
Data type invariants — starting where (static)
type checking stops

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2007 (Updated 2008-10; 2012)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Types for software quality

Data type evolution:

• Assembly (1950s) — one single primitive data type: machine
binary

• Fortran (1960s) — primitive types for numeric processing
(INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
LOGICAL data types)

• Pascal (1970s) — user defined (monomorphic) data types
(eg. records, files)

• ML, Haskell etc (≥1980s) — user defined (polymorphic)
data types (eg. List a for all a)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Type checking for software quality

Why data types?

• Fortran anecdote: non-terminating loop DO I = 1.10 once
went unnoticed due to poor type-checking

• Diagnosis: compiler unable to prevent using a real number
where a discrete value (eg. integer, enumerated type) was
expected

• Solution: improve grammar + static type checker

(static means done at compile time)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Data type invariants
In a system for monitoring the flight paths of aircrafts in a
controlled airspace, we need to define altitude, latitude and
longitude:

Alt = IR
Lat = IR
Lon = IR

However,

• altitude cannot be negative
• latitude ranges between -90 and 90
• longitude ranges between -180 and 180

In maths we would have defined:

Alt = {a ∈ IR : a ≥ 0}
Lat = {x ∈ IR : −90 ≤ x ≤ 90}
Lon = {y ∈ IR : −180 ≤ y ≤ 180}



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Data type invariants
In a system for monitoring the flight paths of aircrafts in a
controlled airspace, we need to define altitude, latitude and
longitude:

Alt = IR
Lat = IR
Lon = IR

However,

• altitude cannot be negative
• latitude ranges between -90 and 90
• longitude ranges between -180 and 180

In maths we would have defined:

Alt = {a ∈ IR : a ≥ 0}
Lat = {x ∈ IR : −90 ≤ x ≤ 90}
Lon = {y ∈ IR : −180 ≤ y ≤ 180}



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Data type invariants “a la” VDM

Standard notation (VDM 1 family)

Alt = IR
inv a 4 a ≥ 0

implicitly defines predicate

inv-Alt : IR→ IB
inv-Alt(a) 4 a ≥ 0

known as the invariant property of Alt.

1VDM=Vienna Development Method, one of the earliest formal methods
developed in IBM Vienna in the 1970s.



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Data Type invariants

Recall the following requirements from mobile phone manufacturer

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store operation
should work in a way such that (a) the more recently a call is
made the more accessible it is; (b) no number appears twice in
a list; (c) each list stores up to 10 entries.

Clause (c) leads to

ListOfCalls = Call?

inv l 4 length l ≤ 10

Exercise 1: Think of a natural language definition of clause (b) to
inv-ListOfCalls involving denotation l i of the i-th element of l , for
1 ≤ i ≤ length l .

�



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Invariants are inevitable

Case study — why the Western dating system?

The sidereal year — absolute time the Earth takes to
complete one revolution around the Sun — is not a
multiple of the solar day — time the Earth takes to spin
360 degrees over itself.

If you divide the first by the second of these times (to know how
many days are there in one solar year) you get an infinite number,
something like

365.24219879...

You are bound to round this number. 365 days being too coarse,
365.25 is a convenient approximation since

365 days + 0.25× 24 hours = 365 days + 6 hours

— still losing around −0.00780121... days per year.



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time
This reasoning gave birth to the calender adopted in the Roman
Empire, in which the 365 days were packaged as follows:

Martius 31
Aprilis 30
Maius 31
Iunius 30
Quintilis 31
Sextilis 31
September 30
October 31
November 30
December 31
Ianuarius 31
Februarius 28

365

What about the 6 hours? And the −0.00780121... error (=+-11
mins per year)?



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time

The problem was handled as the following text shows:

“Do Ano e Sua Divisão — (...) Júlio César instituiu o ano,
de que hoje usamos, de 365 dias e 6 horas, a qual quantidade
não é exacta, pois vemos claramente adiantar-se o tempo; (...)
a Santa Madre Igreja usa do ano que instituiu Júlio César,
tomando em cada ano as 6 horas, que formam um dia inteiro
em cada quatro anos, chamando-se bissexto a esse ano, a que
se acrescenta um dia (...).

(Extracted from Lunário de Prognóstico Perpétuo, para Todos os
Reinos e Prov́ıncias, por Jerónimo Cortez, Valenciano (18c),
re-edited by Lello & Irmão, 1910.)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time

How does one specify that a given date is valid according to Julius
Cæsar’s calender?

First we define the types (already with invariants):

Year = IN

Month = IN
inv m 4 m ≤ 12

Day = IN
inv d 4 d ≤ 31

Date = Year ×Month × Day



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time

Next we constrain type Date by assigning days to months:

Date = Year ×Month × Day
inv(y ,m, d) 4 if m ∈ {1, 3, 5, 7, 8, 10, 12} then d ≤ 31

else if m ∈ {4, 6, 9, 11} then d ≤ 30
else if m = 2 ∧ leapYear(y) then d ≤ 29
else if m = 2 ∧ ¬leapYear(y) then d ≤ 28
else False;

where

leapYear : Year → IB
leapYear y 4 rem(y , 4) = 0



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time

Eventually, the inaccuracy of the round
down made itself evident:

“ Da Reforma do Calendário
— Tendo-se observado, que
desde a celebração do conćılio de
Niceia, em 325, até ao ano de
1582, se haviam antecipado os
equinócios 10 dias do assento
fixo em que os colocara Diońısio
Romano; (...) mandou o papa
Gregório XIII proceder à reforma
do Calendário, em virtude da
qual se determinou: (...)

Pope Gregory XIII



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time
Birth of the Gregorian calender (1582):

(...) 1 que no mês de Outubro de 1582 se suprimissem 10 dias,
contando 4 no dia de S. Francisco, e 15 no seguinte; 2 que em
cada 400 anos se suprimissem 3 dias, principiando de 1700,
1800, 1900, 2100, 2200, 2300, 2500, etc (que por isso não são
bissextos), para diminuir o excesso do ano sinodal ao civil, e os
equinócios ficarem imóveis a 21 de Março e 23 de Setembro”

Thus the new version of clause

if m ∈ {1, 3, 5, 7, 8, 10, 12} then
d ≤ 31 ∧ ((y = 1582 ∧m = 10)⇒ (d < 5 ∨ 14 < d))
else ...

as well as a new version of

leapYear : IN→ IB
leapYear y 4 0 = rem(y , if y ≥ 1700 ∧ rem(y , 100) = 0

then 400 else 4)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Problem — how to record time

Clearly, writing a function such as eg.

tomorrow : Date → Date

is not as easy as before — one has to ensure that, given a valid
date (y ,m, d), tomorrow(y ,m, d) is also a valid date.

Exercise 2: Give a definition of tomorrow : Date → Date which ensures
date validity. Suggestion: resort to the following auxiliary functions:

sucy(y,m,d)=(y+1,1,1)
sucm(y,m,d)=(y,m+1,1)
sucd(y,m,d)=(y,m,d+1)

�



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Invariants are inevitable

Real-life conventions, laws, rules, norms, acts lead to invariants,
eg. RIAPA (U.Minho internal students’ course follow-up rules):

DbSAUM = . . .
inv db 4 (a)/*student’s current degree course must exist */

(b)/*student’s current plan must belong to degree course */
(c)/*student’ past registrations obey to constraint (b) */
(d)/*students cannot do exams of courses they are not registered in */
(e)/*student is registered in one degree course only in the back up structure */
(f )/*courses in all academic years must belong to degree plan */
(g)/*same as (f) concerning every student */
(. . .)/*............ etc ........... etc ............. */



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Summing up

• Given a datatype A and a predicate p : A→ IB, data type
declaration

B = A
inv x 4 p x

means the type whose extension is

B = {x ∈ A : p x}

• p is referred to as the invariant property of B

• Therefore, writing a ∈ B means a ∈ A ∧ (p a).



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

How does one write invariants?

We resort to first order predicate logic and set theory, which you
have studied in your 1st degree. Warming up:

Exercise 3: (adapted from exercise 5.1.4 in C.B. Jones’s Systematic
Software Development Using VDM):

Hotel room numbers are pairs (l , r) where l indicates a floor
and r a door number in floor l . Write the invariant on room
numbers which captures the following rules valid in a particular
hotel with 25 floors, 60 rooms per floor:

1. there is no floor number 13; (guess why)
2. level 1 is an open area and has no rooms;
3. the top five floors consist of large suites and these are

numbered with even integers.

�



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Quantifier notation

Most invariants require quantified expressions. Here is how we
write them:

• 〈∀ k : R : T 〉 meaning “for all k in range R it is the case
that T ”

• 〈∃ k : R : T 〉 meaning “there exists k in range R case such
that T ”

Exercise 4: Write clause (b) of inv-ListOfCalls (recall exercise 1) using
∀ notation.

�



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Invariant preservation

Proposed model for operation store in the mobile phone problem,

store : Call → ListOfCalls → ListOfCalls

store c l 4 take 10 (c : [ a | a← l , a 6= c ])

The fact that ListOfCalls has invariant properties (b)+(c),

ListOfCalls = Call?

inv l 4 length l ≤ 10 ∧
〈∀ i , j : 1 ≤ i , j ≤ length l : (l i) = (l j)⇒ i = j〉

leads to proof obligation

〈∀ c , l : l ∈ ListOfCalls : (store c l) ∈ ListOfCalls〉 (1)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Invariant preservation (functions)

In general, given a function A
f // B where both A and B have

invariants, extended type checking requires the following

Proof obligation

f should be invariant-preserving, that is,

〈∀ a : a ∈ A : (f a) ∈ B〉 (2)

equivalent to

〈∀ a : inv-A a : inv-B(f a)〉 (3)

holds.

(Our example above is a special case of this, for A = B.)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Dealing with proof obligations

• The essence of formal methods consists in regarding
conjectures such as (2) as proof obligations (aka
verification conditions) which, once discharged, add quality
and confidence to the design.

• In lightweight approaches, one regards (2) as the subject of as
many test cases as possible, either using smart testing
techniques or model checking techniques.

• These techniques, however, only prove the existence of
counter-examples — not their absence:

test unveils errors ⇒ program has errors (p ⇒ q)
test unveils no errors 6⇒ program has no errors (¬p 6⇒ ¬q)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Dealing with proof obligations

• In full-fledged formal techniques, one is obliged to provide a
mathematical proof that conjectures such as (2) do hold for
any a.

• Such proofs can either be performed as paper-and-pencil
exercises or, in case of very complex invariants, be supported
by theorem provers.

• If automatic, discharging such proofs can be regarded as
extended static checking (ESC).

• As we shall see, all the above approaches to adding quality to
a formal model are useful and have their place in software
engineering using formal methods.



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

The Verifying Compiler GC

Quoting Hoare (2003):

(...) I revive an old challenge: the construction and
application of a verifying compiler that guarantees
correctness of a program before running it. (...)

Still Hoare (2003):

A verifying compiler [should use] automated
mathematical and logical reasoning methods to check the
correctness of the programs that it compiles. The
criterion of correctness is specified by types, assertions,
and other redundant annotations that are associated with
the code of the program, often inferred automatically, and
increasingly often supplied by the original programmer.



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Follow up

• Verification conditions can be handled by model checkers such
as eg. the Alloy Analyser (Jackson, 2012).

• They can also be discharged by calculation, using the
Algebra of Programming (AoP) (Bird and de Moor, 1997).

• The two approaches together lead to the “Alloy Meets the
AoP” (Oliveira and Ferreira, 2012) approach which will be
followed in this course.



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Background — Eindhoven quantifier calculus

When writing ∀,∃-quantified expressions is useful to know a number of
rules which help in reasoning about them. Below we list some of these
rules 2:

• Trading:

〈∀ i : R ∧ S : T 〉 = 〈∀ i : R : S ⇒ T 〉 (4)

〈∃ i : R ∧ S : T 〉 = 〈∃ i : R : S ∧ T 〉 (5)

Exercise 5: Check rule

〈∃ i : R : T 〉 = 〈∃ i : T : R〉 (6)

�

2Warning: the application of a rule is invalid if (a) it results in the capture of
free variables or release of bound variables; (b) a variable ends up occurring
more than once in a list of dummies.



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Background — Eindhoven quantifier calculus

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉 (7)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉 (8)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (9)

〈∃ k : k = e : T 〉 = T [k := e] (10)

Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (11)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (12)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Background — set-theoretical membership

Above we have seen the important rôle of membership (∈) tests in
(formal) type checking. How do we characterize ∈?

• given a set S , let (∈ S) denote the predicate such that

(∈ S)a
def
= a ∈ S

• the following universal property holds, for all S , p:

p = (∈ S) ⇔ S = {a : p a} (13)



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

Exercises

Exercise 6: Infer tautologies

S = {a : a ∈ S} , p a ⇔ a ∈ {a : p a}

from (13).

�

Exercise 7: Check carefully which rules of the quantifier calculus need
to be applied to prove that predicate

〈∀ b, a : 〈∃ c : b = f c : r(c , a)〉 : s(b, a)〉 (14)

is the same as

〈∀ c , a : r(c , a) : s(f c , a)〉

where f is a function and r , s are binary predicates.

�



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

References



Motivation Data Type invariants Quantifier notation Proof obligations Background References References

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997.

C. A. R. Hoare. The verifying compiler: A grand challenge for
computing research. In Görel Hedin, editor, CC, volume 2622 of
Lecture Notes in Computer Science, pages 262–272. Springer,
2003. ISBN 3-540-00904-3.

D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, Cambridge Mass., 2012. Revised edition, ISBN
0-262-01715-2.

J.N. Oliveira and M.A. Ferreira. Alloy meets the algebra of
programming: a case study, 2012. To appear in IEEE
Transactions on Software Engineering.


	Motivation
	Data Type invariants
	Quantifier notation
	Proof obligations
	Background
	References

