Time-critical reactive systems (I)

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

24 April 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Motivation

Specifying an airbag saying that in a car crash the airbag eventually inflates

- in μ -calculus: $\nu Y . [crash](\mu X . [-airbag]X \land \langle \rangle true) \land [-]Y$
- in CTL: $\forall \Box (crash \Rightarrow \forall \Diamond airbag)$ or $AG(crash \Rightarrow AFairbag)$
- ...

maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Motivation

Specifying an airbag saying that in a car crash the airbag eventually inflates

- in μ -calculus: $\nu Y . [crash](\mu X . [-airbag]X \land \langle \rangle true) \land [-]Y$
- in CTL: $\forall \Box (crash \Rightarrow \forall \Diamond airbag)$ or $AG(crash \Rightarrow AFairbag)$
- ...

maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples of time-critical systems

Lip-synchronization protocol

Synchronizes the separate video and audio sources bounding on the amount of time mediating the presentation of a video frame and the corresponding audio frame. Humans tolerate less than 160 ms.

Bounded retransmission protocol

Controls communication of large files over infrared channel between a remote control unit and a video/audio equipment. Correctness depends crucially on

- transmission and synchronization delays
- time-out values for times at sender and receiver

And many others...

- medical instruments
- hybrid systems (eg for controlling industrial plants)
- ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Timed transition systems

Timed LTS

$$A = \langle S, Act, \longrightarrow \subseteq S \times Act \times \mathbf{R}^+ \times S, \circlearrowleft \subseteq S \times \mathbf{R}^+, s_o \in S, T \subseteq S \rangle$$

 $s \xrightarrow{a}_{t} s$ a transition through *a* occurs from *s* to *s'* at time *t* $s \bigcirc_{t}$ it is possible to idle in state *s* until (and including) time *t*

subject to progress and density constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Timed transition systems

Progress

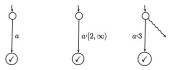
$$s \xrightarrow{a}_t s'' \xrightarrow{b}_{t'} s'$$
 or $s \xrightarrow{a}_t s'' \circlearrowleft_{t'}$ implies $t < t'$

Density

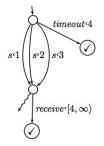
$$s \stackrel{a}{\longrightarrow}_t s'$$
 or $s \circlearrowleft_t$ implies $s \circlearrowright_{t'}$ for all $0 < t' \le t$

Pictures

The density constraint makes almost impossible drawing TLTS: need to cut off redundancy!



Example: modelling a timeout process



Timed bisimulation

Timed processes

Combinator

- a@t (assume 0 as the beginning of time: $a@0 = \delta@0$)
- *p*@*t* (first action of *p* must occur at time *t*)
- time deadlock: cf typically when the interaction of parallel processes have incompatible time constraints

Example

$$Clock(t : \mathbb{R}^+) = tick@(t+1).Clock(t+1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Timed processes

Expressing time constraints

$$\sum_{t \in R^+} a@t \cdot \sum_{u \in R^+} (u \le t + 10) \to b@u$$
$$\sum_{t \in R^+} a@t \cdot \sum_{u \in R^+} (u \le t + 10) \to b@u \diamond \mathsf{timeout}@u$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Extending the logic

Examples

$[true^*.a@t]\langle b@4 \rangle true$

 $[true^*] \forall_{t \in R^+} [\mathsf{call}@t] \langle true^* \rangle \exists_{u \in R^+} (u \leq t + 10 \land \langle \mathsf{cararrive} \rangle \mathsf{true})$

 $\forall_{t \in R^+} [true^*.on@t] \ \mu_X \left([\forall_{u \in R^+} \neg (u \le t + 0.4 \cup \mathsf{light}@u)]X \right)$

 $\forall_{t,u \in \mathbb{R}^+} [true^*.standby@t.true@u] \ u > t + 5$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extending the logic

Examples

 $[true^*.a@t]\langle b@4 \rangle true$

 $[true^*] \forall_{t \in \mathbb{R}^+} [call@t] \langle true^* \rangle \exists_{u \in \mathbb{R}^+} (u \leq t + 10 \land \langle cararrive \rangle true)$

 $\forall_{t \in \mathbf{R}^+} [true^*.on@t] \ \mu_X \left([\forall_{u \in \mathbf{R}^+} \neg (u \le t + 0.4 \cup \mathsf{light}@u)]X \right)$

 $\forall_{t,u \in \mathbb{R}^+} [true^*.standby@t.true@u] \ u > t + 5$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extending the logic

Examples

 $[true^*.a@t]\langle b@4 \rangle true$

 $[true^*] \forall_{t \in \mathbb{R}^+} [call@t] \langle true^* \rangle \exists_{u \in \mathbb{R}^+} (u \leq t + 10 \land \langle cararrive \rangle true)$

 $\forall_{t \in \mathbf{R}^+} [true^*.on@t] \ \mu_X \left([\forall_{u \in \mathbf{R}^+} \neg (u \le t + 0.4 \ \cup \ \mathsf{light}@u)] X \right)$

 $\forall_{t,u \in \mathbb{R}^+} [true^*.standby@t.true@u] \ u > t + 5$

Extending the logic

Examples

 $[true^*.a@t]\langle b@4 \rangle true$

 $[true^*] \forall_{t \in \mathbb{R}^+} [call@t] \langle true^* \rangle \exists_{u \in \mathbb{R}^+} (u \leq t + 10 \land \langle cararrive \rangle true)$

 $\forall_{t \in \mathbf{R}^+} [true^*.on@t] \ \mu_X \left([\forall_{u \in \mathbf{R}^+} \neg (u \le t + 0.4 \ \cup \ \mathsf{light@u})]X \right)$

 $\forall_{t,u \in \mathbf{R}^+} [true^*.standby@t.true@u] \ u > t + 5$

Extending the logic: delays

$$\bigwedge = \forall_{t \in \mathbf{R}^+} \bigwedge @t$$

$$\nabla @t = \neg \triangle @t$$

and

Examples

 $[true^*.standby]$

 $\forall_{t \in R^+}[true^*.standby@t] \land @(t+6)$

 $[true^*.emergency] \bigvee @t$

Extending the logic: delays

$$\bigwedge = \forall_{t \in \mathbf{R}^+} \bigwedge @t$$

$$\nabla @t = \neg \Delta @t$$

Examples

 $[true^*.standby]$

 $\forall_{t \in R^+}[true^*.standby@t] \land @(t+6)$

 $[true^*.emergency] \bigvee @t$

and

Extending the logic: delays

$$\bigwedge = \forall_{t \in \mathbf{R}^+} \bigwedge @t$$

$$\nabla @t = \neg \Delta @t$$

Examples

 $[true^*.standby] \bigwedge$ $\forall_{t \in R^+} [true^*.standby@t] \bigwedge @(t+6)$ $[true^*.emergency] \bigtriangledown @t$

and

Extending the logic: delays

$$\bigwedge = \forall_{t \in \mathbf{R}^+} \bigwedge @t$$

$$\nabla @t = \neg \triangle @t$$

Examples

 $[true^*.standby] \bigwedge$ $\forall_{t \in R^+} [true^*.standby@t] \bigwedge @(t+6)$ $[true^*.emergency] \bigvee @t$

and

Dealing with time in system models

Extension of Process Algebras with time

• TCCS [Yi,90] which introduced a new prefix:

 $\epsilon(d).E$ delay d units of time and then behave as E

• TCSP [Reed& Roscoe, 88], ATP [Nicollin & Sifakis, 94], among many others

Emphasis on axiomatics, behavioural equivalences, expressivity

Dealing with time in system models

However, in general, expressive power is somehow limited and infinite-state LTS difficult to handle in practice

Example

TCCS is unable to express a system which has only one action *a* which can only occur at time point 5 with the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time measured by a stopwatch:

- 1. Set the stopwatch to 0
- 2. When the stopwatch measures 5, action *a* can occur. If *a* occurs go to 1., if not idle forever.

Dealing with time in system models

However, in general, expressive power is somehow limited and infinite-state LTS difficult to handle in practice

Example

TCCS is unable to express a system which has only one action *a* which can only occur at time point 5 with the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time measured by a stopwatch:

- 1. Set the stopwatch to 0
- 2. When the stopwatch measures 5, action *a* can occur. If *a* occurs go to 1., if not idle forever.

Dealing with time in system models

This suggests resorting to an automaton-based formalism with an explicit notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

• emphasis on decidability of the model-checking problem and corresponding practically efficient algorithms

Associate tools

- UPPAAL [Behrmann, David, Larsen, 04]
- KRONOS [Bozga, 98]