PF transform: conditions, coreflexives and design by contractand

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

DI/UM, 2007 (last update: Nov. 2013)

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exercises

Recall

Some basic rules of the PF-transform:

ϕ	$PF \phi$
$\langle \exists a :: b R a \land a S c \rangle$	$b(R \cdot S)c$
$\langle \forall a, b :: b R a \Rightarrow b S a \rangle$	$R \subseteq S$
$\langle orall \; a \; :: \; a \; R \; a angle$	$id \subseteq R$
b R a \land c S a	$(b,c)\langle R,S\rangle$ a
$b \ R \ a \wedge d \ S \ c$	$(b,d)(R \times S)(a,c)$
$b \ R \ a \wedge b \ S \ a$	b (<u>R</u> ∩ S) a
$b \ R \ a \lor b \ S \ a$	b (R ∪ S) a
(f b) R (g a)	$b(f^{\circ} \cdot R \cdot g)a$
TRUE	b⊤a
FALSE	b⊥a

- The PF-transform seems applicable to transforming **binary** predicates only, easily converted to binary relations, eg. $\phi(y, x) \triangleq y - 1 = 2x$ which transforms to function y = 2x + 1, etc.
- What about transforming predicates such as the following

$$\langle \forall x, y : y = 2x \land even x : even y \rangle$$
 (106)

expressing the fact that function y = 2x preserves even numbers, where even $x \triangleq rem(x, 2) = 0$ is a **unary** predicate?

Observation

- As already noted, (106) is a proposition stating that function y = 2x preserves even numbers.
- In general, a function A < f / A is said to preserve a given predicate φ iff the following holds:

$$\langle \forall x : \phi x : \phi (f x) \rangle$$
 (107)

• Proposition (107) itself is a particular case of

$$\langle \forall x : \phi x : \psi (f x) \rangle \tag{108}$$

which states that f ensures property ψ on its output every time property ϕ holds on its input.

Applications

Exercises

Answer

We first PF-transform the scope of the quantification:

 $y = 2x \land even x$ $\equiv \{ \text{ introduce } z \ (\exists \text{-one-point}) \} \}$ $\langle \exists z : z = x : y = 2z \land even z \rangle$ $\equiv \{ \exists \text{-trading ; introduce } \Phi_{even} \}$ $\langle \exists z :: y = 2z \land \underline{z = x \land even z} \rangle$ $\equiv \{ \text{ composition ; introduce twice } z \triangleq 2z \}$ $y(twice \cdot \Phi_{even})x$

cf. diagram

Applications

Now the whole thing

 $\langle \forall x, y : y = 2x \land even x : even y \rangle$ \equiv { above } $\langle \forall x, y : y(twice \cdot \Phi_{even}) x : even y \rangle$ $\{ \exists - one - point \}$ = $\langle \forall x, y : y(twice \cdot \Phi_{even})x : \langle \exists z : z = y : even z \rangle \rangle$ { predicate calculus: $p \wedge \text{TRUE} = p$ } \equiv $\langle \forall x, y : y(twice \cdot \Phi_{even}) x : \langle \exists z :: z = y \land even z \land TRUE \rangle \rangle$ $\{ \top \text{ is the top relation } \}$ Ξ $\langle \forall x, y : y(twice \cdot \Phi_{even})x : \langle \exists z :: y \Phi_{even}z \wedge z \top x \rangle \rangle$ \equiv { composition }

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

Applications

Now the whole thing

$$\langle \forall x, y : y(twice \cdot \Phi_{even})x : y(\Phi_{even} \cdot \top)x \rangle$$

$$\equiv \{ go pointfree (inclusion) \}$$

$$twice \cdot \Phi_{even} \subseteq \Phi_{even} \cdot \top$$

cf. diagram

In the calculation above, **unary** predicate *even* has been PF-transformed in two ways:

• Φ_{even} such that

 $z \Phi_{even} x \triangleq z = x \wedge even z$

Clearly, $\Phi_{even} \subseteq id$ — that is, Φ_{even} is a **coreflexive** relation;

• $\Phi_{even} \cdot \top$, which is such that

 $z(\Phi_{even} \cdot \top)x \equiv even z$

— a so-called (left) condition.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Exercises

Coreflexives

As *id* can be represented as the "all-1s" diagonal matrix, so do **coreflexives**, which are *sub-diagonal* matrices, eg.

 Φ_{vowel} =

where *vowel* is the predicate identifying characters which are vowels.

applications Ex

Coreflexives

PF-transform of **unary** predicate p into the corresponding fragment Φ_p of *id* (coreflexive),

is unique — thus the universal property:

$$\Phi = \Phi_p \equiv (y \ \Phi \ x \equiv y = x \land p \ y) \tag{110}$$

A set S can also be PF-transformed into a coreflexive by calculating $\Phi_{(\in S)}$, cf. eg. the transform of set $\{1, 2, 3, 4\}$:

Exercise 51: Let *false* be the "everywhere false" predicate such that *false* x = FALSE for all x, that is, *false* = FALSE. Show that $\Phi_{\text{false}} = \bot$.

Exercise 52: Given a set *S*, let Φ_S abbreviate coreflexive $\Phi_{(\in S)}$. Use (109) to unfold $\Phi_{\{1,2\}} \cdot \Phi_{\{2,3\}}$ to pointwise notation.

Exercise 53: Show that (110) follows from (109). \Box

Exercise 54: Solve (110) for *p* under substitution $\Phi := id$.

Boolean algebra of coreflexives

Building up on the exercises above, from (110) one easily draws:

$$\Phi_{p \wedge q} = \Phi_p \cdot \Phi_q \tag{111}$$

$$\Phi_{p \lor q} = \Phi_p \cup \Phi_q \tag{112}$$

$$\Phi_{\neg p} = id - \Phi_p \tag{113}$$

$$\Phi_{\textit{false}} = \bot \tag{114}$$

$$\Phi_{true} = id \tag{115}$$

where p, q are predicates.

(Note the slight, obvious abuse in notation.)

Basic properties of coreflexives

Let $\Phi,\,\Psi$ be coreflexive relations. Then the following properties hold:

• Coreflexives are symmetric and transitive:

$$\Phi^{\circ} = \Phi = \Phi \cdot \Phi \tag{116}$$

• Meet of two coreflexives is composition:

$$\Phi \cap \Psi = \Phi \cdot \Psi \tag{117}$$

• Closure properties:

 $R \cdot \Phi \subseteq S \equiv R \cdot \Phi \subseteq S \cdot \Phi$ (118) $\Phi \cdot R \subset S \equiv \Phi \cdot R \subset \Phi \cdot S$ (119)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Relating coreflexives with conditions

Coreflexive Ψ as a right-condition

or as a left-condition:

 $\Psi \cdot \top$

 $\top \cdot \Psi$

Mapping back and forward:

 $\Phi \subseteq \Psi \ \equiv \ \Phi \subseteq \top \cdot \Psi$ (120) $\Phi \subset \Psi \ \equiv \ \Phi \subset \Psi \cdot \top$ (121)

Exercises

Relating coreflexives with conditions

Pre and post restriction:

 $R \cdot \Phi = R \cap \top \cdot \Phi$ (122) $\Psi \cdot R = R \cap \Psi \cdot \top$ (123)

Putting these together we obtain selection, as in SQL:

Clearly,

 $\sigma_{\Psi,\Phi}R = \{(b,a): b \ R \ a \land \psi \ b \land \phi \ a\}$ (125)

for $\Psi = \Phi_{\psi}$ and $\Phi = \Phi_{\phi}$.

Applications

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Exercises

Selection

Let us check (125):

 $\sigma_{\Psi,\Phi}R$ { set theoretical meaning of a relation } = $\{(b,a): b(\sigma_{\Psi,\Phi}R)a\}$ { definition (124) } = $\{(b, a) : b(\Psi \cdot R \cdot \Phi)a\}$ { composition } = $\{(b,a): \langle \exists c : b \Psi c : c(R \cdot \Phi)a \rangle\}$ { coreflexive $\Psi = \Phi_{\psi}$ (110); \exists -trading } = $\{(b,a): \langle \exists c : b = c: \psi b \land c(R \cdot \Phi)a \rangle\}$ { next slide } =

Exercises

Selection

 $= \{ \exists \text{-one-point} ; \text{ composition again } \}$ $\{(b, a) : \psi \ b \land \langle \exists \ d \ :: \ b \ R \ d \land d \ \Phi \ a \rangle \}$ $= \{ \text{ coreflexive } \Phi = \Phi_{\phi} (110) ; \exists \text{-trading } \}$ $\{(b, a) : \psi \ b \land \langle \exists \ d \ : \ d = a : \ b \ R \ d \land \phi \ a \rangle \}$ $= \{ \exists \text{-one-point} ; \text{ trivia } \}$ $\{(b, a) : \psi \ b \land b \ R \ a \land \phi \ a \}$

Exercise 55: Combinator

$$R \square S \triangleq R \cdot \top \cdot S \tag{126}$$

is known as the "rectangular" combinator. Recalling that ker $!=\top$, show that $! \Box !^{\circ} = \mathit{id}$

Projection

By the way, another SQL-like relational operator is projection,

whose set-theoretic meaning is

$$\pi_{g,f}R = \{(g \ b, f \ a) : b \ R \ a\}$$
(128)

Functions f and g are often referred to as **attributes** of R.

Exercise 56: Check (128).

Exercise 57: A relation *R* is said to satisfy **functional dependency** (FD) $g \to f$, written $g \xrightarrow{R} f$ wherever projection $\pi_{f,g}R$ (127) is simple.

1. Show that

$$g \xrightarrow{R} f \equiv \ker(g \cdot R^{\circ}) \subseteq \ker f$$
 (129)

- 2. Show that (129) trivially holds wherever g is injective and R is simple, for all (suitably typed) f.
- 3. Prove the **composition rule** of FDs:

$$h \stackrel{S \cdot R}{\longleftarrow} g \quad \Leftarrow \quad h \stackrel{S}{\longleftarrow} f \quad \land \quad f \stackrel{R}{\longleftarrow} g \qquad (130)$$

Two useful coreflexives

Domain:

$$\delta R \triangleq \ker R \cap id \tag{131}$$

Range:

$$\rho R \triangleq \operatorname{img} R \cap id \tag{132}$$

Universal properties:

 $\delta R \subseteq \Phi \equiv R \subseteq \top \cdot \Phi \tag{133}$

$$\rho R \subseteq \Phi \equiv R \subseteq \Phi \cdot \top \tag{134}$$

Domain/range elimination rules:

- $\top \cdot \delta R = \top \cdot R \tag{135}$
- $\rho R \cdot \top = R \cdot \top \tag{136}$
- $\delta R \subseteq \delta S \equiv R \subseteq \top \cdot S \tag{137}$

Two useful coreflexives

More facts about domain and range:

 $\delta R = \rho(R^{\circ}) \tag{138}$

$$\delta(R \cdot S) = \delta(\delta R \cdot S)$$
(139)

$$\rho(R \cdot S) = \rho(R \cdot \rho S)$$
(140)

$$R = R \cdot (\delta R) \tag{141}$$

$$R = (\rho R) \cdot R \tag{142}$$

Exercise 58: Recalling (122), (123) and other properties of relation algebra, show that: (a) (133) and (134) can be re-written with *R* replacing \top ; (b) $\Phi \subseteq \Psi \equiv ! \cdot \Phi \subseteq ! \cdot \Psi$ holds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Exercise 59: Recall diagram (102) of a library loan data model:

Show that the invariants captured by the two rectangles can be alternatively expressed by

$\delta\left(\pi_{id,\pi_{1}}R\right)\subseteq\delta\,M\quad\wedge\quad\delta\left(\pi_{id,\pi_{2}}R\right)\subseteq\delta\,N$

clearly exhibiting the **foreign/primary**-key relationships of the data model (*ISBN* and *UID*).

П

Exercises

Coreflexives at work — data flow

Coreflexives are very handy in controlling information flow in PF-expressions, as the following two PF-transform rules show, given two suitably typed coreflexives $\Phi = \Phi_{\phi}$ and $\Psi = \Phi_{\psi}$:

• Guarded composition: for all b, c

 $\langle \exists a : \phi a : b R a \wedge a Sc \rangle \equiv b(R \cdot \Phi \cdot S)c$ (143)

• Guarded inclusion:

 $\langle \forall \ b, a : \phi \ b \land \psi \ a : b \ R \ a \Rightarrow b \ S \ a \rangle$ $\equiv \phi \cdot R \cdot \Psi \subseteq S$ (144)

For $\Phi = id$ and $\Psi = id$ we recover the (non-guarded) standard definitions.

Coreflexives at work — satisfiability

Back to the $\ensuremath{\text{pre}}/\ensuremath{\text{post}}$ specification style, by writing

```
Spec: (b:B) \leftarrow (a:A)
pre ...
post ...
```

we mean the definition of two predicates

pre-*Spec* : $A \rightarrow \mathbb{B}$ post-*Spec* : $B \times A \rightarrow \mathbb{B}$

such that the **satisfiability** condition holds:

 $\langle \forall a : a \in A \land \text{pre-}Spec a : \langle \exists b : b \in B : \text{post-}Spec(b,a) \rangle \rangle$ (145)

Coreflexives at work — satisfiability

Let us abbreviate

- $\Phi_{\text{pre-}Spec}$ by Pre
- $\Phi_{\text{post-Spec}}$ by Post
- $\Phi_{(\in A)}$ by Φ_A , which in general includes an invariant associated to datatype A
- $\Phi_{(\in B)}$ by Φ_B , which in general includes an invariant associated to datatype B

Then (145) PF-transforms to

$$Pre \cdot \Phi_A \subseteq \top \cdot \Phi_B \cdot Post$$
 (146)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Exercises

Functional satisfiability

Case Pre = id, Post = f:

 $\Phi_A \subset \top \cdot \Phi_B \cdot f$ $\{ \text{ shunting rule } (55) \}$ \equiv $\Phi_A \cdot f^\circ \subset \top \cdot \Phi_B$ \equiv { converses } $f \cdot \Phi_A \subset \Phi_B \cdot \top$ { (64), since $f \cdot \Phi_A \subseteq f$ } \equiv $f \cdot \Phi_A \subset f \cap \Phi_B \cdot \top$ \equiv { (123) } $f \cdot \Phi_A \subset \Phi_B \cdot f$

What does this mean?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Functional satisfiability \equiv invariant preservation

Let us introduce variables in $f \cdot \Phi_A \subseteq \Phi_B \cdot f$:

 $f \cdot \Phi_{A} \subset \Phi_{B} \cdot f$ \equiv { shunting rule (54) } $\Phi_{\Delta} \subset f^{\circ} \cdot \Phi_{B} \cdot f$ \equiv { introduce variables } $\langle \forall a, a' : a \Phi_A a' : (f a) \Phi_B(f a') \rangle$ \equiv { coreflexives (a = a') } $\langle \forall a :: a \Phi_A a \Rightarrow (f a) \Phi_B(f a) \rangle$ \equiv { meaning of Φ_A, Φ_B } $\langle \forall a : a \in A : (f a) \in B \rangle$

Exercises

Functional satisfiability \equiv invariant preservation

Another way to put it:

 $f \cdot \Phi_A \subset \Phi_B \cdot f$ \equiv { shunting } $f \cdot \Phi_A \cdot f^\circ \subset \Phi_B$ \equiv { coreflexives } $f \cdot \Phi_A \cdot \Phi_A^\circ \cdot f^\circ \subset \Phi_B$ \equiv { image definition } $\operatorname{img}(f \cdot \Phi_A) \subset \Phi_B$ $\equiv \{f \cdot \Phi_A \text{ is simple }\}$ $\rho(f \cdot \Phi_A) \subset \Phi_B$

Functional satisfiability \equiv invariant preservation

We will write "type declaration"

 $\Phi_R \leftarrow f \Phi_A$ (147)

to mean

 $f \cdot \Phi_A \subseteq \Phi_B \cdot f$ cf. diagram $A \stackrel{\Phi_A}{\prec} A_f \bigvee_{f} f$ (148) equivalent to both $\begin{array}{rcl} f \cdot \Phi_A & \subseteq & \Phi_B \cdot \top \\ \rho \left(f \cdot \Phi_A \right) & \subset & \Phi_B \end{array}$ (149)(150)

Exercises

Design by contract

In general, a "type declaration" $\Psi \leftarrow f$ (147) is the basis of **functional programming** (f) with so-called **contracts** (Ψ , Φ), an instance of the well-known *Design by Contract* (**DbC**) methodology (more about this later).

DbC works because contracts are compositional,

$$\Psi \stackrel{f \cdot g}{\longleftarrow} \Phi \quad \Leftarrow \quad \Psi \stackrel{f}{\longleftarrow} \Upsilon \land \Upsilon \stackrel{g}{\longleftarrow} \Phi \quad (151)$$

that is, diagram

makes sense.

Applications

Exercises

Design by contract

Contract composition (151) is easy to prove:

 $\Psi \stackrel{f \cdot g}{\longleftarrow} \Phi$

 $\Psi \stackrel{f}{\longleftarrow} \Upsilon \land \Upsilon \stackrel{g}{\longleftarrow} \Phi$ \equiv $\{$ (147) twice $\}$ $f \cdot \Upsilon \subset \Psi \cdot f \land g \cdot \Phi \subset \Upsilon \cdot g$ { monotonicity of $(\cdot g)$ and $(f \cdot)$ } \Rightarrow $f \cdot \Upsilon \cdot g \subset \Psi \cdot f \cdot g \land f \cdot g \cdot \Phi \subset f \cdot \Upsilon \cdot g$ \Rightarrow { \subseteq is transitive } $f \cdot g \cdot \Phi \subset \Psi \cdot f \cdot g$ $\equiv \{ (147) \}$

Design by contract

Contracts cam also be paired, leading to the type rule (153) which is derived in the exercise below.

Exercise 60: Rely on the absorption property

$$\langle R \cdot T, S \cdot U \rangle = (R \times S) \cdot \langle T, U \rangle$$
 (152)

in showing that

 $\Psi \times \Upsilon \stackrel{\langle f, g \rangle}{\longleftarrow} \Phi \equiv \Psi \stackrel{f}{\longleftarrow} \Phi \land \Upsilon \stackrel{g}{\longleftarrow} \Phi$ (153)

holds.

Exercise 61: From (147) and properties (54), etc infer the following **DbC** rules

$$\Upsilon \stackrel{f}{\longleftarrow} \Phi \cup \Psi \quad \equiv \quad \Upsilon \stackrel{f}{\longleftarrow} \Phi \land \ \Upsilon \stackrel{f}{\longleftarrow} \Psi \tag{154}$$

$$\Phi \cdot \Psi \stackrel{f}{\longleftarrow} \Upsilon \equiv \Phi \stackrel{f}{\longleftarrow} \Upsilon \land \Psi \stackrel{f}{\longleftarrow} \Upsilon$$
(155)

You will also need $(R \cdot)$ -distribution (73).

11

Exercise 62: Show that (146) means the same as

 $Pre \cdot \Phi_A \subseteq Post^{\circ} \cdot \Phi_B \cdot Post$ (156)

Exercise 63: Consider the relational version of McCarthy's conditional combinator which follows:

$$p \to f, g = f \cdot \Phi_p \cup g \cdot \Phi_{\neg p}$$
 (157)

(a) Using (149) infer the following **DbC** rule for *conditionals*:

$$\Upsilon \stackrel{p \to f,g}{\longleftarrow} \Psi \equiv \Upsilon \stackrel{f}{\longleftarrow} \Psi \cdot \Phi_p \wedge \Upsilon \stackrel{g}{\longleftarrow} \Psi \cdot \Phi_{\neg p} \quad (158)$$

(b) Now try and define a rule for handling contracts involving conditional conditions:

$$\Upsilon \stackrel{p \to f,g}{\prec} (p \to \Psi, \Phi) = \dots$$
 (159)

Exercise 64: Recall that our motivating ESC assertion (106) was stated but not proved. Now that we know that (106) PF-transforms to

 $\Phi_{even} \stackrel{twice}{\leftarrow} \Phi_{even}$ and that $\Phi_{even} = \rho twice$, complete the following "almost no work at all" PF-calculation of (106):

Exercise 65: Prove the union simplicity rule:

 \square

 $M \cup N$ is simple \equiv M, N are simple and $M \cdot N^{\circ} \subseteq id$ (160)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ