Introduction to process algebra and the μ -calculus

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

3 April 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

From LTS to processes

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?

→ process languages and calculi cf. CCS (Milner, 80), CSP (Hoare, 85), ACP (Bergstra & Klop, 82), π -calculus (Milner, 89), among many others

→ modal (temporal, hybrid) logics

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on ACP (Bergstra & Klop, 82), in which other calculi can be embedded
- extended with data and (real) time
- the full μ -calculus as a specification logic
- powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute itself atomically in time (no duration), after which it terminates successfully

$$\alpha \quad \ni \quad \tau \mid \mathbf{a}(\mathbf{d}) \mid (\alpha \mid \alpha)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- actions may be parametric on data
- the structure $\langle N, |, \tau \rangle$ forms an Abelian monoid

Sequential processes

Sequential, non deterministic behaviour

The set \mathbb{P} of processes is the set of all terms generated by the following BNF, for $a \in N$,

$p \ni \alpha \mid \delta \mid p + p \mid p \cdot p \mid \mathsf{P}(d)$

- atomic process: a for all $a \in N$
- choice: +
- sequential composition: •
- inaction or deadlock: δ
- process references introduced through definitions of the form P(x : D) = p, parametric on data

Example

Buffers

- act in, out, t; inn, outt : Bool;
- proc Buffer1 = in.out;

Buffer2 = in.out.Buffer2;

Buffer3 = in.(out.Buffer3 + t.Buffer3);

Buffer4 = sum n: Bool.inn(n).outt(n).Buffer4;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sequential Processes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Exercise

Describe the behaviour of

- a.b.δ.c + a
- (*a* + *b*).δ.*c*
- $(a+b).e+\delta.c$
- $a + (\delta + a)$
- a.(b+c).d.(b+c)

Parallel composition

$\| =$ interleaving + synchronization

- modelling principle: interaction is the key element in software design
- modelling principle: (distributed, reactive) architectures are configurations of communicating black boxes
- mCRL2: supports a flexible synchronization discipline

$$p ::= \cdots \mid p \parallel p \mid p \mid p \mid p \parallel p$$

Parallel composition

- parallel p || q: interleaves and synchronises the actions of both processes.
- synchronisation p | q: synchronises the first actions of p and q and combines the remainder of p with q with ||, cf axiom:

$$(a.p) \mid (b.q) \sim (a \mid b) . (p \parallel q)$$

• left merge $p \parallel q$: executes a first action of p and thereafter combines the remainder of p with q with \parallel .

Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this process algebra with || modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

- left merge:
- synchronous product: |

such that

$$p \parallel t \sim (p \parallel t + t \parallel p) + p \mid t$$

Interaction

Communication $\Gamma_C(p)$ (com)

• applies a communication function *C* forcing action synchronization and renaming to a new action:

 $a_1 \mid \cdots \mid a_n \rightarrow c$

• data parameters are retained in action c, e.g.

$$\begin{split} & \Gamma_{\{a|b\to c\}}(a(8) \mid b(8)) = c(8) \\ & \Gamma_{\{a|b\to c\}}(a(12) \mid b(8)) = a(12) \mid b(8) \\ & \Gamma_{\{a|b\to c\}}(a(8) \mid a(12) \mid b(8)) = a(12) \mid c(8) \end{split}$$

• left hand-sides in C must be disjoint: e.g., $\{a \mid b \rightarrow c, a \mid d \rightarrow j\}$ is not allowed

Restriction: $\nabla_B(p)$ (allow)

- specifies which multiactions from a non-empty multiset of action names are allowed to occur
- disregards the data parameters of the multiactions

 $\nabla_{\{d,a|b\}}(d(12) + a(8) + (b(false, 4) \mid a)) = d(12) + (b(false, 4) \mid a)$

• au is always allowed to occur

Block: $\partial_B(p)$ (block)

- specifies which multiactions from a set of action names are not allowed to occur
- disregards the data parameters of the multiactions

$$\partial_{\{b\}}(d(12) + a(8) + (b(false, 4) | a)) = d(12) + a(8)$$

 τ cannot be blocked

Renaming $\rho_M(p)$ (rename)

- renames actions in p according to a mapping M
- also disregards the data parameters, but when a renaming is applied the data parameters are retained:

$$\partial_{\{d \to h\}}(d(12) + s(8) \mid d(false) + d.a.d(7))$$

= $h(12) + s(8) \mid h(false) + h.a.h(7)$

• τ cannot be renamed

Hiding $\tau_H(p)$ (hide)

- hides (or renames to τ) all actions with an action name in H in all multiactions of p. renames actions in p according to a mapping M
- disregards the data parameters

$$\tau_{\{d\}}(d(12) + s(8) \mid d(false) + h.a.d(7)) \\ = \tau + s(8) \mid \tau + h.a.\tau = \tau + s(8) + h.a.\tau$$

• au cannot be renamed

Example

New buffers from old

- act inn,outt,ia,ib,oa,ob,c : Bool;
- proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

```
BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);
```

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

(日) (日) (日) (日) (日) (日) (日) (日)

init hide({c}, S);

Exercise

Composing buffers with acknowledges

```
act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;
```

proc BufferS = inn.outt.r.t.BufferS;

init hide({c,a}, S);

Exercise

Composing buffers with acknowledges (corrected)

```
act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;
```

```
proc BufferS = inn.t.outt.r.BufferS;
```

```
BufferA =
    rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);
BufferB =
    rename({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);
S = allow({ia,ob,rb,ta,c,a},
```

```
comm({oa|ib -> c, ra|tb -> a}, BufferA || BufferB));
```

init hide({c,a}, S);

Data types

- Equalities: equality, inequality, conditional (if(-,-,-))
- Basic types: booleans, naturals, reals, integers, ... with the usual operators
- Sets, multisets, sequences ... with the usual operators
- Function definition, including the λ -notation
- Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Signatures and definitions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sorts, functions, constants, variables ...

sort S, A; cons s,t:S, b:set(A); map f: S x S -> A; c: A; var x:S; eqn f(x,s) = s;

Signatures and definitions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A full functional language ...

- sort BTree = struct leaf(Pos) | node(BTree, BTree);
- map flatten: BTree -> List(Pos);
- var n:Pos, t,r:BTree;
- eqn flatten(leaf(n)) = [n];
 flatten(node(t,r)) = t++r;

Processes with data

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why?

- Precise modeling of real-life systems
- Data allows for finite specifications of infinite systems

How?

- data and processes parametrized
- summation over data types: $\sum_{n:N} s(n)$
- processes conditional on data: b → p ◊ q

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation. The μ -calculus The toolset

Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A counter

act up, down; setcounter:Pos;

init Ctr(345);

Examples

A dynamic binary tree

- act left,right;
- map N:Pos;
- eqn N = 512;
- proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

init X(1);

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and =
- unsuitable to check properties such as

can the system perform action a followed by b?

which are best answered by exploring the process state space

Which logic?

A modal logic with the ability to express enduring (temporal) properties

Motivation

The taxi network example

• $\phi_0 = \ln a \text{ taxi network}$, a car can collect a passenger or be allocated by the Central to a pending service

- $\phi_1 =$ This applies only to cars already on service
- φ₂ = If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_3 = On$ detecting an emergence the taxi becomes inactive
- $\phi_4 = A$ car on service is not inactive

Motivation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The taxi network example

- $\phi_0 = \langle rec, alo \rangle$ true
- $\phi_1 = [onservice]\langle rec, alo \rangle$ true or $\phi_1 = [onservice]\phi_0$
- $\phi_2 = [alo]\langle rec \rangle \langle plan \rangle$ true
- $\phi_3 = [sos][true]false$
- $\phi_4 = [onservice] \langle true \rangle true$

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation. The μ -calculus The toolset

... in mCRL2

The verification problem in mCRL2

- Given a specification of the system's behaviour is in mCRL2
- and the system's requirements are specified as properties in a temporal logic,
- a model checking algorithm decides whether the property holds for the model: the property can be verified or refuted;

• sometimes, witnesses or counter-examples can be provided

Modal logic

- Modalities: $\langle
 angle \phi$, $[-]\psi$
- Valuations in non modal logics are based on valuations
 V : Variables → 2: propositions are true or false depending on the unique referential provided by V
- Valuations in a modal logic also depends on the current state of computation: V : Variables × ℙ → 2 or, equivalently, , V : Variables → 𝒫ℙ: each variable is associated to the set of processes in which its value is fixed as true

• ... but the topic modal logics has a longer story and a broad spectrum of applications ...

The Hennessy-Milner logic

Syntax

 $\phi \ \ni \ \mathsf{true} \ | \ \mathsf{false} \ | \ \neg \phi \ | \ \phi \land \phi \ | \ \phi \lor \phi \ | \ \langle \alpha \rangle \phi \ | \ [\alpha] \phi$

where α is an action formula

Compare with dynamic logic

Can you spot the difference?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Hennessy-Milner logic

Some laws

 $\neg \langle a \rangle \phi = [a] \neg \phi$ $\neg [a] \phi = \langle a \rangle \neg \phi$ $\langle a \rangle false = false$ [a] true = true $\langle a \rangle (\phi \lor \psi) = \langle a \rangle \phi \lor \langle a \rangle \psi$ $[a] (\phi \land \psi) = [a] \phi \land [a] \psi$ $\langle a \rangle \phi \land [a] \psi \Rightarrow \langle a \rangle (\phi \land \psi)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Hennessy-Milner logic

Action formulas

$$\alpha \ni (\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n) \mid \text{true} \mid \text{false} \mid -\alpha \mid \alpha \cup \alpha \mid \alpha \cap \alpha$$

where

- $a_1 \mid \cdots \mid a_n$ is a set with this single multiaction
- true (universe), false (empty set)
- $-\alpha$ is the set complement

Modalities with action formulas:

$$\langle \alpha \rangle \phi = \bigvee_{\mathbf{a} \in \alpha} \langle \mathbf{a} \rangle \phi \qquad [\alpha] \phi = \bigwedge_{\mathbf{a} \in \alpha} [\mathbf{a}] \phi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The language

Semantics: $E \models \phi$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation. The μ -calculus The toolset

Notes

- inevitability of *a*: $\langle true \rangle true \land [-a]$ false
- progress: (true)true
- deadlock or termination: [true]false
- what about

 $\langle true \rangle$ false and [true]true ?

 satisfaction decided by unfolding the definition of =: no need to compute the transition graph

A denotational semantics

Idea: associate to each formula ϕ the set of processes that make it true

```
\phi \text{ vs } \|\phi\| = \{E \in \mathbb{P} \mid E \models \phi\}
```

```
\|\mathsf{true}\| = \mathbb{P}\|\mathsf{false}\| = \emptyset\|\phi \land \psi\| = \|\phi\| \cap \|\psi\|\|\phi \lor \psi\| = \|\phi\| \cup \|\psi\|
```

 $\|[\alpha]\phi\| = \|[\alpha]\|(\|\phi\|)$ $\|\langle \alpha \rangle \phi\| = \|\langle \alpha \rangle\|(\|\phi\|)$

$\|[\alpha]\|$ and $\|\langle \alpha \rangle\|$

Just as \land corresponds to \cap and \lor to \cup , modal logic combinators correspond to unary functions on sets of processes:

$$\|[\alpha]\| = \lambda_{X \subseteq \mathbb{P}} \cdot \{F \in \mathbb{P} \mid \text{if } F \xrightarrow{a} F' \land a \in \alpha \text{ then } F' \in X\}$$

$$\|\langle \alpha \rangle\| = \lambda_{X \subseteq \mathbb{P}} \cdot \{F \in \mathbb{P} \mid \exists_{F' \in X, a \in \alpha} \cdot F \xrightarrow{a} F'\}$$

Note

These combinators perform a reduction to the previous state indexed by actions in $\boldsymbol{\alpha}$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation. The μ -calculus The toolset

 $\|[\alpha]\|$ and $\|\langle \alpha \rangle\|$

Example

$$\|\langle a \rangle \| \{q_2, n\} = \{q_1, m\} \\ \|[a]\| \{q_2, n\} = \{q_2, q_3, m, n\}$$

・ロト ・個ト ・モト ・モト

æ.

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation. The μ -calculus The toolset

A denotational semantics

$$E \models \phi$$
 iff $E \in \|\phi\|$

Example: $\delta \models [true]$ false

because

$$\begin{split} \|[\mathsf{true}]\mathsf{false}\| &= \|[\mathsf{true}]\|(\|\mathsf{false}\|) \\ &= \|[\mathsf{true}]\|(\emptyset) \\ &= \{F \in \mathbb{P} \mid \mathsf{if} \ F \xrightarrow{x} F' \ \land \ x \in \mathsf{Act} \ \mathsf{then} \ F' \in \emptyset\} \\ &= \{\delta\} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation. The μ -calculus The toolset

A denotational semantics

$$E \models \phi$$
 iff $E \in \|\phi\|$

Example: ?? $\models \langle true \rangle true$

because

$$\begin{split} \|\langle \mathsf{true} \rangle \mathsf{true} \| &= \|\langle \mathsf{true} \rangle \| (\| \mathsf{true} \|) \\ &= \|\langle \mathsf{true} \rangle \| (\mathbb{P}) \\ &= \{ F \in \mathbb{P} \mid \exists_{F' \in \mathbb{P}, a \in K} : F \xrightarrow{a} F' \} \\ &= \mathbb{P} \setminus \{ \delta \} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For each (finite or infinite) set Γ of formulae,

$$E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} \; . \; E \models \phi \Leftrightarrow F \models \phi$$

Examples

$$a.b + a.c \simeq_{\Gamma} a.(b + c)$$

for $\Gamma = \{ \langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle$ true $| x_i \in Act \}$

(what about \simeq_{Γ} for $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle ... \langle x_n \rangle [true] false \mid x_i \in Act\}$?)

(日) (日) (日) (日) (日) (日) (日) (日)

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae

Lemma

 $E \sim F \Rightarrow E \simeq F$

Note

the converse of this lemma does not hold, e.g. let

• $A \triangleq \sum_{i \ge 0} A_i$, where $A_0 \triangleq \mathbf{0}$ and $A_{i+1} \triangleq a.A_i$

•
$$A' \triangleq A + \underline{fix} (X = a.X)$$

$$A \not\sim A'$$
 but $A \simeq A'$

Theorem [Hennessy-Milner, 1985]

$E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

Image-finite processes *E* is image-finite iff $\{F \mid F \xrightarrow{a} E\}$ is finite for every action $a \in Act$

Theorem [Hennessy-Milner, 1985]

 $E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

proof

- \Rightarrow : by induction of the formula structure
- \Leftarrow : show that \simeq is itself a bisimulation, by contradiction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Regular modalities

Hennessy-Milner logic + regular expressions ie, add with regular expressions within modalities

$$\rho ::= \epsilon \mid \alpha \mid \rho.\rho \mid \rho + \rho \mid \rho^* \mid \rho^+$$

where

- α is an action formula and ϵ is the empty word
- concatenation $\rho.\rho$, choice $\rho + \rho$ and closures ρ^* and ρ^+

Laws

$$\begin{aligned} \langle \rho_1 + \rho_2 \rangle \phi &= \langle \rho_1 \rangle \phi \lor \langle \rho_2 \rangle \phi \\ [\rho_1 + \rho_2] \phi &= [\rho_1] \phi \land [\rho_2] \phi \\ \langle \rho_1 . \rho_2 \rangle \phi &= \langle \rho_1 \rangle \langle \rho_2 \rangle \phi \\ [\rho_1 . \rho_2] \phi &= [\rho_1] [\rho_2] \phi \end{aligned}$$

Regular modalities

Examples of properties

- $\bullet \ \langle \epsilon \rangle \phi \ = \ [\epsilon] \phi \ = \ \phi$
- $\langle a.a.b \rangle \phi = \langle a \rangle \langle a \rangle \langle b \rangle \phi$
- $\langle a.b + g.d \rangle \phi$

Safety

- $[true^*]\phi$
- it is impossible to do two consecutive enter actions without a leave action in between:

[true*.enter. – leave*.enter]false

 absence of deadlock: [true*](true)true

Regular modalities

Examples of properties

Liveness

- $\langle {\rm true}^* \rangle \phi$
- after sending a message, it can eventually be received: [send](true*.receive)true
- after a send a receive is possible as long as it has not happened: [send. - receive*](true*.receive)true

The modal μ -calculus

 $\phi, \psi ::= \mathsf{X} \mid \mathsf{true} \mid \mathsf{false} \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \Rightarrow \psi \mid \langle \mathsf{a} \rangle \phi \mid [\mathsf{a}] \phi \mid \mu \mathsf{X} \cdot \phi \mid \nu \mathsf{X} \cdot \phi$

- modalities with regular expressions are not enough in general
- in particular cannot express fairness properties:

if the system is offered the possibility to perform *a* infinitely often, then it will eventually perform *a*

• ... but correspond to a subset of the modal μ -calculus [Kozen83]

The modal μ -calculus

The modal μ -calculus (intuition)

- $\mu X \cdot \phi$ is valid for all those states in the smallest set X that satisfies the equation $X = \phi$ (finite paths, liveness)
- $\nu X \cdot \phi$ is valid for the states in the largest set X that satisfies the equation $X = \phi$ (infinite paths, safety)

Warning

In order to be sure that a fixed point exists, X must occur positively in the formula, ie preceded by an even number of negations.

Examples

Translation of regular formulas with closure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples

The dining philosophers problem

 No deadlock (every philosopher holds a left fork and waits for a right fork (or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

 there is no starvation: for all reachable states it should be possible to eventually perform an eat(p) for each possible value of p:Phil.

[true*](forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))

Semantics

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic

cf the Knaster-Tarski theorem (1928)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Laws

$$\mu X . \phi \Rightarrow \nu X . \phi$$

and self-duals:

$$\neg \mu X \cdot \phi = \nu X \cdot \neg \phi$$

$$\neg \nu X \cdot \phi = \mu X \cdot \neg \phi$$

A denotational semantics

 $\rho: X \longrightarrow \mathcal{PP}$: predicate environment

$$\|\operatorname{true}\|_{\rho} = \mathbb{P}$$
$$\|\operatorname{false}\|_{\rho} = \emptyset$$
$$\|X\|_{\rho} = \rho(X)$$
$$\|\phi \land \psi\|_{\rho} = \|\phi\|_{\rho} \cap \|\psi\|_{\rho}$$
$$\|\phi \lor \psi\|_{\rho} = \|\phi\|_{\rho} \cup \|\psi\|_{\rho}$$
$$\|[\alpha]\phi\|_{\rho} = \|[\alpha]\|(\|\phi\|_{\rho})$$
$$\|\langle \alpha \rangle \phi\|_{\rho} = \|\langle \alpha \rangle\|(\|\phi\|_{\rho})$$

$$\|\mu X \cdot \phi\|_{\rho} = \bigcap \{ V \in \mathbb{P} \mid \|\phi\|_{\rho\{X \mapsto V\}} \subseteq V \}$$
$$\|\nu X \cdot \phi\|_{\rho} = \bigcup \{ V \in \mathbb{P} \mid V \subseteq \|\phi\|_{\rho\{X \mapsto V\}} \}$$

computing by Kleene approximation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Overview

Strategies to deal with infinite models and specifications

- A specification of the system's behaviour is written in mCRL2 (x.mcrl2)
- The specification is converted to a stricter format called Linear Process Specification (x.lps)
- In this format the specification can be transformed and simulated
- In particular a Labelled Transition System (x.lts) can be generated, simulated and analysed through symbolic model checking (boolean equation solvers)

Architecture

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで