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From LTS to processes

e We already have a semantic model for reactive systems. With which
language shall we describe them?

e How to compare and transform such systems?

e How to express and prove their proprieties?

~~ process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
w-calculus (Milner, 89), among many others

~» modal (temporal, hybrid) logics
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mCRL2: A toolset for process algebra

mCRL2 provides:

e a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

e extended with data and (real) time
e the full p-calculus as a specification logic

e powerful toolset for simulation and verification of reactive systems

www.mcrl2.org
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Actions

Interaction through multisets of actions
e A multiaction is an elementary unit of interaction that can execute

itself atomically in time (no duration), after which it terminates
successfully

a > 7] a(d) | (a]a)

e actions may be parametric on data

e the structure (N, |,7) forms an Abelian monoid
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Sequential processes

Sequential, non deterministic behaviour

The set P of processes is the set of all terms generated by the following
BNF, for a € N,

paald|lptp|p-p|Pd)

e atomic process: a for allae N
e choice: +

e sequential composition: -

e inaction or deadlock: §

e process references introduced through definitions of the form
P(x : D) = p, parametric on data
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Example

Buffers

act in, out, t; inn, outt : Bool;

proc Bufferl = in.out;
Buffer2 = in.out.Buffer2;
Buffer3 = in. (out.Buffer3 + t.Buffer3);

Buffer4 = sum n: Bool.inn(n).outt(n).Buffer4;
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Sequential Processes

Exercise

Describe the behaviour of
e abdc+a

(a+ b).d.c

(a+ b).e+d.c

a+(6+a)

a.(b+c).d.(b+c)
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Parallel composition

| = interleaving + synchronization

e modelling principle: interaction is the key element in software design

e modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

e mCRL2: supports a flexible synchronization discipline

pu=-—|plplprlplerl,
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Parallel composition

e parallel p || g: interleaves and synchronises the actions of both
processes.

e synchronisation p | g: synchronises the first actions of p and g and
combines the remainder of p with g with ||, cf axiom:

(a.p) [ (b.g) ~ (a] b).(p Il q)

o left merge p||g: executes a first action of p and thereafter combines
the remainder of p with g with ||.



Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The p-calculus  The toolset

Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this
process algebra with || modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

o left merge: ||

e synchronous product: |

such that

[Pt~ (plt+tlp)+p]t]
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Interaction

Communication I'¢(p) (com)

applies a communication function C forcing action synchronization
and renaming to a new action:

al--lan = ¢

data parameters are retained in action c, e.g.

[ alb—cy(a(8) | b(8)) = c(8)
Mapsey(a(12) | b(8)) = a(12) | b(8)
[ alb—cy(a(8) | a(12) [ b(8)) = a(12) | ¢(8)

left hand-sides in C must be disjoint: e.g., {a| b— c,a|d — j}is
not allowed
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Interface control

Restriction: Vg (p) (allow)

e specifies which multiactions from a non-empty multiset of action
names are allowed to occur

e disregards the data parameters of the multiactions
V{d,a1p}(d(12) + a(8) + (b(false, 4) | a)) = d(12)+ (b(false,4) | a)

e 7 is always allowed to occur
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Interface control

Block: dg(p) (block)

e specifies which multiactions from a set of action names are not
allowed to occur

e disregards the data parameters of the multiactions
O¢py(d(12) + a(8) + (b(false,4) | a)) = d(12) + a(8)

e 7 cannot be blocked
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Interface control

Renaming pu(p) (rename)

® renames actions in p according to a mapping M

e also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

Otd—ny(d(12) + s(8) | d(false) + d.a.d(T7))
= h(12) + s(8) | h(false) + h.a.h(7)

e 7 cannot be renamed



Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The p-calculus  The toolset

Interface control

Hiding 74(p) (hide)

e hides (or renames to 7) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

e disregards the data parameters

7143 (d(12) + s(8) | d(false) + h.a.d(7))
= 7+58)| 7+ har = 7+5(8)+ hart

e 7 cannot be renamed
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Example

New buffers from old

act inn,outt,ia,ib,o0a,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oalib -> c}, BufferA || BufferB));

init hide({c}, 8);
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Exercise

Composing buffers with acknowledges

act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;

proc BufferS inn.outt.r.t.BufferS;

BufferA =

rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);
BufferB =

rename ({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);

S = allow({ia,ob,rb,ta,c,a},
comm({oalib -> c, raltb -> a}, BufferA || BufferB));

init hide({c,a}, 8);
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Exercise

Composing buffers with acknowledges (corrected)

act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;
proc BufferS = inn.t.outt.r.BufferS;

BufferA

rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);
BufferB =

rename ({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);

S = allow({ia,ob,rb,ta,c,a},
comm({oalib -> ¢, raltb -> a}, BufferA || BufferB));

init hide({c,a}, 8);
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Data types

e Equalities: equality, inequality, conditional (if (-,-,-))

e Basic types: booleans, naturals, reals, integers, ... with the usual
operators

e Sets, multisets, sequences ... with the usual operators
e Function definition, including the A-notation

e Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort

cons

map

var

eqn

S, A;
s,t:S, b:set(d);

f: S xS ->A4;
c: A;

x:S;

f(x,s) = s;

The p-calculus  The toolset
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Signatures and definitions

A full functional language ...

sort

map

var

eqn

BTree = struct leaf(Pos) | node(BTree, BTree);

flatten: BTree -> List(Pos);
n:Pos, t,r:BTree;

flatten(leaf(n))

= [n];
flatten(node(t,r)) =

t++r;

The toolset
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Processes with data

Why?

e Precise modeling of real-life systems

e Data allows for finite specifications of infinite systems

How?

e data and processes parametrized
e summation over data types: > s(n)

e processes conditional on data: b — pogq

The p-calculus  The toolset
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Examples

A counter

act up, down;
setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)
+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos. (setcounter(m) .Ctr(m))

init Ctr(345);
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Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc  X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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Motivation

System’s correctness wrt a specification

e equivalence checking (between two designs), through ~ and =

e unsuitable to check properties such as
can the system perform action a followed by b?

which are best answered by exploring the process state space

Which logic?

A modal logic with the ability to express enduring (temporal) properties
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Motivation

The taxi network example

® ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

° ¢

® ¢, = If a car is allocated to a service, it must first collect the
passenger and then plan the route

This applies only to cars already on service

¢3 = On detecting an emergence the taxi becomes inactive

¢4 = A car on service is not inactive
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Motivation

The taxi network example

® ¢o = (rec,alo)true

e ¢; = [onservice](rec, alo)true or
¢1 = [onservice]pg

® ¢ = lalo](rec)(plan)true
* 93
° ¢,

[sos][true]false

[onservice](true)true
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in mCRL2

The verification problem in mCRL2

e Given a specification of the system’s behaviour is in mCRL2

and the system's requirements are specified as properties in a
temporal logic,

a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted,;

® sometimes, witnesses or counter-examples can be provided
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Modal logic

e Modalities: (—)¢, [~]v

e Valuations in non modal logics are based on valuations
V : Variables — 2: propositions are true or false depending on the
unique referential provided by V

e Valuations in a modal logic also depends on the current state of
computation: V : Variables x P — 2 or, equivalently, ,
V : Variables — PP: each variable is associated to the set of
processes in which its value is fixed as true

e |In our case, models for such a logic are defined over the universe of
processes IP (i.e., terms of our process language) equipped with
relations {— |x € Act} defined by the operational semantics of
the language.

e ... but the topic modal logics has a longer story and a broad
spectrum of applications ...
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The Hennessy-Milner logic

Syntax

¢ > true | false | =0 | ¢AG | ¢V o | (a)d | [o]o

where « is an action formula

Compare with dynamic logic

Can you spot the difference?
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The Hennessy-Milner logic

Some laws

—~(a)p = [a]-¢
—[a]e = (a)—¢
(a)false = false
[a]true = true
(a) (o V) = (2o V(a)y
[al(p A ) = [a]o A fa]v
(o Alalv = (a) (o A )
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The Hennessy-Milner logic

Action formulas

a S(ay|--+|an) | true | false | —a | aUa | aNa

where
® a; |-+ a,is a set with this single multiaction
e true (universe), false (empty set)

e —q is the set complement

Modalities with action formulas:

(o = \[(@¢ [ade = /\lalé

acwo acwo
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The language

Semantics: E = ¢

E = true

E £~ false

o — i OEW o

EEoAY ifft EE¢ N EEY
E=¢vy iff EEé Vv EEY

E = ()¢ it SreieiE-e nacay  FFEO
E=lolo iff Vec(eE-E A acay - F ¢



Introduction A process algebra Data A logic for processes Modal equivalence and bisimulation The p-calculus The toolset

Notes

e inevitability of a: (true)true A [—a]false
e progress: (true)true
e deadlock or termination: [true]false

e what about
(true)false and [true]true 7

e satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph
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A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that make it true

¢vs || ={E €P|E |~ ¢}

[true| =P

[false| = 0
lo A9l = lol Nl
lo vl =gl u vl

lldel = lledl(lol)
[{e)o] = [{) [ (l8l)
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[l and ()]

Just as A corresponds to N and V to U, modal logic combinators
correspond to unary functions on sets of processes:

l[a]] = Axce . {FEP|if F-25F A aca then F' € X}
[a)| = Axcp . {F €P|3pcxaca . F =5 F'}

Note
These combinators perform a reduction to the previous state indexed by
actions in «
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[[ed] and [ (c)]

Example

SN

Q2—>Q3

I{a){q2, n} = {q1, m}
lall{q2, n} = {a2, g3, m, n}
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A denotational semantics

| EEo iff Ec]ol]

Example: 0 |= [true]false

because

|[true]false| = [[true]|(|false])
= [[true] (D)
={FecP|if FZ5 F A x€ Act then F' €0}
= {4}
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A denotational semantics

| EE¢iff Ec|dl]

Example: 77 |= (true)true

because

| {truejtrue] = |(true)|(Jtrue])
= [(true)|(P)

= {FeP|3pcpack - F = F'}
=P\ {5}
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Modal Equivalence

For each (finite or infinite) set I of formulae,
ExrF & VYyer EEFE¢o&SFEQD

Examples

ab+ac >~ a(b+c)
for I' = {{x1)(x2)...(xy)true | x; € Act}

(what about ~ for I' = {(x1) (x2) (x3)...(x,)[true]false | x; € Act} ?)
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Modal Equivalence

For each (finite or infinite) set ' of formulae,
E~F <& E ~ Fforevery set ' of well-formed formulae
Lemma
E~F = E~F

Note
the converse of this lemma does not hold, e.g. let

e A2 ZIZO Ai, where Ag £ 0 and A, 1 £ a.A;
o AL A4 fix (X = aX)

Ax A but A~A
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & E~F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | F —2» E} is finite for every action a € Act
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & E~F

for image-finite processes.

proof

= : by induction of the formula structure

< : show that ~~ is itself a bisimulation, by contradiction
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Regular modalities

Hennessy-Milner logic 4 regular expressions
ie, add with regular expressions within modalities

pu=clalpplptpl|p]p
where
e « is an action formula and € is the empty word

e concatenation p.p, choice p + p and closures p* and p*

Laws

(p1+p2)p = (p1)9 V (p2)¢
[p1 +p2¢ = [p1]o A [p2]o
(p1-p2)9 = (p1)(p2)¢
[p1-p2]¢ = [p1]lp2]®
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Regular modalities

Examples of properties

° () = [do = ¢
* (a.a.b)¢ = (a){a)(b)¢
e (a.b+g.d)o
Safety
o [true*]o

e it is impossible to do two consecutive enter actions without a leave
action in between:
[true*.enter. — leave*.enter]false

e absence of deadlock:
[true*](true)true
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Regular modalities

Examples of properties

Liveness

o (true*)¢o

e after sending a message, it can eventually be received:
[send](true*.receive)true

e after a send a receive is possible as long as it has not happened:
[send. — receive*|(true*.receive)true
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The modal p-calculus

¢, p == X |true|false | =¢ [ oAY [ OVY [ 9= [ (a)o | [a]g | X . o | vX . ¢

e modalities with regular expressions are not enough in general

e in particular cannot express fairness properties:

if the system is offered the possibility to perform a infinitely often,
then it will eventually perform a

e ... but correspond to a subset of the modal p-calculus [Kozen83]
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The modal p-calculus

The modal p-calculus (intuition)

e 11X .¢ is valid for all those states in the smallest set X that satisfies
the equation X = ¢ (finite paths, liveness)

e vX . ¢ is valid for the states in the largest set X that satisfies the
equation X = ¢ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in

the formula, ie preceded by an even number of negations.
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Examples

Translation of regular formulas with closure

(R} = uX . (RIX V¢
[R]6 = vX.[RIX Ao
(R")¢ = (R)(R")¢
[Rle = [RI[R*]¢
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Examples

The dining philosophers problem

e No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[true*]<true>true
e No starvation (a philosopher cannot acquire 2 forks):
forall p:Phil. [truex.!eat(p)*] <!eat(p)*.eat(p)>true
® A philosopher can only eat for a finite consecutive amount of time:
forall p:Phil. nu X. mu Y. [eat(p)]Y && ['eat(p)]X

® there is no starvation: for all reachable states it should be possible to
eventually perform an eat(p) for each possible value of p:Phil.

[truex] (forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))
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Semantics

Add explicit minimal/maximal fixed point operators to Hennessy-Milner Iogic‘

cf the Knaster-Tarski theorem (1928)

Laws
uX.p = vX.¢p
and self-duals:

—uX.p = vX.-¢
wvX.p = puX.—¢
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A denotational semantics

‘[) : X — PIP: predicate environment

fervel, = P
|false|, =0
1Xl, = p(X)

oAl = 1ol Il
lo vl =19l VIl
lladel, = 1adl(lel,)
l{eol, = [Karl(ll,)

luX - plp = [V € Pl pxsvy € VI
X . gl = {V EP|V C [lpixvy}

computing by Kleene approximation
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Overview

Strategies to deal with infinite models and specifications

o A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

e The specification is converted to a stricter format called Linear
Process Specification (x.1ps)

e In this format the specification can be transformed and simulated

e In particular a Labelled Transition System (x.1ts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)
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Architecture

Simulators Manipulators Visualizers

Linear LTS

Lineariser
Process generator

PBES

generator

BES
generator

Solver Manipulators Solver

Manipulators

Labeled
Transition
System

Manipulators

The toolset
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