EC_DRNG, an algorithm standardized by
NIST as a cryptographically secure pseudo random number generator.
This algorithm is known to be insecure, which means that it is possible
to recover its internal state.

The task at hand will be performed with Cryptol, a language developed
by Galois for cryptographic purposes. In order to provide high assurance
programming, Cryptol allows the verification of properties using SMT
solvers and automated random testing.

1 Introduction

Modern cryptography stands on the idea that keys used to encrypt data can
be made public while keys used to decrypt them should be kept private. Although
different, the two parts of this key pair are mathematically linked. Public-key
algorithms rely on the mathematics of integer factorization, discrete logarithm
problem and elliptic curves, problems that currently admit no efficient solution
in some domains. The strength of the public-key algorithms lies in the fact that it
is computationally infeasible for a proper generated private key to be determined
from its corresponding public key. Algorithms having this characteristic — easy
in one direction, hard in the other — are known as trapdoor functions.

The most well known algorithms based on this premise are the RSA algorithm
(based on prime factorization) and the Diffie-Hellman key-exchange (based on
the discrete logarithm problem) introduced in 1976 [I]. In 1985, an approach to
public-key cryptography based on the algebraic structure of elliptic curves [2]
was proposed. These systems were not widely used until the early 2000s.

Around 2006, the American National Institute of Standards and Technol-
ogy (NIST) published a specification for four cryptographically secure pseudo-
random number generators (or deterministic random bit generators, DRBG),

2 Ana Carvalho, Catarina Correia

under the code NIST SP 800-90 [3]. Such four algorithms present distinctive fea-
tures: Hash DRBG, based on hash functions; HMAC DRBG, hash-based message
authentication code; CTR DRBG, based on block ciphers and the Dual Elliptic
Curve DRBG (Dual_.EC_DRBG), founded on the elliptic curve discrete logarithm
problem (ECDLP).

The main advantage of elliptic curves is that of providing smaller keys for
the same levels of security. To compare the costs of breaking the cryptographic
primitives presented before, there is the concept of Global Security, introduced
recently[4]. The authors compute how much energy is needed to break a cryp-
tographic algorithm and compare that with how much water the same energy
could boil. By this measure, breaking a 228-bit RSA key requires less energy
than it takes to boil a teaspoon of water. Comparatively, breaking a 228-bit
EC key requires enough energy to boil all the water on earth. For this level of
security with RSA one would need a key with 2,380 bits.

Capitalizing on these improvements, several discrete logarithm-based proto-
cols have been adapted to elliptic curves. In [5] there is a list of companies that
use validated instances of algorithms in SP 800-90. The bad news is, after NIST
released the standard, some studies were published stating that the algorithm
has a backdoor [6]. More recently, news about memos of the former NSA Ed-
ward Snowden disclose that the backdoor might have been introduced by the
NSA themselves [7]. Later advising against the use of such algorithm, only two
months ago NIST decided to remove the algorithm from the recommendation
[8].

This report aims at using the Cryptol language to implement elliptic curve-
based random number generators with a backdoor (imitating NIST’s Dual EC_DRNG)
and to show how the internal state can be recovered after observing a few bits of
output. This goal was extended to cover proofs about some fundamental prop-
erties of elliptic curves arithmetic with the Cryptol toolset.

Contribution. This work resulted in: a Cryptol implementation of the Dual EC_DRNG
for multiple curves as well as tests on the arithmetic; computation of the back-
door and guidance on how to recover the internal state; verification proofs about
elliptic curve properties over small fields (such as the addition law); and report

of running issues with the development version of Cryptol.

Report structure. The remainder of this report is structured as follows: section 2]
introduces the theory of elliptic curves; section[3|analyzes how the Dual EC_DRNG
operates as well as the mathematics of backtracking; section [4| explores a way
to tackle the issue with Cryptol; section [5| aims at providing assurance about
the implementation; and section [6] discusses the findings and proposes follow-up
work.

2 Elliptic Curves

An elliptic curve (EC) is the set of points (z,y) that satisfy the Weierstrass
equation, of the form:

Using Cryptol to explore elliptic curve-based random-number generators 3

y* =2 +ar+b (1)

It is useful to add a point at infinity to this set of points, denoted by O [9].
The infinity point does not exist in the XY -plane: a line intersects O iff it is a
vertical line. An EC is non-singular, which geometrically means that the graph
has no cusps, self-intersections or isolated points (see Fig. . Algebraically, it
expresses that a and b satisfy the condition , thus not allowing the curve to
have multiple roots.

— 16(4a® 4 27b%) # 0 (2)

U o

1

v y
2
B
* 2
/\ C
>
"

Fig. 1: Examples of EC basic forms. On the left is the graph of the equation y? = z3z

and on the right the equation y? = 2% + %x + % both over R. Source: [10].

ECs can defined over real numbers R (see Fig. , complex numbers C, ra-
tional numbers Q, finite fields over a prime p F,(= Z,) or finite fields F,, where
g =p* with k& > 1.

S T PR Pl S — Y
60 138

Fig. 2: Example of a elliptic curve over a finite field. Source: [T1].

4 Ana Carvalho, Catarina Correia

2.1 Group Law

Let E be an elliptic curve defined over the field K. A particular feature of
elliptic curves is that an addition operation can be defined between its points,
denoted by P @ R, with P, R points over the EC. This addition operation is not
the common addition. On the other hand, it combines two points producing a
third one in a manner analogous to addition that will be made clear in a moment.

The most natural way to describe the addition law on elliptic curves is to use
geometric representation. Let P, @, R € E be three distinct points P = (z1,y1),
Q = (z2,y2) and R = (x3,y3) on an elliptic curve E. R is said to be the sum of
P and @, written R = P & @, if it fits in the following geometric construction.
First, a line through P and @ is drawn. It is a characteristic of EC that every
line through two points on an EC intersects a third one on the same EC. Then
R is chosen to be the reflection of this point relative to the X-axis (see the left
hand side of Fig.[3). Doubling a point P is the addition of P to itself, P®P = R.
This “limit situation” corresponds to drawing a tangent line to the curve on P
(considered to intersect the point P twice) and proceed as beforeﬂ

i
’ I
//’ | .
e : P=(y) o1’
wl ! g
< | -
7 T
. / ‘ x
I
I
I
I
I
I

R = (x3.y3)

Fig. 3: Geometric addition (on the left) of two different points P,Q € E (P& Q =
R, R € E,) and doubling (on the right) of P € E (P® P = R, R € E). Source: [10].

A potential problem with this addition law arises if a point is added to its
reflection about the X-axis, its symmetric point P’ = (z1, —y;). If a line is drawn
between this two points the result will be a vertical line, so it intersects F in
only two points. Without a third point to complete the sum, it was necessary to
assume that this line goes through the point @, which makes P & P’ = O.

The next step is to figure out how to add O to another point P over the EC.
As previously agreed, the line that connects P and O is a vertical line since O
can be seen as the point that lies on all vertical lines. Consequently, the vertical
line drawn intersects the three points @, P and P’. Therefore, the third point
intersected by the line is P’. Its reflection is P itself so P& O = P.

3 This line will intersect the elliptic curve on another point and R will be its X-
reflection, see Fig. |§| on the right hand side.

Using Cryptol to explore elliptic curve-based random-number generators 5

Theorem 1. Properties of the addition law on an elliptic curve E:

PO =0®P=PVP c E [Identity]
P®(—P)=0O,VP € E [Inverse]
(PoQ)®@R=P®(Q®R),VYP,Q,R € E [Associative]
PoQ=Qa PVP,Q € E [Commutative]

This makes the addition law on the elliptic curve into an abelian group. Note
that it is possible to define the scalar multiplication as the addition of a point n
times to itself in a way that R = n % P.

Throughout this report, acronym “EC” will implicitly be assumed to denote
an elliptic curve defined over a finite field I, for a prime p.

2.2 Elliptic Curve Cryptography

The first practical public-key cryptosystem was the famous RSA cryptosys-
tem that bases its security on the difficulty of factoring large numbers. Later
on, Diffie and Hellman described a key-exchange algorithm whose security re-
lies on the discrete logarithm problem (DLP) in a finite field F, followed by
ElGamal that created a public key cryptosystem based on the same underlying
problem. Koblitz [12] and Miller [I3] suggested the use of an EC instead of the
finite field IF,,, under the assumption that the discrete logarithm problem in the
elliptic curve group (ELDCP) E(F,) is harder to solve than the discrete loga-
rithm problem in the multiplicative group. Thus, the elliptic curves arithmetic
can be applied in well known algorithms like DiffieHellman key exchange, which
involves no more than replacing the DLP for the finite field F, with the DLP
for an EC and like the ElGamal public key cryptosystem.

Public key cryptosystems Public key cryptosystems rely on what are known as
one-way trapdoor functions. These functions have the feature of being easily
computable while its inverse is very hard to compute, unless one possesses extra
important information to solve it. It is not clear that one-way trapdoor functions
exist and it is still an open problem to prove their existence [14]. Yet, a number of
hard mathematical problems have been proposed for one-way trapdoor functions,
including the discrete logarithm problem.

Discrete logarithm problems. A discrete logarithm is an integer k solving the
equation b* = ¢, where b and g are elements of a group. The solution of discrete
logarithm problems (DLP) in different groups may exhibit different levels of
difficulty [I5]. The DLP in F, with addition has a linear-time solution, while
the best known general algorithm to solve the DLP in F; with multiplication is
sub-exponential.

The elliptic curve discrete logarithm problem (ECDLP). The DLP for elliptic
curves is believed to be even more difficult than that for F. In particular, if the
EC group is chosen carefully and has N elements, then the best known algorithm
to solve the DLP requires O(v/N) steps. Thus it currently takes exponential time
to solve the ECDLP.

6 Ana Carvalho, Catarina Correia

Coordinate Systems A system can be represented with respect to several coor-
dinate systems., e.g., affine or projective coordinates. Equation [I] expresses the
curve in affine coordinates. In the projective system, a curve can be expressed in
Jacobian coordinates as The point (x1 :yl:2z1) on E corresponds to the affine
point (x1/21% | y1/21) when 21 # 0 and to the point at infinity P = (1:1:0).
The symmetric of (z1:yl:z1)is (x1: —yl: z1).

y? =23 +axz* + b2° (3)

3 Building and breaking NIST’s Dual EC_ DRNG

The Dual EC_DRNG is based on the ECDLP described earlier: given points
P and @ on an elliptic curve of order n, find a point @ such that P = ex* Q [3].
The algorithm uses a seed to initiate the generation of pseudorandom strings by
performing scalar multiplications on two points in an EC group. In [3], NIST
also claims that backtracking resistance is inherent in the algorithm even if the
internal state is compromised, i.e., the knowledge of a seed s;;; does not allow
an adversary to determine s;. It is also stated that inverting the direction of the
line implies solving the ECDLP for that specific curve.

]

¥
] — [

X (r*P) X(z*Q)

take n most
significant bits
random
number

Fig. 4: Dual EC_LDRNG workflow. The function X extracts the x-coordinate of the
point. x represents the elliptic curve scalar multiplication. The first step is to multiply
the point P by the initial seed s. Extracting the x-coordinate will result in r. This r is
going to be used in two ways : to generate the seed s’ for the next iteration (left branch)
and to reproduce the random number (right branch). Note that some high order bits
are extracted from the output number, so the length of the generated number is less
than the seed length.

The Dual EC_DRNG is initialised with two points (P and @) on some EC
and a random integer seed s. The NIST standard suggests the use of certain
points, allegedly random and secure, but no explanation is given on how they

Using Cryptol to explore elliptic curve-based random-number generators 7

were obtained. The seed represents the hidden state of the algorithm, therefore
it shall be kept secret at all times.

r=X(sxP)
s =X(r*P)
fullnr = X(rx Q)
random-_nr = extract_bits(full_nr)

In short, the algorithm comprises the generation of a random point in the
curve (r*Q), followed by the extraction of high order bits from its X-coordinate.
Refer to Fig. |4| for a simplified illustratiorﬂ The authors of [I6] prove that the
raw point r * generated is indeed random. However, the second part (the
bit extraction) is not cryptographically sound. In fact, there is evidence that
breaking this second part can be done with an ordinary computer [I7]. From
now on, 7 * Q = A.

3.1 The backdoor

Being the discovery of [I6] and [I7] an issue by itself, a bigger one was
meanwhile found by two Microsoft researchers[6]. They state that, if we know
the point A generated (and we can do so via brute force, with at least 0.5
probability[I7]) and we know the relationship between P and @ then we can
find out the seed for the next iteration and uncover the next number in the
random stream.

The relation between @) and P is supposed to be a secret. However, these
points were suggested by the standard and no explanation was given about how
they were obtained. One cannot be sure whether or not the designer of the
algorithm knew some relationship between them (if any).

Suppose the designer knows such relationship. It is known that the new seed
is the X —coordinate of r x P. Replacing P with the relation P = e x () we get
r x e * (); finally applying commutativity, we get e * r x (), which, after finding
A, is easy to compute.

r«P=rx(exQ)=exA (4)
In summary, we find all possibilities for A which are 2™ (with n the number
of bits extracted), multiply A e-times by itself and the resulting points’ X-
coordinates are all the options for the following seed. Once we know what the
next seed can be, we try them all with the algorithm and rule out the ones that
do not yield the next number generated. Experiments made in [6] estimate that
only 256 bits are needed to exactly determine the seed in a p — 256 curveﬂ
The next section illustrates this process with a small curve.

4 Note that there are more details to this algorithm than those explained. This project
attempts at specifying and explaining the basic mechanisms and therefore only the
most important features are considered.

5 NIST routines are also labeled by their bit sizes, so the p — 256 curve means that
the prime that defines the field is 256 bits wide.

8 Ana Carvalho, Catarina Correia

3.2 Toy-Example (1 block)

Let y? = x3—3x+7|§|be a curve defined over Fi; and P = (22,3), Q = (14,15)
be two points on that curve. We also need an input seed and to know the secret,
P=5xQ.

=7=01001

4

X (x*P) X(r*Q) =4=00100

take n most
significant bits
=17 = 10001 random | _,_ 409
- - number o

Fig. 5: As this is computed over field 23 (5 bits), every number will be represented
with 5 bits and take the 2 most significant bits. 419 = 001002 taking the 2 leftmost bits
we still get 4 so the number returned is 4, but with only 3 bits.

Figure [5]illustrates the generation of the random number, which in this case
is 4. Following is a step by step explanation of the backdoor, using Figure [0] as
reference.

Step 1: This is were the algorithm is firstly insecure. This means that the
output number can be efficiently distinguished from the sequence of uniformly
distributed random bits[I7]. Moreover, the authors of [I7] add that we can guess
that number with 0.5 probability and this can be increased by increasing the
size of the bit stream. After getting the number 4, it is possible to compute all
possible values for the full number, knowing it droped the two most significant
bits. From the four options, we can remove two of them: one is over 23 thus it
is not on the field; and the other is not a conceivable value for a X-coordinate
on the curve.

Step 2: In this step is computed the Y —coordinate that corresponds to some
x in the curve, by square root calculation.

Step 3: This step is were the backdoor relies on. The relationship between
P and Q should be kept secret. However, if it is known, we can multiply the A
values by this relation, which is 5 in this example. This allows us to go from the
random number calculation to the seed calculation, which should be impossible.

5 This curve was chosen bearing in mind the elliptic curve properties and implemen-
tation details. See Appendix ?? for the table of point additions. The curve points
and point additions were computed using the implementation of EC arithmetic in
Cryptol (see section .

Using Cryptol to explore elliptic curve-based random-number generators 9

Step 4: Here we just take the X —coordinate for the next seed.

-]

— [
((1177,149)> — (2‘,167)) ,
B A=rQ —= o0 (2)

(3,‘18) (20,14)

@)
w [| C=d U a

10100

14400
o random .
Sor 17l Tasie

Fig. 6: Step by step calculation of the backdoor.

Extension for two blocks Let us say that a stream of two blocks and the number
3419 = 1000104 is generated. It is easy to see that one can divide the number,
take the first half and compute all the steps that we did before. After that, it is
known that the seed that generated the other half is either 17 or 3. Next, one
run the algorithm with both seeds. One of them will generate the second half
of the stream and the internal state is disclosed, because now it is possible to
predict the following "random” numbers on the stream.

This experiment produces probability values similar to the ones in [17]. It
started with four possible points and ended up with only two options for the
next seed. Increasing the number of blocks also lowered the options and for this
curve it was enough to be 100% sure.

4 Implementation

The language used Cryptol version 2.0, which has just launched. Cryptol is
a domain-specific language for cryptographic algorithms.

The implementation comprises three layers of complexity: arithmetic in finite
fields, arithmetic in the elliptic curve group and the building and breaking of
the Dual EC_DRNG. Most of the finite field and elliptic curve arithmetic were
already implemented for a previous project (in a previous version of Cryptol). To
complete the required arithmetic toolset, there were some operations left to be
implemented such as scalar multiplication in the elliptic curves group, exponenti-
ation and modulo square root in the finite fields. A study on the implementation
choices was also conducted.

The most economic coordinate system to compute elliptic curve arithmetic is
the projective system presented in section[2} Every NIST curve has the property

10 Ana Carvalho, Catarina Correia

that a = —3 for optimal security and efficiency [I5]. As a result, all the routines
are implemented from [I8] bearing this two issues in mind.

4.1 Finite Field and Elliptic Curve Arithmetic

Scalar multiplication. Considering that it is the operation in focus on the Dual EC_DRNG
(see section , scalar multiplication is of utter importance. The algorithm was

written using Montgomery’s ladder, according to recommendation from [19], Al-
gorithm 13.35. At each step, one addition and one doubling are performed, which

makes this method interesting for side-channel attacks.

Modulo square root. The modulo square root function was implemented specifi-
cally for a p-256 field, as described in [I8] Routine 3.2.10. This operation makes
use of exponentiation which was also implemented as suggested in [20].

Other extra functions were defined but, considering they are not as impor-
tant, they will be referred to when needed in the following subsection. All the
operations are polymorphic over their bit size.

Testing The routines described in [I8] come with calculation examples of arith-
metic operations for various curve sizes. The examples of curves p — 256 and
p — 192 were used in order to test addition, subtraction, doubling and scalar
multiplication.

4.2 Reproducing the Dual EC_DRNG

dualec256: CurveOps [256] [256] —> [256]
—> ProjectivePoint [256] —> ProjectivePoint [256]
—> InternalState [240] [256]

dualec256 ¢ s p q = {rnr=join(drop‘{16} xs), seed=sl}
where
xs= (split t:[256][1]Bit)
t=affx (smul r q)
r=affx (smul s p)
sl= affx (smul r p)
smul=ec_smull c¢
affx = ec_affx c.field

Listing 1.1. Cryptol implementation of the Dual EC_DRNG for a curve defined over a
field of a prime 256-bit wide. smul is the scalar multiplication function, affz transforms
to affine and takes the x coordinate.

The code in takes the least significant 16 bits and returns the other 240
bits. For a more algorithmic explanation, see section [3]

Using Cryptol to explore elliptic curve-based random-number generators 11

p256 = ((2°°256) —(2°"224)4 (2°°192)4(2""96)—1):[256]

pf256 = prime_field p256

b256= 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
a = 3:[256]

q256= Oxffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
pg256=prime_field q256

curve256 = mk_curve (pf256 ,pg256,b256 ,a)

Listing 1.2. Definition of a NIST curve P-256[18]. p256 is the prime field order; ¢256
is the order of the elliptic curve group; curve256 is the curve y? = 2> — 3z + b256 over
F,256

After defining all field and elliptic curve parameters as explained in it is
time to compute a seed, choose two points in the curve and feed all the data to
the algorithm.

//Point S
sx= 0xde2444bebc8d36e682edd27e¢0f271508617519b3221a8fa0b77cab3989da97c9
sy= 0xc093ae7ff36e5380fc0lab5aadle66659702de80f53cec576b6350b243042a256

S= nzAffinePoint (sx ,sy)
Sproj = ec_projectify (pf256,S)

// Point R
rx= 0x51d08d5f2d4278882946d88d83c97d11le62becc3cfcl8bedacc89balddeecal3f
ry= 0x75ee68eb8bf626aa5b673ab51f6e744e06f8fcf8a6c0cf3035beca956a7b41d5

R=nzAffinePoint (rx ,ry)
Rproj=ec_projectify (pf256 ,R)

seed = random 123 : [256]

Listing 1.3. NIST curve P-256 points|[I8] and seed generation. ec_projectify converts
the affine coordinates into projective (jacobian); random function takes an entropy
input value and the size of the required random number.

Everything is set at this point. Assuming that the file (e.g., dualec_p256.cry)
is loaded into Cryptol prelude, run:

Main> dualec256 curve256.ops seed Rproj Sproj

{fullnr =
0x9e0ce7fcba977fa33d36a3f6ae2d4044fe41b350d0017e7babede64ac7a82698 ,
rnr =
Oxe7fcba977fa33d36a3f6ae2d4044fe41b350d0017e7babede64ac7a82698 ,
seed =
0x2ad5fae9dd6b6402cdf9aa00194521190£f124b292974fc6b2b43c706d87b5e45}

Listing 1.4. The generation of a random number in Cryptol. Note that we only
pass the curve operations as argument (there is no need for other curve parameters
for this). The return value is a record of the type {fullnr= raw number, rnr= the real
output, seed= seed for the next iteration}. We should only know the rnr value but, for
experimenting/testing purposes, it is useful to also save the rest.

12 Ana Carvalho, Catarina Correia

4.3 Finding the next seed

For convenience, this example will be concluded with the data from curve
used in section [3| Consider that curve23 is defined the same way curve256 is,
and points P, Pproj, Q and Qproj are defined as S, Sproj, R and Rproj are (file
dualec_p23).

Main> dualec5 curve23.ops seed5 projP5 projQs
{fullnr = 4, rnr = 4, seed = 17}

Listing 1.5. The generation of a random number in Cryptol for curve y* = 23 —3z+7.

What is known, at this point, is the output number of the last section, the
rar field. It is also known that the 2 most significant bits were taken from this
number, therefore all possible combinations for the full number can be computed.
This is one of the Dual EC_DRNG flaws, as described in section

Main> find_x5 23 itel.rnr

[4, 12, 20, 0]

Main> :set base=2

Main> find_-x5 23 itel.rnr

[0b00100, 0b01100, 0b10100, 0bO0O0OOO]

Listing 1.6. find_z5 p nr is a function that computes all possible values of a#nr, such
that the resulting number is always smaller than p. You can see this in the example,
there is no option 0b11100 because the number is bigger than 23 and so it is not the full
number for sure. The function replaces these numbers with zeros. Note that Cryptol
allows for multiple number bases visualizations what makes it easier.

Reasoning as in section[3| The values in listing[I.9refer to possible x-coordinates
of r+@. In order to find the full point, 23 — 3z 4 7 has to be calculated its square
roots found. For the p — 256 curve, there is a function that computes the square
root (it is polymorphic on bit size), but for the small curve the way is to find y
is via brute force.

Main> find_points5 curve23 xlist [1..23 —1]

{x =4, y=6}, {x =14, y =17},

{x =20, y =9}, {x =20, y = 14}]
Listing 1.7. find_points5 curve zlist ylist is a function that takes all the possible
values of x and y and returns the pairs that are on the curve. Note that zlist is the
result of the previous computation and [0..23-1] are the possible values of y on the
prime field.

The points computed correspond to r * Q. It is known that e = 5 so taking
the next step back means to multiply every point by 5:

Main> [(ec_-affinify (pf23,ec_smull curve23.ops 5 p)).x | p<—projpontslist

]
(17, 17, 3, 3]

Listing 1.8. find_points5 curve zlist ylist is a function that takes all the possible
values of x and y and returns the pairs that are on the curve. Note that zlist is the
result of the previous computation and [0..23-1] are the possible values of y on the field.

Using Cryptol to explore elliptic curve-based random-number generators 13

This shows that seed for the next iteration is either 17 or 3! The initial list
of possible values was reduced to 50% by removing elements with mathematical
arguments. This measure is consistent with the probabilities calculated in [17].
The way to know for sure, as seen in section [3] is to compute two blocks instead
of just one. The initial computed value with two blocks was 34. Proceeding as
explained in section [3| one runs the Dual EC_DRNG twice: once feeding it the
seed 17 and then feeding it the seed 3.

Main> dualec5 curve23.ops 3 projP5 projQ5s
{fullnr = 17, rnr = 1, seed = 19}
Main> dualech5 curve23.ops 17 projP5 projQ5s
{fullnr = 18, rnr = 2, seed = 20}

Listing 1.9. The generation of a random number in Cryptol for seed=3 and seed=17

The result with seed 17 was the next number on the stream, so now the
internal state of the algorithm is disclosed and there is no obstacle to predict
following values.

Recommended NIST curve example. There are examples of this same mechanism
described here using curves recommended by NIST. To discover the raw random
number r*@, it took 3h with an implementation in the C language on an ordinary
computer[I7]. Our attempt at this resulted in over 30h and not even half was
computed. This may be because Cryptol is not as efficient as C and it is still in
an early stage. Due to this, we did not present a real life example but instead
a small one that is easy to follow and understand. There are no implications on
the mechanism or the breakability of the algorithm whatsoever.

5 Proofs

The Cryptol toolset includes three main commands that explicitly state cor-
rectness properties. The :prove command constructs rigorous formal proofs, us-
ing SAT and SMT solvers. By default, Cryptol uses CVC4 SMT solver but it
also supports others like Z3 or SRI’s Yices. The underlying technique used by
Cryptol is complete, considering it will always either prove or find a counterex-
ample. Nonetheless, the proof process can take a larger amount of time or it can
run out of memory. The :sat command checks satisfiability, i.e., displays some
satisfying solutions of the property, if there are any. The :check command is in-
spired by Haskell’s quick-check library. It performs random tests on the property
in order to give a quick feedback about bugs. If only few values are provided,
this command can also prove/disprove a property.

Cryptol properties can be polymorphic and they can hold at some, all, or
none of its monomorphic instances. Therefore, no polymorphic properties can
be proved in Cryptol. Since most of the functions are polymorphic, properties
will be polymorphic as well. One fix for this is to give the property a type
annotation to make it monomorphic.

14 Ana Carvalho, Catarina Correia

5.1 Proving Group Law properties

One of the most important assumptions of this work is that all elliptic curve
operations work properly. Taking into account that the addition of points is
the most important operation, the following proofs will focus on the assurance
of group law properties in the Cryptol implementation. The properties will be
tested for the curve23 defined in listing

Comments on proving in Cryptol. At the time of writing, Cryptol had a known
issue with the conversion of 1-bit vectors to SMTLIB format, resulting in type
errors. This is a drawback since all the elliptic curve arithmetic relies on bit-
vector operations. It turns out that for the small curve in demonstration, the
:check command is capable of covering all possible cases in a reasonable amount
of time.

ec_full_add : {fv, gv}
CurveOps fv gv —> ProjectivePoint fv—> AffinePoint fv
—> ProjectivePoint fv

Listing 1.10. Type of the Cryptol implementation of the addition operation in the
elliptic curve.

The listing shows the point addition in the curve. It is important to
note that the first point is represented in the projective system and the second
point is represented in the affine system. The sum of the two will be a projective
point.

Identity. Checking the identity first resulted in errors because the add function
only accounted for the infinity on the left side (projective) and therefore there
was no notion of infinity in affine coordinates. The infinity in projective coordi-
nates is any point such that z = 0. A verification was added in the ec_full_add
for the infinity in affine {x=0,y=0} as well as a second representation for the
infinity in the projective system ({x=0,y=0,z=1}), that would arise from the
use of ec_projectify on {x=0,y=0}.

point_add_-ident: {fv, gv} (Cmp fv) => Curve fv gv —> AffinePoint fv —>
Bit
point_add_ident ¢ xa = (point_eq f rlp xp) && (point_eq f r2p xp) && (
point_eq f rlp r2p)
where id = {x=f.field_zero ,y=f.field_zero}
idp = ec_projectify (c.field , id)
xp = ec_projectify (c.field , xa)
rlp = add idp xa
r2p = add xp id
add=c.ops.add
f=c. field

point_add_ident_IT: {fv, gv} (Cmp fv) => Curve fv gv —> AffinePoint fv
—> Bit
point_add_ident_II ¢ xa = (point_eq f rlp xp) && (point-eq f r2p xp) &&
(point_eq f rlp r2p)
where id = {x=f.field_unit ,y=f.field_unit ,z=f.field_-zero}
ida = ec_affinify (f, id)
xp = ec.projectify (f, xa)
rlp = add id xa

Using Cryptol to explore elliptic curve-based random-number generators 15

r2p = add xp ida
add=c.ops.add

f=c. field

in_curve point_in_curve c
vals = point_vals f

Listing 1.11. Identity properties: for the affine and projective infinity representations.
See Theorem [1I

After the previous error was corrected, both properties were proved by ex-
haustive testing.

Main> :check point_add-ident curve23
Using exhaustive testing.
passed 1024 tests.

QED

Main> :check point_add_-ident_II curve23
Using exhaustive testing.

passed 1024 tests.

QED

Listing 1.12. Checks for the identity properties. Each one of them took less than a
minute.

Commutativity This property was a great asset to figure out the conditions
that needed to be guaranteed on the initial values: all coordinates have to be
on the field that defines the curve and the input points have to belong to the
curve. Without it, :check was finding counterexamples that did not matter to
the evaluation.

point_add_is_.comm: {fv, gv} (Cmp fv) => Curve fv gv —> AffinePoint fv —>
AffinePoint fv —> Bit
point_add_-is_.comm c¢ xa ya = if ((vals xa) && (vals ya) && (in_curve xa)
&& (in_curve ya)) //points in curve
then point_eq f rlp r2p
else True
where
xp = ec_projectify (f, xa)
yp = ec_projectify (f, ya)
// let rip =z + y
rlp = add xp ya
// let 2p =y + =
r2p = add yp xa

f=c. field

add= c.ops.add

in_curve = point_in_curve c
vals = point_vals f

Listing 1.13. Commutativity property. See Theorem [I]

After the conditional structure was added, the property was proved by ex-
haustive testing. These findings tell us that we have to be carefull with the values
we pass to the functions.

Main> :check point_add_-is_.comm curve23
Using exhaustive testing.

passed 1048576 tests.

QED

16 Ana Carvalho, Catarina Correia

Listing 1.14. Check for the commutativity property. The full execution took less
than five minutes.

Associativity With the experience from the other properties, there were no coun-
terexamples displayed when checking associativity. Considering the fact that this
property takes three points (which means more test cases), the execution took
a long time and it was not possible to cover all values.

point_add_-is_.comm: {fv, gv} (Cmp fv) => Curve fv gv —> AffinePoint fv —>
AffinePoint fv —> Bit
point_add_-is_.comm c¢ xa ya = if ((vals xa) && (vals ya) && (in_curve xa)
&& (in_curve ya)) //points in curve
then point_eq f rlp r2p
else True
where
xp = ec_projectify (f, xa)
yp = ec_projectify (f, ya)
J// let rip =z + y
rlp = add xp ya
// let r2p =y + =
r2p = add yp xa

f=c. field

add= c.ops.add

in_curve = point_in_curve c
vals = point_vals f

Listing 1.15. Associativity property. See Theorem

Main> :check point_add_-is_.comm curve23
Using random testing.

passed 10800000 tests.

Coverage: 1.01\% (10800000 of 2°°30 values)

Listing 1.16. Check for the associativity property. It took a couple of hours to prove
1%

6 Conclusions and Future Work

This project accomplished to show that the Dual EC_DRNG is not secure
through a mathematical explanation and a guided recover of the internal state.

Cryptol is a great tool for cryptographic applications mainly because of its
polymorphism over word sizes. Its also has the ability to use the specifications
to check and prove properties, without the need to move to another platform.
However, the version used could benefit from some improvements. There are
some issues that prevented us from taking the next step as, for instance, the
SMTLIB translation bug. Nevertheless, the inability to use the :prove command
was overcome by the use of exhaustive testing on a small-sized curve.

The results accomplished here can be complemented by using the :prove
command to formally prove the properties and do it for bigger curve sizes. It
would also be interesting to compare the advantages of proving with Cryptol

Using Cryptol to explore elliptic curve-based random-number generators 17

to other well known theorem provers like Coq or EasyCrypt. The elliptic curve
suit developed in this project could assist the implementation of other crypto-
graphic primitives such as the elliptic curve DiffieHellman (ECDH) key agree-
ment scheme.

All the goals for this project were accomplished and extra value was added.
In the light of these findings, the authors support NIST’s decision of removing
the algorithm from the standard and point out the importance of being secure
in the digital world.

Acknowledgements. This work was carried out in the context of a proposal
from Galois for the Cohesive Project of the Formal Methods of Software Engi-
neering course.

We would like to thank Mr. Joe Hendrix for proposing this project and
for his availability throughout; Prof. José Nuno Oliveira for his counseling and
exhaustive meetings, even on short notice; Prof. Maria Joao Frade for helping
us with the proofs and pointing us in the right direction; Prof. José Bacelar
Almeida for advising us and taking interest in our work; DI technicians for their
ability to solve every problem with our machines; and all MFES team, colleagues
and professors, for being there every milestone listening, criticizing and helping
us grow this project.

We gratefully acknowledge usage of Wikipedia and gladly blame its contrib-
utors for any errors in our data.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6) (1976) 644-654
2. Miller, V.S.: Use of elliptic curves in cryptography. In: CRYPTO. (1985) 417-426
3. Barker, E.B., Kelsey, J.M.: Sp 800-90a. recommendation for random number gen-
eration using deterministic random bit generators. Technical report, Gaithersburg,
MD, United States (2012)
4. Lenstra, A.K., Kleinjung, T., Thomé, E.: Universal security - from bits and mips to
pools, lakes - and beyond. In: Number Theory and Cryptography. (2013) 121-124
NIST: Drbg validation list (2014)
6. Shumow, D., Ferguson, N.: On the possibility of a back door in the nist sp800-90
dual ec prng. Crypto 2007 rump session (2007)
7. Perlroth, N., Larson, J., Shane, S.: N.s.a. able to foil basic safeguards of privacy
on web. New York Times (September 2013)
8. : Nist removes cryptography algorithm from random number generator recommen-
dations (April 2014)
9. Rosen, K.H.: Discrete Mathematics and Its Applications. 2nd edn. McGraw-Hill
Higher Education (2002)
10. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2003)
11. Dams, J.: An introduction to elliptic curve cryptography
12. : Elliptic curve cryptosystems. Mathematics of Computation 48(177) (1987) 203—
209

o

18

13.

14.

15.

16.

17.

18.

19.

20.

Ana Carvalho, Catarina Correia

Miller, V.S.: Use of elliptic curves in cryptography. In: Lecture Notes in Computer
Sciences; 218 on Advances in cryptology—CRYPTO 85, New York, NY, USA,
Springer-Verlag New York, Inc. (1986) 417-426

Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer (2009)

Hoffstein, J., Pipher, J., Silverman, J.: An introduction to mathematical cryptog-
raphy. (2008)

Brown, D.R.L., Gjgsteen, K.: A security analysis of the nist sp 800-90 elliptic curve
random number generator. IACR Cryptology ePrint Archive 2007 (2007) 48
Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. IACR Cryptology ePrint Archive 2006 (2006) 190

NSA: Mathematical routines for the nist prime elliptic curves (2010)

Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.:
Handbook of Elliptic and Hyperelliptic Curve Cryptography. 2nd edn. Chapman
& Hall/CRC (2012)

Gordon, D.M.: A Survey of Fast Exponentiation Methods. Journal of Algorithms
27(1) (1998) 129-146

	Using Cryptol to explore elliptic curve-based random-number generators
	Ana Paula Carvalho cl@@auth and Catarina Correia

