PF transform: conditions, coreflexives and design by contractand

J.N. Oliveira
Dept. Informática,
Universidade do Minho
Braga, Portugal

DI/UM, 2007 (last update: Nov. 2013)

Recall

Some basic rules of the PF-transform:

ϕ	$P F \phi$
$\langle\exists a:: b R a \wedge a S c\rangle$	$b(R \cdot S) c$
$\langle\forall a, b:: b R a \Rightarrow b S a\rangle$	$R \subseteq S$
$\langle\forall a:: a R a\rangle$	$i d \subseteq R$
$b R a \wedge c S a$	$(b, c)\langle R, S\rangle a$
$b R a \wedge d S c$	$(b, d)(R \times S)(a, c)$
$b R a \wedge b S a$	$b(R \cap S) a$
$b R a \vee b S a$	$b(R \cup S) a$
$(f b) R(g a)$	$b\left(f^{\circ} \cdot R \cdot g\right) a$
TRUE	$b \top a$
FALSE	$b \perp a$

Question

- The PF-transform seems applicable to transforming binary predicates only, easily converted to binary relations, eg. $\phi(y, x) \triangleq y-1=2 x$ which transforms to function $y=2 x+1$, etc.
- What about transforming predicates such as the following

$$
\begin{equation*}
\langle\forall x, y: y=2 x \wedge \text { even } x: \text { even } y\rangle \tag{106}
\end{equation*}
$$

expressing the fact that function $y=2 x$ preserves even numbers, where even $x \triangleq \operatorname{rem}(x, 2)=0$ is a unary predicate?

Observation

- As already noted, (106) is a proposition stating that function $y=2 x$ preserves even numbers.
- In general, a function $A \leftarrow^{f} A$ is said to preserve a given predicate ϕ iff the following holds:

$$
\begin{equation*}
\langle\forall x: \phi x: \phi(f x)\rangle \tag{107}
\end{equation*}
$$

- Proposition (107) itself is a particular case of

$$
\begin{equation*}
\langle\forall x: \phi x: \psi(f x)\rangle \tag{108}
\end{equation*}
$$

which states that f ensures property ψ on its output every time property ϕ holds on its input.

Answer

We first PF-transform the scope of the quantification:

$$
\begin{aligned}
& y=2 x \wedge \text { even } x \\
& \equiv \quad\{\text { introduce } z \text { (} \exists \text {-one-point) }\} \\
& \langle\exists z: z=x: y=2 z \wedge \text { even } z\rangle \\
& \equiv \quad\left\{\exists \text {-trading ; introduce } \Phi_{\text {even }}\right\} \\
& \langle\exists z:: \quad y=2 z \wedge \underbrace{z=x \wedge \text { even } z}_{z \Phi_{\text {even }} x}\rangle \\
& \equiv \quad\{\text { composition; introduce twice } z \triangleq 2 z\} \\
& y\left(\text { twice } \cdot \Phi_{\text {even }}\right) x
\end{aligned}
$$

cf. diagram

Now the whole thing

$$
\begin{aligned}
& \begin{aligned}
&\langle x, y: y=2 x \wedge \text { even } x: \text { even } y\rangle \\
& \equiv\{\text { above }\}
\end{aligned} \\
\equiv & \left\langle\forall x, y: y\left(\text { twice } \cdot \Phi_{\text {even }}\right) x: \text { even } y\right\rangle
\end{aligned} \quad\{\text {-one-point }\}
$$

Now the whole thing

$$
\equiv \begin{gathered}
\left\langle\forall x, y: y\left(\text { twice } \cdot \Phi_{\text {even }}\right) x: y\left(\Phi_{\text {even }} \cdot T\right) x\right\rangle \\
\quad\{\text { go pointfree (inclusion) }\} \\
\text { twice } \cdot \Phi_{\text {even }} \subseteq \Phi_{\text {even }} \cdot \top
\end{gathered}
$$

cf. diagram

In summary

In the calculation above, unary predicate even has been PF-transformed in two ways:

- $\Phi_{\text {even }}$ such that

$$
z \Phi_{\text {even }} x \triangleq z=x \wedge \text { even } z
$$

Clearly, $\Phi_{\text {even }} \subseteq i d$ - that is, $\Phi_{\text {even }}$ is a coreflexive relation;

- $\Phi_{\text {even }} \cdot T$, which is such that

$$
z\left(\Phi_{\text {even }} \cdot \top\right) x \equiv \text { even } z
$$

— a so-called (left) condition.

Coreflexives

As id can be represented as the "all-1s" diagonal matrix, so do coreflexives, which are sub-diagonal matrices, eg.

$$
\Phi_{\text {vowel }}=
$$

	a	b	c	d	e	f	...
a	1	o	o	o	0	0	o
b	0	o	0	0	0	0	0
c	0	0	0	0	0	0	0
d	o	o	0	0	0	o	o
e	o	o	o	0	1	0	o
f	0	0	0	0	0	0	0
...	o	o	o	o	0	o	...

where vowel is the predicate identifying characters which are vowels.

Coreflexives

PF-transform of unary predicate p into the corresponding fragment Φ_{p} of id (coreflexive),

$$
\begin{equation*}
y \Phi_{p} x \equiv y=x \wedge p y \tag{109}
\end{equation*}
$$

is unique - thus the universal property:

$$
\begin{equation*}
\Phi=\Phi_{p} \equiv(y \Phi x \equiv y=x \wedge p y) \tag{110}
\end{equation*}
$$

A set S can also be PF-transformed into a coreflexive by calculating $\Phi_{(\in S)}$, cf. eg. the transform of set $\{1,2,3,4\}$:

$$
\Phi_{1 \leq x \leq 4}=
$$

Exercises

Exercise 51: Let false be the "everywhere false" predicate such that false $x=$ FALSE for all x, that is, false $=\underline{\text { FALSE }}$. Show that $\Phi_{\text {false }}=\perp$.
\square

Exercise 52: Given a set S, let Φ_{S} abbreviate coreflexive $\Phi_{(\in S)}$. Use (109) to unfold $\Phi_{\{1,2\}} \cdot \Phi_{\{2,3\}}$ to pointwise notation.

Exercise 53: Show that (110) follows from (109).

Exercise 54: Solve (110) for p under substitution $\Phi:=i d$.

Boolean algebra of coreflexives

Building up on the exercises above, from (110) one easily draws:

$$
\begin{align*}
& \Phi_{p \wedge q}=\Phi_{p} \cdot \Phi_{q} \tag{111}\\
& \Phi_{p \vee q}=\Phi_{p} \cup \Phi_{q} \tag{112}\\
& \Phi_{\neg p}=i d-\Phi_{p} \tag{113}\\
& \Phi_{\text {false }}=\perp \tag{114}\\
& \Phi_{\text {true }}=i d \tag{115}
\end{align*}
$$

where p, q are predicates.
(Note the slight, obvious abuse in notation.)

Basic properties of coreflexives

Let Φ, Ψ be coreflexive relations. Then the following properties hold:

- Coreflexives are symmetric and transitive:

$$
\begin{equation*}
\Phi^{\circ}=\Phi=\Phi \cdot \Phi \tag{116}
\end{equation*}
$$

- Meet of two coreflexives is composition:

$$
\begin{equation*}
\Phi \cap \psi=\Phi \cdot \psi \tag{117}
\end{equation*}
$$

- Closure properties:

$$
\begin{align*}
& R \cdot \Phi \subseteq S \equiv R \cdot \Phi \subseteq S \cdot \Phi \tag{118}\\
& \Phi \cdot R \subseteq S \equiv \Phi \cdot R \subseteq \Phi \cdot S \tag{119}
\end{align*}
$$

Relating coreflexives with conditions

Coreflexive Ψ as a right-condition

$$
\top \cdot \psi
$$

or as a left-condition:

$$
\Psi \cdot \top
$$

Mapping back and forward:

$$
\begin{align*}
& \Phi \subseteq \Psi \equiv \Phi \subseteq \top \cdot \psi \tag{120}\\
& \Phi \subseteq \psi \equiv \Phi \subseteq \Psi \cdot \top \tag{121}
\end{align*}
$$

Relating coreflexives with conditions

Pre and post restriction:

$$
\begin{align*}
R \cdot \Phi & =R \cap \top \cdot \Phi \tag{122}\\
\Psi \cdot R & =R \cap \Psi \cdot \top \tag{123}
\end{align*}
$$

Putting these together we obtain selection, as in SQL:

Clearly,

$$
\begin{equation*}
\sigma_{\Psi, \Phi} R \triangleq \Psi \cdot R \cdot \Phi \quad \stackrel{B}{\&} \stackrel{R}{\gtrless} A \tag{124}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\Psi, \Phi} R=\{(b, a): b R a \wedge \psi b \wedge \phi a\} \tag{125}
\end{equation*}
$$

for $\psi=\Phi_{\psi}$ and $\Phi=\Phi_{\phi}$.

Selection

Let us check (125):

$$
\begin{aligned}
& \sigma_{\Psi, \Phi} R \\
& =\quad\{\text { set theoretical meaning of a relation }\} \\
& \left\{(b, a): b\left(\sigma_{\Psi, \Phi} R\right) a\right\} \\
& =\{\text { definition (124) }\} \\
& \{(b, a): b(\Psi \cdot R \cdot \Phi) a\} \\
& =\quad\{\text { composition \}} \\
& \{(b, a):\langle\exists c: b \Psi c: c(R \cdot \Phi) a\rangle\} \\
& =\quad\left\{\text { coreflexive } \Psi=\Phi_{\psi}(110) ; \exists \text {-trading }\right\} \\
& \{(b, a):\langle\exists c: b=c: \psi b \wedge c(R \cdot \Phi) a\rangle\} \\
& =\quad\{\text { next slide }\}
\end{aligned}
$$

Selection

$$
\begin{aligned}
= & \{\exists \text {-one-point ; composition again }\} \\
& \{(b, a): \psi b \wedge\langle\exists d:: b R d \wedge d \Phi a\rangle\} \\
= & \left\{\text { coreflexive } \Phi=\Phi_{\phi}(110) ; \exists \text {-trading }\right\} \\
& \{(b, a): \psi b \wedge\langle\exists d: d=a: b R d \wedge \phi a\rangle\} \\
= & \{\exists \text {-one-point ; trivia }\} \\
& \{(b, a): \psi b \wedge b R a \wedge \phi a\}
\end{aligned}
$$

Exercise 55: Combinator

$$
\begin{equation*}
R \square S \triangleq R \cdot T \cdot S \tag{126}
\end{equation*}
$$

is known as the "rectangular" combinator. Recalling that ker $!=T$, show that $!\square!^{\circ}=$ id

Projection

By the way, another SQL-like relational operator is projection,

$$
\begin{equation*}
\pi_{g, f} R \triangleq g \cdot R \cdot f^{\circ} \quad \stackrel{B}{\square} \stackrel{R}{\downarrow} A \tag{127}
\end{equation*}
$$

whose set-theoretic meaning is

$$
\begin{equation*}
\pi_{g, f} R=\{(g b, f a): b R a\} \tag{128}
\end{equation*}
$$

Functions f and g are often referred to as attributes of R.
Exercise 56: Check (128).

Exercise

Exercise 57: A relation R is said to satisfy functional dependency (FD) $g \rightarrow f$, written $g \xrightarrow{R} f$ wherever projection $\pi_{f, g} R(127)$ is simple.

1. Show that

$$
\begin{equation*}
g \xrightarrow{R} f \equiv \operatorname{ker}\left(g \cdot R^{\circ}\right) \subseteq \operatorname{ker} f \tag{129}
\end{equation*}
$$

2. Show that (129) trivially holds wherever g is injective and R is simple, for all (suitably typed) f.
3. Prove the composition rule of FDs:

Two useful coreflexives

Domain:

$$
\begin{equation*}
\delta R \triangleq \operatorname{ker} R \cap i d \tag{131}
\end{equation*}
$$

Range:

$$
\begin{equation*}
\rho R \triangleq \quad \operatorname{img} R \cap i d \tag{132}
\end{equation*}
$$

Universal properties:

$$
\begin{align*}
\delta R \subseteq \Phi & \equiv R \subseteq \top \cdot \Phi \tag{133}\\
\rho R \subseteq \Phi & \equiv R \subseteq \Phi \cdot \top \tag{134}
\end{align*}
$$

Domain/range elimination rules:

$$
\begin{align*}
\top \cdot \delta R & =\top \cdot R \tag{135}\\
\rho R \cdot \top & =R \cdot \top \tag{136}\\
\delta R \subseteq \delta S & \equiv R \subseteq \top \cdot S \tag{137}
\end{align*}
$$

Two useful coreflexives

More facts about domain and range:

$$
\begin{align*}
\delta R & =\rho\left(R^{\circ}\right) \tag{138}\\
\delta(R \cdot S) & =\delta(\delta R \cdot S) \tag{139}\\
\rho(R \cdot S) & =\rho(R \cdot \rho S) \tag{140}\\
R & =R \cdot(\delta R) \tag{141}\\
R & =(\rho R) \cdot R \tag{142}
\end{align*}
$$

Exercise 58: Recalling (122), (123) and other properties of relation algebra, show that: (a) (133) and (134) can be re-written with R replacing T; (b) $\Phi \subseteq \psi \equiv!\cdot \Phi \subseteq!\cdot \psi$ holds.

Exercise

Exercise 59: Recall diagram (102) of a library loan data model:

Show that the invariants captured by the two rectangles can be alternatively expressed by

$$
\delta\left(\pi_{i d, \pi_{1}} R\right) \subseteq \delta M \quad \wedge \quad \delta\left(\pi_{i d, \pi_{2}} R\right) \subseteq \delta N
$$

clearly exhibiting the foreign/primary-key relationships of the data model (ISBN and UID).

Coreflexives at work - data flow

Coreflexives are very handy in controlling information flow in PF-expressions, as the following two PF-transform rules show, given two suitably typed coreflexives $\Phi=\Phi_{\phi}$ and $\psi=\Phi_{\psi}$:

- Guarded composition: for all b, c

$$
\begin{equation*}
\langle\exists a: \phi a: b R a \wedge a S c\rangle \equiv b(R \cdot \Phi \cdot S) c \tag{143}
\end{equation*}
$$

- Guarded inclusion:

$$
\begin{align*}
\langle\forall b, a: \phi b \wedge \psi a: b R & a \Rightarrow b S a\rangle \\
& \equiv \Phi \cdot R \cdot \psi \subseteq S \tag{144}
\end{align*}
$$

For $\Phi=i d$ and $\Psi=i d$ we recover the (non-guarded) standard definitions.

Coreflexives at work - satisfiability

Back to the pre/post specification style, by writing

$$
\begin{aligned}
& \text { Spec : }(b: B) \leftarrow(a: A) \\
& \text { pre } \ldots \\
& \text { post } \ldots
\end{aligned}
$$

we mean the definition of two predicates

$$
\begin{aligned}
& \text { pre-Spec : } A \rightarrow \mathbb{B} \\
& \text { post-Spec : } B \times A \rightarrow \mathbb{B}
\end{aligned}
$$

such that the satisfiability condition holds:

$$
\begin{equation*}
\langle\forall a: a \in A \wedge \text { pre-Spec } a:\langle\exists b: b \in B: \operatorname{post}-\operatorname{Spec}(b, a)\rangle\rangle \tag{145}
\end{equation*}
$$

Coreflexives at work - satisfiability

Let us abbreviate

- $\Phi_{\text {pre-Spec }}$ by Pre
- $\Phi_{\text {post-Spec }}$ by Post
- $\Phi_{(\in A)}$ by Φ_{A}, which in general includes an invariant associated to datatype A
- $\Phi_{(\in B)}$ by Φ_{B}, which in general includes an invariant associated to datatype B

Then (145) PF-transforms to

Functional satisfiability

Case Pre $=i d$, Post $=f$:

$$
\begin{array}{cc}
& \Phi_{A} \subseteq \top \cdot \Phi_{B} \cdot f \\
\equiv & \{\text { shunting rule (55) }\} \\
& \Phi_{A} \cdot f^{\circ} \subseteq \top \cdot \Phi_{B} \\
\equiv & \{\text { converses }\} \\
& f \cdot \Phi_{A} \subseteq \Phi_{B} \cdot \top \\
\equiv & \left\{(64), \text { since } f \cdot \Phi_{A} \subseteq f\right\} \\
& f \cdot \Phi_{A} \subseteq f \cap \Phi_{B} \cdot \top \\
\equiv & \{(123)\}
\end{array}
$$

What does this mean?

Functional satisfiability \equiv invariant preservation

Let us introduce variables in $f \cdot \Phi_{A} \subseteq \Phi_{B} \cdot f$:

$$
\begin{aligned}
& f \cdot \Phi_{A} \subseteq \Phi_{B} \cdot f \\
& \equiv \quad\{\text { shunting rule (54) }\} \\
& \Phi_{A} \subseteq f^{\circ} \cdot \Phi_{B} \cdot f \\
& \equiv \quad\{\text { introduce variables }\} \\
& \left\langle\forall a, a^{\prime}: a \Phi_{A} a^{\prime}:\binom{f}{a} \Phi_{B}\left(f a^{\prime}\right)\right\rangle \\
& \equiv \quad\left\{\text { coreflexives }\left(a=a^{\prime}\right)\right\} \\
& \left\langle\forall a:: a \Phi_{A} a \Rightarrow(f a) \Phi_{B}(f a)\right\rangle \\
& \equiv \quad\left\{\text { meaning of } \Phi_{A}, \Phi_{B}\right\} \\
& \langle\forall a: a \in A:(f a) \in B\rangle
\end{aligned}
$$

Functional satisfiability \equiv invariant preservation

Another way to put it:

$$
\begin{array}{cc}
& f \cdot \Phi_{A} \subseteq \Phi_{B} \cdot f \\
\equiv & \{\text { shunting }\} \\
& f \cdot \Phi_{A} \cdot f^{\circ} \subseteq \Phi_{B} \\
\equiv & \{\text { coreflexives }\} \\
& f \cdot \Phi_{A} \cdot \Phi_{A}^{\circ} \cdot f^{\circ} \subseteq \Phi_{B} \\
\equiv & \{\text { image definition }\} \\
& \operatorname{img}\left(f \cdot \Phi_{A}\right) \subseteq \Phi_{B} \\
\equiv & \left\{f \cdot \Phi_{A} \text { is simple }\right\} \\
& \rho\left(f \cdot \Phi_{A}\right) \subseteq \Phi_{B}
\end{array}
$$

Functional satisfiability \equiv invariant preservation

We will write "type declaration"

$$
\begin{equation*}
\Phi_{B} \stackrel{f}{\leftarrow} \Phi_{A} \tag{147}
\end{equation*}
$$

to mean

$$
\begin{equation*}
\rho\left(f \cdot \Phi_{A}\right) \subseteq \Phi_{B} \tag{149}
\end{equation*}
$$

Design by contract

In general, a "type declaration" $\Psi \underset{\leftarrow}{\leftarrow} \Phi(147)$ is the basis of functional programming (f) with so-called contracts (Ψ, Φ), an instance of the well-known Design by Contract (DbC) methodology (more about this later).

DbC works because contracts are compositional,

$$
\begin{equation*}
\Psi \stackrel{f \cdot g}{\leftarrow} \Phi \Leftarrow \Psi \leftarrow_{\leftarrow}^{f} \Upsilon \wedge \Upsilon \kappa^{g} \Phi \tag{151}
\end{equation*}
$$

that is, diagram
makes sense.

Design by contract
Contract composition (151) is easy to prove:

$$
\begin{aligned}
& \Psi< \\
\equiv & \{(147) \text { twice }\} \\
& f \cdot \Upsilon \subseteq \Psi \cdot f \wedge g \cdot \Phi \subseteq \Upsilon \cdot g \\
\Rightarrow & \quad\{\text { monotonicity of }(\cdot g) \text { and }(f \cdot)\} \\
& f \cdot \Upsilon \cdot g \subseteq \Psi \cdot f \cdot g \wedge f \cdot g \cdot \Phi \subseteq f \cdot \Upsilon \cdot g \\
\Rightarrow & \{\subseteq \text { is transitive }\} \\
& f \cdot g \cdot \Phi \subseteq \Psi \cdot f \cdot g \\
\equiv & \{(147)\} \\
& \Psi \stackrel{f \cdot g}{\leftarrow} \Phi \Phi
\end{aligned}
$$

Design by contract

Contracts cam also be paired, leading to the type rule (153) which is derived in the exercise below.

Exercise 60: Rely on the absorption property

$$
\begin{equation*}
\langle R \cdot T, S \cdot U\rangle=(R \times S) \cdot\langle T, U\rangle \tag{152}
\end{equation*}
$$

in showing that

$$
\begin{equation*}
\Psi \times \Upsilon \stackrel{\langle f, g\rangle}{\leftrightarrows} \Phi \equiv \Psi \oiiint^{f} \Phi \wedge \Upsilon \kappa^{g} \Phi \tag{153}
\end{equation*}
$$

holds.

Exercises

Exercise 61: From (147) and properties (54), etc infer the following DbC rules

$$
\begin{align*}
& \Upsilon \leftarrow^{f} \phi \cup \psi \equiv \Upsilon \leftarrow^{f} \phi \wedge \Upsilon \leftarrow^{f} \psi \tag{154}\\
& \phi \cdot \psi \leftarrow^{f} \Upsilon \equiv \Phi \leftarrow^{f} \Upsilon \wedge \psi \leftarrow^{f} \Upsilon \tag{155}
\end{align*}
$$

You will also need ($R \cdot$)-distribution (73).

Exercise 62: Show that (146) means the same as

$$
\begin{equation*}
\text { Pre } \cdot \Phi_{A} \subseteq \text { Post }^{\circ} \cdot \Phi_{B} \cdot \text { Post } \tag{156}
\end{equation*}
$$

Exercises

Exercise 63: Consider the relational version of McCarthy's conditional combinator which follows:

$$
\begin{equation*}
p \rightarrow f, g=f \cdot \Phi_{p} \cup g \cdot \Phi_{\neg p} \tag{157}
\end{equation*}
$$

(a) Using (149) infer the following DbC rule for conditionals:

$$
\begin{equation*}
\Upsilon \stackrel{p \rightarrow f, g}{\rightleftarrows} \psi \equiv \Upsilon \underset{\leftarrow}{\leftarrow} \psi \cdot \Phi_{p} \wedge \Upsilon \stackrel{g}{\leftarrow} \psi \cdot \Phi_{\neg p} \tag{158}
\end{equation*}
$$

(b) Now try and define a rule for handling contracts involving conditional conditions:

$$
\begin{equation*}
\Upsilon \stackrel{p \rightarrow f, g}{\rightleftarrows}(p \rightarrow \Psi, \Phi)=\ldots . \tag{159}
\end{equation*}
$$

Exercises

Exercise 64: Recall that our motivating ESC assertion (106) was stated but not proved. Now that we know that (106) PF-transforms to
$\Phi_{\text {even }} \stackrel{\text { twice }}{ }^{\text {even }}$ and that $\Phi_{\text {even }}=\rho$ twice, complete the following "almost no work at all" PF-calculation of (106):

$$
\begin{array}{lc}
& \Phi_{\text {even }} \stackrel{\text { twice }}{\gtrless} \Phi_{\text {even }} \\
\equiv & \{\ldots \ldots \ldots\} \\
& \text { twice } \cdot \Phi_{\text {even }} \subseteq \Phi_{\text {even }} \cdot \text { twice } \\
\equiv & \{\ldots \ldots \ldots\}
\end{array}
$$

Exercises

Exercise 65: Prove the union simplicity rule:

$$
\begin{equation*}
M \cup N \text { is simple } \equiv M, N \text { are simple and } M \cdot N^{\circ} \subseteq i d \tag{100}
\end{equation*}
$$

