
Architectural design: the coordination
perspective

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

12 June, 2014

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Software architecture for reactive systems

There is no general-purpose, universally tailored, approach to
architectural design of complex and reactive systems

Therefore, the course

• introduces different models for reactive systems

• discusses their architectural design

• with (reasonable) tool support for modelling and analysis

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Software architecture for reactive systems

• Introduction to software architecture

• Models and logics for reactive systems
• Classical (non deterministic) (mCRL2)
• Timed (with real time constraints) (Uppaal)
• Probabilistic (PRISM)
• Cyber-physical (KeYmaera)

• Architecture for reactive systems
• An architectural description language (AADL)
• Component-oriented architectural design
• Coordination-oriented architectural design

• Paradigm: The Reo exogenous coordination model
• Extension: Probabilistic reactive systems (PRISM)
• applied to coordination design with probabilistic requirements

• Reconfigurable architectures
• Paradigm: Specifications in hybridised logics (support in Hets)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in object-orientated software

• In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction and configuration

• Objects are wired at a very low level and the description of
the wiring patterns is distributed among them

• The semantics of method invocation is heavy and non-trivial:
• The caller must know the callee and the method.
• The callee must (pretend) to interpret the message.
• The caller suspends while the callee (pretends to) perform the

method and resumes when the callee returns a result.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in object-orientated software

The operations/methods provided by a class-interface impose a
tight semantic binding which, at the inter-component level

• Weakens independence of components;

• Contributes to breaking of encapsulation;

• Tightens component inter-dependence.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in component-based software

• CBD retains the basic encapsulation of data and code
principle to increase modularity

• ... but shifts the emphasis from class inheritance to object
composition

• to avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in component-based software

• a palette of computational units (eg robust collections of
objects) treated as black boxes

• and a canvas into which they can be dropped

• connections are established by drawing wires

• inter-component communication is through messages that
invoke remote methods, typically given some suitable
triggering condition on the source.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in coordination-based software

• a palette of computational units (eg robust collections of
objects) treated as black boxes

• and a canvas into which they can be dropped

• connections are established by specific devices (with complex
logic, memory, etc)

• inter-component communication becomes anonymous and
externally coordinated

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition as coordination

Example scenario

• Components: a bar-code scanner and a LCD panel

• bar-code scanner: single output port to communicate the
product id

• LCD panel: single port to input text to be displayed

• Goal: build a system that allows to scan a product bar-code
and have its name displayed on the LCD

• Problem: mismatch detected between the two components
operation rates

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition as coordination

Example scenario

What to do when the user starts scanning bar-codes at a pace that
exceeds the rate at which the LCD can display the product names?

• Do we force the bar-code scanner to wait for when its output
port is not busy to read another bar-code? (forced
synchronisation)

• Do we buffer the excess data and display it on a read first,
display first order?

• Do we disregard bar codes that are input while the LCD is
busy displaying a previous product name?

• Do we combine the approaches 2, and 3 and provide a limited
buffer where a finite amount of bar codes can be buffered
while the LCD is busy displaying a product name?

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition as coordination

Lesson learned
Building a system out of independent components does not simply
amount to wiring properly their ports together.
Special glue code is necessary to coordinate their interactions.

Coordination

• Endogenous: provide primitives that must be incorporated
within a computation for its coordination

• Exogenous: ensure that the conceptual separation between
computation and coordination is suitably respected

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Coordination

Carriero and Gelernter, 1986
Coordination is the process of building programs by gluing together
active pieces

• distinguish computation from interaction
(in massive parallel networks)

• focus on the emergent behaviour

• amenable to external, third-party control

Peter Wegner, 2000

Coordination is constrained interaction

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in service-oriented software

’entails the need of managing an open-ended structure of
autonomous components, possibly distributed and highly
heterogeneous.
This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.’ (Fiadeiro, 05)

• interaction as a first-class citizen

• composition as exogenous coordination

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition in service-oriented software

• interacting components need not know each other.
(cf traditionally communication is targeted, making the sender
semantically dependent on (the scheme used to identify) the
receiver)

• communication becomes anonymous: components exchange
identifiable sequences of passive messages with the
environment only

• therefore third parties can coordinate interactions between
senders and receivers of their own choice

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition as coordination

Components

• loci of computation

• are kept independent of each other and of their environment

• Components communicate with the environment only through
read and write operations on the connector ends (or ports),
possibly according some behavioural interface description.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Composition as coordination

Connectors

• act as interaction controllers: the glue code that makes
components interact
i.e., they coordinate the activities of individual components to
ensure their proper interaction with one another to form a
coherent system that behaves according to its requirements

• have no relevant role in the computation carried out by the
overall system: they are component-independent and agnostic
wrt the underlying computation model

• provide systems-independent interaction protocols
(whereas components provide systems-specific functionality)

• ... built compositionally.

• but traditionally, glue code is the most rigid, component
specific, special purpose software in component based
systems!

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Reo

reo.project.cwi.nl/

• A compositional, connector-based coordination language for
plugging together components in an exogenous discipline
(from outside and without participants’ knowledge);

• Primitive circuit-like connectors are composed to build
complex coordination patterns

• Key concepts are synchrony (’happens together’) and mutual
exclusion;

• Connectors implement interaction protocols (dealing with
aspects of concurrency, buffering, ordering, data flow and
manipulation);

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Reo

reo.project.cwi.nl/

• Several formal semantics:
• relations between timed streams (2002)
• constraint automata (2004) and several variants
• colours (2004) to capture context awareness
• reo automata (2009) and intensional automata (2010)
• ...

• Eclipse toolset available

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Reo connectors
Characterized by

• a number of ends and a constraint which defines an
interaction protocol through these ends

Ends

• source end: through which data enters the connector

• sink end: through which data comes out of the connector

Examples (channels)

14 component connectors

2.2 Reo

Reo has been proposed by F. Arbab [6, 7] as an exogenous coordination language
based on a calculus of channel composition to construct component connectors.
Each connector in Reo represents an interaction protocol that constrains the com-
ponents that connect to its ports. Reo supports synchronous, asynchronous, and
context-dependent dataflow behaviour.

2.2.1 Channels

The simplest connectors of degree 2 in Reo are channels. Reo does not define any
specific channels. Users can define the channel types and their dataflow behaviour.
A channel in Reo is a medium of communication with exactly two ends, and a con-
straint that defines its interaction protocol through these ends. Reo recognises two
types of channel ends: source ends, through which data enter channels, and sink
ends through which data come out of channels. That is all Reo defines about chan-
nels. Users define the different channel types and their dataflow behaviour in terms
of specific constraints that relate their data exchanges through their respective ends.
These constraints define, for example, whether a channel is synchronous or asyn-
chronous, whether or not it has a buffer, whether or not its buffer is bounded,
whether or not it retains the order of the data items it receives, whether it loses
some of its data, or generates fresh data items, etc. Reo does not even require a
channel to have a source and a sink. It is perfectly content with a channel that has
two sources or two sinks, with whatever behaviour a user may define for it. Reo
supports two I/O operations to perform requests—write and take—one requests an
input from a sink end, and the other requests an output from a source end, respect-
ively1.

Sync SyncDrain SyncSpout LossySync

AsyncDrain AsyncSpout FIFO1 FIFO1(x)

Table 1: Reo channel types.

Table 1 contains the Reo channel types we use throughout this thesis. We provide
their formal semantics in the following chapters. At this stage, we give an informal

1 The terms source and sink designate the senses of the ends of a channel from the point of view of the
channel itself. Obviously, the sense of a channel end must be reversed from the point of a user of a
channel, i. e., a component that performs an I/O operation on a channel end. Thus, a component writes
to the source end of a channel and takes from the sink end of a channel.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Connector configurations

The configuration of a connector is the (abstract) structure that
describes its global state:

• internal: describes the connector memory

• external: describes the environment in which the connector is
currently being evaluated, i.e. the status of its ports

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Ports

• are the only medium for interacting with a connector (through
io operations)

• a connector can have at most one component connected at
each of its ports performing io requests

• upon the arrival of an io operation request at one of its ports,
the connector decides whether the io operation can be fired or
has to be delayed (becoming pending) because the interaction
constraints that the connector imposes are not satisfiable in
the present configuration.

12 component connectors

(a) degree 2 (b) degree 3 (c) degree 2 (d) degree 1 (e) degree 1

Figure 1: Example of connectors with different degree.

configuration. The internal configuration describes the internal memory of the con-
nector; whereas the external configuration describes the status of the ports of the
connector.

2.1.2 Ports and I/O operations

Connector ports are the only medium for interacting with a connector, and I/O op-
erations correspond to the well-defined operations that can be performed on a port.
A connector can have at most one component connected at each of its ports per-
forming I/O operation requests. A connector, upon the arrival of an I/O operation
request at one of its ports, has to decide whether the I/O operation can be fired or
has to be delayed because the interaction constraints that the connector imposes are
not satisfiable in the present configuration. An I/O operation that is being delayed
is referred to as a pending operation, and a port with a pending operation is referred
to as a pending port.

idle pending

requested

fires

delayed

Figure 2: Connector port life-cycle

In figure 2 we have a labelled transition diagram that illustrates the life-cycle of
a connector port. The two states denote the two possible configurations of a port:
either the port is idle or the port is pending. The edges indicate the way a port
can change its configuration. The labels associated with the edges are the (observ-
able) actions that lead to the change of the port configuration. An I/O operation
request on an idle port causes the port to change its status to pending. The port is
now pending and the connector is responsible to decide whether the I/O operation

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Connector memory

• Connectors with memory can store data in its buffer cells

• A buffer cell has two configurations: full or empty

• Connectors without memory cannot store data: any datum
either flows through the connector to another port where it is
output or it is lost

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Connector behaviour

• Dataflow behaviour is discrete in time: it can be observed and
snapshots taken at a pace fast enough to obtain (at least) a
snapshot as often as the configuration of the connector
changes

• At each time unit the connector performs an evaluation step:
it evaluates its configuration and according to its interaction
constraints changes to another (possibly different)
configuration

• A connector can fire multiple ports in the same evaluation step

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Connector behaviour

Synchronous dataflow behaviour

: synchronous means solely that a set of ports fire atomically, in a
single indivisible step

Asynchronous dataflow behaviour

: mutual exclusion means that ports from different sets can never
fire together

Context-dependent behaviour

: allows a connector to propagate information about pending io
operations on its ports: dataflow behaviour may depend on the
presence or absence of pending operations

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Connector composition

Connectors are composed by conjoining their ends to form nodes
with multiple ends

16 component connectors

Note: Connector ports in Reo correspond to nodes. In the context of Reo connectors
we might interchangebly use both terms.

(a) source
node
(replicate).

(b) sink node
(merge).

(c) mixed node (pump). (d) another mixed node
(merge,pump,replicate).

Figure 3: Reo nodes.

A write operation to a source node fires only if all source channel ends coincident
on the node accept the data item, in which case the data item is written to every
source end coincident on the node. A source node thus acts as a replicator (Figure 3a).
A take operation on a sink node fires only if at least one of the sink channel ends co-
incident on the node offers a suitable data item; if more than one coincident channel
end offers suitable data, one is selected non deterministically, at the exclusion of all
others. A sink node, thus, acts as a merger (Figure 3b). A mixed node behaves, like
a self-contained “pumping-station” that combines the behaviour of a sink (merger)
and a source node (replicator). A mixed node selects a value through one of its sink
ends and replicates it to all of its source ends (Figure 3c and 3d). The subtlety is
that nodes have no buffer to hold any data. Therefore, before a mixed node selects
a value out of one of its coincident sink ends, it must ensure that this value can be
replicated into all of its coincident source ends.

Figure 4: Replicator and Merger primitive connectors.

To model the behaviour of Reo nodes accurately, we make the merge and replic-
ate behaviour that is inherent in Reo nodes explicit and, without loss of general-
ity, model them using two additional primitive connectors: a Replicator and a Mer-
ger (Figure 4). The Replicator primitive captures the replicator behaviour of a source

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Connector composition

Nodes

• source node: superposes only source ends and atomically
copies incoming data items to all of its outgoing source ends

• sink node: superposes only sink ends and acts as a
non-deterministic merger, randomly choosing a data item
from one of the sink ends for delivery

• mixed node: combines both acting as pumping station by
atomically consuming a data item from one sink end and
replicating it to all source ends (1 : n synchronization)

Note: synchrony propagates through connectors

... because nodes do not perform any buffering

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Components

• active (computational) entities with a fixed interface that
consists of a number of source and sink ends

• often (but not necessarily) interpreted as black boxes, i.e., no
assumptions about their behavior

• actually, for analysis it is often beneficial to take into account
the behavior of components (e.g. to detect potential
deadlocks or to validate temporal properties) — may be
annotated with a specification that reflects its behaviour

Write and Take operations

18 component connectors

component that has the capability to perform take operations. From that perspective
without loss of generality Writer and Taker can also be seen as connectors, namely
connectors of degree 1, where one has a single source node and the other has a
single sink node.

(a) Writer. (b) Taker.

Figure 7: Abstract components.

2.2.4 Primitive Connectors

The connectors of degree 1 Writer and Taker, the connectors of degree 2 given by
the channels of Table 1, and finally the connectors of degree 3 Replicator and Merger,
constitute our set of primitive connectors that we denote by Primitives.

2.2.5 Reo Operations

The calculus of connector composition in Reo has two fundamental operations. The
operation join that permits to compose connectors, and the operation hide that per-
mits to perform information hiding on connectors.

join

In this thesis _ join _ is a binary operation that takes two Reo connectors and re-
turns another Reo connector that results from composing the boundary nodes that
share the same name in both connectors as follows: to compose one sink node with
a source node we just conjoin the nodes, as depicted in Figure 8a; to compose two
sink (source) nodes we use the Merger (Replicator) primitive, as depicted in Fig-
ure 8b (8c). It is important to note that the result of joining two boundary nodes is
an internal node. Hence the resulting node is black.

hide

In this thesis, hide _ is a unary operation that takes one Reo connector and returns
another Reo connector that results from removing all the information about the
internal nodes of the given connector. In Figure 9a it is depicted how the result of
the hide operation is represented visually.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

The synchronisation barrier

2.2 Reo 17

node with two source ends. Whereas the Merger primitive models the behaviour of
a sink node with two sink ends. Informally, data will flow through a Replicator if it
can synchronously accept data on its source end and pass it through both of its sink
ends. A merger permits the synchronous flow of data from exactly one of its source
ends through its sink end, at the exclusion of flow on its other source end, making
a non-deterministic choice between its two source ends if required. Figure 5 illus-
trates how a mixed node with two source ends and two sink ends (5a) is expressed
in terms of the Merger and the Replicator primitives (5b). We will use the Merger and
Replicator primitives to represent Reo nodes when formalising the semantics of Reo.
In that case internal nodes always connect two channel ends; and boundary nodes
always consist of one channel end.

(a) mixed node. (b) mixed node replaced by Merger and Replicator primitives.

Figure 5: A mixed Reo node and its representation with Merger and Replicator.

Channels as the ones in Table 1 constitute examples of connectors with degree 2.
The Merger and Replicator connectors listed in Figure 4 are examples of connectors
of degree 3. In the context of this thesis, connectors of degrees greater than 3 are
composite connectors; these are compositionally built out of connectors of degrees 2
and 3. For example the Barrier Synchroniser depicted in Figure 6 is a connector of
degree 4 compositionally built out of connectors of degrees 2 and 3. The two internal
nodes • are a compact representation of two replicator connectors.

Figure 6: The Barrier Synchroniser connector.

2.2.3 Abstract Components

From the perspective of a Reo connector a component connected to a Reo boundary
node is an instance of either a Writer or a Taker component. A Writer is an abstract
component that has the capability to perform write operations. A Taker is an abstract

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Fifo vs LossySync

2.3 compositionality of dataflow behaviour 21

the intended dataflow behaviour of the composite connectors in Figure 10 are as
follows:

- the composite connector 10a has the behaviour of a FIFO buffer with two
memory cells. When the two buffer cells are empty, data can flow two times
consecutively through port A. After that, the buffer cells are full. Before data
can flow on A again, data must flow through C. Data can flow on C if at least
one buffer cell is full, in which case one buffer cell is emptied. The order in
which the data flow through C is the same as the order in which data flow
through A.

- the composite connector 10b, has dataflow behaviour similar to the FIFO1

except that when the buffer cell is full, data can still flow through A, in which
case, and only then, the data is lost.

A B

(a) A composite connector built using
two FIFO1.

A B

(b) A composite connector built using
one LossySync and one FIFO1.

Figure 10: Example of composite connectors.

The compositional semantics provided by the coinductive calculus [9] and the con-
straint automata [13] capture the intended behaviour of composite connector 10a,
but cannot capture the intended behaviour of the composite connector 10b. The
reason for the latter is that the intended behaviour of the composite connector 10b
depends on the context-dependent behaviour of the LossySync, which cannot be
captured by these two semantics. In the coinductive calculus and the constraint
automata the semantics of the LossySync indicate that data written to the source
end is non-deterministically lost irrespective of whether or not it can flow through
the sink end of the channel.

The composite connector 10b is, by now, the classical example used to illus-
trate the subtleties that context-dependent behaviour entails. Such subtleties prove
that it is non-trivial to formalise a compositional semantics that captures the inten-
ded (context-dependent) dataflow behaviour. In Chapters 3 and 5 we introduce se-
mantics models that are compositional and capture the intended (context-dependent)
dataflow behaviour.

As a final example, in this case of a larger connector, we introduce the exclusive
router, depicted in Figure 11. An exclusive router is built by composing five Syncs, two
LossySyncs and one SyncDrain. The intended dataflow behaviour of this connector is
that data obtained through its input node a is delivered to exactly one of its output

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

The exclusive router
10 Chapter 2. Channel-based coordination with Reo

Figure 2.1: example network: exclusive router

EXAMPLE 2.3 (ordering). Figure 2.2 shows a network of two Writers, one Reader and
a connector referred to as ordering or alternator (cf. [1]). This connector enforces an
ordered output of the data items provided by the two Writers. The SyncDrain is used to
synchronize the inputs. The FIFO1 stores the data item from B and makes it available
in the next execution step. Since the FIFO1 cannot store more than one data item, a
stored data item has to be released first before new data items can be read. This way,
an alternating output is guaranteed. �

Figure 2.2: example network: ordering

EXAMPLE 2.4 (simple messenger). Figure 2.3 depicts three variations of a simple
messenger application. Two Client components exchange messages via a connector. In
variant 2.3a messages are simply exchanged using two buffered channels, in this case
two FIFO1 channels. In variant 2.3b an additional SyncDrain is used to ensure that
message retrievals are synchronized, i.e., one client may receive a message only if it
also sends one to the other client. Finally, variant 2.3c shows a case where the clients
get –as an acknowledgment– a copy of their own message when the other client has
successfully received it. �

• routes data items synchronously from the source to exactly
one of the two sinks;

• if both of them are ready to accept data, the choice of where
the data item goes is made non-deterministically (merge goes
without a priority)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

The alternator

10 Chapter 2. Channel-based coordination with Reo

Figure 2.1: example network: exclusive router

EXAMPLE 2.3 (ordering). Figure 2.2 shows a network of two Writers, one Reader and
a connector referred to as ordering or alternator (cf. [1]). This connector enforces an
ordered output of the data items provided by the two Writers. The SyncDrain is used to
synchronize the inputs. The FIFO1 stores the data item from B and makes it available
in the next execution step. Since the FIFO1 cannot store more than one data item, a
stored data item has to be released first before new data items can be read. This way,
an alternating output is guaranteed. �

Figure 2.2: example network: ordering

EXAMPLE 2.4 (simple messenger). Figure 2.3 depicts three variations of a simple
messenger application. Two Client components exchange messages via a connector. In
variant 2.3a messages are simply exchanged using two buffered channels, in this case
two FIFO1 channels. In variant 2.3b an additional SyncDrain is used to ensure that
message retrievals are synchronized, i.e., one client may receive a message only if it
also sends one to the other client. Finally, variant 2.3c shows a case where the clients
get –as an acknowledgment– a copy of their own message when the other client has
successfully received it. �

• enforces an ordered output of the data items provided by the
two sources

• inputs synchronized through a synchronous drain

• the FIFO1 stores the data item and makes it available in the
next execution step; and guarantees alternation (why?)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Messenger patterns

Messages exchanged through two buffered channels2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [19, 57]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 56]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.

Message retrievals are synchronized

2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [19, 57]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 56]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Messenger patterns

Messenger with automatic acknowledgments

2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [19, 57]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 56]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.

Clients get, as an acknowledgment, a copy of their own message
when the other client has successfully received it

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Timed data streams

Time streams
constrained streams over (positive) real numbers, representing
moments in time such that

• strictly increasing: a(i) < a(i + 1)

Timed data stream
pair 〈α, a〉 consisting of a data stream α and a time stream a, with
the interpretation that for for all i ∈ IN, the input/output of data
item α(i) occurs at time a(i)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Timed data streams

Formally,

TDS = {〈α, a〉 ∈ Dataω×IRω
+|∀i≥0 ˙a(i) < a(i+1) and lim

i→∞
a(i) =∞}

Notes

• A timed data stream is associated to each connector port

• No distinction between input and output actions

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Timed data streams

Connectors
are relations over timed data streams:

〈α, a〉 [[Sync]] 〈β, b〉 ⇔ 〈α, a〉 = 〈β, b〉
〈α, a〉 [[FIFO]] 〈β, b〉 ⇔ α = β ∧ a < b

〈α, a〉 [[FIFO1]] 〈β, b〉 ⇔ α = β ∧ a < b < a′

• coalgebraic semantics [Arbab, Rutten, 2002; Arbab 2003] with
incipient calculus

• cannot capture context-awareness

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Automata labelled by

• a data constraint which represents a set of data assignments
to port names

g ::= true | dA = v | g1 ∨ g2 | ¬g

Note: other constraints, as

dA = dB
abv
= ∨d∈Data(dA = d ∧ dB = d) are derived.

• a name set which represents the set of port names at which io
can occur

States represent the configurations of the corresponding connector,
while transitions encode its maximally-parallel stepwise behavior.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Example: Fifo1

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Definition

A = 〈S ,N,→, S0〉

• S is a set of states

• S0 ⊆ S is the set of initial states

• N is a (finite) set of (port) names

• →: S × PN × DC × S such that s
P,g−→ s ′ iff

1. P 6= ∅
2. g ∈ DC (P,Data)

(DC (P,Data) is the set of data constraints over Data and P)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Intuition

s
P,g−→ s ′

means that

in configuration s ports in P can perform io operations which meet
guard g and lead to s ′

Conditions

1. P 6= ∅: transitions fire only if data occurs at a (set of) ports

2. g ∈ DC (P,Data): behaviour depends only on observed data
(not on future evolution)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Intuition
labelled transition system (model) reactive system

constraint automaton (model) coordination connector

Moreover

• act as acceptors for timed stream tuples t ∈ TDSN

• ... just as finite (infinite) automata accept finite (infinite)
words

• but ... there are no final states: accepting runs are always
infinite

• the state space may be infinite if modelling a connector with
unbounded memory

• as expected: for any constraint automaton there exists a
language-equivalent deterministic constraint automaton

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Acceptors for timed streams

Given A and t ∈ TDSN as its input, find out whether t describes a
possible data flow of A

• A starts in one of its initial states and waits until data items
occur at some of its io ports

• Data occurring at a subset of ports triggers checking the guard

• ... choose a transition with a validated guard

• ... if no data constraint is fulfilled then A rejects t

Accepted language is composed by all input streams that have at
least one non-rejecting run in A

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata as a semantics for Reo

• cannot capture context-awareness [Baier, Sirjani, Arbab,
Rutten 2006], but forms the basis for more elaborated models
(eg, Reo automata)

• captures all behavior alternatives of a connector; useful to
generate a state-machine implementing the connector’s
behavior

• basis for several tools, including the model checker Vereofy
[Kluppelholz, Baier 2007]

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata as a semantics for Reo

Examples

4.2 Constraint automata for the basic channels

Figure 7 shows the constraint automata for some of the standard basic channel
types: synchronous channels with source A and sink B (or vice versa), (a)synchronous
drain with the sources A, B, (a)synchronous spout with the sinks A, B and lossy
synchronous channels with source A and sink B. In every case, one single state is
sufficient. Moreover, the automata are deterministic.

 {A,B}
 d_A = d_B

synchronous channel

 {A,B}

synchronous drain
or synchronous spout

 {A,B}
 d_A = d_B

lossy synchronous channel

{A}

 asynchronous drain
 or asynchronous spout

{A} {B}

Fig. 7. Deterministic constraint automata for some basic connectors

A constraint automaton for the FIFO1 channel was shown in Example 3.3. For
FIFO channels with capacity ≥ 2, similar constraint automata can be used. How-
ever, the number of states grows exponentially with the capacity. For instance, for a
FIFO2 channel with the data domain {0,1} we need 7 states representing the con-
figurations where the buffer is empty or the buffer contains one element (0 or 1)
or is full (00, 01, 10 or 11). For unbounded FIFO channels we even get constraint
automata with an infinite state space.

Of course, for compositional reasoning, we must assume that other user-defined
basic channel types are also specified by appropriate constraint automata.

4.3 Join: merge and product

As constraint automata do not distinguish between input ports (source nodes in
Reo) and output ports (sink nodes in Reo), we cannot expect a general join operator
on constraint automata that covers both the replicator semantics of joining source
nodes and the merge semantics of joining sink nodes.

Since we restrict our attention to (static) Reo-circuits, we may assume that a given
Reo-circuit is built out of some basic channels via the join and hiding operations

20

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata as a semantics for Reo

Connector construction
Connector operators are modelled by typical automata
constructions

• join

• hide: hiding a node means that its data flow is no longer
externally observable:

Definition 4.3 [Hiding on constraint automata] Let A = (Q,N ames,−→,Q0) be
a constraint automaton and C ∈ N ames. The constraint automaton

∃C[A] =
(
Q,N ames\{C},−→C,Q0,C

)

is defined as follows. Let!∗ be the (transition) relation such that q!∗ p iff there
exists a finite path

q
{C},g1−→ q1

{C},g2−→ q2
{C},g3−→ . . .

{C},gn−→ qn

where qn = p and g1, . . . ,gn are satisfiable (i.e., gi %≡ false). (Note that the gi’s de-
pend only onC.) The set Q0,C of initial states is

Q0,C = Q0∪
{
p ∈ Q : q0!∗ p for some q0 ∈ Q0

}
.

The transition relation −→C is given by:

q!∗ p, p N,g−→ r, N̄ = N \{C} %= /0, ḡ= ∃C[g]

q N̄,ḡ−→C r

where ∃C[g] =
∨

d∈Data
g[dC/d]. 7 "

For instance, if Amerger denotes the merger automaton in Figure 8 then ∃C
[
Amerger

]

is the same as the automaton for the asynchronous drain shown in Figure 7.

Unfortunately, the equality LTDS(∃C[A]) = ∃C[LTDS(A)] does not hold in gen-
eral (only the “⊆” relation as shown in part (a) of Lemma 4.4, below, holds). For
instance, hiding B in the merger automaton in Figure 8 yields a constraint automa-
ton shown in Figure 9, with a single state, one {A,C}-transition, and one {C}-
transition.

 {A,C}
 d_A = d_C

 {B,C}
 d_B = d_C

 {A,C}
 d_A = d_C

 {C}

hiding B

Fig. 9. Hiding a node of the merger

Hence, any TDS-pair (〈α,a〉,〈γ,c〉) with α = γ and a = c belongs to the accepted
language of ∃B[Amerger]. On the other hand, none of the pairs (〈α,a〉,〈γ,c〉) with
a = c is in the language ∃B[LTDS(Amerger)] because in every TDS-tuple accepted
7 g[dC/d] denotes the data constraint obtained by syntactically replacing all occurrences
of dC in g with d. More precisely, we replace the atoms dC = d′ with true if d = d′ and with
false if d != d′.

24

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata as a semantics for Reo

Connector construction
A 2-bounded FIFO obtained from two 1-bounded FIFO channels
via product and hiding (assume Data = {d} for simplicity)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata as a semantics for Reo

q1 p1 q2 p2

{A}

{C}

{C}

{B}

q1 q2 p1 q2

q1 p2 p1 p2

product automata

hiding

{B} {B}

{A}

{A}

{A,B}

q1 q2 p1 q2

q1 p2 p1 p2

{B} {B}

{A}

{A}

{B}

{A,B}

{C}

{A}

{A,B}

Fig. 10. Composition of two FIFO1 channels

both output ports are prepared to consume a data item, then one is selected non-
deterministically. The input data is never replicated to more than one of the output
ports. 8

Figure 6.a shows that the exclusive router is obtained by composing two LossySync
channels (XM, XN), a SyncDrain (XZ) channel, a merger (inherent in the mixed
node of Z), and five Sync channels (FX, MW, NU, ME, NB):

AXRouter(F,E,B) = ∃M,N,U,W,X ,Z
[
ALossySync(X ,M) !" ALossySync(X ,N) !"

ASyncDrain(X ,Z) !" Amerger(U,W,Z) !" ASync(F,X) !"

ASync(N,U) !" ASync(M,W) !" ASync(M,E) !" ASync(N,B)
]

Figure 11 shows how the constraint automaton for our exclusive router is obtained
as the product of the constraint automata of its constituent channels followed by
hiding of its internal transitions. !
8 The behavior of this connector is the counterpart of the primitive nondeterministic selec-
tion inherent in the merge that a Reo (sink or mixed) node performs on its multiple input,
modeled by the merger in Figure 7.

27

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Parametrized constraint automata

States are parametric on data values ... therefore capturing
complex constraint automata emerging form data-dependencies

Example: 1 bounded FIFO

q(x)q_0

{A}
x := d_A

{B}
d_B=x

Fig. 13. Parameterized constraint automaton for a 1-bounded FIFO channel

Data}, Q0 = {q0}, N ames= {A,B} and the transitions

q0
{A},dA=d−−−−−→ q(d), q(d) {B},dB=d−−−−−→ q0

for any data item d ∈Data. Formally, to reason about data-dependent coordination
mechanisms, we define a parameterized constraint automaton as a tuple

P = (Loc,Var,v,N ames,!,Loc0, init)

where

• Loc is a set of locations,
• Loc0 ⊆ Loc is a set of initial locations,
• Var a set of variables,
• v : Loc→ 2Var assigns to any location ! a (possibly empty) set of variables,
• init is a function that assigns to any initial location ! ∈ Loc0 a condition for the
variables.

v(!) can be viewed as the parameter list of location !. For instance, in Figure 13 we
use q(x) to denote that q is a location with parameter list v(q) = {x}, while q0 is a
location with an empty parameter list. The initial condition for q0 is omitted which
denotes that init(q0) = true.

The transition relation ! of a parameterized constraint automaton is a (finite) set
of tuples (!,N,h,X ,!′), written in the form

!
N,h!X !̄.

Here,

• ! and !̄ are locations.
• N is a non-empty name-set.
• h a (parameterized) data constraint for N, built out of atoms of the form “dA =
expr”. The expression expr is built from constants d ∈ Data, the symbols dB
for B ∈ N, variables x ∈ v(!) and operators for the chosen data domain, e.g.,
boolean operator ∨, ∧, etc. for Data = {0,1} and arithmetic operators +, ∗,
etc. for Data= IN.

30

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Parametrized constraint automata

Example: Fibonacci generator
input ports A and B and one output portC through which the sum of the input values
is produced.

A

C

B
1

0
Sum

Fig. 14. Reo circuit for Fibonacci series

Figure 15 shows a parameterized constraint automaton PSum that can be viewed as
an interface specification for Sum. (Here, we assume Data= IN.)

q(x,y)q_0

{A,B}
x := d_A
y := d_B

{C}
d_C=x+y

Fig. 15. Parameterized constraint automaton for Sum

Joining PSum with the constraint automaton for the Reo circuit in Figure 14 “around”
Sum (which can be obtained in a compositional way as in the previous examples),
we obtain the parameterized constraint automaton PFib in Figure 16.

p(x,y)r(x,y)

{A,B}

d_A=x
d_B=y
x:= y

{C}
d_C=x+y

x=0
y=1

y := d_C

Fig. 16. Parameterized constraint automaton for Fibonacci series

We may now unfold PFib into a (non-parameterized) constraint automaton, hide the
names A and B to obtain an infinite-state constraint automatonA (with the singleton
name-set {C}) whose accepted TDS-language is the set of timed data streams 〈γ,c〉
where the data stream γ stands for the infinite sequence of Fibonacci numbers and
c is an arbitrary time stream. !

32

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Parametrized constraint automata

Example: Fibonacci generator (Sum)

input ports A and B and one output portC through which the sum of the input values
is produced.

A

C

B
1

0
Sum

Fig. 14. Reo circuit for Fibonacci series

Figure 15 shows a parameterized constraint automaton PSum that can be viewed as
an interface specification for Sum. (Here, we assume Data= IN.)

q(x,y)q_0

{A,B}
x := d_A
y := d_B

{C}
d_C=x+y

Fig. 15. Parameterized constraint automaton for Sum

Joining PSum with the constraint automaton for the Reo circuit in Figure 14 “around”
Sum (which can be obtained in a compositional way as in the previous examples),
we obtain the parameterized constraint automaton PFib in Figure 16.

p(x,y)r(x,y)

{A,B}

d_A=x
d_B=y
x:= y

{C}
d_C=x+y

x=0
y=1

y := d_C

Fig. 16. Parameterized constraint automaton for Fibonacci series

We may now unfold PFib into a (non-parameterized) constraint automaton, hide the
names A and B to obtain an infinite-state constraint automatonA (with the singleton
name-set {C}) whose accepted TDS-language is the set of timed data streams 〈γ,c〉
where the data stream γ stands for the infinite sequence of Fibonacci numbers and
c is an arbitrary time stream. !

32

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Parametrized constraint automata

Example: Fibonacci generator (complete)

input ports A and B and one output portC through which the sum of the input values
is produced.

A

C

B
1

0
Sum

Fig. 14. Reo circuit for Fibonacci series

Figure 15 shows a parameterized constraint automaton PSum that can be viewed as
an interface specification for Sum. (Here, we assume Data= IN.)

q(x,y)q_0

{A,B}
x := d_A
y := d_B

{C}
d_C=x+y

Fig. 15. Parameterized constraint automaton for Sum

Joining PSum with the constraint automaton for the Reo circuit in Figure 14 “around”
Sum (which can be obtained in a compositional way as in the previous examples),
we obtain the parameterized constraint automaton PFib in Figure 16.

p(x,y)r(x,y)

{A,B}

d_A=x
d_B=y
x:= y

{C}
d_C=x+y

x=0
y=1

y := d_C

Fig. 16. Parameterized constraint automaton for Fibonacci series

We may now unfold PFib into a (non-parameterized) constraint automaton, hide the
names A and B to obtain an infinite-state constraint automatonA (with the singleton
name-set {C}) whose accepted TDS-language is the set of timed data streams 〈γ,c〉
where the data stream γ stands for the infinite sequence of Fibonacci numbers and
c is an arbitrary time stream. !

32

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata: bisimulation

Definition
A bisimulation on a constraint automata A = 〈S ,N,→,S0〉 is an
equivalence relation R on S such that for all pairs 〈s, s ′〉, all
R-induced equivalence classes P ∈ S/R and every Ns ⊆ N,

dc(s,Ns,P) = dc(s ′,Ns,P)

where

dc(s,Ns,P) =
∨
{g | s Ns,g−→ s ′ for some s ′ ∈ P }

i.e., the weakest data constraint ensuring a Ns-transition from s to
a state in P.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata: bisimulation

ExampleExample 5.2 In the constraint automata of Figure 19, states q1 and q2 are bisimilar
while q1,q2 !∼ q3.

{A} {A}

q1

p1 r1

{B}
{C}

{A}
{A}

q2

p2 r2

{B} {C}

 d_A=d

p2’

{B}
{A}

 d_A<>d

{A}

q3

u3

{B} {C}

Fig. 19. Similarity and bisimilarity

To see why q1 and q2 are bisimilar it suffices to establish a bisimulation which
contains (q1,q2). In fact, the equivalence R induced by the partition

Q/R =
{
{q1,q2},{q3},{p1, p2, p′2},{r1,r2},{u3}

}

can be shown to be a bisimulation. Note that, for instance,

dc(q1,{A},{p1, p2, p′2}) = true ≡ dc(q2,{A},{p1, p2, p′2}).

On the other hand, q1 and q2 are not bisimilar to q3. The reason is that there is
no state reachable from q1 or q2 that is bisimilar to u3, because dc(u3,{B}) =
dc(u3,{C}) = true, while dc(r1,{B}) = dc(r2,{B}) = false and dc(p1,{C}) =
dc(p2,{C}) = false. !

In Figure 19, states q1, q2, and q3 are language equivalent (i.e., LTDS(A ,q1) =
LTDS(A ,q2) = LTDS(A ,q3)) but not bisimulation equivalent. For nondeterministic
constraint automata bisimulation is strictly finer than language equivalence. How-
ever, for deterministic constraint automata, bisimulation and language equivalence
coincide as shown in part (b) of the following theorem.

Theorem 5.3 [Bisimulation versus language equivalence] Let A1 and A2 be two
constraint automata with the same name set N ames.

(a) If A1 ∼ A2 then LTDS(A1) = LTDS(A2).
(b) If A1 and A2 are deterministic and LTDS(Ai,q) != /0 for all states q in Ai (i =
1,2) then

A1 ∼ A2 iff LTDS(A1) = LTDS(A2).

Proof. (a) follows from the observation that, if q1∼ q2 then for any θ∈LTDS(A1,q1)
and any infinite q1-run q1 = q0,1,q1,1,q2,1, . . . for θ in A1 there exists a q2-run
q2 = q0,2,q1,2,q2,2, . . . for θ in A2 such that qi,1 ∼ qi,2 for all indices i. To see this,
we may use an inductive argument to define the run q2. Assume that i ≥ 0 and

36

The equivalence R induced by partition

S/R = {{q1, q2}, {q3}, {p1, p2, p′2}, {r1, r2}, {u3}}

is a bisimulation. Why?

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata: bisimulation

Bisimilarity

As usual, two sates are bisimilar if contained in a bisimulation.

Theorem
Bisimilarity is strictly finer than language equivalence (TDS
acceptance), but for deterministic automata for which they
coincide.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Coulorings

Based on the set of all of dataflow alternatives of the connector,
represented by different colours meaning data flowing and no data
flowing

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Merger

Reo circuit

5 Connectors

Connectors are generally considered to be non-primitive, whereas channels are often primitive,
and usually have an “arity” which is not equal to 2. Channels always have arity 2. In general,
however, channels are just special cases of connectors.

5.1 Merger

Description This connector takes an arbitrary number of source nodes. Data input to these
nodes is merged, non-deterministically, and available at a sink node. Data can only be
transferred if a take is being requested at the sink node simultanously with a write at one
of the source nodes. Ties are broken non-deterministically [6, 1, 5, 4].

The functionality of a merger is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness.

Circuit The Reo circuit for the Merger connector with three sources is

ABT The ABT for a merge of two sources and one sink is a ternary relation M defined for timed
data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

M(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
a(0) $= b(0) ∧{

α(0) = γ(0) ∧ a(0) = c(0) ∧ M(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
β(0) = γ(0) ∧ b(0) = c(0) ∧ M(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if b(0) < a(0)

Constraint Automata The constraint automaton for a Merger with two inputs (A and B) and
one output (C) is

{A, C}, dA = dC ; {B, C}, dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of input nodes.

Also Known As A mixed node.

5.2 Replicator

Description This connector has a single source node and multiple sink nodes. Data input is
replicated to all of the sink nodes. Data flows only when all sink nodes are ready to take
and the source node is ready to write.

The functionality of a replicator is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness [6, 8, 1, 5, 4].

15

Semantics

5 Connectors

Connectors are generally considered to be non-primitive, whereas channels are often primitive,
and usually have an “arity” which is not equal to 2. Channels always have arity 2. In general,
however, channels are just special cases of connectors.

5.1 Merger

Description This connector takes an arbitrary number of source nodes. Data input to these
nodes is merged, non-deterministically, and available at a sink node. Data can only be
transferred if a take is being requested at the sink node simultanously with a write at one
of the source nodes. Ties are broken non-deterministically [6, 1, 5, 4].

The functionality of a merger is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness.

Circuit The Reo circuit for the Merger connector with three sources is

ABT The ABT for a merge of two sources and one sink is a ternary relation M defined for timed
data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

M(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
a(0) $= b(0) ∧{

α(0) = γ(0) ∧ a(0) = c(0) ∧ M(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
β(0) = γ(0) ∧ b(0) = c(0) ∧ M(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if b(0) < a(0)

Constraint Automata The constraint automaton for a Merger with two inputs (A and B) and
one output (C) is

{A, C}, dA = dC ; {B, C}, dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of input nodes.

Also Known As A mixed node.

5.2 Replicator

Description This connector has a single source node and multiple sink nodes. Data input is
replicated to all of the sink nodes. Data flows only when all sink nodes are ready to take
and the source node is ready to write.

The functionality of a replicator is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness [6, 8, 1, 5, 4].

15

5 Connectors

Connectors are generally considered to be non-primitive, whereas channels are often primitive,
and usually have an “arity” which is not equal to 2. Channels always have arity 2. In general,
however, channels are just special cases of connectors.

5.1 Merger

Description This connector takes an arbitrary number of source nodes. Data input to these
nodes is merged, non-deterministically, and available at a sink node. Data can only be
transferred if a take is being requested at the sink node simultanously with a write at one
of the source nodes. Ties are broken non-deterministically [6, 1, 5, 4].

The functionality of a merger is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness.

Circuit The Reo circuit for the Merger connector with three sources is

ABT The ABT for a merge of two sources and one sink is a ternary relation M defined for timed
data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

M(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
a(0) $= b(0) ∧{

α(0) = γ(0) ∧ a(0) = c(0) ∧ M(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
β(0) = γ(0) ∧ b(0) = c(0) ∧ M(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if b(0) < a(0)

Constraint Automata The constraint automaton for a Merger with two inputs (A and B) and
one output (C) is

{A, C}, dA = dC ; {B, C}, dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of input nodes.

Also Known As A mixed node.

5.2 Replicator

Description This connector has a single source node and multiple sink nodes. Data input is
replicated to all of the sink nodes. Data flows only when all sink nodes are ready to take
and the source node is ready to write.

The functionality of a replicator is derived directly from the functionality of Reo nodes. We
include it as a connector because of its general usefulness [6, 8, 1, 5, 4].

15

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Replicator

Reo circuit
Circuit The Reo circuit for the Replicator connector with three outputs is

ABT The ABT for the Replicator with an input end two output ends is a ternary relation R
defined for timed data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

R(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

Constraint Automata The constraint automaton for a Replicator with one input (A) and two
outputs (B and C) is

{A, B, C}, dA = dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of output nodes.

Composite Primitives This circuit is constructed using a node and a number of synchronous
channels.

Also Known As A mixed node.

5.3 Take-Cue Regulator

Description In this circuit, the data from one node (A) to another (B) is regulated by the taking
of data at a third node (C). That is, data can flow from A to B only if both A and B are
ready and, further, that C is also ready. This mean that the usual connection between A
and B is regulated by the behaviour at C. Because this is a take-cue regulator, C regulates
using take and receives the data written at A [6, 1, 3].

Circuit The Reo circuit for a Take-Cue Regulator is

C

B

A

ABT The ABT for a take-cue regulator of an input end with an output end and an output end
used to regulate the flow is a ternary relation TQR defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

TQR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

16

Semantics

Circuit The Reo circuit for the Replicator connector with three outputs is

ABT The ABT for the Replicator with an input end two output ends is a ternary relation R
defined for timed data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

R(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

Constraint Automata The constraint automaton for a Replicator with one input (A) and two
outputs (B and C) is

{A, B, C}, dA = dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of output nodes.

Composite Primitives This circuit is constructed using a node and a number of synchronous
channels.

Also Known As A mixed node.

5.3 Take-Cue Regulator

Description In this circuit, the data from one node (A) to another (B) is regulated by the taking
of data at a third node (C). That is, data can flow from A to B only if both A and B are
ready and, further, that C is also ready. This mean that the usual connection between A
and B is regulated by the behaviour at C. Because this is a take-cue regulator, C regulates
using take and receives the data written at A [6, 1, 3].

Circuit The Reo circuit for a Take-Cue Regulator is

C

B

A

ABT The ABT for a take-cue regulator of an input end with an output end and an output end
used to regulate the flow is a ternary relation TQR defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

TQR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

16

Circuit The Reo circuit for the Replicator connector with three outputs is

ABT The ABT for the Replicator with an input end two output ends is a ternary relation R
defined for timed data streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 by

R(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

Constraint Automata The constraint automaton for a Replicator with one input (A) and two
outputs (B and C) is

{A, B, C}, dA = dB = dC

Context Can be used in any context, generally in the guise of a mixed node.

Variations This connector may have any number of output nodes.

Composite Primitives This circuit is constructed using a node and a number of synchronous
channels.

Also Known As A mixed node.

5.3 Take-Cue Regulator

Description In this circuit, the data from one node (A) to another (B) is regulated by the taking
of data at a third node (C). That is, data can flow from A to B only if both A and B are
ready and, further, that C is also ready. This mean that the usual connection between A
and B is regulated by the behaviour at C. Because this is a take-cue regulator, C regulates
using take and receives the data written at A [6, 1, 3].

Circuit The Reo circuit for a Take-Cue Regulator is

C

B

A

ABT The ABT for a take-cue regulator of an input end with an output end and an output end
used to regulate the flow is a ternary relation TQR defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

TQR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c

16

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Feedback loop

Reo circuit

B

D

A

C

ABT The ABT for a barrier synchronizer is a quaternary relation BS defined for timed data
streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 and 〈δ, d〉 by

BS(〈α, a〉, 〈γ, c〉; 〈β, b〉, 〈δ, d〉) ≡ α = β ∧ γ = δ ∧ a = b = c = d

Constraint Automata A deterministic constraint automata for the Barrier Synchronizer is

{A, B, C, D}, dA = dB , dC = dD

5.6 Feedback Loop

Description Using feedback, it is possible to have a circuit which produces a continuous, constant
stream of data on demand [6].

Circuit A simple feedback loop is given by the circuit:

x

ABT The ABT for a Feedback Loop is an unary relation FLX defined for the timed data stream
〈α, a〉,

FLX(〈α, a〉) ≡ α(0) = X ∧ FLX(〈α′, a′〉)

Constraint Automata A deterministic constraint automata for the Feedback Loop is

{A}, dA = X

5.7 Asynchronous drain using the merge connector and a synchronous
drain [6]

5.8 Exclusive Router

Description Each data item entering via node A will be synchronously passed to either node B
or node C, but not both, depending upon which of B and C first makes a request for data.
Ties are broken non-deterministically [8, 2, 5, 4, 7].

Circuit The Reo circuit for the Exclusive Router is

18

Semantics

B

D

A

C

ABT The ABT for a barrier synchronizer is a quaternary relation BS defined for timed data
streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 and 〈δ, d〉 by

BS(〈α, a〉, 〈γ, c〉; 〈β, b〉, 〈δ, d〉) ≡ α = β ∧ γ = δ ∧ a = b = c = d

Constraint Automata A deterministic constraint automata for the Barrier Synchronizer is

{A, B, C, D}, dA = dB , dC = dD

5.6 Feedback Loop

Description Using feedback, it is possible to have a circuit which produces a continuous, constant
stream of data on demand [6].

Circuit A simple feedback loop is given by the circuit:

x

ABT The ABT for a Feedback Loop is an unary relation FLX defined for the timed data stream
〈α, a〉,

FLX(〈α, a〉) ≡ α(0) = X ∧ FLX(〈α′, a′〉)

Constraint Automata A deterministic constraint automata for the Feedback Loop is

{A}, dA = X

5.7 Asynchronous drain using the merge connector and a synchronous
drain [6]

5.8 Exclusive Router

Description Each data item entering via node A will be synchronously passed to either node B
or node C, but not both, depending upon which of B and C first makes a request for data.
Ties are broken non-deterministically [8, 2, 5, 4, 7].

Circuit The Reo circuit for the Exclusive Router is

18

B

D

A

C

ABT The ABT for a barrier synchronizer is a quaternary relation BS defined for timed data
streams 〈α, a〉, 〈β, b〉, 〈γ, c〉 and 〈δ, d〉 by

BS(〈α, a〉, 〈γ, c〉; 〈β, b〉, 〈δ, d〉) ≡ α = β ∧ γ = δ ∧ a = b = c = d

Constraint Automata A deterministic constraint automata for the Barrier Synchronizer is

{A, B, C, D}, dA = dB , dC = dD

5.6 Feedback Loop

Description Using feedback, it is possible to have a circuit which produces a continuous, constant
stream of data on demand [6].

Circuit A simple feedback loop is given by the circuit:

x

ABT The ABT for a Feedback Loop is an unary relation FLX defined for the timed data stream
〈α, a〉,

FLX(〈α, a〉) ≡ α(0) = X ∧ FLX(〈α′, a′〉)

Constraint Automata A deterministic constraint automata for the Feedback Loop is

{A}, dA = X

5.7 Asynchronous drain using the merge connector and a synchronous
drain [6]

5.8 Exclusive Router

Description Each data item entering via node A will be synchronously passed to either node B
or node C, but not both, depending upon which of B and C first makes a request for data.
Ties are broken non-deterministically [8, 2, 5, 4, 7].

Circuit The Reo circuit for the Exclusive Router is

18

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Exclusive router
Reo circuit

A

B C

ABT The ABT for an exclusive router is a ternary relation ExR defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

ExR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡
b(0) $= c(0) ∧{

α(0) = β(0) ∧ a(0) = b(0) ∧ ExR(〈α′, a′〉, 〈β′, b′〉, 〈γ, c〉) if b(0) < c(0)
α(0) = γ(0) ∧ a(0) = c(0) ∧ ExR(〈α′, a′〉, 〈β, b〉, 〈γ′, c′〉) if c(0) < b(0)

Constraint Automata A deterministic constraint automaton for the Exclusive Router is

{A, B}, dA = dB ; {C, D}, dC = dD

Also Known As ExRouter [8].

Notice the similarity of the semantics with those of Merger. Hardly surprising, given that they
have the same constraint automaton, just a different direction of data flow.

5.9 Replicator Connector [8]

As opposed to the previously defined replicator connector, this connector duplicates the elements
sent along a channel.

5.10 Ordering

Description The behaviour of this connector imposes an order on the flow of data items written
to A and B and passed to C. The first item comes from A, then from B, then back to A.
Data can only flow if data is present at both A and B simultaneously [1], [5], [4], [3].

Circuit The Reo circuit for the Ordering is

19

Semantics

A

B C

ABT The ABT for an exclusive router is a ternary relation ExR defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

ExR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡
b(0) $= c(0) ∧{

α(0) = β(0) ∧ a(0) = b(0) ∧ ExR(〈α′, a′〉, 〈β′, b′〉, 〈γ, c〉) if b(0) < c(0)
α(0) = γ(0) ∧ a(0) = c(0) ∧ ExR(〈α′, a′〉, 〈β, b〉, 〈γ′, c′〉) if c(0) < b(0)

Constraint Automata A deterministic constraint automaton for the Exclusive Router is

{A, B}, dA = dB ; {C, D}, dC = dD

Also Known As ExRouter [8].

Notice the similarity of the semantics with those of Merger. Hardly surprising, given that they
have the same constraint automaton, just a different direction of data flow.

5.9 Replicator Connector [8]

As opposed to the previously defined replicator connector, this connector duplicates the elements
sent along a channel.

5.10 Ordering

Description The behaviour of this connector imposes an order on the flow of data items written
to A and B and passed to C. The first item comes from A, then from B, then back to A.
Data can only flow if data is present at both A and B simultaneously [1], [5], [4], [3].

Circuit The Reo circuit for the Ordering is

19

A

B C

ABT The ABT for an exclusive router is a ternary relation ExR defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

ExR(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡
b(0) $= c(0) ∧{

α(0) = β(0) ∧ a(0) = b(0) ∧ ExR(〈α′, a′〉, 〈β′, b′〉, 〈γ, c〉) if b(0) < c(0)
α(0) = γ(0) ∧ a(0) = c(0) ∧ ExR(〈α′, a′〉, 〈β, b〉, 〈γ′, c′〉) if c(0) < b(0)

Constraint Automata A deterministic constraint automaton for the Exclusive Router is

{A, B}, dA = dB ; {C, D}, dC = dD

Also Known As ExRouter [8].

Notice the similarity of the semantics with those of Merger. Hardly surprising, given that they
have the same constraint automaton, just a different direction of data flow.

5.9 Replicator Connector [8]

As opposed to the previously defined replicator connector, this connector duplicates the elements
sent along a channel.

5.10 Ordering

Description The behaviour of this connector imposes an order on the flow of data items written
to A and B and passed to C. The first item comes from A, then from B, then back to A.
Data can only flow if data is present at both A and B simultaneously [1], [5], [4], [3].

Circuit The Reo circuit for the Ordering is

19

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Ordering

Reo circuit

A

CB

ABT The ABT for the ordering connector is a ternary relation OC defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

OC (〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
α(0) = γ(0) ∧ β(0) = γ(1) ∧ a(0) = b(0) = c(0) ∧ a(1) = b(1) > c(1) ∧
OC (〈α′, a′〉, 〈β′, b′〉; 〈γ′′, c′′〉)

Constraint Automata The deterministic parameterized constraint automaton for the Ordering
connector is

q0 q(x)

{A, B, C}, dA = dC , x := dB

{C}, dC = x

Also Known As Interleaving connector [8]. Note that using a sequencer is less constraint manner
for achieving the same effect.

Related Connectors If this simultaneity between the sink nodes is too strong, use a Sequencer.

5.11 Sequencer

Description A sequencer consists of some number of nodes (3 in our example), say A, B, C.
The sequencer begins by outputing a token to one of the nodes, say A. This enables the
circuit connected to A to take. The sequencer then moves into a state in which B can take.
After B is taken, then the sequencer moves into a state where C can take. After C is taken,
the sequencer returns to the initial state and the cycle can repeat itself. This circuit thus
imposes an order on the flow of data at the nodes A, B, and C [1, 5, 6, 4]

Circuit The Reo circuit for the Sequencer is

x

A B C

ABT The ABT for an sequencer is a ternary relation SQ defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

SQ(; 〈α, a〉, 〈β, b〉, 〈γ, c〉) ≡ a < b < c < a′

Constraint Automata A deterministic constraint automata for the Sequencer is

20

Semantics

A

CB

ABT The ABT for the ordering connector is a ternary relation OC defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

OC (〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
α(0) = γ(0) ∧ β(0) = γ(1) ∧ a(0) = b(0) = c(0) ∧ a(1) = b(1) > c(1) ∧
OC (〈α′, a′〉, 〈β′, b′〉; 〈γ′′, c′′〉)

Constraint Automata The deterministic parameterized constraint automaton for the Ordering
connector is

q0 q(x)

{A, B, C}, dA = dC , x := dB

{C}, dC = x

Also Known As Interleaving connector [8]. Note that using a sequencer is less constraint manner
for achieving the same effect.

Related Connectors If this simultaneity between the sink nodes is too strong, use a Sequencer.

5.11 Sequencer

Description A sequencer consists of some number of nodes (3 in our example), say A, B, C.
The sequencer begins by outputing a token to one of the nodes, say A. This enables the
circuit connected to A to take. The sequencer then moves into a state in which B can take.
After B is taken, then the sequencer moves into a state where C can take. After C is taken,
the sequencer returns to the initial state and the cycle can repeat itself. This circuit thus
imposes an order on the flow of data at the nodes A, B, and C [1, 5, 6, 4]

Circuit The Reo circuit for the Sequencer is

x

A B C

ABT The ABT for an sequencer is a ternary relation SQ defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

SQ(; 〈α, a〉, 〈β, b〉, 〈γ, c〉) ≡ a < b < c < a′

Constraint Automata A deterministic constraint automata for the Sequencer is

20

A

CB

ABT The ABT for the ordering connector is a ternary relation OC defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

OC (〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
α(0) = γ(0) ∧ β(0) = γ(1) ∧ a(0) = b(0) = c(0) ∧ a(1) = b(1) > c(1) ∧
OC (〈α′, a′〉, 〈β′, b′〉; 〈γ′′, c′′〉)

Constraint Automata The deterministic parameterized constraint automaton for the Ordering
connector is

q0 q(x)

{A, B, C}, dA = dC , x := dB

{C}, dC = x

Also Known As Interleaving connector [8]. Note that using a sequencer is less constraint manner
for achieving the same effect.

Related Connectors If this simultaneity between the sink nodes is too strong, use a Sequencer.

5.11 Sequencer

Description A sequencer consists of some number of nodes (3 in our example), say A, B, C.
The sequencer begins by outputing a token to one of the nodes, say A. This enables the
circuit connected to A to take. The sequencer then moves into a state in which B can take.
After B is taken, then the sequencer moves into a state where C can take. After C is taken,
the sequencer returns to the initial state and the cycle can repeat itself. This circuit thus
imposes an order on the flow of data at the nodes A, B, and C [1, 5, 6, 4]

Circuit The Reo circuit for the Sequencer is

x

A B C

ABT The ABT for an sequencer is a ternary relation SQ defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

SQ(; 〈α, a〉, 〈β, b〉, 〈γ, c〉) ≡ a < b < c < a′

Constraint Automata A deterministic constraint automata for the Sequencer is

20

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Sequencer

Reo circuit

A

CB

ABT The ABT for the ordering connector is a ternary relation OC defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

OC (〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
α(0) = γ(0) ∧ β(0) = γ(1) ∧ a(0) = b(0) = c(0) ∧ a(1) = b(1) > c(1) ∧
OC (〈α′, a′〉, 〈β′, b′〉; 〈γ′′, c′′〉)

Constraint Automata The deterministic parameterized constraint automaton for the Ordering
connector is

q0 q(x)

{A, B, C}, dA = dC , x := dB

{C}, dC = x

Also Known As Interleaving connector [8]. Note that using a sequencer is less constraint manner
for achieving the same effect.

Related Connectors If this simultaneity between the sink nodes is too strong, use a Sequencer.

5.11 Sequencer

Description A sequencer consists of some number of nodes (3 in our example), say A, B, C.
The sequencer begins by outputing a token to one of the nodes, say A. This enables the
circuit connected to A to take. The sequencer then moves into a state in which B can take.
After B is taken, then the sequencer moves into a state where C can take. After C is taken,
the sequencer returns to the initial state and the cycle can repeat itself. This circuit thus
imposes an order on the flow of data at the nodes A, B, and C [1, 5, 6, 4]

Circuit The Reo circuit for the Sequencer is

x

A B C

ABT The ABT for an sequencer is a ternary relation SQ defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

SQ(; 〈α, a〉, 〈β, b〉, 〈γ, c〉) ≡ a < b < c < a′

Constraint Automata A deterministic constraint automata for the Sequencer is

20

Semantics

A

CB

ABT The ABT for the ordering connector is a ternary relation OC defined for timed data streams
〈α, a〉, 〈β, b〉, 〈γ, c〉 by

OC (〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
α(0) = γ(0) ∧ β(0) = γ(1) ∧ a(0) = b(0) = c(0) ∧ a(1) = b(1) > c(1) ∧
OC (〈α′, a′〉, 〈β′, b′〉; 〈γ′′, c′′〉)

Constraint Automata The deterministic parameterized constraint automaton for the Ordering
connector is

q0 q(x)

{A, B, C}, dA = dC , x := dB

{C}, dC = x

Also Known As Interleaving connector [8]. Note that using a sequencer is less constraint manner
for achieving the same effect.

Related Connectors If this simultaneity between the sink nodes is too strong, use a Sequencer.

5.11 Sequencer

Description A sequencer consists of some number of nodes (3 in our example), say A, B, C.
The sequencer begins by outputing a token to one of the nodes, say A. This enables the
circuit connected to A to take. The sequencer then moves into a state in which B can take.
After B is taken, then the sequencer moves into a state where C can take. After C is taken,
the sequencer returns to the initial state and the cycle can repeat itself. This circuit thus
imposes an order on the flow of data at the nodes A, B, and C [1, 5, 6, 4]

Circuit The Reo circuit for the Sequencer is

x

A B C

ABT The ABT for an sequencer is a ternary relation SQ defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

SQ(; 〈α, a〉, 〈β, b〉, 〈γ, c〉) ≡ a < b < c < a′

Constraint Automata A deterministic constraint automata for the Sequencer is

20

{A} {B}

{C}

Variations This circuit is a more asychrounous version of Ordering.

Sequencer with Reset [4]. This circuit is similar in behaviour to a Sequencer. It consists of
an additional channel which, when data is written to it, returns the sequencer to its initial
state.

Reset

Router
Exclusivex Exclusive

Router
Exclusive
Router

CBA

A deterministic constraint automaton for the Sequencer with Reset connectors is:

{A}

{B}
{C}

{Reset}

{Reset}

{Reset}

5.12 Inhibitor

Description Data written at A flows freely to B until some data value is written at I, after which
data flow stops for good [1]. Interestingly, this circuit deadlocks by design.

Circuit The Reo circuit for the Inhibitor is

21

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Sequencer with reset

Reo circuit

{A} {B}

{C}

Variations This circuit is a more asychrounous version of Ordering.

Sequencer with Reset [4]. This circuit is similar in behaviour to a Sequencer. It consists of
an additional channel which, when data is written to it, returns the sequencer to its initial
state.

Reset

Router
Exclusivex Exclusive

Router
Exclusive
Router

CBA

A deterministic constraint automaton for the Sequencer with Reset connectors is:

{A}

{B}
{C}

{Reset}

{Reset}

{Reset}

5.12 Inhibitor

Description Data written at A flows freely to B until some data value is written at I, after which
data flow stops for good [1]. Interestingly, this circuit deadlocks by design.

Circuit The Reo circuit for the Inhibitor is

21

Semantics

{A} {B}

{C}

Variations This circuit is a more asychrounous version of Ordering.

Sequencer with Reset [4]. This circuit is similar in behaviour to a Sequencer. It consists of
an additional channel which, when data is written to it, returns the sequencer to its initial
state.

Reset

Router
Exclusivex Exclusive

Router
Exclusive
Router

CBA

A deterministic constraint automaton for the Sequencer with Reset connectors is:

{A}

{B}
{C}

{Reset}

{Reset}

{Reset}

5.12 Inhibitor

Description Data written at A flows freely to B until some data value is written at I, after which
data flow stops for good [1]. Interestingly, this circuit deadlocks by design.

Circuit The Reo circuit for the Inhibitor is

21

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Inhibitor

Reo circuit

A

x

I

B

ABT The ABT for an inhibitor is a ternary relation Ih defined for timed data streams 〈α, a〉,
〈β, b〉, 〈ι, i〉 by

Ih(〈α, a〉, 〈ι, i〉; 〈β, b〉) ≡{
a(0) = b(0) ∧ α(0) = β(0) ∧ Ih(〈α′, a′〉, 〈ι, i〉; 〈β′, b′〉) if a(0) < i(0)
α = a = β = b = ι′ = i′ = 〈〉 if i(0) < a(0)

Constraint Automata A deterministic constraint automata for the Sequencer is

{A, B}, dA = dB

{I}

5.13 Or-Selector

Description Data is non-deterministically chosen from one of its two inputs and sent syn-
chronously to the output C. Once either A or B is chosen, no data can flow through to
C from the other. Data from the end not chosen is simply lost [1].

Circuit The Reo circuit for the Or-Selector is

I

Inhibitor

Inhibitor

A

B

C

I

ABT The ABT for an inhibitor is a ternary relation OS defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

OS(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡ (a = c ∧ α = γ) ∨ (b = c ∧ β = γ)

Constraint Automata A deterministic constraint automata for the Or-Selector is

{A, C}, dA = dC

{A, C}, dA = dC

{B, C}, dB = dC

{B, C}, dB = dC

22

Semantics

A

x

I

B

ABT The ABT for an inhibitor is a ternary relation Ih defined for timed data streams 〈α, a〉,
〈β, b〉, 〈ι, i〉 by

Ih(〈α, a〉, 〈ι, i〉; 〈β, b〉) ≡{
a(0) = b(0) ∧ α(0) = β(0) ∧ Ih(〈α′, a′〉, 〈ι, i〉; 〈β′, b′〉) if a(0) < i(0)
α = a = β = b = ι′ = i′ = 〈〉 if i(0) < a(0)

Constraint Automata A deterministic constraint automata for the Sequencer is

{A, B}, dA = dB

{I}

5.13 Or-Selector

Description Data is non-deterministically chosen from one of its two inputs and sent syn-
chronously to the output C. Once either A or B is chosen, no data can flow through to
C from the other. Data from the end not chosen is simply lost [1].

Circuit The Reo circuit for the Or-Selector is

I

Inhibitor

Inhibitor

A

B

C

I

ABT The ABT for an inhibitor is a ternary relation OS defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

OS(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡ (a = c ∧ α = γ) ∨ (b = c ∧ β = γ)

Constraint Automata A deterministic constraint automata for the Or-Selector is

{A, C}, dA = dC

{A, C}, dA = dC

{B, C}, dB = dC

{B, C}, dB = dC

22

A

x

I

B

ABT The ABT for an inhibitor is a ternary relation Ih defined for timed data streams 〈α, a〉,
〈β, b〉, 〈ι, i〉 by

Ih(〈α, a〉, 〈ι, i〉; 〈β, b〉) ≡{
a(0) = b(0) ∧ α(0) = β(0) ∧ Ih(〈α′, a′〉, 〈ι, i〉; 〈β′, b′〉) if a(0) < i(0)
α = a = β = b = ι′ = i′ = 〈〉 if i(0) < a(0)

Constraint Automata A deterministic constraint automata for the Sequencer is

{A, B}, dA = dB

{I}

5.13 Or-Selector

Description Data is non-deterministically chosen from one of its two inputs and sent syn-
chronously to the output C. Once either A or B is chosen, no data can flow through to
C from the other. Data from the end not chosen is simply lost [1].

Circuit The Reo circuit for the Or-Selector is

I

Inhibitor

Inhibitor

A

B

C

I

ABT The ABT for an inhibitor is a ternary relation OS defined for timed data streams 〈α, a〉,
〈β, b〉, 〈γ, c〉 by

OS(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡ (a = c ∧ α = γ) ∨ (b = c ∧ β = γ)

Constraint Automata A deterministic constraint automata for the Or-Selector is

{A, C}, dA = dC

{A, C}, dA = dC

{B, C}, dB = dC

{B, C}, dB = dC

22

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Concluding

• tools ... & case studies

• several semantic models ... & incipient calculus

• extensions: timed, stochastic, QoS annotated

	Back to software architecture
	Composition as coordination
	Introduction to Reo
	Examples
	Semantics
	Further examples

