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Universidade do Minho

Braga, Portugal

DI/UM, 2007 (last update: Nov. 2013)



Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Recall

Some basic rules of the PF-transform:

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
b R a ∧ c S a (b, c)〈R, S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b > a
False b ⊥ a
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Question

• The PF-transform seems applicable to transforming binary
predicates only, easily converted to binary relations, eg.
φ(y , x) 4 y − 1 = 2x which transforms to function
y = 2x + 1, etc.

• What about transforming predicates such as the following

〈∀ x , y : y = 2x ∧ even x : even y〉 (106)

expressing the fact that function y = 2x preserves even
numbers, where even x 4 rem(x , 2) = 0 is a unary predicate?
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Observation

• As already noted, (106) is a proposition stating that function
y = 2x preserves even numbers.

• In general, a function A A
foo is said to preserve a given

predicate φ iff the following holds:

〈∀ x : φ x : φ (f x)〉 (107)

• Proposition (107) itself is a particular case of

〈∀ x : φ x : ψ (f x)〉 (108)

which states that f ensures property ψ on its output every
time property φ holds on its input.
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Answer
We first PF-transform the scope of the quantification:

y = 2x ∧ even x

≡ { introduce z (∃-one-point) }

〈∃ z : z = x : y = 2z ∧ even z〉

≡ { ∃-trading ; introduce Φeven }

〈∃ z :: y = 2z ∧ z = x ∧ even z︸ ︷︷ ︸
zΦevenx

〉

≡ { composition ; introduce twice z 4 2z }

y(twice · Φeven)x

cf. diagram IN0

twice

��

IN0
Φevenoo

IN0
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Now the whole thing

〈∀ x , y : y = 2x ∧ even x : even y〉

≡ { above }

〈∀ x , y : y(twice · Φeven)x : even y〉

≡ { ∃-one-point }

〈∀ x , y : y(twice · Φeven)x : 〈∃ z : z = y : even z〉〉

≡ { predicate calculus: p ∧True = p }

〈∀ x , y : y(twice · Φeven)x : 〈∃ z :: z = y ∧ even z ∧True〉〉

≡ { > is the top relation }

〈∀ x , y : y(twice · Φeven)x : 〈∃ z :: yΦevenz ∧ z>x〉〉

≡ { composition }
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Now the whole thing

〈∀ x , y : y(twice · Φeven)x : y(Φeven · >)x〉

≡ { go pointfree (inclusion) }

twice · Φeven ⊆ Φeven · >

cf. diagram

IN0

twice
��

IN0
Φevenoo

>
��

⊆

IN0 IN0
Φeven

oo
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In summary

In the calculation above, unary predicate even has been
PF-transformed in two ways:

• Φeven such that

z Φevenx 4 z = x ∧ even z

Clearly, Φeven ⊆ id — that is, Φeven is a coreflexive relation;

• Φeven · >, which is such that

z(Φeven · >)x ≡ even z

— a so-called (left) condition.
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Coreflexives

As id can be represented as the “all-1s” diagonal matrix, so do
coreflexives, which are sub-diagonal matrices, eg.

Φvowel =

where vowel is the predicate identifying characters which are
vowels.
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Coreflexives
PF-transform of unary predicate p into the corresponding
fragment Φp of id (coreflexive),

y Φp x ≡ y = x ∧ p y (109)

is unique — thus the universal property:

Φ = Φp ≡ (y Φ x ≡ y = x ∧ p y) (110)

A set S can also be PF-transformed into a coreflexive by
calculating Φ(∈S), cf. eg. the transform of set {1, 2, 3, 4}:

Φ1≤x≤4 =
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Exercises

Exercise 51: Let false be the “everywhere false” predicate such that
false x = False for all x , that is, false = False. Show that Φfalse = ⊥.

�

Exercise 52: Given a set S , let ΦS abbreviate coreflexive Φ(∈S). Use
(109) to unfold Φ{1,2} · Φ{2,3} to pointwise notation.

�

Exercise 53: Show that (110) follows from (109).

�

Exercise 54: Solve (110) for p under substitution Φ := id .

�
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Boolean algebra of coreflexives

Building up on the exercises above, from (110) one easily draws:

Φp∧q = Φp · Φq (111)

Φp∨q = Φp ∪ Φq (112)

Φ¬p = id − Φp (113)

Φfalse = ⊥ (114)

Φtrue = id (115)

where p, q are predicates.

(Note the slight, obvious abuse in notation.)
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Basic properties of coreflexives

Let Φ, Ψ be coreflexive relations. Then the following properties
hold:

• Coreflexives are symmetric and transitive:

Φ◦ = Φ = Φ · Φ (116)

• Meet of two coreflexives is composition:

Φ ∩Ψ = Φ ·Ψ (117)

• Closure properties:

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ (118)

Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S (119)
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Relating coreflexives with conditions

Coreflexive Ψ as a right-condition

> ·Ψ

or as a left-condition:

Ψ · >

Mapping back and forward:

Φ ⊆ Ψ ≡ Φ ⊆ > ·Ψ (120)

Φ ⊆ Ψ ≡ Φ ⊆ Ψ · > (121)
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Relating coreflexives with conditions

Pre and post restriction:

R · Φ = R ∩ > · Φ (122)

Ψ · R = R ∩Ψ · > (123)

Putting these together we obtain selection, as in SQL:

σΨ,ΦR 4 Ψ · R · Φ B

Ψ
��

A
Roo

Φ
��

B A
σΨ,ΦR
oo

(124)

Clearly,

σΨ,ΦR = {(b, a) : b R a ∧ ψ b ∧ φ a} (125)

for Ψ = Φψ and Φ = Φφ.
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Selection

Let us check (125):

σΨ,ΦR

= { set theoretical meaning of a relation }

{(b, a) : b(σΨ,ΦR)a}

= { definition (124) }

{(b, a) : b(Ψ · R · Φ)a}

= { composition }

{(b, a) : 〈∃ c : b Ψ c : c(R · Φ)a〉}

= { coreflexive Ψ = Φψ (110) ; ∃-trading }

{(b, a) : 〈∃ c : b = c : ψb ∧ c(R · Φ)a〉}

= { next slide }
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Selection

= { ∃-one-point ; composition again }

{(b, a) : ψ b ∧ 〈∃ d :: b R d ∧ d Φ a〉}

= { coreflexive Φ = Φφ (110) ; ∃-trading }

{(b, a) : ψ b ∧ 〈∃ d : d = a : b R d ∧ φ a〉}

= { ∃-one-point ; trivia }

{(b, a) : ψ b ∧ b R a ∧ φ a}

Exercise 55: Combinator

R � S 4 R · > · S (126)

is known as the “rectangular” combinator. Recalling that ker ! = >, show
that ! � !◦ = id

�
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Projection

By the way, another SQL-like relational operator is projection,

πg ,f R 4 g · R · f ◦ B

g
��

A
Roo

f
��

C D
πg,f R
oo

(127)

whose set-theoretic meaning is

πg ,f R = {(g b, f a) : b R a} (128)

Functions f and g are often referred to as attributes of R.

Exercise 56: Check (128).

�
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Exercise

Exercise 57: A relation R is said to satisfy functional dependency

(FD) g → f , written g
R // f wherever projection πf ,gR (127) is

simple.

1. Show that

g
R // f ≡ ker (g · R◦) ⊆ ker f (129)

2. Show that (129) trivially holds wherever g is injective and R is
simple, for all (suitably typed) f .

3. Prove the composition rule of FDs:

h g
S·Roo ⇐ h f

Soo ∧ f g
Roo (130)

�
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Two useful coreflexives
Domain:

δ R 4 kerR ∩ id (131)

Range:

ρR 4 imgR ∩ id (132)

Universal properties:

δ R ⊆ Φ ≡ R ⊆ > · Φ (133)

ρR ⊆ Φ ≡ R ⊆ Φ · > (134)

Domain/range elimination rules:

> · δ R = > · R (135)

ρR · > = R · > (136)

δ R ⊆ δ S ≡ R ⊆ > · S (137)
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Two useful coreflexives

More facts about domain and range:

δ R = ρ (R◦) (138)

δ (R · S) = δ (δ R · S) (139)

ρ (R · S) = ρ (R · ρS) (140)

R = R · (δ R) (141)

R = (ρR) · R (142)

Exercise 58: Recalling (122), (123) and other properties of relation
algebra, show that: (a) (133) and (134) can be re-written with R
replacing >; (b) Φ ⊆ Ψ ≡ ! · Φ ⊆ ! ·Ψ holds.

�
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Exercise

Exercise 59: Recall diagram (102) of a library loan data model:

ISBN

M

�

ISBN × UID

R

��

π1oo π2 // UID

N

�
⊇ ⊆

Title ×
Publisher >

// Date
Name×
Address×
Phone

>
oo

Show that the invariants captured by the two rectangles can be
alternatively expressed by

δ (πid,π1R) ⊆ δM ∧ δ (πid,π2R) ⊆ δN

clearly exhibiting the foreign/primary-key relationships of the data
model (ISBN and UID).

�
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Coreflexives at work — data flow

Coreflexives are very handy in controlling information flow in
PF-expressions, as the following two PF-transform rules show,
given two suitably typed coreflexives Φ = Φφ and Ψ = Φψ:

• Guarded composition: for all b, c

〈∃ a : φ a : b R a ∧ a Sc〉 ≡ b(R · Φ · S)c (143)

• Guarded inclusion:

〈∀ b, a : φ b ∧ ψ a : b R a⇒ b S a〉
≡ Φ · R ·Ψ ⊆ S (144)

For Φ = id and Ψ = id we recover the (non-guarded) standard
definitions.
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Coreflexives at work — satisfiability

Back to the pre/post specification style, by writing

Spec : (b : B)← (a : A)

pre . . .

post . . .

we mean the definition of two predicates

pre-Spec : A→ IB

post-Spec : B × A→ IB

such that the satisfiability condition holds:

〈∀ a : a ∈ A ∧ pre-Spec a : 〈∃ b : b ∈ B : post-Spec(b, a)〉〉 (145)



Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives at work — satisfiability

Let us abbreviate

• Φpre-Spec by Pre

• Φpost-Spec by Post

• Φ(∈A) by ΦA, which in general includes an invariant associated to
datatype A

• Φ(∈B) by ΦB , which in general includes an invariant associated to
datatype B

Then (145) PF-transforms to

A

Pre
��

A

Post
��

ΦAoo

A B
>
oo B

ΦB

oo

Pre · ΦA ⊆ > · ΦB · Post (146)
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Functional satisfiability

Case Pre = id , Post = f :

ΦA ⊆ > · ΦB · f
≡ { shunting rule (55) }

ΦA · f ◦ ⊆ > · ΦB

≡ { converses }

f · ΦA ⊆ ΦB · >
≡ { (64), since f · ΦA ⊆ f }

f · ΦA ⊆ f ∩ ΦB · >
≡ { (123) }

f · ΦA ⊆ ΦB · f

What does this mean?
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Functional satisfiability ≡ invariant preservation

Let us introduce variables in f · ΦA ⊆ ΦB · f :

f · ΦA ⊆ ΦB · f
≡ { shunting rule (54) }

ΦA ⊆ f ◦ · ΦB · f
≡ { introduce variables }

〈∀ a, a′ : a ΦA a′ : (f a)ΦB(f a′)〉

≡ { coreflexives (a = a′) }

〈∀ a : : a ΦA a⇒ (f a)ΦB(f a)〉

≡ { meaning of ΦA, ΦB }

〈∀ a : a ∈ A : (f a) ∈ B〉
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Functional satisfiability ≡ invariant preservation

Another way to put it:

f · ΦA ⊆ ΦB · f
≡ { shunting }

f · ΦA · f ◦ ⊆ ΦB

≡ { coreflexives }

f · ΦA · Φ◦A · f ◦ ⊆ ΦB

≡ { image definition }

img (f · ΦA) ⊆ ΦB

≡ { f · ΦA is simple }

ρ (f · ΦA) ⊆ ΦB
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Functional satisfiability ≡ invariant preservation

We will write “type declaration”

ΦB ΦA
foo (147)

to mean

f · ΦA ⊆ ΦB · f cf. diagram A

f
��

A
ΦAoo

f
��

B B
ΦB

oo

(148)

equivalent to both

f · ΦA ⊆ ΦB · > (149)

ρ (f · ΦA) ⊆ ΦB (150)
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Design by contract

In general, a “type declaration” Ψ Φ
foo (147) is the basis of

functional programming (f ) with so-called contracts (Ψ, Φ), an
instance of the well-known Design by Contract (DbC)
methodology (more about this later).

DbC works because contracts are compositional,

Ψ Φ
f ·goo ⇐ Ψ Υ

foo ∧ Υ Φ
goo (151)

that is, diagram

Ψ Υ
foo Φ

g
oo

f ·g

gg

makes sense.
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Design by contract

Contract composition (151) is easy to prove:

Ψ Υ
foo ∧ Υ Φ

goo

≡ { (147) twice }

f ·Υ ⊆ Ψ · f ∧ g · Φ ⊆ Υ · g
⇒ { monotonicity of (·g) and (f ·) }

f ·Υ · g ⊆ Ψ · f · g ∧ f · g · Φ ⊆ f ·Υ · g
⇒ { ⊆ is transitive }

f · g · Φ ⊆ Ψ · f · g
≡ { (147) }

Ψ Φ
f ·goo



Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Design by contract

Contracts cam also be paired, leading to the type rule (153) which
is derived in the exercise below.

Exercise 60: Rely on the absorption property

〈R · T ,S · U〉 = (R × S) · 〈T ,U〉 (152)

in showing that

Ψ×Υ Φ
〈f ,g〉oo ≡ Ψ Φ

foo ∧ Υ Φ
goo (153)

holds.

�
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Exercises

Exercise 61: From (147) and properties (54), etc infer the following
DbC rules

Υ Φ ∪Ψ
foo ≡ Υ Φ

foo ∧ Υ Ψ
foo (154)

Φ ·Ψ Υ
foo ≡ Φ Υ

foo ∧ Ψ Υ
foo (155)

You will also need (R·)-distribution (73).

�

Exercise 62: Show that (146) means the same as

Pre · ΦA ⊆ Post◦ · ΦB · Post (156)

�
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Exercises

Exercise 63: Consider the relational version of McCarthy’s conditional
combinator which follows:

p → f , g = f · Φp ∪ g · Φ¬p (157)

(a) Using (149) infer the following DbC rule for conditionals:

Υ Ψ
p→f ,goo ≡ Υ Ψ · Φp

foo ∧ Υ Ψ · Φ¬p
goo (158)

(b) Now try and define a rule for handling contracts involving conditional
conditions:

Υ (p → Ψ,Φ)
p→f ,goo = .... (159)

�
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Exercises

Exercise 64: Recall that our motivating ESC assertion (106) was stated
but not proved. Now that we know that (106) PF-transforms to

Φeven Φeven
twiceoo and that Φeven = ρ twice, complete the following

”almost no work at all” PF-calculation of (106):

Φeven Φeven
twiceoo

≡ { .......... }
twice · Φeven ⊆ Φeven · twice

≡ { .......... }
twice · Φeven ⊆ ρ twice · twice

≡ { .......... }
twice · Φeven ⊆ twice

⇐ { .......... }
Φeven ⊆ id

≡ { .......... }
True

�
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Exercises

Exercise 65: Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (160)

�
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