Pre / post-conditions — starting where (pure)
functions stop

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

DI/UM, 2007 (Updated 2008, 2011-12, 2013)

Motivation Pre-conditions Post-conditions Satisfiability Background

What if invariants are not met?

Back to the mobile phone problem, suppose that the requirements
were (partly) misunderstood and that store was modelled simply as

follows:
store : Call — ListOfCalls — ListOfCalls

storecl & c: |

Clearly, store fails to preserve invariant ListOfCalls in case

e length | =10, or
e c € elems |, equivalentto (37 : 1 <i<lengthl: |i=c)

Motivation Pre-conditions Post-conditions Satisfiability Background

What if invariants are not met?

Back to the mobile phone problem, suppose that the requirements
were (partly) misunderstood and that store was modelled simply as
follows:

store : Call — ListOfCalls — ListOfCalls

storecl & c: |

Clearly, store fails to preserve invariant ListOfCalls in case
e length | =10, or
e c € elems |, equivalentto (37 : 1 <i<lengthl: |i=c)

NB: elems | 2 {l i:i € inds I} yields the set of all elements of a
finite list /, where inds | denotes the set of all indices of /, that is,
inds [| = {} and inds | = {1,..., length |} otherwise.

Motivation

Need for pre-conditions

e So, designers would have to restrict the application of store
to input values ¢,/ such that the invariant is preserved.

e This could be achieved by adding a pre-condition:

store : Call — ListOfCalls — ListOfCalls
storecl 2 c: |
pre length | <10 A ¢ & elems |

e Such a pre-condition is a predicate telling a range of
acceptable input values — to be read as a warning provided
by the designer that the function may misbehave outside such
a range of values.

Motivation

(Pure) functions are not enough

Thus

e store would become a partial function (clearly a symptom
that the requirements had been misunderstood)

However,

e Partial functions are the rule (rather than the exception) in
mathematics and computing.

Motivation

(Pure) functions are not enough

Thus
e store would become a partial function (clearly a symptom
that the requirements had been misunderstood)
However,
e Partial functions are the rule (rather than the exception) in
mathematics and computing.
Examples:
e Numbers — we know what 1/2 means; what about 1/0? —
division is a partial function

e List processing: given a sequence s, what does s i mean in
case | > length s? — list indexing is a partial operation.

Motivation

Pre-conditions for safety

Since
e the formal meaning of a program always be a well-defined
mathematical object ;

e one has to ensure that no partial function is used outside its
domain of definition,

Motivation

Pre-conditions for safety

Since

e the formal meaning of a program always be a well-defined
mathematical object ;

e one has to ensure that no partial function is used outside its
domain of definition,

the following strategy is recommended for safety, in presence of
partial functions:

e Write your model as if all functions were total

e Chase the partial ones and add predicates pre-conditions
ensuring that all such functions are called within their domain
of definition.

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety
Example: wishing to specify the operation which subtracts the first
from the second element of a finite sequence of natural numbers,

Sub21 : IN* = N
Sub2ls 2 s2—5s1

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

Example: wishing to specify the operation which subtracts the first
from the second element of a finite sequence of natural numbers,

Sub21 : IN* = N
Sub2ls 2 s2—5s1

we realize that the argument list is required to have at least two
elements. So we add a pre-condition

Sub21 : IN* — N
Sub21s 4 s2—s1
pre length s > 2

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

However, subtraction in IN is a partial function too. So we add
another clause to the precondition:

Sub21 : N* — IN
Sub2ls 2 s2—5s1
pre lengths >2 N s2>s1 (18)

What if the specifier decides to write clause

pre lengths =2 N s2>5s1 (19)

instead?

Pre-conditions

Weakest preconditions

Clearly,
e both (18) and (19) are suitable pre-conditions for Sub21
e (19) is stronger than (18), since length | =2 = length | > 2

e (18) is therefore "better” than (19), as the latter restricts the
use of Sub21 too much.

It turns out that

e predicate (18) is the weakest pre-condition (WP) for Sub21
to be safe

e one should aim at always stopping at WPs.

We will learn later how to calculate WPs. A thumb rule is given
in the next slide for a special (in fact, easiest) case.

Motivation Pre-conditions Post-conditions Satisfiability Background

Weakest preconditions

Let f : X — Y be a function where type Y is constrained by an
invariant, inv-Y : Y — B. Then the weakest pre-condition to be
enforced on f with respect to inv-Y is

wp(f,inv-Y) x 2 inv-Y(f x) (20)

Exercise 8: Calculate the weakest precondition wp(f,inv-Y') for each
situation below:

X Y f x inv-Yy
No N fx2 x>+1 y <10
Ng IN the same 1<y
INo IN f = succ even y

N x N N* f(n,x) 2 n:x (Vm: me elemsy: m<10)

O

Motivation Pre-conditions Post-conditions Satisfiability Background

Weakest preconditions

Exercise 9: Indicate which predicates p below are stronger (or weaker)
than the weakest precondition (WP) on each f with respect to the
corresponding output invariant:

X Y f inv-Y(y) p(x)

R R fxo x*+1 0<y<10 0<x<3

IN* IN* f=map1l (Vi : i€indsy: yi> 10) TRUE

A* A* f = tail length y >0 x#[]
BTree A BTree A f = mirror depth y > 1 depth x >1

where map and tail are well known list operators and mirror and depth are the
obvious functions over binary trees.

d

Pre-conditions

Need for more

When studying probability theory and statistics one is faced with
problems such as the following:

One is picking up marbles from a bag initially with a red,
a blue and a marble. Compute the probability of
the experiment in which red is picked first, second
and blue third.

Suppose you want to build an abstract model of a program you
want to run as much as possible to confirm the theory:

e Datatypes:

Marble = {red, blue, }
Bag = {B : B C Marble}

NB: one may alternatively write Bag = P Marble, see next slide.

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for more

The extension of Bag is as follows:

{red, blue, }
{red, blue} {red, } {blue, }
{reid} >< {blue} ><{ J(

{

This is known as the powerset lattice of set Marble.

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for more

Operations: one needs the operation which puts all marbles back
into the bag

reset : Bag — Bag
reset b & {red, blue, }

and another to simulate the experiment of picking the next marble:

Pick : Bag — (Marble x Bag)
Pick b & ...

Pre-conditions

Need for more

Operations: one needs the operation which puts all marbles back
into the bag

reset : Bag — Bag
reset b & {red, blue, }

and another to simulate the experiment of picking the next marble:

Pick : Bag — (Marble x Bag)
Pick b & ...

However, for the experiment to be valid, the choice of the next
marble to pick must be non-deterministic: Pick is not a function!

Motivation Pre-conditions Post-conditions Satisfiability

Post-conditions for liveness

Let

e x denote a marble to be taken from bag b
e r denote b without such a marble

The best we can say about the experiment is
xe€b AN r=b—{x}

assuming b # {}.

Background

We are led to a specification based on a pre-/post-condition pair:

Pick : (x : Marble,r : Bag) < (b : Bag)
pre b # {}
post xeb A r=b—{x}

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for vagueness

e Another use of pre-/post- pairs is that of tolerating more
than one result

e Example: we want to specify “the function” square root of
an integer:

Sqrt: (r:R) « (i : Z)
pre i >0
post 2=

The specifier is telling the implementer that either solution
r=++viorr=—+iwill do.

Post-conditions

Post-conditions for implicit specification

e Post-conditions — elegant way of hiding algorithmic details
which a particular function always embodies.

e Wherever we write a post-condition bearing in mind to specify
a function f, we refer to such a condition as an implicit
specification of f.

Post-conditions

Post-conditions for implicit specification

e Post-conditions — elegant way of hiding algorithmic details
which a particular function always embodies.

e Wherever we write a post-condition bearing in mind to specify
a function f, we refer to such a condition as an implicit
specification of f.

Example: explicit definition of abs function

abs: Z — N
absi 2 ifi<0then —/else/

followed by implicit definition of the same function:

abs: (i : Z) — (r: N)
post r >0A(r=iVr=—i)

Motivation Pre-conditions Post-conditions Satisfiability Background

Examples

Explicit definition of max function

max : (Z x Z) - Z
max(i,j) 2 if i <j then j else i (21)
followed by its implicit specification:
max :(i: Z,j: Z)— (r: Z)
post re{i,j}Ni<rAj<r (22)
Now the implicit specification of a partial function:

Maxs : (s : PN) — (r : IN)
pre s # {}

post resA(NVi :i€s: i<r)

Motivation Pre-conditions Post-conditions Satisfiability

Background
A glimpse at deriving explicit from implicit
The “best” specification of max is as follows, cf. its
post-condition:
max(i,j)<r = i<rAj<r (23)

Let us calculate explicit definition (21) from (23):
e Case i < j = TRUE:
max(i,j)<r = i<rAj<r
= {isrei<jAj<r}
max(i,j)<r = j<r
{ indirect equality (more about this later on...) }

max(i,j) = J

Motivation Pre-conditions Post-conditions Satisfiability Background

A glimpse at deriving explicit from implicit

e Case j <= TRUE:
max(i,j)<r = i<rAj<r
= {Jj<r<j<ini<r }
max(i,j)<r = i<r
{ indirect equality (more about this later on...) }

max(i,j) = i

Putting both cases together:

max(i,j) & if i <j then j else

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for relational specification

We want to specify the prefix relation between two finite
sequences, eg.

[1,2] IsPrefixOf [1,2,4,1]

[| IsPrefixOf]
[| IsPrefixOf [1]

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for relational specification

We want to specify the prefix relation between two finite
sequences, eg.

[1,2] IsPrefixOf [1,2,4,1]
[| [IsPrefixOf]
[| IsPrefixOf [1]

We write:

IsPrefixOf : (s : A¥) < (r: AY)
post length s < length r A (N i : i <lengths: (si)=/(ri))

NB: note that this spec is parametric on A.

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for relational specification

Another example: the relation which expresses sequence
permutation:

Permutes : (s : A*) < (r : AY) (24)

post (Va : acelems(s+r): count as= count ar)
assuming

count : A— A* — Ny

count as & card{i:i € indssA(si)=a}

where card : PA — INg computes the number of elements of a
finite set.

Post-conditions

Example: sorting

The following implicit specification of sorting abstracts from the
particular algorithm one has in mind:

Sort : (s: A*) « (r: AY)
post isOrdered(<) s A's Permutes r (25)

As seen in the following exercise, predicate isOrdered assumes a
total order (<) on datatype A.

Exercise 10: Complete the following (inductive) specification of
isOrdered:

isOrdered(<)[] = TRUE
isOrdered(<)(a: x) = ...isOrdered(<)x...

Post-conditions

Exercises

Exercise 11: Give an implicit definition for function f x & x2 + 1 over
the natural numbers.

O

Exercise 12: A golden multiple of a given length is obtained by
multiplying this length by a real number whose square equals its
“successor”. Write an implicit specification for golden multiple.

O

Exercise 13: Write implicit and explicit specifications for function
inseq : Ng — IN* which, for argument n, yields the sequence [1,...,n].

O

Motivation Pre-conditions Post-conditions Satisfiability

The pre/post/inv trilogy
By writing

Spec: (b: B) + (a: A)
pre ...
post

we mean the definition of two predicates

pre-Spec : A — B
post-Spec : Bx A— B

such that

(Va: acA: preSpec a= (3 b : be B: post-Spec(b, a)))

Background

(26)

Satisfiability

Proof obligation: satisfiability

Thus (26) is another proof obligation known as satisfiability:

Satisfiability ensures that pre-Spec and post-Spec are
such that, for all acceptable inputs, there must be some
possible result.

This includes the situation in which A and B have invariants.

Exercise 14: Assuming that the implicit definition of a total function

B~ A uniquely determines f, that is
post-f(r,a) = r=fa (27)

holds, use the Eindhoven quantifier calculus to show that (26) reduces to
(Va:aeA: (f a) € B) for Spec := f. In summary: in the case of
functions, satisfiability is the same as invariant preservation.

O

Motivation Pre-conditions Post-conditions Satisfiability

Exercises

Background

Exercise 15: Consider datatype

NRSeq A = A*

inv x & length x = card(elems x)

1. What is the informal meaning of the type's invariant?

2. Tell which of the following new types for Permutes (24),

Permutes : (s : NRSeq A) + (r : A%)
Permutes : (s : NRSeq A) <— (r : NRSeq A)

would lead to a non satisfiable specification.

Motivation Pre-conditions Post-conditions Satisfiability Background

Exercises

Exercise 16: Back to
Permutes : (s : A*) < (r: AY)
post (Va : acelems(s+r): count as=countar)
show that
1. Permutes is a reflexive relation: x Permutes x = TRUE for all x.

2. Permutes is a symmetric relation: y Permutes x = x Permutes y
for all x, y.

O

Exercise 17: How would you write an explicit definition of (partial)
function Maxs?

O

Motivation Pre-conditions Post-conditions Satisfiability Background

Background — Eindhoven quantifier calculus (cont.)

Splitting:
Mk :RvS: T) = Wk :R: T)YANNVk :S5: T) (30
Fk :RVS: T) = 3k :R: T)v{(Tk :S:T) (31
Rearranging:
Mk :R: TAS) = (Vk:R:) NVk : R:'S) (32)
Fk:R:TVS) = 3k:R: T)v(3k: :R:S) (33
de Morgan:
Wk :R:T) = 3k:R:-T) (34)

	Motivation
	Pre-conditions
	Post-conditions
	Satisfiability
	Background

