PF transform: conditions, coreflexives and
design by contractand

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

DI/UM, 2007 (last update: Nov. 2013)

Context

Recall

Some basic rules of the PF-transform:

¢ \ PF ¢
(3a :: bRanaSc) b(R-S)c
(Wa,b :: bRa=bS$ a) RCS
(Va: aRa id CR
bRaNc$§ a (b,c)(R,S)a
bRandS c (b,d)(R x S)(a,¢)
bRaAnbS§ a b(RNS) a
bRaVbsa b(RUS) a
(f b) R (g a) b(f°-R-g)a
TRUE bTa
FALSE bla

Context

Question

e The PF-transform seems applicable to transforming binary
predicates only, easily converted to binary relations, eg.
¢(y,x) & y —1 = 2x which transforms to function
y =2x+1, etc.

e What about transforming predicates such as the following
(Vx,y : y=2xAevenx: eveny) (106)

expressing the fact that function y = 2x preserves even
numbers, where even x & rem(x,2) = 0 is a unary predicate?

Context

Observation

e As already noted, (106) is a proposition stating that function
y = 2x preserves even numbers.

e In general, a function A< A s said to preserve a given
predicate ¢ iff the following holds:

Vx : ¢x: ¢(f x)) (107)
e Proposition (107) itself is a particular case of
(Vx : ¢x: ¢ (fx)) (108)

which states that f ensures property 1) on its output every
time property ¢ holds on its input.

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Answer

We first PF-transform the scope of the quantification:

Yy = 2x A even x

{ introduce z (3-one-point) }
(3z: z=x: y=2zAeven z)
= { 3-trading ; introduce ®open }

3z 2 y=2zN z=xANevenz)
~—_—

2P eyenx

{ composition ; introduce twice z & 2z }

y(twice - Deyen)x

. ¢even
cf. diagram No <—— INg

twice i

No

Exercises

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Now the whole thing

(Vx,y © y=2xAevenx: eveny)
{ above }

(Vx,y @ y(twice - Peyen)x : even y)
{ F-one-point }

(Vx,y : y(twice - Peyen)x: (3z 1 z=y: even z))
{ predicate calculus: pATRUE =p }

(Vx,y : y(twice - ®oyen)x: (3z 1 z=y Aeven z A TRUE))

{ T is the top relation }
(Vx,y y(twice - Peyen)x : (Fz 1 yPeenz A2 TX))

{ composition }

Exercises

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Now the whole thing

(Vx,y : y(twice - Peyen)x : ¥(Peven - T)X)

{ go pointfree (inclusion) }

twice - Peven C Peven - T

cf. diagram

(0]
No<— = N,

twice l - L T

No<—— N
even

Exercises

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

In summary

In the calculation above, unary predicate even has been
PF-transformed in two ways:

e O, en such that
Z Payenx 2 z=xAevenz

Clearly, ®eyen C id — that is, Qeyen is a coreflexive relation;

o ®.en - T, which is such that
Z(Peven - T)x = even z

— a so-called (left) condition.

Exercises

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives

As id can be represented as the “all-1s" diagonal matrix, so do
coreflexives, which are sub-diagonal matrices, eg.

¢ vowel =
a b (© e f
a 1 0 0:i0:io0
b:o:o0i:0ioioioio
c:ioioioioioioio
d 0 0 o o0io0 0 0
e io0io0ioioii1 0oi o
f 0 oio0io 0 0
oioioio 0

where vowel is the predicate identifying characters which are
vowels.

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives

PF-transform of unary predicate p into the corresponding
fragment ®,, of id (coreflexive),

y®px = y=xApy (109)
is unique — thus the universal property:
P=0, = (yOPx=y=xApy) (110)

A set S can also be PF-transformed into a coreflexive by
calculating ®(cs), cf. eg. the transform of set {1,2,3,4}:

y

Prax<a = .

Coreflexive for
set{1,2,3,4}

Coreflexives

Exercises

Exercise 51: Let false be the “everywhere false” predicate such that
false x = FALSE for all x, that is, false = FALSE. Show that ®4s. = L.

O

Exercise 52: Given a set S, let ®s abbreviate coreflexive ®(cs). Use
(109) to unfold (7 5y - 5 33 to pointwise notation.

O

Exercise 53: Show that (110) follows from (109).
O

Exercise 54: Solve (110) for p under substitution ¢ := id.
(]

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Boolean algebra of coreflexives

Building up on the exercises above, from (110) one easily draws:

Pprg = Pp - P

(111)
Spvg = P, UD, (112)
O, = id—®, (113)
Prape = L (114)
Bore = id (115)

where p, g are predicates.

(Note the slight, obvious abuse in notation.)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Basic properties of coreflexives

Let ®, W be coreflexive relations. Then the following properties
hold:

o Coreflexives are symmetric and transitive:

P°=0=0-0 (116)
e Meet of two coreflexives is composition:

oNV=0¢.v (117)
e Closure properties:

R-®CS (118)
®.RCS = &.RC®-S (119)

1l

By
©
N
n
©

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Relating coreflexives with conditions

Coreflexive V as a right-condition

T-wv

or as a left-condition:

i v.T

Mapping back and forward:

dCw (120)
PCVU = GCV.T (121)

Il
©
N
4
<

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Relating coreflexives with conditions

Pre and post restriction:

R-& = RNT-® (122)
V.R = RAV.-T (123)

Putting these together we obtain selection, as in SQL:

R

cueR & W.R- & B<F_A (124)
o e
B=——A
Clearly, ovoR
ovoR = {(b,a):bRany bA¢ a} (125)

for V=&, and & = .

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Selection
Let us check (125):

owoR
= { set theoretical meaning of a relation }
{(b,a) : b(owoR)a}
{ definition (124) }
{(b,a): b(V-R-d)a}
= { composition }
{(bya): (3 c : bV c: c(R-dP)a)}
= { coreflexive ¥ = &, (110) ; I-trading }
{(bya): (3 c : b=c: YbAc(R-d)a)}
= { next slide }

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Selection

= { F-one-point ; composition again }
{(b,a):y bA(3d :: bRdAND P a)}

= { coreflexive & = &4 (110) ; I-trading }
{(b,a):y bA(3Fd : d=a: bRdAN a)}

= { F-one-point ; trivia }
{(b,a): v bAb R an¢ a}

Exercise 55: Combinator
ROS 2 R-T-S (126)

is known as the “rectangular” combinator. Recalling that ker! = T, show
that 1O01° = id
O

Coreflexives=guards

Projection

By the way, another SQL-like relational operator is projection,

mefR 2 g-R-f° B<F_A (127)
s
C TR D
whose set-theoretic meaning is
ngfR = {(g b,fa):bRa} (128)

Functions f and g are often referred to as attributes of R.

Exercise 56: Check (128).
O

Coreflexives=guards

Exercise

Exercise 57: A relation R is said to satisfy functional dependency

(FD) g — f, written g — B f wherever projection mrgR (127) is
simple.

1. Show that

g——fF = ker(g-R°) Ckerf (129)

2. Show that (129) trivially holds wherever g is injective and R is
simple, for all (suitably typed) f.

3. Prove the composition rule of FDs:

h<E g <« h<S ¢ A f<R g (130

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Two useful coreflexives

Domain:
O0R 2 kerRNid (131)
Range:
pR 2 imgRNid (132)
Universal properties:
IRC® = RCT-¢ (133)
pRC® = RCP.-T (134)
Domain/range elimination rules:
TR = T-R (135)
pR-T = R-T (136)

SJRC6S = RCT-S (137)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Two useful coreflexives

More facts about domain and range:

SR = p(R°) (138)
5(R-S) = 6(5R-S (139)
p(R-S) = p(R-p (140)

R = R-(6R) (141)

R = (pR): (142)

Exercise 58: Recalling (122), (123) and other properties of relation
algebra, show that: (a) (133) and (134) can be re-written with R
replacing T; (b) @ C W =1.¢ C!. V¥ holds.

0

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Exercise

Exercise 59: Recall diagram (102) of a library loan data model:

ISBN <™ |SBN x UID — =~ UID
M 2 R C N
. Name x
Title x
Publisher T Date T Addressx
Phone

Show that the invariants captured by the two rectangles can be
alternatively expressed by

5(7T,'d,mR)g5M A 5(7T,'d_’7r2R)g5N

clearly exhibiting the foreign/primary-key relationships of the data
model (ISBN and UID).
d

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives at work — data flow

Coreflexives are very handy in controlling information flow in
PF-expressions, as the following two PF-transform rules show,
given two suitably typed coreflexives ® = &, and W = &

e Guarded composition: for all b, ¢

(3a: ¢pa: bRaNaSc) = b(R-d-S)c (143)

e Guarded inclusion:

(Vbya: obANtpa: bRa=bS§ a)
=¢o.R-VCS (144)

For ® = id and W = id we recover the (non-guarded) standard
definitions.

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Coreflexives at work — satisfiability

Back to the pre/post specification style, by writing

Spec: (b: B) <+ (a: A)
pre ...
post

we mean the definition of two predicates

pre-Spec : A— B
post-Spec : B x A— B

such that the satisfiability condition holds:

Exercises

(Va: acAApre-Speca: (3 b : be B: post-Spec(b,a))) (145)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives at work — satisfiability

Let us abbreviate
o cl>pre—spec by Pre
o ¢post—spec by Post

® ®cp) by @4, which in general includes an invariant associated to
datatype A
e &) by ®p, which in general includes an invariant associated to
datatype B
Then (145) PF-transforms to
A< 4 Pre-®,C T-®g-Post (146)
Prel \LPost
A B

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises
Functional satisfiability
Case Pre = id, Post = f:

GpC T b f
{ shunting rule (55) }
G FOC T g
{ converses }
f- P4 COp-T
{ (64),since f-doCf }
f-PpCfNdg-T
= { (123) }
f-dpC g f

What does this mean?

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability = invariant preservation

Let us introduce variables in f - ®4 C O - f:

f-dpCdp-f
{ shunting rule (54) }
Gy Cf°-Pp-f

= { introduce variables }
(Vaa : adpad: (f a)dg(f d))
{ coreflexives (a = a’) }

(Va:: adpa=(f a)ds(f a))

= { meaning of ®4, ®5 }
(WVa:acA: (fa)eB)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability = invariant preservation

Another way to put it:

f-®p C Og-f
{ shunting }

f-®a-f° C dp
{ coreflexives }

fdp 05 C bp

{ image definition }
img(f-®a) C &g

{ f-d4issimple }
p(f-da) C g

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability = invariant preservation
We will write “type declaration”

dg <", (147)
to mean

Dy

f-®p C &pg-f cf diagram A<—A (148)
1
equivalent to both B~ B
Pp
f-dp C dg-T (149)
p(f-®a) C Pp (150)

Applications

Design by contract

In general, a “type declaration” W <'— ¢ (147) is the basis of
functional programming (f) with so-called contracts (V, ®), an
instance of the well-known Design by Contract (DbC)
methodology (more about this later).

DbC works because contracts are compositional,

v e o vl rTaAT<E 0o (151

that is, diagram
v 1% o

makes sense. fg

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises
Design by contract
Contract composition (151) is easy to prove:
v AT 0

= { (147) twice }
- TCV.fANg-dCT-g

= { monotonicity of (-g) and (f-) }
f-T-gCV.-f-gNf-g-dCFf-T-g

= { Cis transitive }
f.g-dCWV.f.g

= ()

v<"E ¢

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Design by contract

Contracts cam also be paired, leading to the type rule (153) which
is derived in the exercise below.

Exercise 60: Rely on the absorption property
(R-T,S-U) = (RxS)-(T,U) (152)
in showing that

(f.g)

UxT<_0 v o AT<E -0 (153)

holds.

Exercises

Exercises

Exercise 61: From (147) and properties (54), etc infer the following
DbC rules

T ouw T orT< W (154)

P U<=""T = o< T AV (155)

You will also need (R-)-distribution (73).
g

Exercise 62: Show that (146) means the same as

Pre - &5 C Post® - &g - Post (156)

Exercises

Exercises

Exercise 63: Consider the relational version of McCarthy's conditional
combinator which follows:

p—f.g =1f-®Ug-d, (157)
(a) Using (149) infer the following DbC rule for conditionals:

p—f.g

T2y = v v.o, A T<Ev.0, (158)
(b) Now try and define a rule for handling contracts involving conditional
conditions:

T (v o) = (159)

Exercises

Exercises

Exercise 64: Recall that our motivating ESC assertion (106) was stated
but not proved. Now that we know that (106) PF-transforms to

Peven Lwice ®even and that P e, = p twice, complete the following

"almost no work at all” PF-calculation of (106):

Geven <L e = { s }
= { } twice - ©eyen C twice
twice - Peyen € Deyen - twice A { """"" }
= { } Deven C id
twice - Pepen C p twice - twice = { o }
TRUE

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Exercises

Exercise 65: Prove the union simplicity rule:

MU N issimple = M, N are simple and M- N° Cid (160)

	Context
	Unary predicates
	Coreflexives
	Coreflexives=guards
	Domain and range
	Applications
	Exercises

