Introduction to process algebra and the μ-calculus

Luís S. Barbosa

HASLab - INESC TEC
Universidade do Minho
Braga, Portugal

3 April 2014

From LTS to processes

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?
\rightsquigarrow process languages and calculi cf. Ccs (Milner, 80), Csp (Hoare, 85), AcP (Bergstra \& Klop, 82), π-calculus (Milner, 89), among many others
\rightsquigarrow modal (temporal, hybrid) logics

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on AcP (Bergstra \& Klop, 82), in which other calculi can be embedded
- extended with data and (real) time
- the full μ-calculus as a specification logic
- powerful toolset for simulation and verification of reactive systems

Actions

Interaction through multisets of actions

- A multiaction is an elementary unit of interaction that can execute itself atomically in time (no duration), after which it terminates successfully

$$
\alpha \ni \tau|a(d)|(\alpha \mid \alpha)
$$

- actions may be parametric on data
- the structure $\langle N, \mid, \tau\rangle$ forms an Abelian monoid

Sequential processes

Sequential, non deterministic behaviour
The set \mathbb{P} of processes is the set of all terms generated by the following BNF, for $a \in N$,

$$
p \ni \alpha|\delta| p+p|p \cdot p| \mathrm{P}(d)
$$

- atomic process: a for all $a \in N$
- choice: +
- sequential composition: •
- inaction or deadlock: δ
- process references introduced through definitions of the form $\mathrm{P}(x: D)=p$, parametric on data

Example

Buffers

```
act in, out, t; inn, outt : Bool;
```

proc Buffer1 = in.out;
Buffer2 $=$ in.out.Buffer2;
Buffer3 = in. (out. Buffer3 + t.Buffer3);
Buffer4 = sum n : Bool.inn(n).outt(n).Buffer4;

Sequential Processes

Exercise

Describe the behaviour of

- a.b. $\delta . c+a$
- $(a+b) . \delta . c$
- $(a+b) . e+\delta . c$
- $a+(\delta+a)$
- a. $(b+c) . d .(b+c)$

Parallel composition

$\|=$ interleaving + synchronization

- modelling principle: interaction is the key element in software design
- modelling principle: (distributed, reactive) architectures are configurations of communicating black boxes
- mCRL2: supports a flexible synchronization discipline

$$
p::=\cdots|p \| p| p|p| p \sharp p
$$

Parallel composition

- parallel $p \| q$: interleaves and synchronises the actions of both processes.
- synchronisation $p \mid q$: synchronises the first actions of p and q and combines the remainder of p with q with $\|$, cf axiom:

$$
(a . p) \mid(b . q) \sim(a \mid b) \cdot(p \| q)
$$

- left merge $p \| q$: executes a first action of p and thereafter combines the remainder of p with q with $\|$.

Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this process algebra with $\|$ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

- left merge: \lfloor
- synchronous product: |
such that

$$
p \| t \sim(p\|t+t\| p)+p \mid t
$$

Interaction

Communication $\Gamma_{C}(p)(c o m)$

- applies a communication function C forcing action synchronization and renaming to a new action:

$$
a_{1}|\cdots| a_{n} \rightarrow c
$$

- data parameters are retained in action c, e.g.

$$
\begin{aligned}
& \Gamma_{\{a \mid b \rightarrow c\}}(a(8) \mid b(8))=c(8) \\
& \Gamma_{\{a \mid b \rightarrow c\}}(a(12) \mid b(8))=a(12) \mid b(8) \\
& \Gamma_{\{a \mid b \rightarrow c\}}(a(8)|a(12)| b(8))=a(12) \mid c(8)
\end{aligned}
$$

- left hand-sides in C must be disjoint: e.g., $\{a|b \rightarrow c, a| d \rightarrow j\}$ is not allowed

Interface control

Restriction: $\nabla_{B}(p)$ (allow)

- specifies which multiactions from a non-empty multiset of action names are allowed to occur
- disregards the data parameters of the multiactions

$$
\nabla_{\{d, a \mid b\}}(d(12)+a(8)+(b(\text { false }, 4) \mid a))=d(12)+(b(\text { false }, 4) \mid a)
$$

- τ is always allowed to occur

Interface control

Block: $\partial_{B}(p)$ (block)

- specifies which multiactions from a set of action names are not allowed to occur
- disregards the data parameters of the multiactions

$$
\partial_{\{b\}}(d(12)+a(8)+(b(\text { false }, 4) \mid a))=d(12)+a(8)
$$

- τ cannot be blocked

Interface control

Renaming $\rho_{M}(p)$ (rename)

- renames actions in p according to a mapping M
- also disregards the data parameters, but when a renaming is applied the data parameters are retained:

$$
\begin{aligned}
\partial_{\{d \rightarrow h\}} & (d(12)+s(8) \mid d(\text { false })+d . a \cdot d(7)) \\
& =h(12)+s(8) \mid h(\text { false })+h \cdot a \cdot h(7)
\end{aligned}
$$

- τ cannot be renamed

Interface control

Hiding $\tau_{H}(p)$ (hide)

- hides (or renames to τ) all actions with an action name in H in all multiactions of p. renames actions in p according to a mapping M
- disregards the data parameters

$$
\begin{aligned}
& \tau_{\{d\}}(d(12)+s(8) \mid d(\text { false })+\text { h.a.d }(7)) \\
& \quad=\tau+s(8) \mid \tau+\text { h.a. } \tau=\tau+s(8)+\text { h.a. } \tau
\end{aligned}
$$

- τ cannot be renamed

Example

New buffers from old

```
act inn,outt,ia,ib,oa,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;
    BufferA = rename({inn -> ia, outt -> oa}, BufferS);
    BufferB = rename({inn -> ib, outt -> ob}, BufferS);
    S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));
init hide({c}, S);
```


Exercise

Composing buffers with acknowledges

```
act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;
proc BufferS = inn.outt.r.t.BufferS;
    BufferA =
        rename(\{inn -> ia, outt \(->\) oa, \(r \rightarrow r a, t->~ t a\}, ~ B u f f e r S) ;\)
    BufferB =
        rename(\{inn -> ib, outt -> ob, r -> rb, t -> tb\}, BufferS);
    \(S=\) allow (\{ia,ob,rb,ta, \(c, a\}\),
        comm(\{oalib -> c, ra|tb -> a\}, BufferA || BufferB));
    init hide(\{c, a\}, S);
```


Exercise

Composing buffers with acknowledges (corrected)

```
act inn, outt, \(r, t, i a, i b, o a, ~ o b, ~ t a, ~ t b, ~ r a, ~ r b, ~ c, ~ a ; ~\)
proc BufferS = inn.t.outt.r.BufferS;
    BufferA =
        rename(\{inn -> ia, outt -> oa, r -> ra, t -> ta\}, BufferS);
    BufferB =
        rename(\{inn -> ib, outt -> ob, r -> rb, t -> tb\}, BufferS);
    \(S=\operatorname{allow}(\{i a, o b, r b, t a, c, a\}\),
        comm(\{oa|ib -> c, ra|tb -> a\}, BufferA || BufferB));
init hide(\{c,a\}, S);
```


Data types

- Equalities: equality, inequality, conditional (if(-,-,-))
- Basic types: booleans, naturals, reals, integers, ... with the usual operators
- Sets, multisets, sequences ... with the usual operators
- Function definition, including the λ-notation
- Inductive types: as in
sort BTree = struct leaf(Pos) | node(BTree, BTree)

Signatures and definitions

Sorts, functions, constants, variables ...

```
sort S, A;
cons s,t:S, b:set(A);
map f: S x S -> A;
        c: A;
var x:S;
eqn f(x,s) = s;
```


Signatures and definitions

A full functional language ...

```
sort BTree = struct leaf(Pos) | node(BTree, BTree);
map flatten: BTree -> List(Pos);
var n:Pos, t,r:BTree;
eqn flatten(leaf(n)) = [n];
    flatten(node(t,r)) = t++r;
```


Processes with data

Why?

- Precise modeling of real-life systems
- Data allows for finite specifications of infinite systems

How?

- data and processes parametrized
- summation over data types: $\sum_{n: N} s(n)$
- processes conditional on data: $b \rightarrow p \diamond q$

Examples

A counter

```
act up, down;
        setcounter:Pos;
proc Ctr(x:Pos) = up.Ctr (x+1)
    + (x>0) -> down.Ctr (x-1)
    + sum m:Pos.(setcounter(m).Ctr(m))
init Ctr(345);
```


Examples

A dynamic binary tree

```
act left,right;
map N:Pos;
eqn N = 512;
proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;
    init X(1);
```


Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and $=$
- unsuitable to check properties such as
can the system perform action a followed by b?
which are best answered by exploring the process state space

Which logic?

A modal logic with the ability to express enduring (temporal) properties

Motivation

The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{1}=$ This applies only to cars already on service
- $\phi_{2}=$ If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_{3}=$ On detecting an emergence the taxi becomes inactive
- $\phi_{4}=A$ car on service is not inactive

Motivation

The taxi network example

- $\phi_{0}=\langle r e c$, alo \rangle true
- $\phi_{1}=[$ onservice $\langle\langle r e c$, alo \rangle true or $\phi_{1}=[$ onservice $] \phi_{0}$
- $\phi_{2}=[a / o]\langle r e c\rangle\langle p l a n\rangle$ true
- $\phi_{3}=[s o s][$ true $] f a l s e$
- $\phi_{4}=[$ onservice $]$ \true \rangle true

... in mCRL2

The verification problem in mCRL2

- Given a specification of the system's behaviour is in mCRL2
- and the system's requirements are specified as properties in a temporal logic,
- a model checking algorithm decides whether the property holds for the model: the property can be verified or refuted;
- sometimes, witnesses or counter-examples can be provided

Modal logic

- Modalities: $\langle-\rangle \phi,[-] \psi$
- Valuations in non modal logics are based on valuations
$V:$ Variables \longrightarrow 2: propositions are true or false depending on the unique referential provided by V
- Valuations in a modal logic also depends on the current state of computation: V : Variables $\times \mathbb{P} \longrightarrow \mathbf{2}$ or, equivalently, , V : Variables $\longrightarrow \mathcal{P} \mathbb{P}$: each variable is associated to the set of processes in which its value is fixed as true
- In our case, models for such a logic are defined over the universe of processes \mathbb{P} (i.e., terms of our process language) equipped with relations $\{\xrightarrow{x} \mid x \in A c t\}$ defined by the operational semantics of the language.
- ... but the topic modal logics has a longer story and a broad spectrum of applications ...

The Hennessy-Milner logic

Syntax

$$
\phi \ni \text { true } \mid \text { false }|\neg \phi| \phi \wedge \phi|\phi \vee \phi|\langle\alpha\rangle \phi \mid[\alpha] \phi
$$

where α is an action formula

Compare with dynamic logic
Can you spot the difference?

The Hennessy-Milner logic

Some laws

$$
\begin{aligned}
& \neg\langle a\rangle \phi=[a] \neg \phi \\
& \neg[a] \phi=\langle a\rangle \neg \phi \\
& \langle a\rangle \text { false }=\text { false } \\
& {[a] \text { true }=\text { true }} \\
& \langle a\rangle(\phi \vee \psi)=\langle a\rangle \phi \vee\langle a\rangle \psi \\
& {[a](\phi \wedge \psi)=[a] \phi \wedge[a] \psi} \\
& \langle a\rangle \phi \wedge[a] \psi \Rightarrow\langle a\rangle(\phi \wedge \psi)
\end{aligned}
$$

The Hennessy-Milner logic

Action formulas

$$
\alpha \ni\left(a_{1}|\cdots| a_{n}\right) \mid \text { true } \mid \text { false }|-\alpha| \alpha \cup \alpha \mid \alpha \cap \alpha
$$

where

- $a_{1}|\cdots| a_{n}$ is a set with this single multiaction
- true (universe), false (empty set)
- $-\alpha$ is the set complement

Modalities with action formulas:

$$
\langle\alpha\rangle \phi=\bigvee_{a \in \alpha}\langle a\rangle \phi \quad[\alpha] \phi=\bigwedge_{a \in \alpha}[a] \phi
$$

The language

Semantics: $E \models \phi$

$$
\begin{aligned}
& E \models \text { true } \\
& E \not \vDash \text { false } \\
& E \models \neg \phi \quad \text { iff } \quad E \not \models \phi \\
& E \models \phi \wedge \psi \quad \text { iff } \quad E \models \phi \wedge E \models \psi \\
& E \models \phi \vee \psi \quad \text { iff } \quad E \models \phi \vee E \models \psi \\
& E \models\langle\alpha\rangle \phi \quad \text { iff } \quad \exists_{F \in\left\{E^{\prime} \mid E \xrightarrow{a} E^{\prime} \wedge a \in \alpha\right\}} . F \models \phi \\
& E \models[\alpha] \phi \quad \text { iff } \quad \forall_{F \in\left\{E^{\prime} \mid E \xrightarrow{a} E^{\prime} \wedge a \in \alpha\right\}} . F \models \phi
\end{aligned}
$$

Notes

- inevitability of a：〈true〉true $\wedge[-a]$ false
- progress：〈true〉true
－deadlock or termination：［true］false
－what about
〈true〉false and [true]true ?
－satisfaction decided by unfolding the definition of k ：no need to compute the transition graph

A denotational semantics

Idea: associate to each formula ϕ the set of processes that make it true

$$
\phi \text { vs }\|\phi\|=\{E \in \mathbb{P} \mid E \models \phi\}
$$

$$
\begin{aligned}
\| \text { true } \| & =\mathbb{P} \\
\| \text { false } \| & =\emptyset \\
\|\phi \wedge \psi\| & =\|\phi\| \cap\|\psi\| \\
\|\phi \vee \psi\| & =\|\phi\| \cup\|\psi\|
\end{aligned}
$$

$$
\begin{aligned}
& \|[\alpha] \phi\|=\|[\alpha]\|(\|\phi\|) \\
& \|\langle\alpha\rangle \phi\|=\|\langle\alpha\rangle\|(\|\phi\|)
\end{aligned}
$$

$\|[\alpha]\|$ and $\|\langle\alpha\rangle\|$

Just as \wedge corresponds to \cap and \vee to \cup, modal logic combinators correspond to unary functions on sets of processes:

$$
\begin{gathered}
\|[\alpha]\|=\lambda_{X \subseteq \mathbb{P}} \cdot\left\{F \in \mathbb{P} \mid \text { if } F \xrightarrow{a} F^{\prime} \wedge a \in \alpha \text { then } F^{\prime} \in X\right\} \\
\|\langle\alpha\rangle\|=\lambda_{X \subseteq \mathbb{P}} \cdot\left\{F \in \mathbb{P} \mid \exists_{F^{\prime} \in X, a \in \alpha} \cdot F \xrightarrow{a} F^{\prime}\right\}
\end{gathered}
$$

Note
These combinators perform a reduction to the previous state indexed by actions in α

$\|[\alpha]\|$ and $\|\langle\alpha\rangle\|$

Example

$$
\begin{aligned}
\|\langle a\rangle\|\left\{q_{2}, n\right\} & =\left\{q_{1}, m\right\} \\
\|[a]\|\left\{q_{2}, n\right\} & =\left\{q_{2}, q_{3}, m, n\right\}
\end{aligned}
$$

A denotational semantics

$$
E \models \phi \text { iff } E \in\|\phi\|
$$

Example: $\delta \models$ [true]false because

$$
\begin{aligned}
\|[\text { true }] \text { false } \| & =\|[\text { true }] \|(\| \text { false } \|) \\
& =\|[\text { true }] \|(\emptyset) \\
& =\left\{F \in \mathbb{P} \mid \text { if } F \xrightarrow{x} F^{\prime} \wedge x \in \text { Act then } F^{\prime} \in \emptyset\right\} \\
& =\{\delta\}
\end{aligned}
$$

A denotational semantics

$$
E \models \phi \text { iff } E \in\|\phi\|
$$

Example: ?? $\models\langle$ true \rangle true because

$$
\begin{aligned}
\|\langle\text { true }\rangle \text { true } \| & =\|\langle\text { true }\rangle \|(\| \text { true } \|) \\
& =\|\langle\text { true }\rangle \|(\mathbb{P}) \\
& =\left\{F \in \mathbb{P} \mid \exists_{F^{\prime} \in \mathbb{P}, a \in K} \cdot F \xrightarrow{a} F^{\prime}\right\} \\
& =\mathbb{P} \backslash\{\delta\}
\end{aligned}
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq_{\ulcorner } F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} . E \models \phi \Leftrightarrow F \models \phi
$$

Examples

$$
a . b+a . c \simeq_{\Gamma} a .(b+c)
$$

for $\Gamma=\left\{\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle \ldots\left\langle x_{n}\right\rangle\right.$ true $\left.\mid x_{i} \in A c t\right\}$
(what about \simeq_{Γ} for $\Gamma=\left\{\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle\left\langle x_{3}\right\rangle \ldots\left\langle x_{n}\right\rangle[\right.$ true $]$ false $\left.\mid x_{i} \in A c t\right\}$?)

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Lemma

$$
E \sim F \Rightarrow E \simeq F
$$

Note

 the converse of this lemma does not hold, e.g. let- $A \triangleq \sum_{i \geq 0} A_{i}$, where $A_{0} \triangleq \mathbf{0}$ and $A_{i+1} \triangleq a . A_{i}$
- $A^{\prime} \triangleq A+\underline{f i x}(X=a . X)$

$$
A \nsim A^{\prime} \text { but } A \simeq A^{\prime}
$$

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.

Image-finite processes
E is image-finite iff $\{F \mid F \xrightarrow{a} E\}$ is finite for every action $a \in A c t$

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.
proof
\Rightarrow : by induction of the formula structure
\Leftarrow : show that \simeq is itself a bisimulation, by contradiction

Regular modalities

Hennessy-Milner logic + regular expressions
ie, add with regular expressions within modalities

$$
\rho::=\epsilon|\alpha| \rho . \rho|\rho+\rho| \rho^{*} \mid \rho^{+}
$$

where

- α is an action formula and ϵ is the empty word
- concatenation ρ. ρ, choice $\rho+\rho$ and closures ρ^{*} and ρ^{+}

Laws

$$
\begin{aligned}
& \left\langle\rho_{1}+\rho_{2}\right\rangle \phi=\left\langle\rho_{1}\right\rangle \phi \vee\left\langle\rho_{2}\right\rangle \phi \\
& {\left[\rho_{1}+\rho_{2}\right] \phi=\left[\rho_{1}\right] \phi \wedge\left[\rho_{2}\right] \phi} \\
& \left\langle\rho_{1} \cdot \rho_{2}\right\rangle \phi=\left\langle\rho_{1}\right\rangle\left\langle\rho_{2}\right\rangle \phi \\
& {\left[\rho_{1} \cdot \rho_{2}\right] \phi=\left[\rho_{1}\right]\left[\rho_{2}\right] \phi}
\end{aligned}
$$

Regular modalities

Examples of properties

- $\langle\epsilon\rangle \phi=[\epsilon] \phi=\phi$
- \langle a.a. $b\rangle \phi=\langle a\rangle\langle a\rangle\langle b\rangle \phi$
- $\langle a . b+g . d\rangle \phi$

Safety

- $\left[\right.$ true $\left.{ }^{*}\right] \phi$
- it is impossible to do two consecutive enter actions without a leave action in between:
[true*.enter. - leave*.enter]false
- absence of deadlock:
[true*] true〉true

Regular modalities

Examples of properties

Liveness
－$\left\langle\right.$ true $\left.{ }^{*}\right\rangle \phi$
－after sending a message，it can eventually be received： ［send］〈true＊．receive〉true
－after a send a receive is possible as long as it has not happened： ［send．－receive＊］ ไrue＊．receive〉true

The modal μ-calculus

$$
\phi, \psi::=X \mid \text { true } \mid \text { false }|\neg \phi| \phi \wedge \psi|\phi \vee \psi| \phi \Rightarrow \psi|\langle a\rangle \phi|[a] \phi|\mu X . \phi| \nu X . \phi
$$

- modalities with regular expressions are not enough in general
- in particular cannot express fairness properties:
if the system is offered the possibility to perform a infinitely often, then it will eventually perform a
- ... but correspond to a subset of the modal μ-calculus [Kozen83]

The modal μ-calculus

The modal μ-calculus (intuition)

- $\mu X . \phi$ is valid for all those states in the smallest set X that satisfies the equation $X=\phi$ (finite paths, liveness)
- $\nu X . \phi$ is valid for the states in the largest set X that satisfies the equation $X=\phi$ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in the formula, ie preceded by an even number of negations.

Examples

Translation of regular formulas with closure

$$
\begin{aligned}
& \left\langle R^{*}\right\rangle \phi=\mu X .\langle R\rangle X \vee \phi \\
& {\left[R^{*}\right] \phi=\nu X .[R] X \wedge \phi} \\
& \left\langle R^{+}\right\rangle \phi=\langle R\rangle\left\langle R^{*}\right\rangle \phi \\
& {\left[R^{+}\right] \phi=[R]\left[R^{*}\right] \phi}
\end{aligned}
$$

Examples

The dining philosophers problem

- No deadlock (every philosopher holds a left fork and waits for a right fork (or vice versa):
[true*]<true>true
- No starvation (a philosopher cannot acquire 2 forks):
forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true
- A philosopher can only eat for a finite consecutive amount of time:
forall p:Phil. nu X. mu Y. [eat(p)]Y \&\& [!eat(p)]X
- there is no starvation: for all reachable states it should be possible to eventually perform an eat (p) for each possible value of p :Phil.
[true*] (forall p:Phil. mu Y. ([!eat(p)]Y \&\& <true>true))

Semantics

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic
cf the Knaster-Tarski theorem (1928)

Laws

$$
\mu X . \phi \Rightarrow \nu X \cdot \phi
$$

and self-duals:

$$
\begin{aligned}
& \neg \mu X . \phi=\nu X . \neg \phi \\
& \neg \nu X . \phi=\mu X . \neg \phi
\end{aligned}
$$

A denotational semantics

$$
\rho: X \longrightarrow \mathcal{P} \mathbb{P}: \text { predicate environment }
$$

$$
\begin{aligned}
\| \text { true } \|_{\rho} & =\mathbb{P} \\
\| \text { false } \|_{\rho} & =\emptyset \\
\|X\|_{\rho} & =\rho(X) \\
\|\phi \wedge \psi\|_{\rho} & =\|\phi\|_{\rho} \cap\|\psi\|_{\rho} \\
\|\phi \vee \psi\|_{\rho} & =\|\phi\|_{\rho} \cup\|\psi\|_{\rho} \\
\|[\alpha] \phi\|_{\rho} & =\|[\alpha]\|\left(\|\phi\|_{\rho}\right) \\
\|\langle\alpha\rangle \phi\|_{\rho} & =\|\langle\alpha\rangle\|\left(\|\phi\|_{\rho}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \|\mu X . \phi\|_{\rho}=\bigcap\left\{V \in \mathbb{P} \mid\|\phi\|_{\rho\left\{X_{\mapsto} \mapsto V\right\}} \subseteq V\right\} \\
& \|\nu X . \phi\|_{\rho}=\bigcup\left\{V \in \mathbb{P} \mid V \subseteq\|\phi\|_{\rho\{X \mapsto V\}}\right\}
\end{aligned}
$$

Overview

Strategies to deal with infinite models and specifications

- A specification of the system's behaviour is written in mCRL2 (x.mcrl2)
- The specification is converted to a stricter format called Linear Process Specification (x.lps)
- In this format the specification can be transformed and simulated
- In particular a Labelled Transition System (x.lts) can be generated, simulated and analysed through symbolic model checking (boolean equation solvers)

Architecture

