
A Compendium of Reo Connetors

Compiled byDavid Costa and Dave Clarke

October 22, 2005

Abstract

Reo is an exogenous coordination language based on connectors formed by joining chan-

nels into circuit-like configurations. The resulting circuits coordinate the flow of data between

components connected to the input and output ends of the connector. This document collects

together the Reo channels and connectors devised to date. By collecting existing connec-

tors together in a single place, this document provides a useful resource when developing

Reo connectors and for generating examples for further developing the tools and techniques

surrounding Reo.

1

Contents

1 Introduction 4

2 Abstract Behaviour Types 4

3 Constraint Automata 4

4 Channels 4

4.1 Synchronous Channel . 5
4.2 Synchronous Drain . 5
4.3 Synchronous Spout . 5
4.4 Lossy Synchronous Channel . 6
4.5 FIFO1 Channel . 6
4.6 FIFOk Channel . 7
4.7 ShiftFIFO Channel . 8
4.8 Lossy FIFO Channel . 8
4.9 Unbounded FIFO Buffer . 9
4.10 Asynchronous Drain . 9
4.11 Asynchronous Spout . 9
4.12 Filter . 10
4.13 Ordered . 10
4.14 Orderedk . 11
4.15 Set . 12
4.16 Setk . 12
4.17 Bag . 12
4.18 Bagn . 13
4.19 DelaySet . 14
4.20 DelaySetk . 14

5 Connectors 15

5.1 Merger . 15
5.2 Replicator . 15
5.3 Take-Cue Regulator . 16
5.4 Write-Cue Regulator . 17
5.5 Barrier Synchronizer . 17
5.6 Feedback Loop . 18
5.7 Asynchronous drain using the merge connector and a synchronous drain [6] 18
5.8 Exclusive Router . 18
5.9 Replicator Connector [8] . 19
5.10 Ordering . 19
5.11 Sequencer . 20
5.12 Inhibitor . 21
5.13 Or-Selector . 22
5.14 Selector . 23
5.15 Shift-Lossy FIFO1 channel . 23
5.16 Overflow-Lossy FIFO1 . 24
5.17 Initializer [2] . 24
5.18 Terminator [2] . 24
5.19 Flow Regulator [5], [7] . 24
5.20 Sum . 24
5.21 Constant Replacer . 24
5.22 Cycler . 25
5.23 Valves . 25

2

5.24 Short-circuit . 26
5.25 Drain . 27

6 Examples 27

3

1 Introduction

Reo is a channel-based component coordination model. It has semantics based on co-inductively
defined abstract behaviour types (ABT) and constraint automata (CA). We defer discussion of
these models until future versions of this document, and suggest that the reader consult the
relevant literature on ABTs [4] and CAs [7]. These will appear in Section 2 and 3.

We begin our list of connectors by describing first the basic channels, along with some more
exotic ones in Section 4. Section 5 follows with an extensive list of connectors. In future versions
of this work, we will include a series of examples in Section 6 and the encoding of a number of
software architectures in Section ??.

2 Abstract Behaviour Types

TODO.
Note that for streams a′ gives the tail of the stream. This operation is called the derivative.

a(k) denotes the k-th derivative of the stream a.

3 Constraint Automata

TODO.
CAs are automata which has edges annotated by a set of node names and a data constraint

over that set. The intended meaning is that data flows simultaneously among the nodes in the set
(and only among those nodes) and that the data satisfies the given data constraint. Constraint
automata abstract away from the direction of the data flow.

4 Channels

Reo assumes the availability of an arbitrary set of channel types, each with its own well-defined
behaviour. A channel is a point-to-point medium of communication with its own unique identity
and two distinct ends. A channel itself has no direction. There are two types of channel ends:
sources and sinks. A source channel end accepts data into its channel. A sink channel end dispenses
data out of its channel. Channels are dynamically created and are automatically garbage collected,
i.e., they are not explicitly destroyed, when no longer required. Channels are assumed to be mobile,
though this has no effect on their intrinsic semantics.

Every channel in Reo has exactly two ends, which may be of the same or different types. Thus,
a channel may have a source and a sink end, two source ends, or two sink ends. The behaviour
of a channel may depend on such parameters as its synchronizing properties, the number of its
source and sink ends, the size of its buffer, its ordering scheme, its lossy policy, etc. There are a
number of different properties which (partially) characterise the behaviour of channels. A channel
is called synchronous if it delays the success of the appropriate pairs of operations on its two
ends so that they can succeed only simultaneously1; otherwise, it is called asynchronous. An
asynchronous channel may have a bounded or an unbounded buffer (to hold the data items it has
already consumed through its source, but not yet dispensed through its sink) and need not impose
an order on the delivery of its contents. A lossy channel may deliver only some of the data items
that it receives, and lose the rest.

1Note that by simultaneity we really mean atomicity. That is, if we say that an event occurs simultaneously on
a number of channel ends (or equivalently, nodes), then we mean that the event cannot be interleaved with other
events on any of the ends involved [4].

4

4.1 Synchronous Channel — Sync

Description A synchronous, unbuffered, and ordered channel, with one sink and one source
end [1].

Circuit The Sync channel is graphically represented by

ABT The synchronous channel, , is defined, for all timed data streams 〈α, a〉 and 〈β, b〉, by

〈α, a〉 〈β, b〉 ≡ α = β ∧ a = b .

The Sync channel produces an output data stream identical to its input data stream (α = β),
and reproduces every element in its output at the same time as its respective input element
is consumed (a = b).

Constraint Automata The deterministic constraint automaton for the synchronous channel is:

{A, B}, dA = dB

4.2 Synchronous Drain — SyncDrain

Description A synchronous, unbuffered, ordered, and lossy channel, with two source ends [1].

Circuit The SyncDrain channel is graphically represented by

ABT The SyncDrain channel, , is defined for all timed data streams 〈α, a〉 and 〈β, b〉, by

(〈α, a〉, 〈β, b〉;) ≡ a = b .

It has no sink end, thus it produces no data items. Consequently, every data item written to
its source ends is simply lost. SyncDrain is synchronous because a write operation on one
of its ends remains pending until a write is performed on its other end; only then will both
write operations succeed together.

Constraint Automata The deterministic constraint automaton for the synchronous drain chan-
nel is:

{A, B}

4.3 Synchronous Spout — SyncSpout

Description A synchronous, unbuffered, and ordered channel, with two sink ends [1].

Circuit The SyncSpout channel with patterns P1 and P2 is graphically represented by

P1 P2

5

ABT The SyncSpout channel, P1 P2 , is defined, for all timed data streams 〈α, a〉 and 〈β, b〉,
by

P1 P2 (; 〈α, a〉, 〈β, b〉) ≡

{

a(0) = b(0) ∧ α(0) ∋ P1 ∧ β(0) ∋ P2
P1 P2 (; 〈α′, a′〉, 〈β′, b′〉)

It is an unbounded source of data items that match with its specified patterns, P1, P2 and
can be taken from its opposite ends only simultaneously. Obviously data items are produced
in a non-deterministic order and the data items taken out of the two sinks of this channel
are not related to each other.

Constraint Automata The deterministic constraint automaton for the synchronous spout chan-
nel is

{A, B}, dA ∈ P1 ∧ dB ∈ P2

4.4 Lossy Synchronous Channel — LossySync

Description A synchronous, unbuffered, ordered, lossy channel, which has both a source and a
sink end [1].

Circuit The LossySync channel is graphically represented by

ABT The LossySync is defined, , for all timed data streams 〈α, a〉 and 〈β, b〉, by

〈α, a〉 〈β, b〉 ≡

{

β(0) = α(0) ∧ 〈α′, a′〉 〈β′, b′〉 if a(0) = b(0)
〈α′, a′〉 〈β, b〉 otherwise

A LossySync is similar to a Sync channel except that it is always ready to consume a data
item written to its source end. If a matching read operation is pending at its sink, the data
item written to its source is transfered; otherwise, the written data item is lost.

Constraint Automata The deterministic constraint automaton for the lossy synchronous chan-
nel is

{A, B}, dA = dB ;
{A}

4.5 FIFO channel with capacity of 1 – FIFO1

Description An asynchronous, buffered and ordered channel, with a source and a sink end [1].

Circuit The FIFO1 channel is graphically represented by

ABT FIFO1 channel, , is defined, for all timed data streams 〈α, a〉 and 〈β, b〉, by

〈α, a〉 〈β, b〉 ≡ α = β ∧ a < b < a′

What goes in, comes out: α = β, but later: a < b. Moreover, at any moment the next
data item can be input only after the present data item has been output: b < a′, which is
equivalent to b(n) < a(n + 1), for all n ≥ 0.

6

Constraint Automata The deterministic parameterized constraint automaton[7] for FIFO1 is

q0 q(x)
{A}, x := dA

{B}, dB = x

where q(x) is used to denote that q is a location with parameter list v(q) = x, while q0 is a
location with an empty parameter list.

Variations FIFOX is a FIFO1 buffer in which the buffer is initially non-empty. It contains the
element X . Graphically represented by:

x

The parameterized constraint automaton for the FIFOX is in this case slightly different

q0qX q(x)
{B}, dB = X {A}, x := dA

{B}, dB = x

4.6 FIFO channel with capacity of k — FIFOk

Description An asynchronous, buffered and ordered channel which has a source and a sink
end [1].

Circuit The FIFOk channel is graphically represented by

...1 k

ABT FIFOk channel, ...1 k , is defined for any k ≥ 1, for all timed data streams 〈α, a〉 and
〈β, b〉, by

〈α, a〉 ...1 k 〈β, b〉 ≡ α = β ∧ a < b < a(k)

This models a k-bounded FIFO buffer, generalizing the FIFO1 buffer above. What goes in,
comes out: α = β, but later: a < b. Moreover, at any moment the kth-next data item can
be input only after the present data item has been output: b < a(k) (which is equivalent to
b(n) < a(n + k), for all n ≥ 0).

Constraint Automata The deterministic parameterized constraint automaton for the asyn-
chronous bounded FIFO channel with capacity of k is:

q0 q(x1) · · · q(xk−1) q(xk)
{A}, x1 := dA

{B}, dB = x1

{A}, x2 := dA

{B}, dB = x2

{A}, xk−1 := dA

{B}, dB = xk−1

{A}, xk := dA

{B}, dB = xk

7

4.7 Shift bounded FIFO channel – ShiftFIFOk

Description An asynchronous, buffered, ordered, and lossy channel which has a source and a
sink end [1].

Circuit The ShiftFIFOk channel is graphically represented by

...1 k

ABT The ShiftFIFOk channel, ...1 k , for any k ≥ 1, is defined, for all timed data streams
〈α, a〉 and 〈β, b〉, by

〈α, a〉 ...1 k 〈β, b〉 ≡
{

α(0) = β(0) ∧ 〈α′, a′〉 ...1 k 〈β′, b′〉 if a(0) < b(0) < a(k)
α(j) = β(0) ∧ 〈αj , aj〉 ...1 k 〈β′, b′〉 if a(k + j − 1) < b(0) < a(k + j), j > 0

The ShiftFIFOk is the lossy version of FIFOk, where the arrival of a data item when the
channel buffer is full triggers the loss of the oldest data item in the buffer to make room for
the new arrival.

Constraint Automata The deterministic parameterized constraint automaton for the asyn-
chronous bounded shift FIFO channel with capacity of k is

q0 q(x1)

· · · q(xk−1)

q(xk)
{B}, dB = x1

{A}, x2 := dA

{B}, dB = x2

{A}, xk−1 := dA

{B}, dB = xk−1

{A}, xk := dA

{B}, dB = xk

{A}, x1 := dA

{A}, x1 := dA

4.8 Lossy bounded FIFO channel – LossyFIFOk

Description An asynchronous, buffered (with capacity k), ordered, and lossy channel with a
source and a sink end [1].

Circuit LossyFIFOk is graphically represented by

...1 k

ABT The LossyFIFOk channel, ...1 k , for any k ≥ 1, is defined for all timed data streams
〈α, a〉 and 〈β, b〉 by

〈α, a〉 ...1 k 〈β, b〉 ≡

α(0) = β(0) ∧

〈α′, a′〉 ...1 k 〈β′, b′〉
if a(0) < b(0) < a(k)

〈α(1). · · · .α(k).αk+j , a(1). · · · .a(k).ak+j〉 ...1 k 〈β′, b′〉
if a(k + j − 1) < b(0) < a(k + j), j > 0

The LossyFIFOk is another lossy version of FIFOk, where data which arrives when the channel
buffer is full are lost.

Constraint Automata The deterministic parameterized constraint automaton for the asyn-
chronous bounded lossy FIFO channel with capacity of k is

q0 q(x1) · · · q(xk−1) q(xk)
{A}, x1 := dA

{B}, dB = x1

{A}, x2 := dA

{B}, dB = x2

{A}, xk−1 := dA

{B}, dB = xk−1

{A}, xk := dA

{B}, dB = xk

{A}

8

4.9 Unbounded FIFO Buffer — UnboundedFIFO

Description An asynchronous, buffered (unbounded), and ordered channel with a source and a
sink end [1].

Circuit The UnboundedFIFO channel is graphically represented by

...
...

...
1

ABT The UnboundedFIFO channel, ...
...

...
1 , is defined for all timed data streams 〈α, a〉 and

〈β, b〉 by
〈α, a〉 ...

...

...
1 〈β, b〉 ≡ α = β ∧ a < b

What goes in, comes out, but with an arbitrary (non-zero) delay.

Constraint Automata The deterministic parameterized constraint automaton for the asyn-
chronous unbounded FIFO channel is

q0 q(x1) q(xk) · · ·· · ·
{A}, x1 := dA

{B}, dB = x1

{A}, x2 := dA

{B}, dB = x2

{A}, xk := dA

{B}, dB = xk

{A}, xk+1 := dA

{B}, dB = xk+1

4.10 Asynchronous drain – AsyncDrain

Description An asynchronous, unbuffered, and lossy channel with two source ends [1].

Circuit The AsyncDrain channel is graphically represented by

ABT The AsyncDrain channel, , is defined for all timed data streams 〈α, a〉 and 〈β, b〉 by

(〈α, a〉, 〈β, b〉;) ≡ a ⊲⊳ b

where

a ⊲⊳ b ≡ a(0) 6= b(0) ∧

{

a′ ⊲⊳ b if a(0) < b(0)
a ⊲⊳ b′ if b(0) < a(0)

The channel guarantees that two operations on its two ends never succeed simultaneously.
The channel is fair by alternating between its two ends and giving each a chance to dispose
of a data item. All data items written to this channel are lost.

Constraint Automata The corresponding deterministic constraint automaton for the asyn-
chronous drain channel is

{A};
{B}

4.11 Asynchronous Spout – AsyncSpout

Description An asynchronous, unbuffered channel with two sink ends [1].

Circuit The AsyncSpout channel with patterns P1 and P2 is graphically represented by

P1 P2

9

ABT The AsyncSpout channel, P1 P2 , is defined, for all timed data streams 〈α, a〉 and
〈β, b〉, by

P1 P2 (; 〈α, a〉, 〈β, b〉) ≡

{

a(0) 6= b(0) ∧ α(0) ∋ P1 ∧ β(0) ∋ P2
P1 P2 (; 〈α′, a′〉, 〈β′, b′〉)

It is an unbounded source of data items that match with its specified patterns, P1, P2 and
never can be taken from its opposite ends simultaneously. The channel is fair by alternating
between its two ends and giving each a chance to obtain a data item from the channel. The
data items are produced in a non-deterministic order.

Constraint Automata The deterministic constraint automaton for the asynchronous spout chan-
nel is

{A}, dA ∋ P1;
{B}, dB ∋ P2

4.12 Filter

Description A synchronous, unbuffered, ordered, lossy channel which has both a source and a
sink end [1].

Circuit The Filter channel with pattern P1 is graphically represented by

P1

ABT The FilterP1
channel,

P1

, is defined, for all timed data streams 〈α, a〉 and 〈β, b〉,

by

〈α, a〉
P1

〈β, b〉 ≡

a(0) = b(0) ∧ α(0) = β(0) ∧

〈α′, a′〉
P1

〈β′, b′〉 if α(0) ∋ P1

〈α′, a′〉
P1

〈β, b〉 otherwise

It is a special lossy synchronous channel. It transfers only those data items that match with
its specified pattern, P1 and loses the rest.

Constraint Automata The deterministic constraint automaton for the filter channel is

{A, B}, dA ∋ P1 ∧ dA = dB

4.13 Ordered

Description An asynchronous, buffered, and ordered channel with a source and a sink end [3].

Circuit The Ordered channel is graphically represented by

Ord

10

ABT ABT formalism abstracts away from the stream of input and output requests. The infor-
mation about the data pattern that an output value need to satisfy is therefore not captured.
In the Ordered channel the choice of the output data element from the buffer is dependent
on the data pattern which is specified together with the output request. Without this in-
formation the Ordered channel’s ABT specification does not describes in which manner the
Ordered channel is ordered.

The Ordered channel, Ord , is defined for all timed data streams 〈α, a〉, 〈β, b〉 and
i, j, m, n, o, p ∈ R

+
0 by

〈α, a〉 Ord 〈β, b〉 ≡
∀i, ∃j : α(i) = β(j) ∧ a(i) < b(j) ∧
(∀m, o, ∃n, p : (α(m) = β(n) ∧ α(o) = β(p) ∧ m = o) ⇒ n = p)

Constraint Automata The deterministic parametrized constraint automaton for the ordered
channel is

q0 q1(S) qk(S) · · ·· · ·
{A},S := {dA}

{B}, dB = elem(S)

{A},
S = add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

Variations Orderedk

4.14 Orderedk

Description An asynchronous, buffered, and ordered channel with a source and a sink end [3].

Circuit The Orderedk channel is graphically represented by

Ordk

ABT The Orderedk channel, Ordk , is defined for all timed data streams 〈α, a〉, 〈β, b〉 and
i, j, m, n, o, p ∈ R

+
0 by

〈α, a〉 Ordk 〈β, b〉 ≡
∀i, ∃j : α(i) = β(j) ∧ a(i) < b(j) < a(k) ∧
(∀m, o, ∃n, p : (α(m) = β(n) ∧ α(o) = β(p) ∧ m = o) ⇒ n = p)

(Comment: Explanation TODO)

Constraint Automata The deterministic parametrized constraint automaton for the ordered
bounded buffer channel with capacity of k is

q0 q1(S) · · · qk(S)
{A},S := {dA}

{B}, dB = elem(S)

{A},
S = add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

(Comment: TODO)

Variations Ordered

11

4.15 Set

Description An asynchronous, buffered (unbounded), and unordered channel with a source and
a sink end [3].

Circuit The Set channel is graphically represented by

{ }...

ABT (Comment: Explanation TODO)

Constraint Automata The deterministic parametrized constraint automaton for the set channel
is

q0 q1(S) qk(S)
{A},S := {dA})

{B}, dB = elem(S)

{A}, dA ∈ S

{A},
S := add(dA ,S),

dA /∈ S

{B}, dB = elem(S)

{A},
S := add(dA ,S),

dA /∈ S

{B}, dB = elem(S)

{A}, dA ∈ S

{A},
S := add(dA ,S),

dA /∈ S

{B}, dB = elem(S)

· · ·

· · ·

· · ·

· · ·

(Comment: TODO)

Variations Setk

4.16 Setk

Description An asynchronous, buffered, and unordered channel with a source and a sink end [3].

Circuit The Setk channel is graphically represented by

{
k

}

ABT (Comment: Explanation TODO)

Constraint Automata The deterministic parametrized constraint automaton for the set channel
with limited capacity k

q0 q1(S) qk(S)
{A},S := {dA}

{B}, dB = elem(S)

{A}, dA ∈ S

{A},
S := add(dA ,S),

dA /∈ S

{B}, dB = elem(S)

· · ·

· · ·

{A},
S := add(dA ,S),

dA /∈ S

{B}, dB = elem(S)

{A}, dA ∈ S

Variations Set

4.17 Bag

Description An asynchronous, buffered (unbounded), and unordered channel with a source and
a sink end [3].

Circuit The Bag channel is graphically represented by

()...

12

ABT The Bag channel, ()... , is defined for all timed data streams 〈α, a〉, 〈β, b〉 and i, j, m, n, o, p ∈
R

+
0 by

〈α, a〉 ()... 〈β, b〉 ≡
∀i, ∃j : α(i) = β(j) ∧ a(i) < b(j) ∧
(∀m, o, ∃n, p : (α(m) = β(n) ∧ α(o) = β(p) ∧ m = o) ⇒ n = p)

(Comment: Explanation TODO)

Constraint Automata The deterministic parametrized constraint automaton for the bag chan-
nel is

q0 q1(S) qk(S) · · ·· · ·
{A},S := {dA}

{B}, dB = elem(S)

{A},
S = add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

(Comment: TODO)

Variations Bagn

4.18 Bagn

Description An asynchronous, buffered (with capacity n), and unordered channel with a source
and a sink end [3].

Circuit The Bagn channel is graphically represented by

()n

ABT The Bagk channel, ()n , is defined for all timed data streams 〈α, a〉, 〈β, b〉 and
i, j, m, n, o, p ∈ R

+
0 by

〈α, a〉 ()n 〈β, b〉 ≡
∀i, ∃j : α(i) = β(j) ∧ a(i) < b(j) < a(k) ∧
(∀m, o, ∃n, p : (α(m) = β(n) ∧ α(o) = β(p) ∧ m = o) ⇒ n = p)

(Comment: Explanation TODO)

Constraint Automata The deterministic parametrized constraint automaton for the bag chan-
nel with limited capacity is

q0 q1(S) · · · qk(S)
{A},S := {dA}

{B}, dB = elem(S)

{A},
S = add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

(Comment: TODO)

Variations Bag

13

4.19 DelaySet

Description An asynchronous, buffered, unbounded and unordered channel with a source and a
sink end [3].

Circuit The DelaySet channel is graphically represented by

DSet

ABT The DelaySet channel, DSet , is defined for all timed data streams 〈α, a〉, 〈β, b〉 and
i, j, m, n, o, p ∈ R

+
0 by

〈α, a〉 DSet 〈β, b〉 ≡
∀i, ∃j : α(i) = β(j) ∧ a(i) < b(j) ∧
(∀m, o, ∃n, p : (α(m) = β(n) ∧ α(o) = β(p) ∧ m = o) ⇒ n = p)

Constraint Automata The deterministic parametrized constraint automaton for the DelaySet
channel is

q0 q1(S) qk(S) · · ·· · ·
{A},S := {dA}

{B}, dB = elem(S)

{A},
S = add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

(Comment: TODO)

Variations DelaySetk

4.20 DelaySetk

Description An asynchronous, buffered, bounded and unordered channel with a source and a
sink end [3].

Circuit The DelaySetk channel is graphically represented by

DSetk

ABT The DelaySetk channel, DSetk , is defined for all timed data streams 〈α, a〉, 〈β, b〉 and
i, j, m, n, o, p ∈ R

+
0 by

〈α, a〉 DSetk 〈β, b〉 ≡
∀i, ∃j : α(i) = β(j) ∧ a(i) < b(j) < a(k) ∧
(∀m, o, ∃n, p : (α(m) = β(n) ∧ α(o) = β(p) ∧ m = o) ⇒ n = p)

Constraint Automata The deterministic parametrized constraint automaton for the delay set
channel with limited capacity k is

q0 q1(S) · · · qk(S)
{A},S := {dA}

{B}, dB = elem(S)

{A},
S = add(dA ,S)

{B}, dB = elem(S)

{A},
S := add(dA ,S)

{B}, dB = elem(S)

(Comment: TODO)

Variations DelaySet

14

5 Connectors

Connectors are generally considered to be non-primitive, whereas channels are often primitive,
and usually have an “arity” which is not equal to 2. Channels always have arity 2. In general,
however, channels are just special cases of connectors.

5.1 Merger

Description This connector takes an arbitrary number of source nodes. Data input to these
nodes is merged, non-deterministically, and available at a sink node. Data can only be
transferred if a take is being requested at the sink node simultanously with a write at one
of the source nodes. Ties are broken non-deterministically [6, 1, 5, 4].

The functionality of a merger is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness.

Circuit The Reo circuit for the Merger connector with three sources is

ABT The ABT for a merge of two sources and one sink is a ternary relation M defined for timed
data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

M(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

a(0) 6= b(0) ∧
{

α(0) = γ(0) ∧ a(0) = c(0) ∧ M(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
β(0) = γ(0) ∧ b(0) = c(0) ∧ M(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if b(0) < a(0)

Constraint Automata The constraint automaton for a Merger with two inputs (A and B) and
one output (C) is

{A, C}, dA = dC ; {B, C}, dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of input nodes.

Also Known As A mixed node.

5.2 Replicator

Description This connector has a single source node and multiple sink nodes. Data input is
replicated to all of the sink nodes. Data flows only when all sink nodes are ready to take
and the source node is ready to write.

The functionality of a replicator is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness [6, 8, 1, 5, 4].

15

Circuit The Reo circuit for the Replicator connector with three outputs is

ABT The ABT for the Replicator with an input end two output ends is a ternary relation R

defined for timed data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

R(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

Constraint Automata The constraint automaton for a Replicator with one input (A) and two
outputs (B and C) is

{A, B, C}, dA = dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of output nodes.

Composite Primitives This circuit is constructed using a node and a number of synchronous
channels.

Also Known As A mixed node.

5.3 Take-Cue Regulator

Description In this circuit, the data from one node (A) to another (B) is regulated by the taking
of data at a third node (C). That is, data can flow from A to B only if both A and B are
ready and, further, that C is also ready. This mean that the usual connection between A

and B is regulated by the behaviour at C. Because this is a take-cue regulator, C regulates
using take and receives the data written at A [6, 1, 3].

Circuit The Reo circuit for a Take-Cue Regulator is

C

B

A

ABT The ABT for a take-cue regulator of an input end with an output end and an output end
used to regulate the flow is a ternary relation TQR defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

TQR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

16

Constraint Automata A deterministic constraint automata for the Take-cue regulator is

{A, B, C}, dA = dB = dC

Variations A write-cue regulator.

Also Known As Interestingly, this is exactly the same circuit as a replicator. The difference is
how it is perceived.

5.4 Write-Cue Regulator

Description In this circuit, the data from one node (A) to another (B) is regulated by the writing
of data to a third node (C). That is data can flow from A to B only if both A and B are
ready and, further, that C is also ready. This mean that the usual connection between A

and B is regulated by the behaviour at C. Because this is a write-cue regulator, C regulates
using write, though the data it writes is lost [6, 1, 5, 4].

Circuit The Reo circuit for a Write-Cue Regulator is

B

A C

ABT The ABT for a take-cue regulator of an input end with an output end and an output end
used to regulate the flow is a ternary relation WQR defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

WQR(〈α, a〉, 〈γ, c; 〈β, b〉〉) ≡ α = γ ∧ a = b = c

Constraint Automata A deterministic constraint automata for the Write-cue regulator is

{A, B, C}, dA = dB

Variations Take-cue regulator.

5.5 Barrier Synchronizer

Description A barrier synchronizer connector enables data items to pass from A to B and from
C to D, but only at the same time, that is, data can only flow when there is either a write
or take pending on all of A, B, C, and D [6, 1, 5, 4].

Circuit The Reo circuit for the Barrier Synchronizer is

17

B

D

A

C

ABT The ABT for a barrier synchronizer is a quaternary relation BS defined for timed data
streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 and 〈δ, d〉 by

BS(〈α, a〉, 〈γ, c〉; 〈β, b〉, 〈δ, d〉) ≡ α = β ∧ γ = δ ∧ a = b = c = d

Constraint Automata A deterministic constraint automata for the Barrier Synchronizer is

{A, B, C, D}, dA = dB , dC = dD

5.6 Feedback Loop

Description Using feedback, it is possible to have a circuit which produces a continuous, constant
stream of data on demand [6].

Circuit A simple feedback loop is given by the circuit:

x

ABT The ABT for a Feedback Loop is an unary relation FLX defined for the timed data stream
〈α, a〉,

FLX(〈α, a〉) ≡ α(0) = X ∧ FLX(〈α′, a′〉)

Constraint Automata A deterministic constraint automata for the Feedback Loop is

{A}, dA = X

5.7 Asynchronous drain using the merge connector and a synchronous
drain [6]

5.8 Exclusive Router

Description Each data item entering via node A will be synchronously passed to either node B

or node C, but not both, depending upon which of B and C first makes a request for data.
Ties are broken non-deterministically [8, 2, 5, 4, 7].

Circuit The Reo circuit for the Exclusive Router is

18

A

B C

ABT The ABT for an exclusive router is a ternary relation ExR defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

ExR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡

b(0) 6= c(0) ∧
{

α(0) = β(0) ∧ a(0) = b(0) ∧ ExR(〈α′, a′〉, 〈β′, b′〉, 〈γ, c〉) if b(0) < c(0)
α(0) = γ(0) ∧ a(0) = c(0) ∧ ExR(〈α′, a′〉, 〈β, b〉, 〈γ′, c′〉) if c(0) < b(0)

Constraint Automata A deterministic constraint automaton for the Exclusive Router is

{A, B}, dA = dB ; {C, D}, dC = dD

Also Known As ExRouter [8].

Notice the similarity of the semantics with those of Merger. Hardly surprising, given that they
have the same constraint automaton, just a different direction of data flow.

5.9 Replicator Connector [8]

As opposed to the previously defined replicator connector, this connector duplicates the elements
sent along a channel.

5.10 Ordering

Description The behaviour of this connector imposes an order on the flow of data items written
to A and B and passed to C. The first item comes from A, then from B, then back to A.
Data can only flow if data is present at both A and B simultaneously [1], [5], [4], [3].

Circuit The Reo circuit for the Ordering is

19

A

CB

ABT The ABT for the ordering connector is a ternary relation OC defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

OC (〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡

α(0) = γ(0) ∧ β(0) = γ(1) ∧ a(0) = b(0) = c(0) ∧ a(1) = b(1) > c(1) ∧

OC (〈α′, a′〉, 〈β′, b′〉; 〈γ′′, c′′〉)

Constraint Automata The deterministic parameterized constraint automaton for the Ordering
connector is

q0 q(x)

{A, B, C}, dA = dC , x := dB

{C}, dC = x

Also Known As Interleaving connector [8]. Note that using a sequencer is less constraint manner
for achieving the same effect.

Related Connectors If this simultaneity between the sink nodes is too strong, use a Sequencer.

5.11 Sequencer

Description A sequencer consists of some number of nodes (3 in our example), say A, B, C.
The sequencer begins by outputing a token to one of the nodes, say A. This enables the
circuit connected to A to take. The sequencer then moves into a state in which B can take.
After B is taken, then the sequencer moves into a state where C can take. After C is taken,
the sequencer returns to the initial state and the cycle can repeat itself. This circuit thus
imposes an order on the flow of data at the nodes A, B, and C [1, 5, 6, 4]

Circuit The Reo circuit for the Sequencer is

x

A B C

ABT The ABT for an sequencer is a ternary relation SQ defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

SQ(; 〈α, a〉, 〈β, b〉, 〈γ, c〉) ≡ a < b < c < a′

Constraint Automata A deterministic constraint automata for the Sequencer is

20

{A} {B}

{C}

Variations This circuit is a more asychrounous version of Ordering.

Sequencer with Reset [4]. This circuit is similar in behaviour to a Sequencer. It consists of
an additional channel which, when data is written to it, returns the sequencer to its initial
state.

Reset

Router
Exclusivex Exclusive

Router
Exclusive
Router

CBA

A deterministic constraint automaton for the Sequencer with Reset connectors is:

{A}

{B}

{C}

{Reset}

{Reset}

{Reset}

5.12 Inhibitor

Description Data written at A flows freely to B until some data value is written at I, after which
data flow stops for good [1]. Interestingly, this circuit deadlocks by design.

Circuit The Reo circuit for the Inhibitor is

21

A

x

I

B

ABT The ABT for an inhibitor is a ternary relation Ih defined for timed data streams 〈α, a〉,
〈β, b〉, 〈ι, i〉 by

Ih(〈α, a〉, 〈ι, i〉; 〈β, b〉) ≡
{

a(0) = b(0) ∧ α(0) = β(0) ∧ Ih(〈α′, a′〉, 〈ι, i〉; 〈β′, b′〉) if a(0) < i(0)
α = a = β = b = ι′ = i′ = 〈〉 if i(0) < a(0)

Constraint Automata A deterministic constraint automata for the Sequencer is

{A, B}, dA = dB

{I}

5.13 Or-Selector

Description Data is non-deterministically chosen from one of its two inputs and sent syn-
chronously to the output C. Once either A or B is chosen, no data can flow through to
C from the other. Data from the end not chosen is simply lost [1].

Circuit The Reo circuit for the Or-Selector is

I

Inhibitor

Inhibitor

A

B

C

I

ABT The ABT for an inhibitor is a ternary relation OS defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

OS(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡ (a = c ∧ α = γ) ∨ (b = c ∧ β = γ)

Constraint Automata A deterministic constraint automata for the Or-Selector is

{A, C}, dA = dC

{A, C}, dA = dC

{B, C}, dB = dC

{B, C}, dB = dC

22

5.14 Selector

Description Availability of a value at its input node E “enables” this connector to select a value
available on one of the input nodes B1 or B2 for transfer respectively through S1 or S2 [4].
The prerequisite for transfer is that both B1 and S1 (or B2 and S2) are ready to write/take.
Note that if either S1 or S2 are not ready when their respective B is, the data is lost.
Similarly, if all nodes are ready, then the tie is broken nondeterministically, and data in the
losing B node is lost.

Circuit The Reo circuit for the Selector is

B2Router
ExclusiveE

S1

S2

B1

ABT The ABT for the selector connector is a quinary relation SC defined for timed data streams
〈ǫ, e〉, 〈β1, b1〉, 〈β2, b2〉, 〈σ, s1〉, 〈σ, s2〉 by

SC (〈ǫ, e〉, 〈β1, b1〉, 〈β2, b2〉; 〈σ1, s1〉, 〈σ2, s2〉) ≡

SC (〈ǫ, e〉, 〈β′

1, b
′

1〉, 〈β2, b2〉; 〈σ1, s1〉, 〈σ2, s2〉) if b1(0) < e(0)
SC (〈ǫ, e〉, 〈β1, b1〉, 〈β

′

2, b
′

2〉; 〈σ1, s1〉, 〈σ2, s2〉) if b2(0) < e(0)
SC (〈ǫ, e〉, 〈β′

1, b
′

1〉, 〈β
′

2, b
′

2〉; 〈σ1, s1〉, 〈σ2, s2〉) if b1(0) = b2(0) < e(0)
β1(0) = σ1(0) ∧ SC (〈ǫ′, e′〉, 〈β′

1, b
′

1〉, 〈β2, b2〉; 〈σ
′

1, s
′

1〉, 〈σ2, s2〉) if b1(0) = s1(0) = e(0)
β2(0) = σ2(0) ∧ SC (〈ǫ′, e′〉, 〈β1, b1〉, 〈β

′

2, b
′

2〉; 〈σ1, s1〉, 〈σ
′

2, s
′

2〉) if b2(0) = s2(0) = e(0)
β1(0) = σ1(0) ∧ SC (〈ǫ′, e′〉, 〈β′

1, b
′

1〉, 〈β
′

2, b
′

2〉; 〈σ
′

1, s
′

1〉, 〈σ2, s2〉) if b1(0) = s1(0) = s2(0) = e(0)
β1(0) = σ1(0) ∧ SC (〈ǫ′, e′〉, 〈β′

1, b
′

1〉, 〈β
′

2, b
′

2〉; 〈σ1, s1〉, 〈σ
′

2, s
′

2〉) if b1(0) = s1(0) = s2(0) = e(0)

Constraint Automata The deterministic contraint automaton for the selectonr connector is

{B1}; {B2}; {E, B1, S1}, dB1
= dS1

; {E, B2, S2}, dB2
= dS2

; {E, B1, S1, B2}, dB1
= dS1

; {E, B2, S2, B1}, dB2
= dS2

;

Variations Surely there’s the variation which doesn’t lose data.

5.15 Shift-Lossy FIFO1 channel

Description This is a connector which is often used as a simple channel in the construction of
other connectors. It behaves similarly to a FIFO1 channel, except that it loses its current
value if its buffer is full to accept a new input value instead [2], [5], [4], [7].

Circuit The circuit for the overflow-lossy FIFO1 is

Exclusive
Router

FIFO 2

o out

in

It is represented by the icon

23

5.16 Overflow-Lossy FIFO1

Description This channel is the counterpart of the shift-lossy FIFO1 channel [4]. The data-loss
policy favours retaining older buffer values over newer arrivals.

Circuit The circuit for the overflow-lossy FIFO1 is

outin

It is represented by the icon

5.17 Initializer [2]

5.18 Terminator [2]

5.19 Flow Regulator [5], [7]

5.20 Sum

Description This connector has two input nodes and one output node. When two integer inputs
are available, their sum is subsequently made available on the output node [4].

Circuit There is no particular circuit for Sum. Arithmetic operations such as this can be supplied
to Reo as “components”.

ABT The ABT for sum is a ternary relation Sum defined for timed data streams 〈α, a〉, 〈β, b〉,
〈γ, c〉 by

Sum(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡ γ(0) = α(0) + β(0)

∧ max(a(0), b(0)) < c(0) < min(a(1), b(1))

∧ Sum(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉)

Constraint Automata (Comment: TODO: Requires parameterized automata.)

Variations Many variations are possible, including multiple input arguments or using a different
arithmetic operation or a relational operation. Variations in the amount of synchronicity
present are also possible.

5.21 Constant Replacer

Description This channel takes data from its input A and simultaneously replaces it with some
constant T on output B [4]

Circuit The Reo circuit for the Constant Replacer is

A

B

T

24

ABT The ABT for Constant Replacer is a binary relation CR(T), parameterized by the constant
T , defined for timed data streams 〈α, a〉, 〈β, b〉 by

CR(T)(〈α, a〉; 〈β, b〉) ≡ a = b ∧ β(0) = T ∧ β′ = β

Constraint Automata The deterministic constraint automata for a constant replacer is:

 {A,B}
 data(B)=T

5.22 Cycler

Description A cycler connector behaves as follows. The first input value through its node B

places the value High in its shift-lossy FIFO1 channel, ready for output through the V node.
Successive input values through B “cycle” through the remaining values in the sequence
Med, Low, restarting the cycle again from High, and make each value available, in turn, for
output through V , by overriding the previous contents of the shift-lossy FIFO1 channel [4].
Whenever a value is consumed through V , the sequencer resets the connector to restart the
cycle from its leftmost value, High.

Circuit The Reo circuit for the Cycler is

Exclusive
Router

H
igh

M
ed

L
ow

Sequencer with Reset
Reset

B

V

5.23 Valves

Description This connector behaves as a valve. It has three nodes A, B, and I. When in the
open state, data can flow synchronously from A to B. When in the closed state, no data
can flow between A and B. Data on the I node acts as a toggle, changing the state between
being open and closed. The circuit comes in two forms: initially open and initially closed [4].

Circuit The Reo circuits for an initially-open valve and an intially-closed value are:

25

x

0

Toggle

Flow

x

0

Toggle

Flow

Note that the circle in these figures corresponds to an exclusive router.

ABT The ABT for initially-open and initially-closed valves are binary relations Vo and Vc mutu-
ally defined for timed data streams 〈α, a〉 (flow), 〈β, b〉 (toggle) by

Vo(〈α, a〉, 〈τ, t〉; 〈β, b〉) ≡

a(0) = b(0) ∧ α(0) = β(0) ∧
Vo(〈α

′, a′〉, 〈τ, t〉; 〈β′, b′〉) if a(0) < t(0)
Vc(〈α, a〉, 〈τ ′, t′〉; 〈β, b〉) if t(0) < a(0)

Vc(〈α, a〉, 〈τ, t〉; 〈β, b〉) ≡

{

Vo(〈α, a〉, 〈τ, t〉; 〈β, b〉) if a(0) < t(0)
Vc(〈α, a〉, 〈τ ′, t′〉; 〈β, b〉) if t(0) < a(0)

Constraint Automata The constraint automata for an initially-open valve and an intially-closed
value are:

Open

Closed

{A,B} data(A)=data(B)

{I}{I}

Open

Closed

{A,B} data(A)=data(B)

{I}{I}

5.24 Short-circuit

Description This is not so much a circuit as a pitfall to avoid [3].

Circuit The circuit consists of a loop containing one or more synchronous chanels

ABT The behaviour of this circuit is the empty ABT (of the appropriate dimension).

Constraint Automata The behaviour of this circuit is the empty constraint automaton (one
node, no edges) over the appropriate collection of nodes.

Variations Any number of synchronous channels can be involved in the loop, giving a Transitive
short-circuit.

26

5.25 Drain

Description This connector has one input/sink node. All data sent to this node can always
immediately be accepted [3].

Circuit The Reo circuit for a drain is

ABT The ABT for this circuit is the complete set of timed data streams.

Constraint Automata This is the 1 constraint automata — it contains one node and one edge
with the node name (and no data constraint).

6 Examples

27

References

[1] F. Arbab. A channel-based coordination model for component composition, 2001.

[2] Farbab Arbab, Christel Baier, Frank de Boer, Jan Rutten, and Sirjani Marjan. On the synthesis
of reo component connectors. Submitted.

[3] Farhad Arbab. Rewrite rules for reo. Notes.

[4] Farhad Arbab. Abstract behavior types: a foundation model for components and their com-
position. SEN-R0305 ISSN 1386-369X, CWI, 2003.

[5] Farhad Arbab. Interactive Computation: The New Paradigm, chapter Coordination of Inter-
acting Concurrent Computations. To appear, 2004.

[6] Farhad Arbab and Jan J.M.M. Rutten. A coinductive calculus of component connec-
tors. In Proceedings of 16th International Workshop on Algebraic Development Techniques
(WADT’02), Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2002.

[7] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling component connec-
tors in Reo by constraint automata. Submitted, 2004.

[8] MohammadReza Mousavi, Marjan Sirjani, and Farhad Arbab. Operational semantics and
model checking of component connectors in reo.

28

Index

AsyncDrain, 9

Asynchronous drain, 2, 18

AsyncSpout, 9

Bag, 2, 2, 12, 13
Barrier Synchronizer, 2, 17

Constant Replacer, 2, 23

Cycler, 2, 24

DelaySet, 2, 2, 14, 14

Drain, 3, 26

Exclusive Router, 2, 18

Feedback Loop, 2, 18

FIFO, 6, 7
Filter, 2, 10

Flow Regulator, 2, 23

Inhibitor, 2, 21

Initializer, 2, 23

Interleaving connector, 19

LossyFIFO, 8

LossySync, 6

Merger, 2, 15

Or-Selector, 2, 21

Ordered, 2, 10

Orderedk, 2, 11
Ordering, 2, 19

Overflow-Lossy FIFO1, 2, 23

Replicator, 2, 15

Replicator Connector, 2, 19

Selector, 2, 22

Sequencer, 2, 19

Set, 2, 2, 12, 12

Shift-Lossy FIFO1, 2, 22

ShiftFIFO, 8

Short-circuit, 3, 25

Sum, 2, 23

Sync, 5

SyncDrain, 5

SyncSpout, 5

Take-Cue Regulator, 2, 16

Terminator, 2, 23

Transitive short-circuit, 25

UnboundedFIFO, 9

Valves, 2, 24

Write-Cue Regulator, 2, 17

29

