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Roadmap

Natural Deduction
I natural deduction proof system for propositional and predicate logic;
I forward and backward reasoning;
I soundness; completeness; compactness.

Typed Lambda Calculus
I terms; types; typing rules; computation;
I meta-theoretical results.

Proposition as Types
I intuitionistic understanding of logic;
I the Curry-Howard isomorphism;
I type-theoretical notions for proof-checking.

Higher-Order Logic and Type Theory
I deduction rules for HOL (following Church);
I higher-order logic and type theory;
I proof assistants based on type theory.

Coq in Brief
I main features of the Coq proof-assistant;
I Coq syntax; declarations and definitions; computation;
I proof development; some tactics for first-order reasoning.
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Natural Deduction
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Introduction

So far we have taken the “semantic” approach to logic. This, however, is
not the only possible point of view.

Instead of adopting the view based on the notion of truth, we can think of
logic as a codification of reasoning. This alternative approach to logic,
called “deductive”, focuses directly on the deduction relation that is induced
on formulas.

A proof system (or inference system) consists of a set of basic rules for
constructing derivations. Such a derivation is a formal object that encodes
an explanation of why a given formula – the conclusion – is deducible from a
set of assumptions.

The rules that govern the construction of derivations are called inference
rules and consist of zero or more premises and a single conclusion.
Derivations have a tree-like shape. We use the standard notation of
separating the premises from the conclusion by a horizontal line.

perm1 . . . perm
n

concl
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Natural deduction

The proof system we will present here is a formalisation of the reasoning
used in mathematics, and was introduced by Gerhard Gentzen in the first
half of the 20th century as a “natural” representation of logical derivations.
It is for this reason called natural deduction.

We choose to present the rules of natural deduction in sequent style.

A sequent is a judgment of the form � ` A, where � is a set of formulas
(the context) and A a formula (the conclusion of the sequent).

A sequent � ` A is meant to be read as “A can be deduced from the set of
assumptions �”, or simply “A is a consequence of �”.
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Natural deduction

The set of basic rules provided is intended to aid the translation of thought
(mathematical reasoning) into formal proof.

For example, if F and G can be deduced from �, then F ^G can also be deduced
from � .

This is the “^-introduction” rule

� ` F � ` G
� ` F ^G

^I

There are two “^-elimination” rules:

� ` F ^G
� ` F

^E1
� ` F ^G

� ` G
^E2
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Natural deduction

This system is intended for human use, in the sense that
I a person can guide the proof process;
I the proof produced is highly legible, and easy to understand.

This contrast with decision procedures that just produce a “yes/no” answer,

and may not give insight into the relationship between the assumption and

the conclusion.

We present natural deduction in sequent style, because
I it gives a clear representation of the discharging of assumptions;
I it is closer to what one gets while developing a proof in a

proof-assistant.
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Natural deduction for PL

An instance of an inference rule is obtained by replacing all occurrences of
each meta-variable by a phrase in its range. An inference rule containing no
premises is called an axiom schema (or simply, an axiom).

The proof system NPL of natural deduction for propositional logic is defined by
the rules presented in the next slide. A derivation (or proof) in NPL is inductively
defined by the following clause:

If
�1 ` A1 . . . �

n

` A
n

� ` A
(R)

is an instance of rule (R) of the proof system, and D
i

is a derivation with
conclusion �

i

` A
i

(for 1  i  n), then

D1 . . . D
n

� ` A
(R)

A sequent � ` A is derivable in NPL if it is the conclusion of some derivation.
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System NPL for classical propositional logic

� ` > true

A 2 �
� ` A

assumption

� ` A ^B

� ` A

^E1
� ` A ^B

� ` B

^E2
� ` A � ` B

� ` A ^B

^I

� ` A

� ` A _B

_I1
� ` B

� ` A _B

_I2
� ` A _B �, A ` C �, B ` C

� ` C

_E

�, A ` B

� ` A ! B

!I
� ` A � ` A ! B

� ` B

!E

�, A ` ?
� ` ¬A

¬I
� ` A � ` ¬A

� ` ?
¬E

� ` ?
� ` A

?E
�,¬A ` ?

� ` A

RAA

Maria João Frade (HASLab, DI-UM) Natural Deduction MFES 2013/14 9 / 84

Proof presentation

` ¬P ! (Q ! P ) ! ¬Q

¬P, Q ! P, Q ` Q ¬P, Q ! P, Q ` Q ! P

¬P, Q ! P, Q ` P

!E ¬P, Q ! P, Q ` ¬P

¬P, Q ! P, Q ` ?
¬E

¬P, Q ! P ` ¬Q

¬I

¬P ` (Q ! P ) ! ¬Q

!I

` ¬P ! (Q ! P ) ! ¬Q

!I

This example shows that even for such a reasonably simple formula, the size
of the tree already poses a problem from the point of view of its
representation.

For that reason, we shall adopt an alternative format for presenting bigger
proof trees.
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Backward reasoning

This presentation style in fact corresponds to a popular strategy for
constructing derivations. In backward reasoning one starts with the
conclusion sequent and chooses to apply a rule that can justify that
conclusion; one then repeats the procedure on the resulting premises.

` ¬P ! (Q ! P ) ! ¬Q

` ¬P ! (Q ! P ) ! ¬Q !I

1. ¬P ` (Q ! P ) ! ¬Q !I

1. ¬P,Q ! P ` ¬Q ¬I

1. ¬P,Q ! P,Q ` ? ¬E

1. ¬P,Q ! P,Q ` P !E

1. ¬P,Q ! P,Q ` Q assumption
2. ¬P,Q ! P,Q ` Q ! P assumption

2. ¬P,Q ! P,Q ` ¬P assumption

In a proof-assistant the proof is usually developed backwards.
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Forward reasoning

If one prefers to present derivations in a forward fashion, which corresponds
to constructing derivations using the forward reasoning strategy, then it is
customary to simply give sequences of judgments, each of which is either an
axiom or follows from a preceding judgment in the sequence, by an instance
of an inference rule.

` ¬P ! (Q ! P ) ! ¬Q

Judgment Justification
1. ¬P,Q ! P,Q ` Q assumption
2. ¬P,Q ! P,Q ` Q ! P assumption
3. ¬P,Q ! P,Q ` P !E 1, 2
4. ¬P,Q ! P,Q ` ¬P assumption
5. ¬P,Q ! P,Q ` ? ¬E 3, 4
6. ¬P,Q ! P ` ¬Q ¬I 5
7. ¬P ` (Q ! P ) ! ¬Q !I 6
8. ` ¬P ! (Q ! P ) ! ¬Q !I 7
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In a proof-assistant

In a proof-assistant, the usual approach is to develop the proof backwards
by a method that is known as goal directed proof:

1 The user enters a statement that he wants to prove.

2 The system displays the formula as a formula to be proved, possibly
giving a context of local facts that can be used for this proof.

3 The user enters a command (a basic rule or a tactic) to decompose
the goal into simpler ones.

4 The system displays a list of formulas that still need to be proved.

When there are no more goals the proof is complete!
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An example

` A _ ¬A proved in backward direction

` A _ ¬A RAA
1. ¬(A _ ¬A) ` ? ¬E

1. ¬(A _ ¬A) ` ¬(A _ ¬A) assumption
2. ¬(A _ ¬A) ` A _ ¬A _I2

1. ¬(A _ ¬A) ` ¬A ¬I

1. ¬(A _ ¬A), A ` ? ¬E

1. ¬(A _ ¬A), A ` A _ ¬A _I1

1. ¬(A _ ¬A), A ` A assumption
2. ¬(A _ ¬A), A ` ¬(A _ ¬A) assumption
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Admissible rule

An inference rule is admissible in a formal system if every judgement that
can be proved making use of that rule can also be proved without it (in
other words the set of judgements of the system is closed under the rule).

Weakening

The following rule, named weakening, is admissible in NPL

� ` A
�, B ` A
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Derivable rule

An inference rule is said to be derivable in a proof system if the conclusion
of the rule can be derived from its premisses using the other rules of the
system.

Example of a derivable rule

Judgment Justification
1. � ` A ^B premise
2. � ` A ^E1 1
3. � ` B ^E2 1
4. � ` B ^A ^I 3, 2

Hence the rule
� ` A ^B
� ` B ^A is a derivable.
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Soundness, completeness and compactness of PL

Soundness

If � ` F , then � |= F .

Completeness

If � |= F , then � ` F .

Compactness

A (possible infinite) set of formulas � is satisfiable if and only if every
finite subset of � is satisfiable.
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Exercises

Prove that P ! Q ` ¬Q ! ¬P holds in NPL.

Prove that ¬Q ! ¬P ` P ! Q holds in NPL. (classical)

Prove that the folowing rules are derivable in NPL.
1

� ` A �, A ` B

� ` B
cut

2

� ` A
� ` ¬¬A

¬¬I

3 (classical)
�, A ` B �,¬A ` B

� ` B
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Natural deduction for FOL

We present here a natural deduction proof system for classical first-order
logic in sequent style.

Derivations in FOL will be similar to derivations in PL, except that we will
have new proof rules for dealing with the quantifiers.

More precisely, we overload the proof rules of PL, and we add introduction
and elimination rules for the quantifiers. This means that the proofs
developed for PL still hold in this proof system.

The proof system NFOL of natural deduction for first-order logic is defined by the
rules presented in the next slide.

An instance of an inference rule is obtained by replacing all occurrences of
each meta-variable by a phrase in its range. In some rules, there may be side
conditions that must be satisfied by this replacement. Also, there may be
syntactic operations (such as substitutions) that have to be carried out after
the replacement.
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System NFOL for classical first-order logic

� ` > true

� 2 �

� ` � assumption

� ` � ^  
� ` �

^E1
� ` � ^  

� `  
^E2

� ` � � `  
� ` � ^  

^
I

� ` �
� ` � _  

_I1
� `  

� ` � _  
_I2

� ` � _  �,� ` ✓ �, ` ✓
� ` ✓

_E

�,� `  
� ` �!  

!I
� ` � � ` �!  

� `  
!E

�,� ` ?
� ` ¬�

¬I
� ` � � ` ¬�

� ` ?
¬E

� ` ?
� ` � ?E

�,¬� ` ?
� ` � RAA
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System NFOL for classical first-order logic

Proof rules for quantifiers.

� ` �[y/x]
� ` 8x.�

8I (a)
� ` 8x.�

� ` �[t/x]
8E

� ` �[t/x]
� ` 9x.�

9I
� ` 9x.� �,�[y/x] ` ✓

� ` ✓ 9E (b)

(a) y must not occur free in either � or �.

(b) y must not occur free in either �, � or ✓.
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System NFOL for classical first-order logic

Rule 8I tells us that if �[y/x] can be deduced from � for a variable y that
does not occur free in either � or �, then 8x.� can also be deduced from �
because y is fresh. The side condition (a) stating that y must not be free in
� or in any formula of � is crucial for the soundness of this rule. As y is a
fresh variable we can think of it as an indeterminate term, which justifies
that 8x.� can be deduced from �.

Rule 8E says that if 8x.� can be deduced from � then the x in � can be
replaced by any term t assuming that t is free for x in � (this is implicit in
the notation). It is easy to understand that this rule is sound: if � is true for
all x, then it must be true for any particular term t.

Rule 9I tells us that if it can be deduced from � that �[t/x] for some term t
which is free for x in � (this proviso is implicit in the notation), then 9x.�
can also be deduced from �.

The second premise of rule 9E tells us that ✓ can be deduced if, additionally
to �, � holds for an indeterminate term. But the first premise states that
such a term exists, thus ✓ can be deduced from � with no further
assumptions.
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An example

(9x.¬ ) ! ¬8x. is a theorem

` (9x.¬ ) ! ¬8x. !I

1. 9x.¬ ` ¬8x. ¬I

1. 9x.¬ ,8x. ` ? 9E

1. 9x.¬ ,8x. ` 9x.¬ assumption
2. 9x.¬ ,8x. ,¬ [x0/x] ` ? ¬E

1. 9x.¬ ,8x. ,¬ [x0/x] `  [x0/x] 8E

1. 9x.¬ ,8x. ,¬ [x0/x] ` 8x. assumption
2. 9x.¬ ,8x. ,¬ [x0/x] ` ¬ [x0/x] assumption

Note that when the rule 9E is applied a fresh variable x0 is introduced. The side

condition imposes that x0 must not occur free either in 9x.¬ or in 8x. .
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An example

Instead of explicitly write the substitutions, the following derivation adopts the
convention to establish the converse implication.

�(x1, . . . , xn

) to denote a formula having free variables x1, . . . , xn

and �(t1, . . . , tn

)
denote the formula obtained by replacing each free occurrence of x

i

in � by the term t

i

.

(¬8x. (x)) ! 9x.¬ (x) is a theorem

` (¬8x. (x)) ! 9x.¬ (x) !I

1. ¬8x. (x) ` 9x.¬ (x) RAA
1. ¬8x. (x),¬9x.¬ (x) ` ? ¬E

1. ¬8x. (x),¬9x.¬ (x) ` ¬8x. (x) assumption
2. ¬8x. (x),¬9x.¬ (x) ` 8x. (x) 8I

1. ¬8x. (x),¬9x.¬ (x) `  (x0) RAA
1. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` ? ¬E

1. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` ¬9x.¬ (x) assumption
2. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` 9x.¬ (x) 9I

1. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` ¬ (x0) assumption
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Soundness, completeness and compactness of NFOL

Soundness

If � ` �, then � |= �.

Completeness

If � |= �, then � ` �.

Compactness

A (possible infinite) set of sentences � is satisfiable if and only if every
finite subset of � is satisfiable.
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Deductive approach vs semantic approach

Deductive approach
I Based on a proof system.
I The goal is to prove that a formula is valid.
I The tools based on this approach are called proof-assistants and allow

the interactive development of proofs.
I In the proof process a derivation (proof tree) is constructed.

Semantic approach
I Based on the notion of model.
I The goal is to prove that a set of formulas is satisfiable.
I The SMT-solvers are tools based on this approach, which are decision

procedures that produce a “SAT/UNSAT/UNKNOW” answer.
I If the answer is SAT, a model is produced.
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Exercises

Prove that the following sequents hold in NFOL:

1 (8x.�(x)) _ (8x. (x)) ` 8x.�(x) _  (x)

2 9x.9y.�(x, y) ` 9y.9x.�(x, y)

Show that the following rules are derivable in NFOL:

1

�,8x.�,�[t/x] `  
�,8x.� `  

2

�,�[y/x] `  
�,9x.� `  if y does not occur free in � or  
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Higher-order logic

There is no need to stop at first-order logic; one can keep going.

We can add to the language “super-predicate” symbols, which take as
arguments both individual symbols and predicate symbols. And then
we can allow quantification over super-predicate symbols.

And we can keep going further...

We reach the level of type theory.

Higher-order logics allows quantification over “everything”.

One needs to introduce some kind of typing scheme.

The original motivation of Church (1940) to introduce simple type
theory was to define higher-order (predicate) logic.
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Typed Lambda Calculus
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Lambda calculus

The lambda calculus was developed by Alonzo Church in the early 1930’s to
serve as a foundation for higher-order logic.

Church actually developed a typed version of the lambda calculus first and
later considered the calculus without types.

However, the untyped calculus was not suitable as a foundation for logic.

The untyped calculus became successful as a “pure calculus of functions”,
ignoring the logic aspect. The emphasis on this calculus was due to Haskell
Curry, who independently invented, in the early 1930’s, a system called
combinatory calculus in order to study variables and substitutions.

It turned out that the combinatory calculus was equivalent to the lambda
calculus and have very similar ideas.

The theory of programming languages came to use the lambda calculus as
the foundational system for studying all the concepts related to
programming.
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Simply typed lambda calculus - �!

Types

Fix an arbitrary non-empty set G of ground types.

Types are just ground types or arrow types:

⌧,� ::= T | ⌧!� where T 2 G

Terms
Assume a denumerable set of variables: x, y, z, . . .

Fix a set of term constants for the types.

Terms are built up from constants and variables by �-abstraction and
application:

e, a, b ::= c | x | �x :⌧.e | a b where c is a term constant
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Simply typed lambda calculus - �!

Convention
The usual conventions for omitting parentheses are adopted:

the arrow type construction is right associative;

application is left associative; and

the scope of � extends to the right as far as possible.

Usually, we write

⌧!�!⌧ 0!�0 instead of ⌧!(�!(⌧ 0!�0))

a b c d instead of ((a b) c) d

�x :�.�b :⌧!�.f x (�z :⌧.b z) instead of
�x :�.(�b :⌧!�.((f x) (�z :⌧.b z)))

(�y :A!�.�x :�!(A!�)!⌧.x (y a) y) (�z :A.f z) instead of
(�y :A!�.(�x :�!((A!�)!⌧).(x (y a)) y)) (�z :A.f z)
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Simply typed lambda calculus - �!
Free and bound variables

FV(e) denote the set of free variables of an expression e

FV(c) = {}
FV(x) = {x}

FV(�x :⌧.a) = FV(a)\{x}
FV(a b) = FV(a) [ FV(b)

A variable x is said to be free in e if x 2 FV(e).
A variable in e that is not free in e is said to be bound in e.

An expression with no free variables is said to be closed.

Convention
We identify terms that are equal up to a renaming of bound variables
(or ↵-conversion). Example: (�x :⌧. yx) = (�z :⌧. yz).
We assume standard variable convention, so, all bound variables are
chosen to be di↵erent from free variables.
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Simply typed lambda calculus - �!

Typing

Functions are classified with simple types that determine the type of their
arguments and the type of the values they produce, and can be applied only
to arguments of the appropriate type.

We use contexts to declare the free variables: � ::= hi | �, x : ⌧

Typing rules

(var)
(x : �) 2 �
� ` x : �

(const)
c has type ⌧

� ` c : ⌧

(abs)
�, x : ⌧ ` e : �

� ` (�x :⌧.e) : ⌧!�
(app) � ` a : ⌧!� � ` b : ⌧

� ` (a b) : �

A term e is well-typed if there are � and � such that � ` e : �.
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Simply typed lambda calculus - �!

Example of a typing derivation

z : ⌧, y : ⌧!⌧ ` y : ⌧!⌧

(var)
z : ⌧, x : ⌧!⌧ ` z : ⌧

(var)

z : ⌧, y : ⌧!⌧ ` yz : ⌧

(app)

z : ⌧ ` (�y :⌧!⌧.yz) : (⌧!⌧)!⌧

(abs)
z : ⌧, x : ⌧ ` x : ⌧

(var)

z : ⌧ ` (�x :⌧.x) : ⌧!⌧

(abs)

z : ⌧ ` (�y :⌧!⌧.yz)(�x :⌧.x) : ⌧

(app)
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Simply typed lambda calculus - �!

Substitution

Substitution is a function from variables to expressions.

[e1/x1, . . . , en

/x
n

] to denote the substitution mapping x
i

to e
i

for
1  i  n, and mapping every other variable to itself.

[~e/~x] is an abbreviation of [e1/x1, . . . , en

/x
n

]
t[~e/~x] denote the expression obtained by the simultaneous
substitution of terms e

i

for the free occurrences of variables x
i

in t.

Remark
In the application of a substitution to a term, we rely on a variable
convention. The action of a substitution over a term is defined with
possible changes of bound variables.

(�x :⌧.y x)[wx/y] = (�z :⌧.y z)[wx/y] = (�z :⌧.w x z)
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Simply typed lambda calculus - �!
Computation

Terms are manipulated by the �-reduction rule that indicates how to
compute the value of a function for an argument.

�-reduction

�-reduction, !
�

, is defined as the compatible closure of the rule

(�x :⌧.a) b !
�

a[b/x]

I ⇣
�

is the reflexive-transitive closure of !
�

.

I =
�

is the reflexive-symmetric-transitive closure of !
�

.

I terms of the form (�x :⌧.a) b are called �-redexes

By compatible closure we mean that
if a !

�

a0 , then ab !
�

a0b
if b !

�

b0 , then ab !
�

ab0

if a !
�

a0 , then �x :⌧.a !
�

�x :⌧.a0
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Simply typed lambda calculus - �!

Usually there are more than one way to perform computation.

(�x :⌧.f(fx))((�x :⌧.x)z)

��*
�

(�x :⌧.f(fx))((�y :⌧!⌧.yz)(�x :⌧.x))

HHj
�

f(f((�y :⌧!⌧.yz)(�x :⌧.x)))

Normalization
The term a is in normal form if it does not contain any �-redex, i.e.,
if there is no term b such that a !

�

b.

The term a strongly normalizes if there is no infinite �-reduction
sequence starting with a.
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Properties of �!

Uniqueness of types

If � ` a : � and � ` a : ⌧ , then � = ⌧ .

Type inference

The type synthesis problem is decidable, i.e., one can deduce automatically
the type (if it exists) of a term in a given context.

Subject reduction

If � ` a : � and a⇣
�

b , then � ` b : � .

Strong normalization

If � ` e : �, then all �-reductions from e terminate.
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Properties of �!

Confluence
If a =

�

b , then a⇣
�

e and b⇣
�

e , for some term e .

Substitution property

If �, x : ⌧ ` a : � and � ` b : ⌧ , then � ` a[b/x] : � .

Thinning

If � ` e : � and � ✓ �0, then �0 ` e : �.

Strengthening

If �, x : ⌧ ` e : � and x 62 FV(e), then � ` e : �.
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�! - Exercices

In some of the following exercices we have omitted the type annotations to
simplify the presentation.

List the free variables of the following lambda terms

I �x.((�z.�u.�v. u v z) x f y)
I �y.�z.(x z) (y z)
I �x.f x 1
I �x.((�z.�u.�v. u v z) x f y)

Write down the result of the following substitutions

I (�x.�y. x z)[(�v.v (r 3))/z]
I (�x.�y. x z)[�y. 3/z]
I (�x.�y. x z)[y 3/x]
I (�x.�y. x z)[y 3/z]

�-reduce the term as far as possible the following term

(�f : Int! Int.�x : Int.f (f x)) (�y : Int. + y 2) 3
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�! - Exercices

Write down possible types for the following lambda terms.

I �f.�y. f y y
I �g.�x.�y.�z. g (x z) (y z)
I (�x. x x)(�x. x x)
I (�f.�y. f y y) (�f.�y. f y y)

Let K = �x.�y. x and S = �x.�y.�z. x z (y z).
I Write down type annotations for K and S so that they become

well-typed terms.
I Reduce SKK to normal form.

Consider the following lambda terms:

M = �x. (�z. z x) ((�r.�s. s r) y f))
N = �x.((�z.�u.�v. u v z) x f y)

Use �-reduction to show that M and N are �-equivalent.
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Beyond simply typed lambda calculus

The simply typed lambda calculus is simple and elegant but it has a
weak expressive power.

Subsequent research has focused on extending simple typed lambda
calculus to systems with the same meta-theoretical properties, but
with greater expressive power.

Some of the major landmarks are constructive type theory and pure
type systems, just to name two.

These extensions have contributed to the fact that during the
twentieth century, types permeated programming languages and have
become standard tools in logic.
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Proposition as Types
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Two branches of formal logic: classical and intuitionistic

The classical understanding of logic is based on the notion of truth.
The truth of a statement is “absolute” and independent of any
reasoning, understanding, or action. So, statements are either true or
false, and (A _ ¬A) must hold no matter what the meaning of A is.

Intuitionistic (or constructive) logic is a branch of formal logic that
rejects this guiding principle. It is based on the notion os proof. The
judgement about a statement is based on the existence of a proof (or
“construction”) of that statement.
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Classical versus intuitionistic logic

Classical logic is based on the notion of truth.
I The truth of a statement is “absolute”: statements are either true or

false.
I Here “false” means the same as “not true”.
I � _ ¬� must hold no matter what the meaning of � is.
I Information contained in the claim � _ ¬� is quite limited.
I Proofs using the excluded middle law, � _ ¬�, or the double negation

law, ¬¬�! � (proof by contradiction), are not constructive.

Intuitionistic (or constructive) logic is based on the notion of proof.
I Rejects the guiding principle of “absolute” truth.
I � is “true” if we can prove it.
I � is “false” if we can show that if we have a proof of � we get a

contradiction.
I To show “� _ ¬�” one have to show � or ¬�. (If neither of these can

be shown, then the putative truth of the disjunction has no
justification.)
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Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or
“construction” of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

A proof of � ^  is given by presenting a proof of � and a proof of  .

A proof of � _  is given by presenting either a proof of � or a proof of  
(plus the stipulation that we want to regard the proof presented as evidence
for � _  ).

A proof �!  is a construction which permits us to transform any proof of
� into a proof of  .

Absurdity ? (contradiction) has no proof; a proof of ¬� is a construction
which transforms any hypothetical proof of � into a proof of a contradiction.

A proof of 8x.�(x) is a construction which transforms a proof of d 2 D (D
the intended range of the variable x) into a proof of �(d).

A proof of 9x.�(x) is given by providing d 2 D, and a proof of �(d).
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Intuitionistic logic

Some classical tautologies that are not intuitionistically valid

� _ ¬� excluded middle law
¬¬�! � double negation law
((�!  ) ! �) ! � Pierce’s law
(�!  ) _ ( ! �)
(�!  ) ! (¬� _  )
¬(� ^  ) ! (¬� _ ¬ )
(¬�!  ) ! (¬ ! �)
(¬�! ¬ ) ! ( ! �)
¬8x.¬�(x) ! 9x.�(x)
¬9x.¬�(x) ! 8x.�(x)
¬8x.�(x) ! 9x.¬�(x)
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Semantics of intuitionistic logic

The semantics of intuitionistic logic are rather more complicated than for
the classical case. A model theory can be given by

Heyting algebras or,

Kripke semantics.
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Proof systems for intuitionistic logic

A natural deduction system for intuitionistic propositional logic or
intuitionistic first-order logic are given by the set of rules presented for
PL or FOL, respectively, except the reductio ad absurdum rule (RAA).

Traditionally, classical logic is defined by extending intuitionistic logic
with the reductio ad absurdum law, the double negation law, the
excluded middle law or with Pierce’s law.
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The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural

deduction for intuitionistic logic and �-calculus.

Observe the analogy between the implicational fragment of intuitionistic
propositional logic and �!

Implicational fragment of PL �!

� 2 �
� ` � (assumption)

(x : �) 2 �
� ` x : �

(var)

�,� `  
� ` �!  

(!
I

)
�, x : � ` e :  

� ` (�x :�.e) : �! 
(abs)

� ` �!  � ` �
� `  (!

E

)
� ` a : �! � ` b : �

� ` (a b) :  
(app)
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The Curry-Howard isomorphism

The proposition-as-types interpretation establishes a precise relation
between intuitionistic logic and �-calculus:

a proposition A can be seen as a type (the type of its proofs);

and a proof of A as a term of type A.

Hence:

A is provable () A is inhabited

proof checking boils down to type checking.

This analogy between systems of formal logic and computational calculi
was first discovered by Haskell Curry and William Howard.
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Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user
types in tactics, guiding the proof development system to construct a proof-term.
At the end, this term is type checked and the type is compared with the original
goal.

In connection to proof checking there are some decision problems:

Type Checking Problem (TCP) � ` t : A ?

Type Synthesis Problem (TSP) � ` t : ?

Type Inhabitation Problem (TIP) � ` ? : A

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.
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Type-theoretic approach to interactive theorem proving

provability of formula A () inhabitation of type A
proof checking () type checking

interactive theorem proving () interactive construction of a term
of a given type

So, decidability of type checking is at the core of the type-theoretic
approach to theorem proving.
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Higher-Order Logic and Type Theory
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Higher-order logic

Church used simple theory of types to define higher-order logic.

In �!we add the following:

prop as a ground type (to denote the sort of propositions)

): prop!prop!prop (implication)

8
�

: (�!prop)!prop (for each type �)

This defines the language of higher-order logic (HOL).

Thus, an expression of type

⌧!�, represents a function from individuals of type ⌧ to individuals
of type �.

�!prop, represents a unary predicate over individuals of type �.

prop, is defined to be a proposition.
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Higher-order logic

The induction principle can be expressed in HOL.

8
N!prop( �P :N!prop. (P 0)

) (8
N

(�n :N.(P n ) P (S n))))
) 8

N

(�x :N.P x) )

We use the following notation:

8P :N!prop.( (P 0)
) (8n :N. (P n ) P (S n)))
) 8x :N.P x )
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Deduction rules for HOL (following Church)

Natural deduction style

Rules are “on top” of simple type theory

Judgements are of the form: � `�  

I � =  1, . . . , n

I � is a �!- context

I � `  : prop, � `  1 : prop, ..., � `  
n

: prop
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Deduction rules for HOL (following Church)

(axiom) � `� � if � 2 �

()
I

)
�,� `�  

� `� �)  

()
E

)
� `� �)  � `� �

� `�  

(8
I

)
� `�,x:�  

� `� 8x :�. if x 62 FV(�)

(8
E

)
� `� 8x :�. 
� `�  [e/x] if � ` e : �

(conversion)
� `�  

� `� � if � =
�
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Higher-order logic and type theory

Following the Curry-Howard isomorphism, why not introduce a �-term notation
for proofs ?

(axiom) � `� x : � if x : � 2 �

()
I

)
�, x : � `� e :  

� `� (�x :�.e) : �)  

()
E

)
� `� a : �)  � `� b : �

� `� (a b) :  

(8
I

)
� `�,x:� e :  

� `� (�x :�.e) : 8x :�. if x 62 FV(�)

(8
E

)
� `� t : 8x :�. 

� `� (t e) :  [e/x] if � ` e : �

(conversion )
� `� t :  
� `� t : � if � =

�
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Higher-order logic and type theory

Here we have two “levels” of types theories:
I the (simple) type theory describing the language of HOL
I the type theory for the proof-terms of HOL

These levels can be put together into one type theory.
I Instead of having two separate categories of expressions (terms and

types) we have a unique category of expressions, which are called
pseudo-terms.

I There exists a set of sorts (constants that denote the universes of the
type system) hierarchically organized and typing rules that determine
which dependent function types may be found and in which sort they
live.
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Higher-order logic and type theory

The set T of pseudo-terms is defined by

A, B,M, N ::= s | x | M N | �x :A.M | ⇧x :A. B

x 2 V (a countable set of variables) and s 2 S (a set of sorts).

Both ⇧ and � bind variables.

Both ) and 8 are generalized by a single construction ⇧.

We write A!B instead of ⇧x :A. B whenever x 62 FV(B).

The typing rules for abstraction and application became

(abs)

�, x :A ` M : B � ` (⇧x :A. B) : s

� ` (�x :A.M) : (⇧x :A. B)

(app)

� ` M : (⇧x :A. B) � ` N : A

� ` MN : B[N/x]
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The reliability of machine checked proofs

Machine assisted theorem proving:

I helps to deal with large problems;
I prevents us from overseeing details;
I does the bookkeeping of the proofs.

But, why would one believe a system that says it has verified a proof?

The proof checker should be a very small program that can be verified by
hand, giving the highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates
proof-objects (of some form) that can be checked by an “easy”
algorithm.
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Proof assistants based on type theory

The first systems of proof checking (type checking) based on the
propositions-as-types principle were the systems of the AUTOMATH project
(1967).

Modern proof assistants, aggregate to the proof checker a proof-development
system for helping the user to develop the proofs interactively.

In a proof-assistant, after formalizing the primitive notions of the theory
(under study), the user develops the proofs interactively by means of (proof)
tactics, and when a proof is finished a “proof term” (or simply a “proof
script”) is created.
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Encoding of logic in type theory

Shallow encoding (Logical Frameworks)
I The type theory is used as a logical framework, a meta system for

encoding a specific logic one wants to work with.

I Usually, the proof-assistants based on this kind of encoding do not
produce standard proof-objects, just proof-scripts.

I Examples: HOL (based on the Church’s simple type theory), Isabelle
(based on intuitionistic simple type theory).

Direct encoding
I Each logical construction have a counterpart in the type theory.

I Theorem proving consists of the (interactive) construction of a
proof-term, which can be easily checked independently.

I Examples: Coq (based on the Calculus of Inductive Constructions),
Agda (based on Martin-Lof’s type theory), Lego (based on the
Extended Calculus of Constructions), Nuprl (based on extensional
Martin-Lof’s type theory).
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Coq in Brief
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The Coq proof-assistant

The Coq system is a formal proof management system that
I allows the expression of mathematical assertions, and mechanically

checks proofs of these assertions;
I helps to find formal proofs;
I extracts a certified program from the constructive proof of its formal

specification.

Typical applications include the formalization of mathematics and the
formalization of programming languages semantics.

The underlying formal language of Coq is a Calculus of Constructions
with inductive definitions:

the Calculus of Inductive Constructions (CIC)
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The Coq proof-assistant

Main features:

interactive theorem proving

functional programming language

powerful specification language
(includes dependent types and inductive definitions)

tactic language to build proofs

type-checking algorithm to check proofs

More concrete stu↵:

3 sorts to classify types: Prop, Set, Type

inductive definitions are primitive

elimination mechanisms on such definitions
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The Coq proof-assistant

In CIC all objects have a type. There are

types for functions (or programs)

atomic types (especially datatypes)

types for proofs

types for the types themselves.

Types are classified by the three basic sorts

Prop (logical propositions)

Set (mathematical collections)

Type (abstract types)

which are themselves atomic abstract types.
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Coq syntax

�x :A.� y :A!B. y x fun (x:A) (y:A->B) => y x

8x :A. P (x)!P (x) forall x:A, P x -> P x

Inductive types

Inductive nat :Set := O : nat
| S : nat -> nat.

This definition yields: – constructors: O and S
– recursors: nat ind, nat rec and nat rect

General recursion and case analysis

Fixpoint double (n:nat) :nat :=
match n with
| O => O
| (S x) => S (S (double x))

end.
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Environment

In the Coq system the well typing of a term depends on an environment
which consists in a global environment and a local context.

The local context is a sequence of variable declarations, written x : A (A is
a type) and “standard” definitions, written x := t : A (that is abbreviations
for well-formed terms).

The global environment is the list of global declarations and definitions.
This includes not only assumptions and “standard” definitions, but also
definitions of inductive objects. (The global environment can be set by
loading some libraries.)

We frequently use the names constant to describe a globally defined
identifier and global variable for a globally declared identifier.

The typing judgments are as follows:

E |� ` t : A
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Declarations and definitions

The environment combines the contents of initial environment, the loaded
libraries, and all the global definitions and declarations made by the user.

Loading modules
Require Import ZArith.
This command loads the definitions and declarations of module ZArith which is
the standard library for basic relative integer arithmetic.

The Coq system has a block mechanism (similar to the one found in many
programming languages) Section id. ... End id. which allows to manipulate the
local context (by expanding and contracting it).

Declarations

Parameter max int : Z. Global variable declaration
Section Example.
Variables A B : Set. Local variable declarations
Variables Q : Prop.
Variables (b:B) (P : A->Prop).
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Declarations and definitions

Definitions

Definition min int := (1 - max int) Global definition

Let FB := B -> B. Local definition

Proof-terms

Lemma trivial : forall x:A, P x -> P x.
intros x H.
exact H.
Qed.

Using tactics a term of type forall x:A, P x -> P x has been created.

Using Qed the identifier trivial is defined as this proof-term and add to
the global environment.
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Computation

Computations are performed as series of reductions. The Eval command
computes the normal form of a term with respect to some reduction rules (and
using some reduction strategy: cbv or lazy).

�-reduction for compute the value of a function for an argument:

(�x :A. a) b !
�

a[b/x]

�-reduction for unfolding definitions:

e !
�

t if (e := t) 2 E |�

◆-reduction for primitive recursion rules, general recursion, and case analysis

⇣-reduction for local definitions: let x := a in b !
⇣

b[a/x]

Note that the conversion rule is

E |� ` t : A E |� ` B : s

E |� ` t : B
if A =

�◆�⇣

B and s 2 {Prop,Set,Type}
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Proof example

Section EX.

Variables (A:Set) (P : A->Prop).

Variable Q:Prop.

Lemma example : forall x:A, (Q -> Q -> P x) -> Q -> P x.

Proof.

intros x h g.

apply h.

assumption.

assumption.

Qed.

example = �x :A.�h :Q! Q!P x.�g :Q. h g g

Print example.

example =

fun (x : A) (h : Q -> Q -> P x) (g : Q) => h g g

: forall x : A, (Q -> Q -> P x) -> Q -> P x
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Proof example

Observe the analogy with the lambda calculus.

example = �x :A.�h :Q! Q!Px.�g :Q. h g g

A : Set, P : A!Prop, Q : Prop ` example : 8x :A, (Q ) Q ) Px) ) Q ) Px

End EX.

Print example.

example =

fun (A:Set) (P:A->Prop) (Q:Prop) (x:A) (h:Q->Q->P x) (g:Q) => h g g

: forall (A : Set) (P : A -> Prop) (Q : Prop) (x : A),

(Q -> Q -> P x) -> Q -> P x

` example : 8A :Set, 8P :A!Prop, 8Q :Prop, 8x :A, (Q ) Q ) P x) ) Q ) P x
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Tactics for first-order reasoning

Proposition (P ) Introduction Elimination (H of type P )
? elim H, contradiction
¬A intro apply H
A ^B split elim H, destruct H as [H1 H2]
A ) B intro apply H
A _B left, right elim H, destruct H as [H1|H2]
8x :A. Q intro apply H
9x :A. Q exists witness elim H, destruct H as [x H1]
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Some more tactics

Some basic tactics

intro, intros – introduction rule for ⇧ (several times)

apply – elimination rule for ⇧

assumption – match conclusion with an hypothesis

exact – gives directly the exact proof term of the goal

Some automatic tactics

trivial – tries those tactics that can solve the goal in one step.

auto – tries a combination of tactics intro, apply and assumption using
the theorems stored in a database as hints for this tactic.

tauto – useful to prove facts that are tautologies in intuitionistic PL.

intuition – useful to prove facts that are tautologies in intuitionistic PL.

firstorder – useful to prove facts that are tautologies in intuitionistic FOL.
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Notation, overloading and interpretation scopes

To simplify the input of expressions, the Coq system introduces symbolic
abbreviations (called notations) denoting some term or term pattern.

Some notations are overloaded.

One can find the function hidden behind a notation by using the Locate
command.

Notation "A /\ B" := (and A B).
Locate "*".
Locate "/\".

Moreover, the Coq system provides a notion of interpretation scopes, which define
how notations are interpreted.

Scopes may be opened and several scopes may be opened at a time.

When a given notation has several interpretations, the most recently opened
scope takes precedence.

One can use the syntax (term)%key to bound the interpretation of term to
the scope key.
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Implicit arguments

Some typing information in terms are redundant.

A subterm can be replaced by symbol if it can be inferred from the other parts of the

term during typing.

Definition comp : forall A B C:Set, (A->B) -> (B->C) -> A -> C

:= fun A B C f g x => g (f x).

Definition example (A:Set) (f:nat->A) := comp _ _ _ S f.

The implicit arguments mechanism makes possible to avoid in Coq expressions. The

arguments that could be inferred are automatically determined and declared as implicit

arguments when a function is defined.

Set Implicit Arguments.

Definition comp1 : forall A B C:Set, (A->B) -> (B->C) -> A -> C

:= fun A B C f g x => g (f x).

Definition example1 (A:Set) (f:nat->A) := comp1 S f.

Maria João Frade (HASLab, DI-UM) Coq in Brief MFES 2013/14 80 / 84



Implicit arguments

A special syntax (using @) allows to refer to the constant without implicit arguments.

Check (@comp1 nat nat nat S S).

It is also possible to specify an explicit value for am implicit argument.

Check (comp1 (C:=nat) S).

The generation of implicit arguments can be disabled with

Unset Implicit Arguments.

It is possible to enforce some implicit arguments.

Definition comp2 : forall A B C:Set, (A->B) -> (B->C) -> A -> C

:= fun A B C f g x => g (f x).

Implicit Arguments comp2 [A C].

Definition example2 (A:Set) (f:nat->A) := comp2 nat S f.

Print Implicit example2.

Print Implicit comp2.
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Proof irrelevance

Let P be a proposition and t a term of type P.

The following commands are not equivalent:
Theorem name : P.
Proof t.

Definition name : P := t.

A definition made with Definition or Let is transparent: its value t and
type P are both visible for later use.

A definition made with Theorem, Lemma, etc., is opaque: only the type P
and the existence of the value t are made visible for later use.

Transparent definition can be unfolded and can be subject to �-reduction,
while opaque definitions cannot.
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Coq - software, documentation, contributions, tutorials

http://coq.inria.fr/
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Exercises

Load the file lessonCoq1.v in the Coq proof assistant. Analyse the
examples and solve the exercises proposed.
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