MFES/1314 - CSI: Exercises of the slides

Exercise 1. Let $l n$ denote the n-th element of a list l. Complete the following alternative formulation of clause (b) of inv-ListOfCalls:

Should ($l i)$ and $(l j)$ be the same, then for all

Exercise 2. For Date defined solely by 73,74 above, give definitions for the auxiliary functions y, m and d of
tomorrow : Date \rightarrow Date
tomorrow $x \triangleq(y x, m x, d x)$
which respectively give tomorrow's year, month and day. Then consider the effort required by repeating the exercise while ensuring full date validity within the Gregorian calender.

Exercise 3. (adapted from exercise 5.1.4 in C.B. Jones's Systematic Software Development Using VDM):
Hotel room numbers are pairs (f, d) where f indicates a floor and d a door number in floor f. Write the invariant on room numbers which captures the following rules valid in a particular hotel with 25 floors, 60 rooms per floor:

1. there is no floor number 13; (guess why)
2. level 1 is an open area and has no rooms;
3. the top five floors consist of large suites and these are numbered with even integers.

NB: assume predicate even on natural numbers.

Exercise 4. Write clause (b) of inv-ListOfCalls (recall exercise T] using \forall notation.

Exercise 5. Check rule

$$
\begin{equation*}
\langle\exists i: R: T\rangle=\langle\exists i: T: R\rangle \tag{1}
\end{equation*}
$$

Exercise 6. Infer tautologies

$$
S=\{a \mid a \in S\} \quad, \quad p a \equiv a \in\{a \mid p a\}
$$

from 75.
\square

Exercise 7. Check carefully which rules of the quantifier calculus need to be applied to prove that predicate

$$
\begin{equation*}
\langle\forall b, a:\langle\exists c: b=f c: r(c, a)\rangle: s(b, a)\rangle \tag{2}
\end{equation*}
$$

is the same as

$$
\langle\forall c, a: r(c, a): s(f c, a)\rangle
$$

where f is a function and r, s are binary predicates.

Exercise 8. Calculate the weakest precondition $w p(f, i n v-Y)$ for each situation below:

X	Y	$f x$	inv-Yy
\mathbb{N}_{0}	\mathbb{N}	$f x \Delta x^{2}+1$	$y \leq 10$
\mathbb{N}_{0}	\mathbb{N}	the same	$1 \leq y$
\mathbb{N}_{0}	\mathbb{N}	$f=$ succ	even y
$\mathbb{N} \times \mathbb{N}^{\star}$	\mathbb{N}^{\star}	$f(n, x) \Delta n: x$	$\langle\forall m: m \in$ elems $y: m \leq 10\rangle$

Exercise 9. Indicate which predicates p below are stronger (or weaker) than the weakest precondition (WP) on each f with respect to the corresponding output invariant:

X	Y	f	$\operatorname{inv}-Y(y)$	$p(x)$
\mathbb{R}	\mathbb{R}	$f x \triangleq x^{2}+1$	$0 \leq y \leq 10$	$0<x<3$
\mathbb{N}^{\star}	\mathbb{N}^{\star}	$f=$ map 1	$\langle\forall i: i \in$ inds $y: y i>10\rangle$	TRUE
A^{\star}	A^{\star}	$f=$ tail	length $y>0$	$x \neq[]$
BTree A	BTree A	$f=$ mirror	depth $y \geq 1$	depth $x>1$

where map and tail are well known list operators and mirror and depth are the obvious functions over binary trees. \square

Exercise 10. Complete the following (inductive) specification of isOrdered:

$$
\begin{aligned}
& i s \operatorname{Ordered}(\leq)[]=\text { TRUE } \\
& i s \operatorname{Ordered}(\leq)(a: x)=\ldots i s \operatorname{Ordered}(\leq) x \ldots
\end{aligned}
$$

Exercise 11. Give an implicit definition for function $f x \triangleq x^{2}+1$ over the natural numbers.

Exercise 12. A golden multiple of a given length is obtained by multiplying this length by a real number whose square equals its "successor". Write an implicit specification for golden multiple.

Exercise 13. Write implicit and explicit specifications for function inseq: $\mathbb{N}_{0} \rightarrow \mathbb{N}^{\star}$ which, for argument n, yields the sequence $[1, \ldots, n]$. \square

Exercise 14. Assuming that the implicit definition of a total function $B \leftarrow^{f}$ A uniquely determines f, that is

$$
\begin{equation*}
\text { post- } f(r, a) \equiv r=f a \tag{3}
\end{equation*}
$$

holds, use the Eindhoven quantifier calculus to show that 76 reduces to $\langle\forall a: a \in A:(f a) \in B\rangle$ for Spec $:=f$. In summary: in the case of functions, satisfiability is the same as invariant preservation.

Exercise 15. Consider datatype

$$
\begin{aligned}
& N R S e q A=A^{\star} \\
& \text { inv } x \triangleq \text { length } x=\operatorname{card}(\text { elems } x)
\end{aligned}
$$

1. What is the informal meaning of the type's invariant?
2. Tell which of the following new types for Permutes (7),

$$
\begin{align*}
& \text { Permutes }:(s: N R S e q A) \leftarrow\left(r: A^{\star}\right) \tag{4}\\
& \text { Permutes }:(s: N R S e q A) \leftarrow(r: N R S e q A) \tag{5}
\end{align*}
$$

would lead to a non satisfiable specification.

Exercise 16. Back to

$$
\begin{aligned}
& \text { Permutes }:\left(s: A^{\star}\right) \leftarrow\left(r: A^{\star}\right) \\
& \text { post }\langle\forall a: a \in \operatorname{elems}(s \frown r): \text { count } a s=\text { count } a r\rangle
\end{aligned}
$$

show that

1. Permutes is a reflexive relation: x Permutes $x \equiv$ True for all x.
2. Permutes is a symmetric relation: y Permutes $x \equiv x$ Permutes y for all x, y.

Exercise 17. How would you write an explicit definition of (partial) function Maxs?

Exercise 18. We want to compare

$$
\begin{align*}
& \text { IsPrefixOf }:\left(s: A^{\star}\right) \rightarrow\left(r: A^{\star}\right) \\
& \text { post length } r \leq \text { length } s \wedge\langle\forall i: i \leq \text { length } r: r i=s i\rangle \tag{6}
\end{align*}
$$

with

$$
\begin{equation*}
\text { Permutes }:\left(s: A^{\star}\right) \rightarrow\left(r: A^{\star}\right) \tag{7}
\end{equation*}
$$

$$
\text { post }\langle\forall e: e \in \text { elems } s \cup \text { elems } r: \text { count e } s=\text { count e } r\rangle
$$

and with partial function Tail, all of type $A^{\star} \longleftarrow \longleftarrow A^{\star}$. Check which of the following hold:

- Tail \subseteq IsPrefixOf
- IsPrefixOf \subseteq Permutes

Exercise 19. Resort to 77, (78) and to the Eindhoven quantifier calculus to show that

$$
f \subseteq g \equiv f=g
$$

holds (moral: for functions, inclusion and equality coincide).
\square

Exercise 20. Resort to PF-transform rule (79) and to the Eindhoven quantifier calculus to show that

$$
\begin{align*}
& R \cdot i d=R=i d \cdot R \tag{8}\\
& R \cdot \perp=\perp=\perp \cdot R \tag{9}
\end{align*}
$$

hold and that composition is associative:

$$
\begin{equation*}
R \cdot(S \cdot T)=(R \cdot S) \cdot T \tag{10}
\end{equation*}
$$

Exercise 21. Let K be a nonempty data domain, $k \in K$ and \underline{k} be the "everywhere k " function:

$$
\begin{align*}
\underline{k} & : \quad A \longrightarrow K \tag{11}\\
\underline{k} a & \triangleq k
\end{align*}
$$

Compute which relations are defined by the following PF-expressions:

$$
\begin{equation*}
\operatorname{ker} \underline{k}, \underline{b} \cdot \underline{c}^{\circ}, \quad i m g \underline{k} \tag{12}
\end{equation*}
$$

Exercise 22. Resort to 80|81) and 82) to prove the following rules of thumb:

- converse of injective is simple (and vice-versa)
- converse of entire is surjective (and vice-versa)
\square

Exercise 23. Prove the following fact
A function f is a bijection iff its converse f° is a function
by completing:

```
            f and fo}\mathrm{ are functions
\equiv {...}
    (id\subseteqker f}\wedgeimgf\subseteqid)\wedge(id\subseteqker (f f ) ^ img (f f ) \subseteqid)
\equiv {...}
    \vdots
\equiv {...}
    f is a bijection
```

Exercise 24. Check which of the following properties,
simple, entire, injective, surjective, transitive , (co)reflexive, (anti)symmetric, connected hold for relation Eats 83), which is the food chain Fox $>$ Goose $>$ Beans. \square

Exercise 25. Relation cross 83) is defined by:

$$
\begin{aligned}
\text { cross Left } & =\text { Right } \\
\text { cross Right } & =\text { Left }
\end{aligned}
$$

It therefore is a bijection. Why?

Exercise 26. Relation where : Being \rightarrow Bank should obey the following constraints:

- everyone is somewhere in a bank
- no one can be in both banks at the same time.

Encode such constraints in relational terms. Conclude that where should be a function. \square

Exercise 27. There are only two constant functions in the type Being \longrightarrow Bank. Identify them and explain the role they play in the puzzle.

Exercise 28. Infer id $\subseteq \operatorname{ker} f$ (f is total) and $\operatorname{img} f \subseteq i d(f$ is simple $)$ from any of shunting rules (99) or (100). \square

Exercise 29. Check the meaning of shunting rules (99) and (100) by converting them to pointwise (Eindhoven) notation.

Show that they indeed hold by resorting to the rules of the Eindhoven calculus.

Exercise 30. Let s S mean: "student s is assigned number n ". Check the meaning of assertion: $S \cdot \leq \subseteq \top \cdot S$. \square

Exercise 31. As generalization of exercise 30, draw the most general type diagram which accommodates relational assertion:

$$
\begin{equation*}
M \cdot R^{\circ} \quad \subseteq \quad \top \cdot M \tag{14}
\end{equation*}
$$

\square

Exercise 32. Type the following relational assertions

$$
\begin{array}{rll}
M \cdot N^{\circ} & \subseteq & \perp \tag{15}\\
M \cdot N^{\circ} & \subseteq & i d \\
M^{\circ} \cdot \top \cdot N & \subseteq & >
\end{array}
$$

and check their pointwise meaning.
\square

Exercise 33. Expand all criteria in the previous slides to pointwise notation.

Exercise 34. A relation R is said to be co-transitive iff the following holds:

$$
\begin{equation*}
\langle\forall b, a: b R a:\langle\exists c: b R c: c R a\rangle\rangle \tag{18}
\end{equation*}
$$

Compute the PF-transform of the formula above. Find a relation (eg. over numbers) which is co-transitive and another which is not.
\square

Exercise 35. Show that

$$
(b, c)\langle R, S\rangle a \equiv b R a \wedge c S a
$$

PF-transforms to

$$
\begin{equation*}
\langle R, S\rangle=\pi_{1}^{\circ} \cdot R \cap \pi_{2}^{\circ} \cdot S \tag{19}
\end{equation*}
$$

Exercise 36. Infer universal property

$$
\begin{equation*}
\pi_{1} \cdot X \subseteq R \wedge \pi_{2} \cdot X \subseteq S \quad \equiv \quad X \subseteq\langle R, S\rangle \tag{20}
\end{equation*}
$$

from (19) via indirect equality (103).
\square

Exercise 37. Unconditional distribution laws

$$
\begin{aligned}
& (P \cap Q) \cdot S=(P \cdot S) \cap(Q \cdot S) \\
& R \cdot(P \cap Q)=(R \cdot P) \cap(R \cdot Q)
\end{aligned}
$$

will hold provide one of R or S is simple and the other injective. Tell which (justifying). \square

Exercise 38. Derive from

$$
\begin{equation*}
\langle R, S\rangle^{\circ} \cdot\langle X, Y\rangle=\left(R^{\circ} \cdot X\right) \cap\left(S^{\circ} \cdot Y\right) \tag{21}
\end{equation*}
$$

the following properties:
$\operatorname{ker}\langle R, S\rangle=\operatorname{ker} R \cap \operatorname{ker} S$
$\langle R, i d\rangle$ is always injective, for whatever R

Exercise 39. Show that:

$$
\begin{align*}
i m g[R, S] & =i m g R \cup i m g S \tag{23}\\
i m g i_{1} \cup i m g i_{2} & =i d \tag{24}
\end{align*}
$$

\square

Exercise 40. Start by proving the fusion law

$$
\begin{equation*}
\langle R, S\rangle \cdot f=\langle R \cdot f, S \cdot f\rangle \tag{25}
\end{equation*}
$$

where f is a function. Then, relying on both (105) and (25) infer the exchange law,

$$
\begin{equation*}
[\langle R, S\rangle,\langle T, V\rangle]=\langle[R, T],[S, V]\rangle \tag{26}
\end{equation*}
$$

holding for all relations as in diagram

Exercise 41. Prove the following rules of thumb:

- smaller than injective (simple) is injective (simple)
- larger than entire (surjective) is entire (surjective)

Exercise 42. Check which of the following hold:

- If relations R and S are simple, then so is $R \cap S$
- If relations R and S are injective, then so is $R \cup S$
- If relations R and S are entire, then so is $R \cap S$

Exercise 43. Prove that relational composition preserves all relational classes in the taxonomy of 84. \square

Exercise 44. Show that the following condional fusion law holds:

$$
\langle R, S\rangle \cdot T=\langle R \cdot T, S \cdot T\rangle \quad \Leftarrow \quad R \cdot(i m g T) \subseteq R \vee S \cdot(i m g T) \subseteq S
$$

Exercise 45. Recalling (13), prove that

$$
\begin{equation*}
\operatorname{swap} \triangleq\left\langle\pi_{2}, \pi_{1}\right\rangle \tag{27}
\end{equation*}
$$

is a bijection. (Assume property $(R \cap S)^{\circ}=R^{\circ} \cap S^{\circ}$.)
\square

Exercise 46. Let \leq be a preorder and f be a function taking values on the carrier set of \leq.

1. Define the pointwise version of relation $\sqsubseteq \triangleq f^{\circ} \cdot \leq \cdot f$
2. Show that \sqsubseteq is a preorder.
3. Show that \sqsubseteq is not (in general) a total order even in the case \leq is so.

Exercise 47. Let students in a course have two numeric marks,

$$
\mathbb{N} \stackrel{\text { mark } 1}{〔} \text { Student } \xrightarrow{\text { mark } 2} \mathbb{N}
$$

and define the preorders:

$$
\begin{aligned}
& \leq_{\operatorname{mark} 1} \triangleq \operatorname{mark} 1^{\circ} \cdot \leq \cdot \operatorname{mark} 1 \\
& \leq_{\operatorname{mark} 2} \triangleq \operatorname{mark} 2^{\circ} \cdot \leq \cdot \operatorname{mark} 2
\end{aligned}
$$

Spell out in pointwise notation the meaning of lexicographic ordering

$$
\leq_{\operatorname{mark} 1} ; \leq_{\operatorname{mark} 2}
$$

Exercise 48. From (??) infer:

$$
\begin{align*}
& \perp \Rightarrow R=\top \tag{28}\\
& R \Rightarrow \top=\top \tag{29}
\end{align*}
$$

Exercise 49. Via indirect equality over (??) show that

$$
\begin{equation*}
\top ; S=S \tag{30}
\end{equation*}
$$

holds for any S and that, for R symmetric, we have:

$$
\begin{equation*}
R ; R=R \tag{31}
\end{equation*}
$$

Exercise 50. Add variables to both squares in so that the same conditions are expressed pointwise. Then show that the conjunction of the two squares means the same as $R \subseteq \top \cdot M \cdot \pi_{1} \wedge R \subseteq \top \cdot N \cdot \pi_{2}$ assertion

$$
\begin{equation*}
R^{\circ} \subseteq\left\langle M^{\circ} \cdot \top, N^{\circ} \cdot \top\right\rangle \tag{32}
\end{equation*}
$$

and draw this in a diagram.
\square

Exercise 51. Consider implementing M, R and N as files in a relational database. Before that, think of operations on the database such as, for example, that which records new loans (K):

$$
\begin{equation*}
\operatorname{borrow}(K,(M, R, N)) \quad \triangleq \quad(M, R \cup K, N) \tag{33}
\end{equation*}
$$

It can be checked that the pre-condition

$$
\operatorname{pre-borrow}(K,(M, R, N)) \triangleq R \cdot K^{\circ} \subseteq i d
$$

captures a necessary condition for maintaining (106) (why?) but it is not enough. Calculate for a rectangle in (106) at your choice the corresponding clause to add to pre-borrow.

Exercise 52. Let false be the "everywhere false" predicate such that false $x=$ FALSE for all x, that is, false $=$ FALSE. Show that $\Phi_{\text {false }}=\perp$.

Exercise 53. Given a set S, let Φ_{S} abbreviate coreflexive $\Phi_{(\in S)}$. Use 85 to unfold $\Phi_{\{1,2\}} \cdot \Phi_{\{2,3\}}$ to pointwise notation. \square

Exercise 54. Show that 86) follows from 85).

Exercise 55. Solve 86 for p under substitution $\Phi:=i d$.

Exercise 56. Combinator

$$
\begin{equation*}
R \square S \triangleq R \cdot \top \cdot S \tag{34}
\end{equation*}
$$

is known as the "rectangular" combinator. Recalling that ker $!=\top$, show that $!\square!^{\circ}=$ id
\square

Exercise 57. Check 87).

Exercise 58. A relation R is said to satisfy functional dependency (FD) $g \rightarrow f$, written $g \xrightarrow{R} f$ wherever projection $\pi_{f, g} R$ (88) is simple.

1. Show that

$$
\begin{equation*}
g \xrightarrow{R} \neq f \equiv \operatorname{ker}\left(g \cdot R^{\circ}\right) \subseteq \operatorname{ker} f \tag{35}
\end{equation*}
$$

2. Show that (35) trivially holds wherever g is injective and R is simple, for all (suitably typed) f.
3. Prove the composition rule of FDs:

$$
\begin{equation*}
h \stackrel{S \cdot R}{\rightleftarrows} g \Leftarrow h \stackrel{S}{L} f \wedge f \stackrel{R}{L} g \tag{36}
\end{equation*}
$$

Exercise 59. Recalling (107), (108) and other properties of relation algebra, show that: (a) 109) and 110) can be re-written with R replacing \top; (b) $\Phi \subseteq \Psi \equiv!\cdot \Phi \subseteq!\cdot \Psi$ holds.

Exercise 60. Recall diagram 106 of a library loan data model:

Show that the invariants captured by the two rectangles can be alternatively expressed by

$$
\delta\left(\pi_{i d, \pi_{1}} R\right) \subseteq \delta M \quad \wedge \quad \delta\left(\pi_{i d, \pi_{2}} R\right) \subseteq \delta N
$$

clearly exhibiting the foreign/primary-key relationships of the data model (ISBN and UID). \square

Exercise 61. Rely on the absorption property

$$
\begin{equation*}
\langle R \cdot T, S \cdot U\rangle=(R \times S) \cdot\langle T, U\rangle \tag{37}
\end{equation*}
$$

in showing that

$$
\begin{equation*}
\Psi \times \Upsilon \stackrel{\langle f, g\rangle}{\rightleftarrows} \Phi \quad \equiv \quad \Psi \stackrel{f}{\longleftarrow} \Phi \wedge \Upsilon \stackrel{g}{\longleftarrow} \Phi \tag{38}
\end{equation*}
$$

holds.

Exercise 62. From (89) and properties (99), etc infer the following DbC rules

$$
\begin{align*}
& \Upsilon \leftarrow^{f} \Phi \cup \Psi \equiv \Upsilon \leftarrow^{f} \Phi \wedge \Upsilon \leftarrow^{f} \Psi \tag{39}\\
& \Phi \cdot \Psi \stackrel{f}{\leftarrow} \Upsilon \equiv \Phi \stackrel{f}{\longleftarrow} \Upsilon \wedge \Psi \stackrel{f}{\longleftarrow} \Upsilon \tag{40}
\end{align*}
$$

You will also need ($R \cdot$)-distribution (??).

Exercise 63. Show that (91) means the same as

$$
\begin{equation*}
\text { Pre } \cdot \Phi_{A} \subseteq \text { Post }^{\circ} \cdot \Phi_{B} \cdot \text { Post } \tag{41}
\end{equation*}
$$

Exercise 64. Consider the relational version of McCarthy's conditional combinator which follows:

$$
\begin{equation*}
p \rightarrow f, g=f \cdot \Phi_{p} \cup g \cdot \Phi_{\neg p} \tag{42}
\end{equation*}
$$

(a) Using (92) infer the following DbC rule for conditionals:

$$
\begin{equation*}
\Upsilon \stackrel{p \rightarrow f, g}{\longleftrightarrow} \Psi \equiv \Upsilon \leftarrow^{f} \Psi \cdot \Phi_{p} \wedge \Upsilon \leftarrow^{g} \Psi \cdot \Phi_{\neg p} \tag{43}
\end{equation*}
$$

(b) Now try and define a rule for handling contracts involving conditional conditions:

$$
\begin{equation*}
\Upsilon \stackrel{p \rightarrow f, g}{<}(p \rightarrow \Psi, \Phi)=\ldots \tag{44}
\end{equation*}
$$

Exercise 65. Recall that our motivating ESC assertion (94) was stated but not proved. Now that we know that (94) PF-transforms to $\Phi_{\text {even }} \stackrel{\text { twice }}{\leftarrow} \Phi_{\text {even }}$ and that $\Phi_{\text {even }}=\rho$ twice, complete the following "almost no work at all" PF-calculation of 94):

$$
\equiv \begin{gathered}
\Phi_{\text {even }} \stackrel{\text { twice }}{\leftrightarrows} \Phi_{\text {even }} \\
\{\ldots \ldots . . .\} \\
\equiv \\
\text { twice } \cdot \Phi_{\text {even }} \subseteq \Phi_{\text {even }} \cdot \text { twice } \\
\{\ldots\}
\end{gathered}
$$

$$
\begin{array}{cc}
\equiv & \{\ldots \ldots\} \\
& \text { twice } \cdot \Phi_{\text {even }} \subseteq \text { twice } \\
\Leftarrow & \{\ldots \ldots\} \\
& \Phi_{\text {even }} \subseteq i d \\
\equiv & \{\ldots \ldots . . .\}
\end{array}
$$

Exercise 66. Prove the union simplicity rule:

$$
\begin{equation*}
M \cup N \text { is simple } \equiv M, N \text { are simple and } M \cdot N^{\circ} \subseteq i d \tag{45}
\end{equation*}
$$

Exercise 67. Tell which of the rules (95), (96, (97) could have been written with right-hand side $T \subseteq T \cdot \llbracket R \rrbracket \cdot T$.

Exercise 68. The assertion in the following fragment of Alloy,

```
sig A { f : one B }
sig B {}
assert GC {
    all x: set A, y: set B | x.f in y <=> x in f.y
}
```

captures a "shunting rule" valid in such a language. Resort to the semantic rules given above to prove the validity of this assertion. \square

Exercise 69. Check that $\underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ}=\{(n,(a, p))\}$.

Exercise 70. The pre-condition of method rever includes yet another condition. Guess where this arises from. \square

Exercise 71. Define a method which accepts papers, $A c^{\prime}=A c \cup N e w$, and calculate the corresponding contract entiled by the invariants of the model.

Exercise 72. Derive the Alloy code for the contract of the previous exercise for $N e w=\underline{a} \cdot \underline{a}^{\circ}$, that is, for the method which accepts one paper a at a time.

Exercise 73. The original Alloy model enforces Nt simple, cf. nota : Artigo -> Pessoa -> lone Nota; that is, no reviewer can assign more than one mark to a given paper. Simplicity of Nt is therefore another invariant "hidden in the notation". Resort to the the union-simplicity rule (45) to calculate the contract to impose on method $N t^{\prime}=N t \cup N e w$ with respect to this requirement.

Exercise 74. Recall the diagram of the starving invariant of problem Propositio de homine et capra et lvpo:

Write the same in Alloy syntax.

Exercise 75. Consider the following examples of file system operations:

- edit an existing file without changing its attributes
- open a file for editing
- create a file in the current directory
- rename an existing file system object (file or directory)

Tell which operations call for contracts with respect to the two invariants ri and pc.

Exercise 76. Prove 98. Can this equivalence be generalized?

Exercise 77. Encode the calculated contract (weakest pre-condition) in Alloy. \square

Exercise 78. Recalling exercise 75, calculate the contract required by the operation

$$
\text { open } K(M, N) \triangleq(M \cup K, N)
$$

Exercise 79. Specify the POSIX mkdir operation and calculate its contract.

Exercise 80. Check properties (111) and (113) for the list relator defined above. \square

Exercise 81. Let C be a nonempty data domain and let and $c \in C$. Let $\underline{\operatorname{c}}$ be the "everywhere c " function:

$$
\begin{align*}
\underline{c} & : \quad A \longrightarrow C \tag{46}\\
\underline{c}^{a} & \triangleq \quad c
\end{align*}
$$

Show that the free theorem of \underline{c} reduces to

$$
\begin{equation*}
\langle\forall R:: R \subseteq \top\rangle \tag{47}
\end{equation*}
$$

\square

Exercise 82. Calculate the free theorem associated with the projections $A<\pi_{1} A \times B \xrightarrow{\pi_{2}} B$ and instantiate it to (a) functions; (b) coreflexives. Introduce variables and derive the corresponding pointwise expressions.
\square

Exercise 83. Consider higher order function const: a -> b -> a such that, given any x of type a, produces the constant function const x. Show that the equalities

$$
\begin{align*}
\operatorname{const}(f x) & =f \cdot(\text { const } x) \tag{48}\\
(\text { const } x) \cdot f & =\text { const } x \tag{49}\\
(\text { const } x)^{\circ} \cdot(\text { const } x) & =\top \tag{50}
\end{align*}
$$

arise as corollaries of the free theorem of const.

Exercise 84. The following is a well-known Haskell function

```
filter :: forall a. (a -> Bool) -> [a] -> [a]
```

Calculate the free theorem associated with its type

$$
\text { filter }: a^{\star} \leftarrow a^{\star} \leftarrow(\text { Bool } \leftarrow a)
$$

and instantiate it to the case where all relations are functions.

Exercise 85. In many sorting problems, data are sorted according to a given ranking function which computes each datum's numeric rank (eg. students marks, credits, etc). In this context one may parameterize sorting with an extra parameter f ranking data into a fixed numeric datatype, eg. the integers: serial : $(a \rightarrow \mathbb{N}) \rightarrow a^{\star} \rightarrow a^{\star}$.

Calculate the FT of serial.

Exercise 86. Consider the following function from Haskell's Prelude:

```
findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x ]
```

which yields the indices of elements in a sequence xs which satisfy p. For instance, findIndices $(<0)[1,-2,3,0,-5]=[1,4]$. Calculate the FT of this function.

Exercise 87. Choose arbitrary functions from Haskell's Prelude and calculate their FT.

Exercise 88. Wherever two equally typed functions f, g such that $f a \leq g$, for all a, we say that f is pointwise at most g and write $f \leq g$. In symbols:

$$
\begin{equation*}
f \leq g \quad \Delta \subseteq(\leq) \cdot g \quad c f \text {. diagram } \quad A \tag{51}
\end{equation*}
$$

Show that implication

$$
\begin{equation*}
f \leq g \quad \Rightarrow \quad(\operatorname{map} f) \leq^{\star}(\operatorname{map} g) \tag{52}
\end{equation*}
$$

follows from the FT of the function map : $(a \rightarrow b) \rightarrow a^{\star} \rightarrow b^{\star}$.

Exercise 89. Infer the FT of the following function, written in Haskell syntax,

```
while :: (a -> Bool) -> (a -> a) -> (a -> b) -> a -> b
while p f g x = if not(p x) then g x else while p f g (f x)
```

which implements a generic while-loop. Derive its corollary for functions and compare your result with that produced by the tool above.

Exercise 90. Let iprod $=([\underline{1},(\times)])$ be the function which multiplies all natural numbers in a given list; even be the predicate which tests natural numbers for evenness; and exists $=([$ FALSE,$(\mathrm{V})]$).

From (114) infer

$$
\text { even } \cdot \text { iprod }=\text { exists } \cdot \text { even }^{\star}
$$

meaning that product $n_{1} \times n_{2} \times \ldots \times n_{m}$ is even iff some n_{i} is so.

Exercise 91. Show that the identity relator Id , which is such that $\mathrm{Id} R=R$ and the constant relator K (for a given data type K) which is such that $\mathrm{K} R=i d_{K}$ are indeed relators.

Exercise 92. Show that product

is a (binary) relator \square

Exercise 93. The type of functional composition (\cdot) is
(.) :: (b -> c) -> (a -> b) -> a -> c

Show that contract composition (115) is a corollary of the free theorem (FT) of this type.

Exercise 94. Show that contract $\Psi^{\star} \stackrel{\text { map } f}{\longleftrightarrow} \Phi^{\star}$ holds provided contract $\Psi{ }_{\longleftarrow}^{f} \Phi$ holds.

Exercise 95. Suppose a functional programmer wishes to prove the following property of lists.

$$
\left\langle\begin{array}{c}
\forall a, s \\
(\phi a) \wedge\left\langle\forall a^{\prime}: a^{\prime} \in \operatorname{elems} s: \phi a^{\prime}\right\rangle: \\
\left\langle\forall a^{\prime \prime}: a^{\prime \prime} \in \operatorname{elems}(a: s): \phi a^{\prime \prime}\right\rangle
\end{array}\right\rangle
$$

Show that this property is a contract arising (for free) from the polymorphic type of operation (_ : _) on lists.

Exercise 96. Derive from (116) the two cancellation laws

$$
\begin{aligned}
q & \leq(q \times d) \div d \\
(n \div d) \times d & \leq n
\end{aligned}
$$

and reflexion law:

$$
\begin{equation*}
n \div d \geq 1 \equiv d \leq n \tag{53}
\end{equation*}
$$

Exercise 97. Resort to indirect equality to prove any of (117) or (118).

Exercise 98. Derive from (119) that both f and g are monotonic.

Exercise 99. Why is it that converse-monotonicity can be strengthened to an equivalence? \square

Exercise 100. Prove the equalities

$$
\begin{align*}
X \cdot f & =X / f^{\circ} \tag{54}\\
X / \perp & =\top \tag{55}\\
\top / Y & =\top \tag{56}
\end{align*}
$$

and check their pointwise meaning. \square

Exercise 101. Define

$$
\begin{equation*}
X \backslash Y=\left(Y^{\circ} / X^{\circ}\right)^{\circ} \tag{57}
\end{equation*}
$$

and infer:

$$
\begin{align*}
a(R \backslash S) c & \equiv\langle\forall b: b R a: b S c\rangle \tag{58}\\
R \cdot X \subseteq Y & \equiv X \subseteq R \backslash Y \tag{59}
\end{align*}
$$

Exercise 102. Show that $R \cap(R \Rightarrow Y) \subseteq Y$ ("modus ponens") holds and that $R-R=\perp-R=\perp$. \square

Exercise 103. Let $\mathbb{P} A=\{S \mid S \subseteq A\}$ and let $A \longleftarrow \in \mathbb{P} A$ denote the membership relation $a \in S$, for any a and S. What does the relation $\in \backslash \in$ mean?

Exercise 104. Show that the relation $\in \backslash \in$ of the previous exercise is reflexive and transitive. \square

Exercise 105. Prove that equality

$$
\begin{equation*}
(R \backslash S) \cdot f=R \backslash(S \cdot f) \tag{60}
\end{equation*}
$$

holds.
\square

Exercise 106. (a) Show that $R \subseteq \perp / S^{\circ} \equiv \delta R \cap \delta S=\perp$; (b) Then use indirect equality to infer the universal property of term $R \cap \perp / S^{\circ}$ - the largest sub-relation of R whose domain is disjoint of that of S.

Exercise 107. The relational overriding combinator,

$$
\begin{equation*}
R \dagger S=S \cup R \cap \perp / S^{\circ} \tag{61}
\end{equation*}
$$

means the relation which contains the whole of S and that part of R where S is undefined - read $R \dagger S$ as " R overridden by S ". (a) Show that $\perp \dagger S=S$ and that $R \dagger \perp=R$; (b) Infer the universal property:

$$
\begin{equation*}
X \subseteq R \dagger S \equiv X-S \subseteq R \wedge \delta(X-S) \cdot \delta S=\perp \tag{62}
\end{equation*}
$$

Exercise 108. Prove

$$
\begin{equation*}
i d<^{R} \Phi \quad \equiv \quad \text { TRUE } \equiv \Phi<^{R} \perp \tag{63}
\end{equation*}
$$

Exercise 109. Prove the special cases:

- WP of a function f :

$$
\begin{equation*}
f \nmid \Phi_{q}=\lambda a \cdot q(f a) \tag{64}
\end{equation*}
$$

-

$$
\begin{equation*}
\rho\left(f \cdot \Phi_{p}\right)=\lambda b . b \in\{f a \mid p a\} \tag{65}
\end{equation*}
$$

NB: recall that (64) has been used several times earlier on in contract calculation.

Exercise 110. The formal meaning of (imperative) code sequential composition is

$$
\llbracket \mathrm{P} ; \mathrm{Q} \rrbracket=\llbracket \mathrm{Q} \rrbracket \cdot \llbracket \mathrm{P} \rrbracket
$$

Show that the following rule of the Hoare logic of programs,

$$
\frac{\{p\} P\{q\},\{q\} Q\{s\}}{\{p\} P ; Q\{s\}}
$$

is an instance of the following relational typing rule:

$$
\begin{equation*}
\Psi \gtrless^{R \cdot S} \Phi \quad \Leftarrow \quad \Psi \leftarrow^{R} \Upsilon \wedge \Upsilon \leftarrow^{S} \Phi \tag{66}
\end{equation*}
$$

Exercise 111. Prove the "trading rule":

$$
\begin{equation*}
\Upsilon \leftarrow{ }^{R} \Phi \cdot \Psi \quad \cong \gtrless^{R \cdot \Phi} \Psi \tag{67}
\end{equation*}
$$

Exercise 112. Re-write the following "contract splitting" rule,

$$
\begin{equation*}
\Psi_{1} \cdot \Psi_{2} \leftarrow^{R} \Phi \quad \equiv \quad \Psi_{1} \leftarrow^{R} \Phi \wedge \Psi_{2} \leftarrow^{R} \Phi \tag{68}
\end{equation*}
$$

in Hoare logic. Then prove 68.
\square

Exercise 113. Show that $\rho R<^{R} \delta R$ holds. However, WP $R \emptyset(\rho R)=i d$ rather than δR. Explain why. \square

Exercise 114. Show that $\rho R \leftarrow^{R} \delta R$ holds. However, $W P R \emptyset(\rho R)=$ id rather than δR. Explain why.

Exercise 115. The two "shunting" rules for S a simple relation,

$$
\begin{align*}
S \cdot R \subseteq Q & \equiv(\delta S) \cdot R \subseteq S^{\circ} \cdot Q \tag{69}\\
R \cdot S^{\circ} \subseteq Q & \equiv R \cdot \delta S \subseteq Q \cdot S \tag{70}
\end{align*}
$$

are "almost" Galois connections. (a) Derive the following variants concerning coreflexives,

$$
\begin{aligned}
R \cdot \Phi \subseteq S & \equiv R \cdot \Phi \subseteq S \cdot \Phi \\
\Phi \cdot R \subseteq S & \equiv \Phi \cdot R \subseteq \Phi \cdot S
\end{aligned}
$$

referred to earlier on as the closure properties (120) and (121), respectively; (b) prove either (69) or (70) by cyclic implication (vulg. "ping-pong").
\square

Exercise 116. Before implementing take one can start proving properties about this function solely relying on (122):

- Show that

$$
\text { take }(\text { length } x s) x s=x s
$$

holds.

- Resort to indirect equality over \preceq in proving

$$
\text { take } n(\text { take } m x s)=\text { take }(\min n m) x s
$$

where min, the minimum of two natural numbers, is given by the obvious Galois connection.

Exercise 117. Prove the two first equalities above.

Exercise 118. Show that, for S a preorder, S_{f} above is also a preorder.

Exercise 119. Show that f monotonicity, $x \sqsubseteq y \Rightarrow f x \leq f y$, can be written point-free as

$$
\begin{equation*}
(\sqsubseteq) \cdot f^{\circ} \subseteq f^{\circ} \cdot(\leq) \tag{71}
\end{equation*}
$$

Exercise 120. Show that, once (71) is assumed, the following equivalence holds:

$$
\begin{equation*}
g \subseteq f^{\circ} \cdot(\leq) \equiv(\sqsubseteq) \cdot g \subseteq f^{\circ} \cdot(\leq) \tag{72}
\end{equation*}
$$

Suggestion: do a "ping-pong" proof.
\square

Formulas referred to in the exercises

$$
\begin{equation*}
\text { Date }=\text { Year } \times \text { Month } \times \text { Day } \tag{73}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { Year }=\mathbb{N} \\
& \text { Month }=\mathbb{N} \\
& \operatorname{inv} m \triangleq m \leq 12 \tag{74}\\
& D a y=\mathbb{N} \\
& \operatorname{inv} d \triangleq d \leq 31 \\
& p=(\in S) \equiv S=\{a \mid p a\} \tag{75}\\
& \langle\forall a: a \in A: \operatorname{pre}-\operatorname{Spec} a \Rightarrow\langle\exists b: b \in B: \operatorname{post}-\operatorname{Spec}(b, a)\rangle\rangle \tag{76}\\
& f=g \equiv\left\langle\forall a: a \in A: f a=_{B} g a\right\rangle \tag{77}\\
& R \subseteq S \equiv\langle\forall b, a: b R a: b S a\rangle \tag{78}\\
& b(R \cdot S) c \equiv\langle\exists a:: b R a \wedge a S c\rangle \tag{79}\\
& \operatorname{ker}\left(R^{\circ}\right)=\operatorname{img} R \tag{80}\\
& \operatorname{img}\left(R^{\circ}\right)=\operatorname{ker} R \tag{81}\\
& \text { Being } \xrightarrow{\text { Eats }} \text { Being } \tag{83}\\
& \text { where } \downarrow \\
& \text { Bank } \xrightarrow{\text { cross }} \text { Bank }
\end{align*}
$$

$$
\begin{equation*}
\pi_{g, f} R=\{(g b, f a) \mid b R a\} \tag{87}
\end{equation*}
$$

to mean

$$
\begin{equation*}
f \cdot \Phi_{A} \subseteq \Phi_{B} \cdot f \quad \text { cf. diagram } \quad A \stackrel{\Phi_{A}}{\Phi^{*}} A \tag{90}
\end{equation*}
$$

$$
\begin{aligned}
f \cdot \Phi_{A} & \subseteq \Phi_{B} \cdot \top \\
\rho\left(f \cdot \Phi_{A}\right) & \subseteq \Phi_{B}
\end{aligned}
$$

$$
\langle\forall x, y: y=2 x \wedge \text { even } x: \text { even } y\rangle
$$

$$
\llbracket \mathrm{no} \mathrm{R} \rrbracket=\llbracket \mathrm{R} \rrbracket \subseteq \perp
$$

$$
\llbracket \text { some } R \rrbracket=\llbracket R \rrbracket \supset \perp
$$

$$
\llbracket \text { lone } R \rrbracket=\left\langle\exists a, b:: \llbracket R \rrbracket \subseteq \underline{b} \cdot \underline{a}^{\circ}\right\rangle
$$

$$
f \cdot R \subseteq \top \cdot S \equiv R \subseteq \top \cdot S
$$

$$
f \cdot R \subseteq S \equiv R \subseteq f^{\circ} \cdot S
$$

$$
R \cdot f^{\circ} \subseteq S \equiv R \subseteq S \cdot f
$$

$$
R=S \equiv\langle\forall X::(X \subseteq R \equiv X \subseteq S)\rangle
$$

$$
\equiv\langle\forall X::(R \subseteq X \equiv S \subseteq X)\rangle
$$

$$
R=S \equiv\langle\forall X::(X \subseteq R \equiv X \subseteq S)\rangle
$$

$$
\equiv\langle\forall X::(R \subseteq X \equiv S \subseteq X)\rangle
$$

$$
[R, S]=X \equiv R=X \cdot i_{1} \wedge S=X \cdot i_{2}
$$

$$
\begin{align*}
& \pi_{g, f} R \stackrel{\text { def }}{=} g \cdot R \cdot f^{\circ} \tag{88}
\end{align*}
$$

$$
\begin{align*}
& \Phi_{B}{ }^{f} \Phi_{A} \tag{89}
\end{align*}
$$

$$
\begin{align*}
& R \cdot \Phi=R \cap \top \cdot \Phi \tag{107}\\
& \Psi \cdot R=R \cap \Psi \cdot \top \tag{108}\\
& \delta R \subseteq \Phi \equiv R \subseteq \top \cdot \Phi \tag{109}\\
& \rho R \subseteq \Phi \equiv R \subseteq \Phi \cdot \top \tag{110}\\
& \mathrm{Gid}=i d \tag{111}\\
& \mathrm{G}(R \cdot S)=(\mathrm{G} R) \cdot(\mathrm{G} S) \tag{112}\\
& \mathrm{G}\left(R^{\circ}\right)=(\mathrm{G} R)^{\circ} \tag{113}\\
& f \cdot \mathrm{~B}(R, S) \subseteq S \cdot g \quad \Rightarrow \quad(f \mid) \cdot \mathrm{F} R \subseteq S \cdot(g) \tag{114}\\
& \Psi \leftarrow^{f \cdot g} \Phi \quad \Leftarrow \quad \Psi \leftarrow^{f} \Upsilon \wedge \Upsilon<^{g} \Phi \tag{115}\\
& z \times y \leq x \Leftrightarrow z \leq x \div y \quad(y>0) \tag{116}\\
& f\left(b \sqcup b^{\prime}\right)=(f b) \vee\left(f b^{\prime}\right) \tag{117}\\
& g\left(a \wedge a^{\prime}\right)=(g a) \sqcap\left(g a^{\prime}\right) \tag{118}\\
& \underbrace{f} b \leq a \equiv b \sqsubseteq \underbrace{g} a \tag{119}\\
& \text { lower adjoint upper adjoint } \\
& R \cdot \Phi \subseteq S \equiv R \cdot \Phi \subseteq S \cdot \Phi \tag{120}\\
& \Phi \cdot R \subseteq S \equiv \Phi \cdot R \subseteq \Phi \cdot S \tag{121}\\
& \text { length } y s \leq n \wedge y s \preceq x s \equiv y s \preceq \text { take } n x s \tag{122}
\end{align*}
$$

