
Introduction to process algebra and the
µ-calculus

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

3 April 2014

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

From LTS to processes

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others

 modal (temporal, hybrid) logics

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α 3 τ | a(d) | (α | α)

• actions may be parametric on data

• the structure 〈N, |, τ〉 forms an Abelian monoid

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N,

p 3 α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N

• choice: +

• sequential composition: ·

• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Example

Buffers

act in, out, t; inn, outt : Bool;

proc Buffer1 = in.out;

Buffer2 = in.out.Buffer2;

Buffer3 = in.(out.Buffer3 + t.Buffer3);

Buffer4 = sum n: Bool.inn(n).outt(n).Buffer4;

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mCRL2: supports a flexible synchronization discipline

p ::= · · · | p ‖ p | p | p | pTp

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,a|b}(d(12) + a(8) + (b(false, 4) | a)) = d(12) + (b(false, 4) | a)

• τ is always allowed to occur

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | a)) = d(12) + a(8)

• τ cannot be blocked

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ cannot be renamed

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Exercise

Composing buffers with acknowledges

act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;

proc BufferS = inn.outt.r.t.BufferS;

BufferA =

rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);

BufferB =

rename({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);

S = allow({ia,ob,rb,ta,c,a},
comm({oa|ib -> c, ra|tb -> a}, BufferA || BufferB));

init hide({c,a}, S);

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Exercise

Composing buffers with acknowledges (corrected)

act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;

proc BufferS = inn.t.outt.r.BufferS;

BufferA =

rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);

BufferB =

rename({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);

S = allow({ia,ob,rb,ta,c,a},
comm({oa|ib -> c, ra|tb -> a}, BufferA || BufferB));

init hide({c,a}, S);

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = t++r;

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action a followed by b?

which are best answered by exploring the process state space

Which logic?

A modal logic with the ability to express enduring (temporal) properties

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Motivation

The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ1 = This applies only to cars already on service

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ3 = On detecting an emergence the taxi becomes inactive

• φ4 = A car on service is not inactive

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Motivation

The taxi network example

• φ0 = 〈rec , alo〉true

• φ1 = [onservice]〈rec , alo〉true or
φ1 = [onservice]φ0

• φ2 = [alo]〈rec〉〈plan〉true

• φ3 = [sos][true]false

• φ4 = [onservice]〈true〉true

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

... in mCRL2

The verification problem in mCRL2

• Given a specification of the system’s behaviour is in mCRL2

• and the system’s requirements are specified as properties in a
temporal logic,

• a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted;

• sometimes, witnesses or counter-examples can be provided

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Modal logic

• Modalities: 〈−〉φ, [−]ψ

• Valuations in non modal logics are based on valuations
V : Variables −→ 2: propositions are true or false depending on the
unique referential provided by V

• Valuations in a modal logic also depends on the current state of
computation: V : Variables× P −→ 2 or, equivalently, ,
V : Variables −→ PP: each variable is associated to the set of
processes in which its value is fixed as true

• In our case, models for such a logic are defined over the universe of
processes P (i.e., terms of our process language) equipped with

relations { x−→ |x ∈ Act} defined by the operational semantics of
the language.

• ... but the topic modal logics has a longer story and a broad
spectrum of applications ...

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

The Hennessy-Milner logic

Syntax

φ 3 true | false | ¬φ | φ ∧ φ | φ ∨ φ | 〈α〉φ | [α]φ

where α is an action formula

Compare with dynamic logic

Can you spot the difference?

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

The Hennessy-Milner logic

Some laws

¬〈a〉φ = [a]¬φ
¬[a]φ = 〈a〉¬φ
〈a〉false = false

[a]true = true

〈a〉(φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ
[a](φ ∧ ψ) = [a]φ ∧ [a]ψ

〈a〉φ ∧ [a]ψ ⇒ 〈a〉(φ ∧ ψ)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

The Hennessy-Milner logic

Action formulas

α 3 (a1 | · · · | an) | true | false | −α | α ∪ α | α ∩ α

where

• a1 | · · · | an is a set with this single multiaction

• true (universe), false (empty set)

• −α is the set complement

Modalities with action formulas:

〈α〉φ =
∨
a∈α
〈a〉φ [α]φ =

∧
a∈α

[a]φ

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

The language

Semantics: E |= φ

E |= true

E 6|= false

E |= ¬φ iff E 6|= φ

E |= φ ∧ ψ iff E |= φ ∧ E |= ψ

E |= φ ∨ ψ iff E |= φ ∨ E |= ψ

E |= 〈α〉φ iff ∃
F∈{E ′|E a−→E ′ ∧ a∈α} . F |= φ

E |= [α]φ iff ∀
F∈{E ′|E a−→E ′ ∧ a∈α} . F |= φ

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Notes

• inevitability of a: 〈true〉true ∧ [−a]false

• progress: 〈true〉true

• deadlock or termination: [true]false

• what about
〈true〉false and [true]true ?

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

A denotational semantics

Idea: associate to each formula φ the set of processes that make it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||true|| = P
||false|| = ∅
||φ ∧ ψ|| = ||φ|| ∩ ||ψ||
||φ ∨ ψ|| = ||φ|| ∪ ||ψ||

||[α]φ|| = ||[α]||(||φ||)
||〈α〉φ|| = ||〈α〉||(||φ||)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

||[α]|| and ||〈α〉||

Just as ∧ corresponds to ∩ and ∨ to ∪, modal logic combinators
correspond to unary functions on sets of processes:

||[α]|| = λX⊆P . {F ∈ P | if F
a−→ F ′ ∧ a ∈ α then F ′ ∈ X}

||〈α〉|| = λX⊆P . {F ∈ P | ∃F ′∈X ,a∈α . F
a−→ F ′}

Note
These combinators perform a reduction to the previous state indexed by
actions in α

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

||[α]|| and ||〈α〉||

Example

q1

a

~~

a

m

a

��
q2

c // q3 cgg n cdd

||〈a〉||{q2, n} = {q1,m}
||[a]||{q2, n} = {q2, q3,m, n}

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: δ |= [true]false
because

||[true]false|| = ||[true]||(||false||)
= ||[true]||(∅)

= {F ∈ P | if F
x−→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}

= {δ}

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: ?? |= 〈true〉true
because

||〈true〉true|| = ||〈true〉||(||true||)
= ||〈true〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F
a−→ F ′}

= P \ {δ}

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b + a.c 'Γ a.(b + c)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[true]false | xi ∈ Act} ?)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X)

A � A′ but A' A′

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | F a−→ E} is finite for every action a ∈ Act

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

proof

⇒ : by induction of the formula structure

⇐ : show that ' is itself a bisimulation, by contradiction

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Regular modalities
Hennessy-Milner logic + regular expressions
ie, add with regular expressions within modalities

ρ ::= ε | α | ρ.ρ | ρ+ ρ | ρ∗ | ρ+

where

• α is an action formula and ε is the empty word

• concatenation ρ.ρ, choice ρ+ ρ and closures ρ∗ and ρ+

Laws

〈ρ1 + ρ2〉φ = 〈ρ1〉φ ∨ 〈ρ2〉φ
[ρ1 + ρ2]φ = [ρ1]φ ∧ [ρ2]φ

〈ρ1.ρ2〉φ = 〈ρ1〉〈ρ2〉φ
[ρ1.ρ2]φ = [ρ1][ρ2]φ

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Regular modalities

Examples of properties

• 〈ε〉φ = [ε]φ = φ

• 〈a.a.b〉φ = 〈a〉〈a〉〈b〉φ

• 〈a.b + g .d〉φ

Safety

• [true∗]φ

• it is impossible to do two consecutive enter actions without a leave
action in between:
[true∗.enter .− leave∗.enter]false

• absence of deadlock:
[true∗]〈true〉true

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Regular modalities

Examples of properties

Liveness

• 〈true∗〉φ

• after sending a message, it can eventually be received:
[send]〈true∗.receive〉true

• after a send a receive is possible as long as it has not happened:
[send .− receive∗]〈true∗.receive〉true

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

The modal µ-calculus

φ, ψ ::= X | true | false | ¬φ | φ∧ψ | φ∨ψ | φ⇒ψ | 〈a〉φ | [a]φ | µX . φ | νX . φ

• modalities with regular expressions are not enough in general

• in particular cannot express fairness properties:

if the system is offered the possibility to perform a infinitely often,
then it will eventually perform a

• ... but correspond to a subset of the modal µ-calculus [Kozen83]

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

The modal µ-calculus

The modal µ-calculus (intuition)

• µX . φ is valid for all those states in the smallest set X that satisfies
the equation X = φ (finite paths, liveness)

• νX . φ is valid for the states in the largest set X that satisfies the
equation X = φ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Examples

Translation of regular formulas with closure

〈R∗〉φ = µX . 〈R〉X ∨ φ
[R∗]φ = νX . [R]X ∧ φ
〈R+〉φ = 〈R〉〈R∗〉φ
[R+]φ = [R][R∗]φ

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Examples

The dining philosophers problem

• No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

• there is no starvation: for all reachable states it should be possible to
eventually perform an eat(p) for each possible value of p:Phil.

[true*](forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Semantics

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic

cf the Knaster-Tarski theorem (1928)

Laws

µX . φ ⇒ νX . φ

and self-duals:

¬µX . φ = νX .¬φ
¬νX . φ = µX .¬φ

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

A denotational semantics

ρ : X −→ PP: predicate environment

||true||ρ = P
||false||ρ = ∅
||X ||ρ = ρ(X)

||φ ∧ ψ||ρ = ||φ||ρ ∩ ||ψ||ρ
||φ ∨ ψ||ρ = ||φ||ρ ∪ ||ψ||ρ
||[α]φ||ρ = ||[α]||(||φ||ρ)

||〈α〉φ||ρ = ||〈α〉||(||φ||ρ)

||µX . φ||ρ =
⋂
{V ∈ P | ||φ||ρ{X 7→V} ⊆ V }

||νX . φ||ρ =
⋃
{V ∈ P | V ⊆ ||φ||ρ{X 7→V}}

computing by Kleene approximation

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Overview

Strategies to deal with infinite models and specifications

• A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

• The specification is converted to a stricter format called Linear
Process Specification (x.lps)

• In this format the specification can be transformed and simulated

• In particular a Labelled Transition System (x.lts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The µ-calculus The toolset

Architecture

	Introduction
	A process algebra
	Data
	A logic for processes
	Modal equivalence and bisimulation
	The -calculus
	The toolset

