
MFES/1314 — CSI: Exercises of the slides

Exercise 1. Let l n denote the n-th element of a list l. Complete the following alternative formulation of clause (b) of
inv-ListOfCalls:

Should (l i) and (l j) be the same, then .... for all ....
2

Exercise 2. For Date defined solely by (73,74) above, give definitions for the auxiliary functions y, m and d of

tomorrow : Date→ Date
tomorrow x 4 (y x,m x, d x)

which respectively give tomorrow’s year, month and day. Then consider the effort required by repeating the exercise while ensuring
full date validity within the Gregorian calender.
2

Exercise 3. (adapted from exercise 5.1.4 in C.B. Jones’s Systematic Software Development Using VDM):

Hotel room numbers are pairs (f, d) where f indicates a floor and d a door number in floor f . Write the invariant
on room numbers which captures the following rules valid in a particular hotel with 25 floors, 60 rooms per floor:

1. there is no floor number 13; (guess why)

2. level 1 is an open area and has no rooms;

3. the top five floors consist of large suites and these are numbered with even integers.

NB: assume predicate even on natural numbers.
2

Exercise 4. Write clause (b) of inv-ListOfCalls (recall exercise 1) using ∀ notation.
2

Exercise 5. Check rule

〈∃ i : R : T 〉 = 〈∃ i : T : R〉 (1)

2

Exercise 6. Infer tautologies

S = {a | a ∈ S} , p a ≡ a ∈ {a | p a}

from (75).
2
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Exercise 7. Check carefully which rules of the quantifier calculus need to be applied to prove that predicate

〈∀ b, a : 〈∃ c : b = f c : r(c, a)〉 : s(b, a)〉 (2)

is the same as

〈∀ c, a : r(c, a) : s(f c, a)〉

where f is a function and r, s are binary predicates.
2

Exercise 8. Calculate the weakest precondition wp(f, inv-Y ) for each situation below:

X Y f x inv-Y y
N0 N f x 4 x2 + 1 y ≤ 10
N0 N the same 1 ≤ y
N0 N f = succ even y

N× N? N? f(n, x) 4 n : x 〈∀m : m ∈ elems y : m ≤ 10〉

2

Exercise 9. Indicate which predicates p below are stronger (or weaker) than the weakest precondition (WP) on each f with respect
to the corresponding output invariant:

X Y f inv-Y (y) p(x)
R R f x 4 x2 + 1 0 ≤ y ≤ 10 0 < x < 3
N? N? f = map 1 〈∀ i : i ∈ inds y : y i > 10〉 TRUE
A? A? f = tail length y > 0 x 6= [ ]

BTree A BTree A f = mirror depth y ≥ 1 depth x > 1

where map and tail are well known list operators and mirror and depth are the obvious functions over binary trees.

2

Exercise 10. Complete the following (inductive) specification of isOrdered:

isOrdered(≤)[ ] = TRUE

isOrdered(≤)(a : x) = . . . isOrdered(≤)x . . .

2

Exercise 11. Give an implicit definition for function f x 4 x2 + 1 over the natural numbers.
2

Exercise 12. A golden multiple of a given length is obtained by multiplying this length by a real number whose square equals its
“successor”. Write an implicit specification for golden multiple.
2
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Exercise 13. Write implicit and explicit specifications for function inseq : N0 → N? which, for argument n, yields the sequence
[1, . . . , n].
2

Exercise 14. Assuming that the implicit definition of a total function B A
foo uniquely determines f , that is

post-f(r, a) ≡ r = f a (3)

holds, use the Eindhoven quantifier calculus to show that (76) reduces to 〈∀ a : a ∈ A : (f a) ∈ B〉 for Spec := f . In summary:
in the case of functions, satisfiability is the same as invariant preservation.
2

Exercise 15. Consider datatype

NRSeq A = A?

inv x 4 length x = card(elems x)

1. What is the informal meaning of the type’s invariant?

2. Tell which of the following new types for Permutes (7),

Permutes : (s : NRSeq A)← (r : A?) (4)

Permutes : (s : NRSeq A)← (r : NRSeq A) (5)

would lead to a non satisfiable specification.

2

Exercise 16. Back to

Permutes : (s : A?)← (r : A?)

post 〈∀ a : a ∈ elems(s _ r) : count a s = count a r〉

show that

1. Permutes is a reflexive relation: x Permutes x ≡ TRUE for all x.

2. Permutes is a symmetric relation: y Permutes x ≡ x Permutes y for all x, y.

2

Exercise 17. How would you write an explicit definition of (partial) function Maxs?
2

Exercise 18. We want to compare

IsPrefixOf : (s : A?)→ (r : A?)
post length r ≤ length s ∧ 〈∀ i : i ≤ length r : r i = s i〉 (6)

with

Permutes : (s : A?)→ (r : A?) (7)

post 〈∀ e : e ∈ elems s ∪ elems r : count e s = count e r〉

and with partial function Tail, all of type A? A?oo . Check which of the following hold:
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• Tail ⊆ IsPrefixOf

• IsPrefixOf ⊆ Permutes

2

Exercise 19. Resort to (77), (78) and to the Eindhoven quantifier calculus to show that

f ⊆ g ≡ f = g

holds (moral: for functions, inclusion and equality coincide).
2

Exercise 20. Resort to PF-transform rule (79) and to the Eindhoven quantifier calculus to show that

R · id = R = id ·R (8)

R · ⊥ = ⊥ = ⊥ ·R (9)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (10)

2

Exercise 21. Let K be a nonempty data domain, k ∈ K and k be the “everywhere k” function:

k : A // K
k a 4 k

(11)

Compute which relations are defined by the following PF-expressions:

ker k , b · c◦ , img k (12)

2

Exercise 22. Resort to (80,81) and (82) to prove the following rules of thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

2

Exercise 23. Prove the following fact

A function f is a bijection iff its converse f◦ is a function (13)

by completing:
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f and f◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f◦) ∧ img (f◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection

2

Exercise 24. Check which of the following properties,

simple , entire , injective , surjective , transitive , (co)reflexive , (anti)symmetric , connected

hold for relation Eats (83), which is the food chain Fox > Goose > Beans.
2

Exercise 25. Relation cross (83) is defined by:

cross Left = Right

cross Right = Left

It therefore is a bijection. Why?
2

Exercise 26. Relation where : Being → Bank should obey the following constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Encode such constraints in relational terms. Conclude that where should be a function.
2

Exercise 27. There are only two constant functions in the type Being // Bank . Identify them and explain the role they
play in the puzzle.
2

Exercise 28. Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple) from any of shunting rules (99) or (100).
2

Exercise 29. Check the meaning of shunting rules (99) and (100) by converting them to pointwise (Eindhoven) notation.
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Show that they indeed hold by resorting to the rules of the Eindhoven calculus.
2

Exercise 30. Let s S n mean: “student s is assigned number n”. Check the meaning of assertion: S · ≤ ⊆ > · S.
2

Exercise 31. As generalization of exercise 30, draw the most general type diagram which accommodates relational assertion:

M ·R◦ ⊆ > ·M (14)

2

Exercise 32. Type the following relational assertions

M ·N◦ ⊆ ⊥ (15)

M ·N◦ ⊆ id (16)

M◦ · > ·N ⊆ > (17)

and check their pointwise meaning.
2

Exercise 33. Expand all criteria in the previous slides to pointwise notation.
2

Exercise 34. A relation R is said to be co-transitive iff the following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (18)

Compute the PF-transform of the formula above. Find a relation (eg. over numbers) which is co-transitive and another which is
not.
2

Exercise 35. Show that

(b, c)〈R,S〉a ≡ b R a ∧ c S a

PF-transforms to

〈R,S〉 = π◦1 ·R ∩ π◦2 · S (19)

2
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Exercise 36. Infer universal property

π1 ·X ⊆ R ∧ π2 ·X ⊆ S ≡ X ⊆ 〈R,S〉 (20)

from (19) via indirect equality (103).
2

Exercise 37. Unconditional distribution laws

(P ∩Q) · S = (P · S) ∩ (Q · S)

R · (P ∩Q) = (R · P ) ∩ (R ·Q)

will hold provide one of R or S is simple and the other injective. Tell which (justifying).
2

Exercise 38. Derive from

〈R,S〉◦ · 〈X,Y 〉 = (R◦ ·X) ∩ (S◦ · Y ) (21)

the following properties:

ker 〈R,S〉 = ker R ∩ ker S (22)

〈R, id〉 is always injective, for whatever R

2

Exercise 39. Show that:

img [R ,S] = img R ∪ img S (23)

img i1 ∪ img i2 = id (24)

2

Exercise 40. Start by proving the fusion law

〈R,S〉 · f = 〈R · f, S · f〉 (25)

where f is a function. Then, relying on both (105) and (25) infer the exchange law,

[〈R,S〉 , 〈T, V 〉] = 〈[R , T ], [S , V ]〉 (26)

holding for all relations as in diagram

A
i1 //

R

�� S

))

A+B B

T

uu

V

��

i2oo

C C ×D
π1

oo
π2

// D

2

Exercise 41. Prove the following rules of thumb:
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• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

2

Exercise 42. Check which of the following hold:

• If relations R and S are simple, then so is R ∩ S
• If relations R and S are injective, then so is R ∪ S
• If relations R and S are entire, then so is R ∩ S

2

Exercise 43. Prove that relational composition preserves all relational classes in the taxonomy of (84).
2

Exercise 44. Show that the following condional fusion law holds:

〈R,S〉 · T = 〈R · T, S · T 〉 ⇐ R · (img T ) ⊆ R ∨ S · (img T ) ⊆ S

2

Exercise 45. Recalling (13), prove that

swap 4 〈π2, π1〉 (27)

is a bijection. (Assume property (R ∩ S)◦ = R◦ ∩ S◦.)
2

Exercise 46. Let ≤ be a preorder and f be a function taking values on the carrier set of ≤.

1. Define the pointwise version of relation v 4 f◦ · ≤ · f
2. Show that v is a preorder.

3. Show that v is not (in general) a total order even in the case ≤ is so.

2

Exercise 47. Let students in a course have two numeric marks,

N Student
mark1oo mark2 // N
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and define the preorders:

≤mark1
4 mark1◦ · ≤ ·mark1

≤mark2
4 mark2◦ · ≤ ·mark2

Spell out in pointwise notation the meaning of lexicographic ordering

≤mark1 ;≤mark2

2

Exercise 48. From (??) infer:

⊥⇒R = > (28)

R⇒> = > (29)

2

Exercise 49. Via indirect equality over (??) show that

> ; S = S (30)

holds for any S and that, for R symmetric, we have:

R ;R = R (31)

2

Exercise 50. Add variables to both squares in (106) so that the same conditions are expressed pointwise. Then show that the
conjunction of the two squares means the same as R ⊆ > ·M · π1 ∧ R ⊆ > ·N · π2 assertion

R◦ ⊆ 〈M◦ · >, N◦ · >〉 (32)

and draw this in a diagram.
2

Exercise 51. Consider implementingM ,R andN as files in a relational database. Before that, think of operations on the database
such as, for example, that which records new loans (K):

borrow(K, (M,R,N)) 4 (M,R ∪K,N) (33)

It can be checked that the pre-condition

pre-borrow(K, (M,R,N)) 4 R ·K◦ ⊆ id

captures a necessary condition for maintaining (106) (why?) but it is not enough. Calculate for a rectangle in (106) at your choice
the corresponding clause to add to pre-borrow.
2
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Exercise 52. Let false be the “everywhere false” predicate such that false x = FALSE for all x, that is, false = FALSE. Show
that Φfalse = ⊥.
2

Exercise 53. Given a set S, let ΦS abbreviate coreflexive Φ(∈S). Use (85) to unfold Φ{1,2} · Φ{2,3} to pointwise notation.
2

Exercise 54. Show that (86) follows from (85).
2

Exercise 55. Solve (86) for p under substitution Φ := id.
2

Exercise 56. Combinator

R � S 4 R · > · S (34)

is known as the “rectangular” combinator. Recalling that ker ! = >, show that ! � !◦ = id

2

Exercise 57. Check (87).
2

Exercise 58. A relation R is said to satisfy functional dependency (FD) g → f , written g
R // f wherever projection πf,gR

(88) is simple.

1. Show that

g
R // f ≡ ker (g ·R◦) ⊆ ker f (35)

2. Show that (35) trivially holds wherever g is injective and R is simple, for all (suitably typed) f .

3. Prove the composition rule of FDs:

h
S·R
↼ g ⇐ h

S
↼f ∧ f

R
↼ g (36)

2

Exercise 59. Recalling (107), (108) and other properties of relation algebra, show that: (a) (109) and (110) can be re-written with
R replacing >; (b) Φ ⊆ Ψ ≡ ! · Φ ⊆ ! ·Ψ holds.
2
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Exercise 60. Recall diagram (106) of a library loan data model:

ISBN

M

�

ISBN × UID

R

��

π1oo π2 // UID

N

�
⊇ ⊆

T itle ×
Publisher >

// Date
Name×
Address×
Phone

>
oo

Show that the invariants captured by the two rectangles can be alternatively expressed by

δ (πid,π1R) ⊆ δM ∧ δ (πid,π2R) ⊆ δ N

clearly exhibiting the foreign/primary-key relationships of the data model (ISBN and UID).
2

Exercise 61. Rely on the absorption property

〈R · T, S · U〉 = (R× S) · 〈T,U〉 (37)

in showing that

Ψ×Υ Φ
〈f,g〉oo ≡ Ψ Φ

foo ∧ Υ Φ
goo (38)

holds.
2

Exercise 62. From (89) and properties (99), etc infer the following DbC rules

Υ Φ ∪Ψ
foo ≡ Υ Φ

foo ∧ Υ Ψ
foo (39)

Φ ·Ψ Υ
foo ≡ Φ Υ

foo ∧ Ψ Υ
foo (40)

You will also need (R·)-distribution (??).
2

Exercise 63. Show that (91) means the same as

Pre · ΦA ⊆ Post◦ · ΦB · Post (41)

2

Exercise 64. Consider the relational version of McCarthy’s conditional combinator which follows:

p→ f, g = f · Φp ∪ g · Φ¬p (42)
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(a) Using (92) infer the following DbC rule for conditionals:

Υ Ψ
p→f,goo ≡ Υ Ψ · Φp

foo ∧ Υ Ψ · Φ¬p
goo (43)

(b) Now try and define a rule for handling contracts involving conditional conditions:

Υ (p→ Ψ,Φ)
p→f,goo = .... (44)

2

Exercise 65. Recall that our motivating ESC assertion (94) was stated but not proved. Now that we know that (94) PF-transforms

to Φeven Φeven
twiceoo and that Φeven = ρ twice, complete the following ”almost no work at all” PF-calculation of (94):

Φeven Φeven
twiceoo

≡ { .......... }
twice · Φeven ⊆ Φeven · twice

≡ { .......... }
twice · Φeven ⊆ ρ twice · twice

≡ { .......... }
twice · Φeven ⊆ twice

⇐ { .......... }
Φeven ⊆ id

≡ { .......... }
TRUE

2

Exercise 66. Prove the union simplicity rule:

M ∪N is simple ≡ M , N are simple and M ·N◦ ⊆ id (45)

2

Exercise 67. Tell which of the rules (95), (96), (97) could have been written with right-hand side > ⊆ > · JRK · >.
2

Exercise 68. The assertion in the following fragment of Alloy,

sig A { f : one B }
sig B {}

assert GC {
all x: set A, y: set B | x.f in y <=> x in f.y

}

captures a “shunting rule” valid in such a language. Resort to the semantic rules given above to prove the validity of this assertion.
2

Exercise 69. Check that n · 〈a, p〉◦ = {(n, (a, p))}.
2
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Exercise 70. The pre-condition of method rever includes yet another condition. Guess where this arises from.
2

Exercise 71. Define a method which accepts papers, Ac′ = Ac ∪New, and calculate the corresponding contract entiled by the
invariants of the model.
2

Exercise 72. Derive the Alloy code for the contract of the previous exercise for New = a · a◦, that is, for the method which
accepts one paper a at a time.
2

Exercise 73. The original Alloy model enforces Nt simple, cf. nota : Artigo -> Pessoa -> lone Nota; that is, no
reviewer can assign more than one mark to a given paper. Simplicity of Nt is therefore another invariant “hidden in the notation”.
Resort to the the union-simplicity rule (45) to calculate the contract to impose on method Nt′ = Nt ∪ New with respect to this
requirement.
2

Exercise 74. Recall the diagram of the starving invariant of problem PROPOSITIO DE HOMINE ET CAPRA ET LVPO:

Being

where

��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

Write the same in Alloy syntax.
2

Exercise 75. Consider the following examples of file system operations:

• edit an existing file without changing its attributes

• open a file for editing

• create a file in the current directory

• rename an existing file system object (file or directory)

Tell which operations call for contracts with respect to the two invariants ri and pc.
2

Exercise 76. Prove (98). Can this equivalence be generalized?
2

13



Exercise 77. Encode the calculated contract (weakest pre-condition) in Alloy.
2

Exercise 78. Recalling exercise 75, calculate the contract required by the operation

open K (M,N) 4 (M ∪K,N)

2

Exercise 79. Specify the POSIX mkdir operation and calculate its contract.
2

Exercise 80. Check properties (111) and (113) for the list relator defined above.
2

Exercise 81. Let C be a nonempty data domain and let and c ∈ C. Let c be the “everywhere c” function:

c : A // C
c a 4 c

(46)

Show that the free theorem of c reduces to

〈∀ R :: R ⊆ >〉 (47)

2

Exercise 82. Calculate the free theorem associated with the projections A A×B
π1oo π2 // B and instantiate it to (a) functions;

(b) coreflexives. Introduce variables and derive the corresponding pointwise expressions.
2

Exercise 83. Consider higher order function const: a -> b -> a such that, given any x of type a, produces the constant
function const x. Show that the equalities

const(f x) = f · (const x) (48)

(const x) · f = const x (49)

(const x)◦ · (const x) = > (50)
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arise as corollaries of the free theorem of const.
2

Exercise 84. The following is a well-known Haskell function

filter :: forall a. (a -> Bool) -> [a] -> [a]

Calculate the free theorem associated with its type

filter : a?← a?← (Bool← a)

and instantiate it to the case where all relations are functions.
2

Exercise 85. In many sorting problems, data are sorted according to a given ranking function which computes each datum’s
numeric rank (eg. students marks, credits, etc). In this context one may parameterize sorting with an extra parameter f ranking
data into a fixed numeric datatype, eg. the integers: serial : (a→ N)→ a? → a?.

Calculate the FT of serial.
2

Exercise 86. Consider the following function from Haskell’s Prelude:

findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x ]

which yields the indices of elements in a sequence xs which satisfy p. For instance, findIndices (< 0) [1,−2, 3, 0,−5] = [1, 4].
Calculate the FT of this function.
2

Exercise 87. Choose arbitrary functions from Haskell’s Prelude and calculate their FT.
2

Exercise 88. Wherever two equally typed functions f, g such that f a ≤ g a, for all a, we say that f is pointwise at most g and
write f

.

≤ g. In symbols:

f
.

≤ g 4 f ⊆ (≤) · g cf. diagram A

f

��
g

��
⊆

B B
≤
oo

(51)

Show that implication

f
.

≤ g ⇒ (map f)
.

≤? (map g) (52)

follows from the FT of the function map : (a→ b)→ a? → b?.
2

Exercise 89. Infer the FT of the following function, written in Haskell syntax,
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while :: (a -> Bool) -> (a -> a) -> (a -> b) -> a -> b
while p f g x = if not(p x) then g x else while p f g (f x)

which implements a generic while-loop. Derive its corollary for functions and compare your result with that produced by the tool
above.
2

Exercise 90. Let iprod = (|[1 , (×)]|) be the function which multiplies all natural numbers in a given list; even be the predicate
which tests natural numbers for evenness; and exists = (|[FALSE , (∨)]|).

From (114) infer

even · iprod = exists · even?

meaning that product n1 × n2 × . . .× nm is even iff some ni is so.
2

Exercise 91. Show that the identity relator Id, which is such that Id R = R and the constant relator K (for a given data
type K) which is such that K R = idK are indeed relators.
2

Exercise 92. Show that product

A

R

��

C

S

��

G(A,C) = A× C

G(R,S)=R×S

��
B D G(B,D) = B ×D

is a (binary) relator.
2

Exercise 93. The type of functional composition (·) is

(.) :: (b -> c) -> (a -> b) -> a -> c

Show that contract composition (115) is a corollary of the free theorem (FT) of this type.
2

Exercise 94. Show that contract Ψ? Φ?
map foo holds provided contract Ψ Φ

foo holds.
2

Exercise 95. Suppose a functional programmer wishes to prove the following property of lists:〈 ∀ a, s
(φ a) ∧ 〈∀ a′ : a′ ∈ elems s : φ a′〉 :
〈∀ a′′ : a′′ ∈ elems(a : s) : φ a′′〉

〉
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Show that this property is a contract arising (for free) from the polymorphic type of operation ( : ) on lists.
2

Exercise 96. Derive from (116) the two cancellation laws

q ≤ (q × d)÷ d
(n÷ d)× d ≤ n

and reflexion law:

n÷ d ≥ 1 ≡ d ≤ n (53)

2

Exercise 97. Resort to indirect equality to prove any of (117) or (118).
2

Exercise 98. Derive from (119) that both f and g are monotonic.
2

Exercise 99. Why is it that converse-monotonicity can be strengthened to an equivalence?
2

Exercise 100. Prove the equalities

X · f = X/f◦ (54)

X/⊥ = > (55)

>/Y = > (56)

and check their pointwise meaning.
2

Exercise 101. Define

X \ Y = (Y ◦/X◦)◦ (57)

and infer:

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (58)

R ·X ⊆ Y ≡ X ⊆ R \ Y (59)

2
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Exercise 102. Show that R ∩ (R⇒ Y ) ⊆ Y (“modus ponens”) holds and that R−R = ⊥−R = ⊥.
2

Exercise 103. Let PA = {S | S ⊆ A} and let A PA∈oo denote the membership relation a ∈ S, for any a and S. What does
the relation ∈ \ ∈ mean?
2

Exercise 104. Show that the relation ∈ \ ∈ of the previous exercise is reflexive and transitive.
2

Exercise 105. Prove that equality

(R \ S) · f = R \ (S · f) (60)

holds.
2

Exercise 106. (a) Show that R ⊆ ⊥/S◦ ≡ δ R ∩ δ S = ⊥; (b) Then use indirect equality to infer the universal property of term
R ∩ ⊥/S◦ — the largest sub-relation of R whose domain is disjoint of that of S.
2

Exercise 107. The relational overriding combinator,

R † S = S ∪R ∩ ⊥/S◦ (61)

means the relation which contains the whole of S and that part of R where S is undefined — read R † S as “R overridden by S”.
(a) Show that ⊥ † S = S and that R † ⊥ = R; (b) Infer the universal property:

X ⊆ R † S ≡ X − S ⊆ R ∧ δ (X − S) · δ S = ⊥ (62)

2

Exercise 108. Prove

id Φ
Roo ≡ TRUE ≡ Φ ⊥Roo (63)

2

Exercise 109. Prove the special cases:
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• WP of a function f :

f \• Φq = λa.q(f a) (64)

•

ρ (f · Φp) = λb.b ∈ {f a | p a} (65)

NB: recall that (64) has been used several times earlier on in contract calculation.
2

Exercise 110. The formal meaning of (imperative) code sequential composition is

JP; QK = JQK · JPK

Show that the following rule of the Hoare logic of programs,

{p}P{q} , {q}Q{s}
{p}P ;Q{s}

is an instance of the following relational typing rule:

Ψ Φ
R·Soo ⇐ Ψ Υ

Roo ∧ Υ Φ
Soo (66)

2

Exercise 111. Prove the “trading rule”:

Υ Φ ·ΨRoo ≡ Υ Ψ
R·Φoo (67)

2

Exercise 112. Re-write the following “contract splitting” rule,

Ψ1 ·Ψ2 Φ
Roo ≡ Ψ1 Φ

Roo ∧ Ψ2 Φ
Roo (68)

in Hoare logic. Then prove (68).
2

Exercise 113. Show that ρR δ R
Roo holds. However, WP R \• (ρR) = id rather than δ R. Explain why.

2

Exercise 114. Show that ρR δ R
Roo holds. However, WP R \• (ρR) = id rather than δ R. Explain why.

2
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Exercise 115. The two “shunting” rules for S a simple relation,

S ·R ⊆ Q ≡ (δ S) ·R ⊆ S◦ ·Q (69)

R · S◦ ⊆ Q ≡ R · δ S ⊆ Q · S (70)

are “almost” Galois connections. (a) Derive the following variants concerning coreflexives,

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ
Φ ·R ⊆ S ≡ Φ ·R ⊆ Φ · S

referred to earlier on as the closure properties (120) and (121), respectively; (b) prove either (69) or (70) by cyclic implication
(vulg. “ping-pong”).
2

Exercise 116. Before implementing take one can start proving properties about this function solely relying on (122):

• Show that

take (length xs) xs = xs

holds.

• Resort to indirect equality over � in proving

take n (take m xs) = take (minnm) xs

where min, the minimum of two natural numbers, is given by the obvious Galois connection.

2

Exercise 117. Prove the two first equalities above.
2

Exercise 118. Show that, for S a preorder, Sf above is also a preorder.
2

Exercise 119. Show that f monotonicity, x v y ⇒ f x ≤ f y, can be written point-free as

(v) · f◦ ⊆ f◦ · (≤), (71)
2

Exercise 120. Show that, once (71) is assumed, the following equivalence holds:

g ⊆ f◦ · (≤) ≡ (v) · g ⊆ f◦ · (≤) (72)

Suggestion: do a “ping-pong” proof.
2
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Formulas referred to in the exercises

Date = Y ear ×Month×Day (73)

where

Y ear = N

Month = N
inv m 4 m ≤ 12

Day = N
inv d 4 d ≤ 31

(74)

p = (∈ S) ≡ S = {a | p a} (75)

〈∀ a : a ∈ A : pre-Spec a⇒ 〈∃ b : b ∈ B : post-Spec(b, a)〉〉 (76)

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉 (77)

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (78)

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (79)

ker (R◦) = img R (80)
img (R◦) = ker R (81)

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(82)

Being
Eats // Being

where

��
Bank

cross // Bank

(83)

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(84)

y Φp x ≡ y = x ∧ p y (85)

Φ = Φp ≡ (y Φ x ≡ y = x ∧ p y) (86)

πg,fR = {(g b, f a) | b R a} (87)
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πg,fR
def
= g ·R · f◦ B

g

��

A
Roo

f

��
C D

πg,fR
oo

(88)

ΦB ΦA
foo (89)

to mean

f · ΦA ⊆ ΦB · f cf. diagram A

f

��

A
ΦAoo

f

��
B B

ΦB

oo

(90)

A

Pre
��

A

Post
��

ΦAoo

A B
>
oo B

ΦB

oo

Pre · ΦA ⊆ > · ΦB · Post (91)

f · ΦA ⊆ ΦB · > (92)
ρ (f · ΦA) ⊆ ΦB (93)

〈∀ x, y : y = 2x ∧ even x : even y〉 (94)

Jno RK = JRK ⊆ ⊥ (95)
Jsome RK = JRK ⊃ ⊥ (96)
Jlone RK = 〈∃ a, b :: JRK ⊆ b · a◦〉 (97)

f ·R ⊆ > · S ≡ R ⊆ > · S (98)

f ·R ⊆ S ≡ R ⊆ f◦ · S (99)
R · f◦ ⊆ S ≡ R ⊆ S · f (100)

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (101)
≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X)〉 (102)

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (103)
≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X)〉 (104)

[R ,S] = X ≡ R = X · i1 ∧ S = X · i2 (105)

ISBN

M

�

ISBN × UID

R

�

π1oo π2 // UID

N

�
⊇ ⊆

Title ×
Publisher >

// Date
Name×
Address×
Phone

>
oo

(106)
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R · Φ = R ∩ > · Φ (107)
Ψ ·R = R ∩Ψ · > (108)

δ R ⊆ Φ ≡ R ⊆ > · Φ (109)
ρR ⊆ Φ ≡ R ⊆ Φ · > (110)

G id = id (111)
G (R · S) = (GR) · (GS) (112)
G (R◦) = (GR)◦ (113)

f · B (R,S) ⊆ S · g ⇒ (|f |) · FR ⊆ S · (|g|) (114)

Ψ Φ
f ·goo ⇐ Ψ Υ

foo ∧ Υ Φ
goo (115)

z × y ≤ x ⇔ z ≤ x÷ y (y > 0) (116)

f(b t b′) = (f b) ∨ (f b′) (117)
g(a ∧ a′) = (g a) u (g a′) (118)

f︸︷︷︸
lower adjoint

b ≤ a ≡ b v g︸︷︷︸
upper adjoint

a (119)

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ (120)
Φ ·R ⊆ S ≡ Φ ·R ⊆ Φ · S (121)

length ys ≤ n ∧ ys� xs ≡ ys� take n xs (122)
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