
Towards
Formal Software Development

in VS.NET

MSDN - 14/16th of May, 2002

J.N.Oliveira

SIDEREUS S.A. and DI/UNIV. OF M INHO

MSDN-020514– p.1/42

Cover Stor y

Excerpt of article in the CAMBRIDGE EVENING
NEWS:

Computer Scientist Gets to the
"Bottom" of Financial Scandal

A Cambridge computer professor, Simon
Peyton Jones, has made an interesting
discovery regarding the Enron collapse.
(...) Enron’s collapse was due to a nearly
impenetrable web of financial contracts that
disguised the true financial state of the
company (...)

MSDN-020514– p.2/42

Cover Stor y (cont.)

(...) Accountants find that even when they
are scrupulously honest about the valuation
of such contracts there can still be sharp
disagreements in regard to the worth of
trading reserves, debts, and other
components.

Enter Professor Peyton Jones. As part of
his research at Microsoft in Cambridge, he
developed a computer language for
describing and valuing financial contracts.
(...)

MSDN-020514– p.3/42

Cover Stor y (cont.)

(...) With colleagues Jean-Marc Eber and
Julian Seward, they developed a language
capable of accurately describing and
valuing even the most complex financial
instruments. (...)

"While accountants find financial
derivatives to be mysterious and
difficult, for us they are just ordinary
recursive equations,"

says Peyton Jones.

MSDN-020514– p.4/42

Cover Stor y (cont.)

(...) "We have been dealing with
these for many years and have
developed a wide range of
techniques for handling them."

(...) According to Peyton Jones, his success
in the financial world comes from years of
research in Haskell (...)

"Without the tools developed by the
Haskell community I would never
have been able to do what I’ve done.
It’s a jolly wonderful way to program
computers"

he stated. (...)
MSDN-020514– p.5/42

Cover Stor y (conc lusion)

(...)

The Arthur Anderson accounting firm is
rumored to have made overtures to Peyton
Jones. (...) But Professor Peyton Jones
plans to remain where he is.

"I’m flattered that my research has
finally been of use to someone but
I’m quite happy working on Haskell.
Besides, I don’t want to have to wear
a suit to work every day."

MSDN-020514– p.6/42

Cover Stor y (conc lusion)

(...)

The Arthur Anderson accounting firm is
rumored to have made overtures to Peyton
Jones. (...) But Professor Peyton Jones
plans to remain where he is.

"I’m flattered that my research has
finally been of use to someone but
I’m quite happy working on Haskell.
Besides, I don’t want to have to wear
a suit to work every day."

(CAMBRIDGE EVENING NEWS,

MSDN-020514– p.6/42

Cover Stor y (conc lusion)

(...)

The Arthur Anderson accounting firm is
rumored to have made overtures to Peyton
Jones. (...) But Professor Peyton Jones
plans to remain where he is.

"I’m flattered that my research has
finally been of use to someone but
I’m quite happy working on Haskell.
Besides, I don’t want to have to wear
a suit to work every day."

(CAMBRIDGE EVENING NEWS, 1st of April (!) 2002)

MSDN-020514– p.6/42

Prof. Peyton Jones’ “ma gic words”

language capable of accuratel y describing
and valuing

just ordinary recursive equations

tools developed by the Haskell community

In other words:

formal methods

and

functional programming

MSDN-020514– p.7/42

Prof. Peyton Jones’ “ma gic words”

language capable of accuratel y describing
and valuing

just ordinary recursive equations

tools developed by the Haskell community

In other words:

formal methods

and

functional programming

MSDN-020514– p.7/42

Prof. Peyton Jones’ “ma gic words”

language capable of accuratel y describing
and valuing

just ordinary recursive equations

tools developed by the Haskell community

In other words:

formal methods

and

functional programming

MSDN-020514– p.7/42

Formal Methods

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

costumer

MSDN-020514– p.8/42

Formal Methods

problem!

Requirements

Formal Model

GUI

Functional prototype

Implementation

costumer

team

MSDN-020514– p.8/42

Formal Methods

problem!

Requirements

Formal Model

GUI

Functional prototype

Implementation

costumer

team

MSDN-020514– p.8/42

Formal Methods

problem!

Requirements

Formal Model

GUI

Functional prototype

Implementation

costumer

team

team

MSDN-020514– p.8/42

Formal Methods

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

costumer

team

team

costumer

MSDN-020514– p.8/42

Formal Methods

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

costumer

team

team

costumer

MSDN-020514– p.8/42

Formal Methods

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

costumer

team

team

costumer

upgrade

MSDN-020514– p.8/42

Why formal / elegant notations?

c Cliff B. Jones 1980
MSDN-020514– p.9/42

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)

the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

(...) For
each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);
function (= “verb”);
property (= “integrated sentence”);

MSDN-020514– p.10/42

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);
function (= “verb”);
property (= “integrated sentence”);

MSDN-020514– p.10/42

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);

function (= “verb”);
property (= “integrated sentence”);

MSDN-020514– p.10/42

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);
function (= “verb”);

property (= “integrated sentence”);

MSDN-020514– p.10/42

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);
function (= “verb”);
property (= “integrated sentence”);

MSDN-020514– p.10/42

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

In Haskell notation:

store :: Call -> [Call] -> [Call]
store c l = ...

MSDN-020514– p.11/42

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

In Haskell notation:

store :: Call -> [Call] -> [Call]
store c l = ...

MSDN-020514– p.11/42

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

In Haskell notation:

store :: Call -> [Call] -> [Call]
store c l = ...

MSDN-020514– p.11/42

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

MSDN-020514– p.12/42

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

store :: Call -> [Call] -> [Call]
store c l = [c] ++ l

Notation : x ++ y means “x catenated with y”, eg.

[c] ++ [a,b,c] = [c,a,b,c]

MSDN-020514– p.12/42

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

store :: Call -> [Call] -> [Call]
store c l = [c] ++ filter (/=c) l

Notation : From the Haskell Prelude:

filter :: (a -> Bool) -> [a] -> [a]

filter p l = [a | a <- l, p a]

MSDN-020514– p.12/42

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

store’ :: Call -> [Call] -> [Call]
store’ c l = take 10 (store c l)

Notation :

take 0 = [] take [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

| otherwise = []

MSDN-020514– p.12/42

Common practice , in eg. C

public void store10(string phoneNumber)

{

System.Collections.ArrayList auxList =

new System.Collections.ArrayList();

auxList.Add(phoneNumber);

auxList.AddRange(

this.filteratmost9(phoneNumber));

this.callList = auxList;

}

MSDN-020514– p.13/42

C version of store (cont.)

public System.Collections.ArrayList filteratmost9(string n)

{

System.Collections.ArrayList retList =

new System.Collections.ArrayList();

int i=0, m=0;

while((i < this.callList.Count) && (m < 9))

{

if ((string)this.callList[i] != n)

{

retList.Add(this.callList[i]);

m++;

}

i++;

}

return retList;

}

MSDN-020514– p.14/42

Comments on C code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

Obs.:

The same requirements in an FM exam paper
led to 5 kinds of answer, of which only one (!)
was correct!

Alternatively, FMs provide for correct program
construction, eg. by calculation.

MSDN-020514– p.15/42

Comments on C code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

Obs.:

The same requirements in an FM exam paper
led to 5 kinds of answer, of which only one (!)
was correct!

Alternatively, FMs provide for correct program
construction, eg. by calculation.

MSDN-020514– p.15/42

Comments on C code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

Obs.:

The same requirements in an FM exam paper
led to 5 kinds of answer, of which only one (!)
was correct!

Alternatively, FMs provide for correct program
construction, eg. by calculation.

MSDN-020514– p.15/42

Comments on C code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

Obs.:

The same requirements in an FM exam paper
led to 5 kinds of answer, of which only one (!)
was correct!

Alternatively, FMs provide for correct program
construction, eg. by calculation.

MSDN-020514– p.15/42

Programming by calculation

store’ c l

= take 10 (store c l)

= take 10 ([c] ++ filter (/=c) l)

= [c] ++ take 9 filter (/=c) l

= [c] ++ filteratmost 9 (/=c) l

= ...

Notation : calculation stems from formal properties, eg.

take m (x ++ y) = (take m x) ++ (take (m-length x) y)

MSDN-020514– p.16/42

FMs = true software engineering

What (specification)

Why? (justification)

How (implementation)

MSDN-020514– p.17/42

FMs = true software engineering

What (specification)

Why? (justification)

How (implementation)

MSDN-020514– p.17/42

FMs = true software engineering

What (specification)

Why? (justification)

How (implementation)

reverse

MSDN-020514– p.17/42

FMs = true software engineering

What (specification)

Why? (justification)

How (implementation)

reverse forward

MSDN-020514– p.17/42

FMs = true software engineering

What (specification)

Why? (justification)

How (implementation)

reverse forward

MSDN-020514– p.17/42

Scalling up

Bill of materials (ER):

Equipment

Component

Part of

Alarm Cost

Description Quantity

Sub-block of

MSDN-020514– p.18/42

Bill of materials (SQL)

CREATE TABLE COMPONENTS (

CompId CHAR (8) NOT NULL,

CStock NUMBER (10) NOT NULL,

Alarm NUMBER (10) NOT NULL,

Cost NUMBER (3,3) NOT NULL

CONSTRAINT COMPONENTS_pk

PRIMARY KEY(CompId)

);

CREATE TABLE EQUIPMENTS (

EqId CHAR (8) NOT NULL,

Description CHAR (73) NOT NULL,

EStock NUMBER (10) NOT NULL,

CONSTRAINT EQUIPMENTS_pk PRIMARY KEY (EqId)

);

(...)

MSDN-020514– p.19/42

Bill of materials (Haskell)

The entities:

data Component = Comp_Record {

compID :: String,

alarm :: Int,

cost :: Float,

cstock :: Int

}

data Equipment = Eq_Record {

eqID :: String,

description :: String,

estock :: Int

}

MSDN-020514– p.20/42

Bill of materials (Haskell)

The relationships:
data Part_of = Part_of_Record {

comp :: String,

equip :: String,

howManyC :: Int

}

data Sub_Block_of = Sub_Block_of_Record {

equipL :: String,

equipS :: String,

howManyE :: Int

}

The relational tables themselves:
type Components = Set Component

type Equipments = Set Equipment

type Parts_of = Set Part_of

type Sub_Blocks_of = Set Sub_Block_of

MSDN-020514– p.21/42

Data processing is functional

Every function

is a kind of “data miner”: it extracts the -view
of every piece of -data.

In fact:

data-mining is functional

document processing (eg. XML) is functional

MSDN-020514– p.22/42

Data processing is functional

Every function

is a kind of “data miner”: it extracts the -view
of every piece of -data.

In fact:

data-mining is functional

document processing (eg. XML) is functional

MSDN-020514– p.22/42

Data processing is functional

Every function

is a kind of “data miner”: it extracts the -view
of every piece of -data.

In fact:

data-mining is functional

document processing (eg. XML) is functional

MSDN-020514– p.22/42

Haskell at work

Not only ...

HaXML — library for XML processing

HaskellDB — communication with the data
access layer

but also ...

HaskellScript — library for the integration of
Haskell with COM/ActiveX.

HSP — a compositional alternative to ASP/PHP

HDirect — IDL compiler helping to interact with
external code.

MSDN-020514– p.23/42

Haskell at work

Not only ...

HaXML — library for XML processing

HaskellDB — communication with the data
access layer

but also ...

HaskellScript — library for the integration of
Haskell with COM/ActiveX.

HSP — a compositional alternative to ASP/PHP

HDirect — IDL compiler helping to interact with
external code.

MSDN-020514– p.23/42

Need for inter operability

Software architectures are getting more and
more complex

Need to reuse / costumize pre-existing software
components

Programming = “gluing” software together

Rôle of inter operability

MSDN-020514– p.24/42

Inter operability in .NET

The (old) idea of UCSD P-code, AS-400, JMV ...

VB.NET C++ C Perl Haskell ...

CLI (Common Language Infrastructure)

(CLR) Common Language Runtime

x86 + Windows IA64 + Windows

MSDN-020514– p.25/42

Inter operability in .NET

The (old) idea of UCSD P-code, AS-400, JMV ...

VB.NET C++ C Perl Haskell ...

CLI (Common Language Infrastructure)

(CLR) Common Language Runtime

x86 + Windows IA64 + Windows

MSDN-020514– p.25/42

Inter operability in .NET

The (old) idea of UCSD P-code, AS-400, JMV ...

VB.NET C++ C Perl Haskell ...

CLI (Common Language Infrastructure)

(CLR) Common Language Runtime

x86 + Windows IA64 + Windows

MSDN-020514– p.25/42

What’s new in CLI.NET

.NET is thus bound to the capabilities of the CLI
(Common Language Infrastructure)

Micr osoft Research and the .NET product
group have attracted a number of computer
scientists and language implementors to
improve support for a wide range of
programming paradigms

Thus novel features in CLI such as “tail-calls”
(the tail.call instruction) saving stack
space in recur sion -based languages such as
Haskell .

MSDN-020514– p.26/42

What’s new in CLI.NET

.NET is thus bound to the capabilities of the CLI
(Common Language Infrastructure)

Micr osoft Research and the .NET product
group have attracted a number of computer
scientists and language implementors to
improve support for a wide range of
programming paradigms

Thus novel features in CLI such as “tail-calls”
(the tail.call instruction) saving stack
space in recur sion -based languages such as
Haskell .

MSDN-020514– p.26/42

What’s new in CLI.NET

.NET is thus bound to the capabilities of the CLI
(Common Language Infrastructure)

Micr osoft Research and the .NET product
group have attracted a number of computer
scientists and language implementors to
improve support for a wide range of
programming paradigms

Thus novel features in CLI such as “tail-calls”
(the tail.call instruction) saving stack
space in recur sion -based languages such as
Haskell .

MSDN-020514– p.26/42

Haskell for .NET

Haskell.NET = Haskell (GHC) + Mondrian

Glossary:

GHC— Glasgow Haskell compiler

Mondrian — OO/functional hybrid used to communicate with

.NET

hs/ms — Haskell/Mondrian source code

mc — Mondrian internal code

MSDN-020514– p.27/42

About Mondrian

Mondrian — is a non-strict functional language
designed for an OO environment

its syntax is a meld of that of Haskell and
Java/C

disjoint union types are modelled using
subtyping, eg

class List {}
class Nil extends List {}
class Cons extends List
{ head : Object;

tail : List Object
};

MSDN-020514– p.28/42

Mondrian (cont.)

Object (the topmost class) plays the rôle of a
type variable, cf. parameterization.

functions are compiled to classes embodying a
standard evaluation method

supports concurrent programming using
threads and exceptions

provides access to “foreign” language objects

Haskell Mondrian C

MSDN-020514– p.29/42

Haskell.NET in a diagram

.hs .mc .ms

.c# .exe

ghc4.08.2

mondrian

mdc

mdc

MSDN-020514– p.30/42

Haskell.NET in a diagram

.hs .mc .ms

.o .c# .exe

.dll

ghc4.08.2

mondrian

mdc

mdcghc5.02.3 -c

ghc5.02.3 -mk -dll mdc

MSDN-020514– p.30/42

Mobile phone revisited

using mondrian.prelude;

using mondrian.runtime;

using store;

...

public class SMain

{

.....

public static void store10(string c)

{

// Store new call in current list

callList = store.Apply(c,callList) ;

// Keep only 10 in current list

callList = take.Apply(10,callList);

}

.....

}

MSDN-020514– p.31/42

Potential of .NET for FMs

Aim of the Programming Principles and
Tools (PPT) group at MR:

It devises formal techniques and models
for understanding programs,
programming abstractions and
languages, and develops related
implementation technology.

Preliminary ideas for Haskell/Mondrian scripting
were presented by Erik Meijer (Program
Manager in the CLR Group) at
6408.70aAFP’98 (Braga) organized by
DI/UMinho.

MSDN-020514– p.32/42

Potential of .NET for FMs

Aim of the Programming Principles and
Tools (PPT) group at MR:

It devises formal techniques and models
for understanding programs,
programming abstractions and
languages, and develops related
implementation technology.

Preliminary ideas for Haskell/Mondrian scripting
were presented by Erik Meijer (Program
Manager in the CLR Group) at
6408.70aAFP’98 (Braga) organized by
DI/UMinho.

MSDN-020514– p.32/42

Potential of .NET for FMs

Aim of the Programming Principles and
Tools (PPT) group at MR:

It devises formal techniques and models
for understanding programs,
programming abstractions and
languages, and develops related
implementation technology.

Preliminary ideas for Haskell/Mondrian scripting
were presented by Erik Meijer (Program
Manager in the CLR Group) at
6408.70aAFP’98 (Braga) organized by
DI/UMinho.

MSDN-020514– p.32/42

Are FMs cost-eff ective?

In favour:

FM = discipline, rigour and good documentation
(“safety net” for HR mobility)

FM+FP = rapid prototyping, early feedback on
what one is doing

FM+FP+CLI = “time to market” integration

FM = the only way to complex problems

Against:

Human factors

Lack of FM-trained people

MSDN-020514– p.33/42

Are FMs cost-eff ective?

In favour:

FM = discipline, rigour and good documentation
(“safety net” for HR mobility)

FM+FP = rapid prototyping, early feedback on
what one is doing

FM+FP+CLI = “time to market” integration

FM = the only way to complex problems

Against:

Human factors

Lack of FM-trained people

MSDN-020514– p.33/42

Are FMs cost-eff ective?

In favour:

FM = discipline, rigour and good documentation
(“safety net” for HR mobility)

FM+FP = rapid prototyping, early feedback on
what one is doing

FM+FP+CLI = “time to market” integration

FM = the only way to complex problems

Against:

Human factors

Lack of FM-trained people

MSDN-020514– p.33/42

Are FMs a “ma y” or a “m ust”?

Control and automation:

Safety-critical software development requires
FMs

Dependab le computing

Data processing services are becoming critical:

Many IS servers required to be available 365
24 hour / year

Poor-quality data lead to wrong management
decisions

MSDN-020514– p.34/42

Our backgr ound

By 2004:
20 years of FM teaching at the Univ. of
Minho

10 years ago:
Industrial application of FMs based on
FP tested at INESC-BRAGA

Spin-off of INESC-BRAGA (1996):
SIDEREUS S.A. - Rigorous Solutions for
Software Systems (Porto)

MSDN-020514– p.35/42

Interest in .NET

Sidereus and DI/UM are experimenting with the
.NET as a platform for formal/informal tool
integration

Some experiments/products follow:
ADO.NET
KMig
K-reverse
FRMS

MSDN-020514– p.36/42

Modelling ADO.NET

(...) The DataSet is an in-memory cache of data retrieved from
a database (...)

data DataSet = DataSet {

tables :: DataTableCollection,

relations :: DataRelationCollection,

caseSensitive :: Bool

}

(...) While DataTable objects contain the data, the
DataRelationCollection allows you to navigate through the
table hierarchy (...)

type DataRelationCollection =

Map RelationId DataRelation
MSDN-020514– p.37/42

From ADO.NET to KMig

KMig is a data-migration package developed by
Sidereus which interoperates with DTS.

Data-migrations are formally specified in KMig
internal language (M2L) and so can be checked
for correctness before they are executed.

KMig and M2L have been fully formally
specified (most work carried out at specification
level)

MSDN-020514– p.38/42

K-Reverse and FRMS

Semi-automatic tool for relational database
reverse specification.

Can be used for data-quality checking,
re-documentation, re-engineering (in
connection with KMig).

FRMS is an advanced search engine
incorporating fuzzy reciprocal matching.

FRMS requirements are complex: it would have
been a risk to approach them informally...

MSDN-020514– p.39/42

K-Reverse and FRMS

Semi-automatic tool for relational database
reverse specification.

Can be used for data-quality checking,
re-documentation, re-engineering (in
connection with KMig).

FRMS is an advanced search engine
incorporating fuzzy reciprocal matching.

FRMS requirements are complex: it would have
been a risk to approach them informally...

MSDN-020514– p.39/42

FMs add to competitiveness

Increased productivity:

Code Validation
Debug
Verification
Calculation / automation

Technology-independent documentation:

the actual enterprise’s wealth

investment safeguard.

MSDN-020514– p.40/42

FMs add to competitiveness

Increased productivity:

Code Validation
Debug
Verification
Calculation / automation

Technology-independent documentation:

the actual enterprise’s wealth

investment safeguard.

MSDN-020514– p.40/42

FMs add to competitiveness

Increased productivity:

Code Validation
Debug
Verification
Calculation / automation

Technology-independent documentation:

the actual enterprise’s wealth

investment safeguard.

MSDN-020514– p.40/42

FMs add to competitiveness

Increased productivity:

Code Validation
Debug
Verification
Calculation / automation

Technology-independent documentation:

the actual enterprise’s wealth

investment safeguard.

is competitive :-)

MSDN-020514– p.40/42

Closing

1st of April joke by John Peterson (maintainer
of haskell.org) inspired in

Simon L. Peyton Jones, Jean-Marc Eber,
and Julian Seward. Composing
contracts: an adventure in financial
engineering, functional pearl. In
International Conference on Functional
Programming, pages 280–292, 2000.

(thanks to Andrei Serjantov for the broadcasting...)

MSDN-020514– p.41/42

A Few Links

More about Microsoft Research PPT group:

http:/research.microsoft.com/ppt/

More about FMs

http://www.fmeurope.org

More about Haskell

http://www.haskell.org

More about Mondrian

http://www.mondrian-script.org

More about us

http://www.sidereus.pt

http://www.di.uminho.pt
MSDN-020514– p.42/42

	Cover Story
	Cover Story (cont.)
	Cover Story (cont.)
	Cover Story (cont.)
	Cover Story (conclusion)
	mbox {Prof. Peyton Jones' «magic words»}
	Formal Methods
	Why formal / elegant notations?
	Requirement analysis
	Formal model
	Meeting the requirements
	Common practice, in eg. csharp
	csharp version of store (cont.)
	Comments on csharp code
	Programming by calculation
	FMs = true software engineering
	Scalling up
	Bill of materials (SQL)
	Bill of materials (Haskell)
	Bill of materials (Haskell)
	Data processing is functional
	Haskell at work
	Need for interoperability
	Interoperability in .NET
	What's new in CLI.NET
	Haskell for .NET
	About Mondrian
	Mondrian (cont.)
	Haskell.NET in a diagram
	Mobile phone revisited
	Potential of .NET for FMs
	Are FMs cost-effective?
	Are FMs a «may» or a «must»?
	Our background
	Interest in .NET
	Modelling ADO.NET
	From ADO.NET to KMig
	K-Reverse and FRMS
	FMs add to competitiveness
	Closing
	A Few Links

