
Pre / post-conditions — starting where (pure)
functions stop

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2007 (Updated 2008, 2011-12)

Motivation Pre-conditions Post-conditions Satisfiability Background

What if invariants are not met?

• Back to the mobile phone problem, suppose that the
requirements were (partly) misunderstood and that store was
modelled simply as follows:

store : Call → ListOfCalls → ListOfCalls

store c l 4 c : l

• Clearly, store fails to preserve invariant ListOfCalls in case
• length l = 10, or
• c ∈ elems l , equivalent to 〈∃ i : 1 ≤ i ≤ length l : l i = c〉

NB: elems l 4 {l i : i ∈ inds l} yields the set of all elements
of a finite list l , where inds l denotes the set of all indices of l ,
that is, inds [] = {} and inds l = {1, . . . , length l} otherwise.

Motivation Pre-conditions Post-conditions Satisfiability Background

What if invariants are not met?

• Back to the mobile phone problem, suppose that the
requirements were (partly) misunderstood and that store was
modelled simply as follows:

store : Call → ListOfCalls → ListOfCalls

store c l 4 c : l

• Clearly, store fails to preserve invariant ListOfCalls in case
• length l = 10, or
• c ∈ elems l , equivalent to 〈∃ i : 1 ≤ i ≤ length l : l i = c〉

NB: elems l 4 {l i : i ∈ inds l} yields the set of all elements
of a finite list l , where inds l denotes the set of all indices of l ,
that is, inds [] = {} and inds l = {1, . . . , length l} otherwise.

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for pre-conditions

• So, designers would have to restrict the application of store
to input values c , l such that the invariant is preserved.

• This could be achieved by adding a pre-condition:

store : Call → ListOfCalls → ListOfCalls

store c l 4 c : l

pre length l < 10 ∧ c 6∈ elems l

• Such a pre-condition is a predicate telling a range of
acceptable input values — to be read as a warning provided
by the designer that the function may misbehave outside such
a range of values.

Motivation Pre-conditions Post-conditions Satisfiability Background

(Pure) functions are not enough

Thus

• store would become a partial function (clearly a symptom
that the requirements had been misunderstood)

However,

• Partial functions are the rule (rather than the exception) in
mathematics and computing.

Examples:

• Numbers — we know what 1/2 means; what about 1/0? —
division is a partial function

• List processing: given a sequence s, what does s i mean in
case i > length l? — list indexing is a partial operation.

Motivation Pre-conditions Post-conditions Satisfiability Background

(Pure) functions are not enough

Thus

• store would become a partial function (clearly a symptom
that the requirements had been misunderstood)

However,

• Partial functions are the rule (rather than the exception) in
mathematics and computing.

Examples:

• Numbers — we know what 1/2 means; what about 1/0? —
division is a partial function

• List processing: given a sequence s, what does s i mean in
case i > length l? — list indexing is a partial operation.

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

Since

• The meaning of a formal model must always be a
well-defined mathematical object

• One has to ensure that no partial function is used outside its
domain of definition

the following strategy is recommended for safety, in presence of
partial functions:

• Write your model as if all functions were total

• Chase the partial ones and add predicates to the pre-condition
which ensure that all such functions are called within their
domain of definition.

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

Since

• The meaning of a formal model must always be a
well-defined mathematical object

• One has to ensure that no partial function is used outside its
domain of definition

the following strategy is recommended for safety, in presence of
partial functions:

• Write your model as if all functions were total

• Chase the partial ones and add predicates to the pre-condition
which ensure that all such functions are called within their
domain of definition.

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

Example: wishing to specify the operation which subtracts the first
from the second element of a finite sequence of natural numbers,

Sub21 : IN? → IN0

Sub21 s 4 s 2− s 1

we realize that the argument list is required to have at least two
elements. So we add a pre-condition

Sub21 : IN? → IN0

Sub21 s 4 s 2− s 1

pre length l ≥ 2

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

Example: wishing to specify the operation which subtracts the first
from the second element of a finite sequence of natural numbers,

Sub21 : IN? → IN0

Sub21 s 4 s 2− s 1

we realize that the argument list is required to have at least two
elements. So we add a pre-condition

Sub21 : IN? → IN0

Sub21 s 4 s 2− s 1

pre length l ≥ 2

Motivation Pre-conditions Post-conditions Satisfiability Background

Pre-conditions for safety

However, within the natural numbers, subtraction is a partial
function too. So we add another clause to the precondition:

Sub21 : IN? → IN0

Sub21 s 4 s 2− s 1

pre length l ≥ 2 ∧ s 2 ≥ s 1 (15)

What if the specifier decides to write clause

pre length l = 2 ∧ s 2 ≥ s 1 (16)

instead?

Motivation Pre-conditions Post-conditions Satisfiability Background

Weakest preconditions

Clearly,

• both (15) and (16) are suitable pre-conditions for Sub21

• (16) is stronger than (15), since length l = 2 ⇒ length l ≥ 2

• (15) is therefore “better” than (16), as the latter restricts the
applicability of Sub21 too much.

It turns out that

• predicate (15) is the weakest pre-condition (WP) for Sub21
to be safe

• one should aim at always stopping at WPs.

We will learn later how to calculate WPs. A thumb rule is given
in the next slide for a special (in fact, easiest) case.

Motivation Pre-conditions Post-conditions Satisfiability Background

Weakest preconditions

Let f : X → Y be a function where type Y is constrained by an
invariant, inv-Y : Y → IB. Then the weakest pre-condition to be
enforced on f with respect to inv-Y is

wp(f , inv-Y) x 4 inv-Y (f x) (17)

Exercise 8: Calculate the weakest precondition wp(f , inv-Y) for each
situation below:

X Y f inv-Y
IN0 IN f x 4 x2 + 1 1 ≤ y
IN0 IN the same y ≤ 10
IN0 IN f = succ even y

IN× IN? IN? f (n, x) 4 n : x 〈∀ m : m ∈ elems y : m ≤ 10〉

�

Motivation Pre-conditions Post-conditions Satisfiability Background

Weakest preconditions

Exercise 9: Indicate which predicates p below are stronger (or weaker)
than the weakest precondition (WP) on each f with respect to the
corresponding output invariant:

X Y f inv-Y (y) p(x)

IR IR f x 4 x2 + 1 0 ≤ y ≤ 10 0 < x < 3
IN? IN? f = map 1 〈∀ i : i ∈ inds y : y i > 10〉 True
A? A? f = tail length y > 0 x 6= []

BTree A BTree A f = mirror depth y ≥ 1 depth x > 1

where map and tail are well known list operators and mirror and depth are the
obvious functions over binary trees.

�

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for more

When studying probability theory and statistics one is faced with
problems such as the following:

One is picking up marbles from a bag initially with a red,
a blue and a yellow marble. Compute the probability of
the experiment in which red is picked first, yellow second
and blue third.

Suppose you want to build an abstract model of a program you
want to run as much as possible to confirm the theory:

• Datatypes:

Marble = {red , blue, yellow}
Bag = {B : B ⊆ Marble}

NB: one may alternatively write Bag = PMarble, see next slide.

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for more

The extension of Bag is as follows:

{red , blue, yellow}

vv ��))
{red , blue}

�� ((

{red , yellow}

))vv

{blue, yellow}

��uu
{red}

((

{blue}

��

{yellow}

uu{}

This is known as the powerset lattice of set Marble.

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for more

• Operations: one needs the operation which puts all marbles
back into the bag

reset : Bag → Bag

reset b 4 {red , blue, yellow}

and another to simulate the experiment of picking the next
marble:

Pick : Bag → (Marble × Bag)

Pick b 4 . . .

However, for the experiment to be valid, the choice of the
next marble to pick must be non-deterministic: Pick is not
a function!

Motivation Pre-conditions Post-conditions Satisfiability Background

Need for more

• Operations: one needs the operation which puts all marbles
back into the bag

reset : Bag → Bag

reset b 4 {red , blue, yellow}

and another to simulate the experiment of picking the next
marble:

Pick : Bag → (Marble × Bag)

Pick b 4 . . .

However, for the experiment to be valid, the choice of the
next marble to pick must be non-deterministic: Pick is not
a function!

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for liveness

• Let x denote a marble to be taken from bag b

• Let r denote b without such a marble

• The best we can say about the experiment is

x ∈ b ∧ r = b − {x}

assuming b 6= {}.

We are led to a specification based on a pre-/post-condition pair:

Pick : (x : Marble, r : Bag)← (b : Bag)

pre b 6= {}
post x ∈ b ∧ r = b − {x}

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for vagueness

• Another use of pre-/post- pairs is that of tolerating more
than one result

• Example: we want to specify “the function” square root of
an integer:

Sqrt : (r : IR)← (i : ZZ)

pre i ≥ 0

post r 2 = i

The specifier is telling the implementer that either solution
r = +

√
i or r = −

√
i will do.

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for implicit specification

• Post-conditions — elegant way of hiding algorithmic details
which a particular function always embodies.

• Wherever we write a post-condition bearing in mind to specify
a function f , we refer to such a condition as an implicit
specification of f .

Example: explicit definition of abs function

abs : ZZ → IN

abs i 4 if i < 0 then − i else i

followed by implicit definition of the same function:

abs : (i : ZZ)→ (r : IN)

post r ≥ 0 ∧ (r = i ∨ r = −i)

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for implicit specification

• Post-conditions — elegant way of hiding algorithmic details
which a particular function always embodies.

• Wherever we write a post-condition bearing in mind to specify
a function f , we refer to such a condition as an implicit
specification of f .

Example: explicit definition of abs function

abs : ZZ → IN

abs i 4 if i < 0 then − i else i

followed by implicit definition of the same function:

abs : (i : ZZ)→ (r : IN)

post r ≥ 0 ∧ (r = i ∨ r = −i)

Motivation Pre-conditions Post-conditions Satisfiability Background

Examples

Explicit definition of max function

max : (ZZ × ZZ)→ ZZ

max(i , j) 4 if i ≤ j then j else i (18)

followed by its implicit specification:

max : (i : ZZ , j : ZZ)→ (r : ZZ)

post r ∈ {i , j} ∧ i ≤ r ∧ j ≤ r (19)

Now the implicit specification of a partial function:

Maxs : (s : PIN)→ (r : IN)

pre s 6= {}
post r ∈ s ∧ 〈∀ i : i ∈ s : i ≤ r〉

Motivation Pre-conditions Post-conditions Satisfiability Background

A glimpse at deriving explicit from implicit

The “best” specification of max is as follows, cf. its
post-condition:

max(i , j) ≤ r ≡ i ≤ r ∧ j ≤ r (20)

Let us calculate explicit definition (18) from (20):

• Case i ≤ j = True:

max(i , j) ≤ r ≡ i ≤ r ∧ j ≤ r

= { i ≤ r ⇐ i ≤ j ∧ j ≤ r }

max(i , j) ≤ r ≡ j ≤ r

:: { indirect equality (more about this later on...) }

max(i , j) = j

Motivation Pre-conditions Post-conditions Satisfiability Background

A glimpse at deriving explicit from implicit

• Case j ≤ i = True:

max(i , j) ≤ r ≡ i ≤ r ∧ j ≤ r

= { j ≤ r ⇐ j < i ∧ i ≤ r }

max(i , j) ≤ r ≡ i ≤ r

:: { indirect equality (more about this later on...) }

max(i , j) = i

Putting both cases together:

max(i , j) 4 if i ≤ j then j else i

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for relational specification

We want to specify the prefix relation between two finite
sequences, eg.

[1, 2] IsPrefixOf [1, 2, 4, 1]

[] IsPrefixOf []

[] IsPrefixOf [1]

We write:

IsPrefixOf : (s : A?)← (r : A?)

post length s ≤ length r ∧ 〈∀ i : i ≤ length s : (s i) = (r i)〉

NB: note that this spec is parametric on A.

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for relational specification

We want to specify the prefix relation between two finite
sequences, eg.

[1, 2] IsPrefixOf [1, 2, 4, 1]

[] IsPrefixOf []

[] IsPrefixOf [1]

We write:

IsPrefixOf : (s : A?)← (r : A?)

post length s ≤ length r ∧ 〈∀ i : i ≤ length s : (s i) = (r i)〉

NB: note that this spec is parametric on A.

Motivation Pre-conditions Post-conditions Satisfiability Background

Post-conditions for relational specification

Another example: the relation which expresses sequence
permutation:

Permutes : (s : A?)← (r : A?) (21)

post 〈∀ a : a ∈ elems(s ++ r) : count a s = count a r〉

assuming

count : A→ A? → IN0

count a s 4 card{i : i ∈ inds s ∧ (s i) = a}

where card : PA→ IN0 computes the number of elements of a
finite set.

Motivation Pre-conditions Post-conditions Satisfiability Background

Example: sorting

The following implicit specification of sorting abstracts from the
particular algorithm one has in mind:

Sort : (s : A?)← (r : A?)

post isOrdered(≤)s ∧ s Permutes r (22)

As seen in the following exercise, predicate isOrdered assumes a
total order (≤) on datatype A.

Exercise 10: Complete the following (inductive) specification of
isOrdered :

isOrdered(≤)[] = True

isOrdered(≤)(a : x) = . . . isOrdered(≤)x . . .

�

Motivation Pre-conditions Post-conditions Satisfiability Background

Exercises

Exercise 11: Give an implicit definition for function f x 4 x2 + 1 over
the natural numbers.

�

Exercise 12: A golden multiple of a given length is obtained by
multiplying this length by a real number whose square equals its
“successor”. Write an implicit specification for golden multiple.

�

Exercise 13: Write implicit and explicit specifications for function
inseq : IN0 → IN? which, for argument n, yields the sequence [1, . . . , n].

�

Motivation Pre-conditions Post-conditions Satisfiability Background

The pre/pos/inv trilogy

By writing

Spec : (b : B)← (a : A)

pre . . .

post . . .

we mean the definition of two predicates

pre-Spec : A→ IB

post-Spec : B × A→ IB

such that

〈∀ a : a ∈ A : pre-Spec a⇒ 〈∃ b : b ∈ B : post-Spec(b, a)〉〉 (23)

Motivation Pre-conditions Post-conditions Satisfiability Background

Proof obligation: satisfiability

Thus (23) is another proof obligation known as satisfiability:

Satisfiability ensures that pre-Spec and post-Spec are
such that, for all acceptable inputs, there must be some
possible result.

This includes the situation in which A and B have invariants.

Exercise 14: Assuming that the implicit definition of a total function

B A
foo uniquely determines f , that is

post-f (r , a) ≡ r = f a (24)

holds, use the Eindhoven quantifier calculus to show that (23) reduces to
〈∀ a : a ∈ A : (f a) ∈ B〉 for Spec := f . In summary: in the case of
functions, satisfiability is the same as invariant preservation.

�

Motivation Pre-conditions Post-conditions Satisfiability Background

Exercises

Exercise 15: Consider datatype

NRSeq A = A?

inv x 4 length x = card(elems x)

1. What is the informal meaning of the type’s invariant?

2. Tell which of the following new types for Permutes (21),

Permutes : (s : NRSeq A)← (r : A?) (25)

Permutes : (s : NRSeq A)← (r : NRSeq A) (26)

would lead to a non satisfiable specification.

�

Motivation Pre-conditions Post-conditions Satisfiability Background

Exercises

Exercise 16: Back to

Permutes : (s : A?)← (r : A?)

post 〈∀ a : a ∈ elems(s ++ r) : count a s = count a r〉

show that

1. Permutes is a reflexive relation: x Permutes x ≡ True for all x .

2. Permutes is a symmetric relation: y Permutes x ≡ x Permutes y
for all x , y .

�

Exercise 17: How would you write an explicit definition of (partial)
function Maxs?

�

Motivation Pre-conditions Post-conditions Satisfiability Background

Background — Eindhoven quantifier calculus (cont.)

Splitting:

〈∀ k : R ∨ S : T 〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : S : T 〉 (27)

〈∃ k : R ∨ S : T 〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : S : T 〉 (28)

Rearranging:

〈∀ k : R : T ∧ S〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : S : T 〉 (29)

〈∃ k : R : T ∨ S〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : R : S〉 (30)

de Morgan:

¬〈∀ k : R : T 〉 = 〈∃ k : R : ¬T 〉 (31)

¬〈∃ k : R : T 〉 = 〈∀ k : R : ¬T 〉 (32)

	Motivation
	Pre-conditions
	Post-conditions
	Satisfiability
	Background

