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Abstract. QoS analysis of composed software systems is an active re-
search area, with the goal of evaluating and improving performance and
resource allocation in component-based applications.
The study of composed software and its properties is in itself a great
challenge and along the years many approaches have been proposed.
With QoS aspects also in play, the complexity of the analysis increases
and it is a challenge to reconcile both the classical and the stochastic
analyses. The quest herein is to provide constructs for composition of
building blocks and semantic models thereof which enable both analyses
and allow for e↵ective modeling and verification.
Stochastic Reo o↵ers constructs for component and service coordination
and provides means for specification of stochastic values for the channels
(e.g., arrival and processing rates). Interactive Markov chains (IMC) were
proposed as a stochastic, compositional, extension of classical models of
concurrency, in which the classical and stochastic features are treated in
an harmonious manner.
In this paper, we show how IMC can be e↵ectively used to serve as seman-
tic model for Stochastic Reo. Treating IMC as a first-call semantic model,
instead of using a separate automaton model as intermediate semantics,
gives rise to more faithful models and has the obvious e�ciency advan-
tages. Moreover, and crucial in reasoning about composed systems, it
avoids the lack of full compositionality present in some automata models.
All the tool support already existing for IMC is made available, without
significant e↵ort, to verify and reason about Reo connectors.

1 Introduction

Component-based software engineering and service-oriented computing aim at
the development of reusable software components and/or services as building
blocks that can be composed to build di↵erent applications. The quest in this
area is to ease the analysis of complex software components, by providing com-
positional models: properties of the composed system can be derived from the
properties of its building blocks and the composing glue. Some approaches to
software composition use textual glue code [28,18,31], usually in a scripting lan-
guage, whereas others o↵er a more visual approach, where ‘channels’ or ‘connec-
tors’ are used to compose components into a system [12,21,2,17].
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Channel based-languages play a prominent role in the world of software com-
position. One of such languages is Reo [2,3], which o↵ers a model of component
and service coordination, wherein complex connectors are constructed by com-
posing various types of primitive channels. Stochastic Reo [29] is an extension of
Reo which allows for the specification of stochastic values for the channels (e.g.,
arrival and processing rates). Having stochastic values enables QoS analysis of
composed software (intensive) systems, which has become popular in the last
few years, with the goal of evaluating and improving performance and resource
allocation in service-oriented applications.

There exist many semantic models in the literature for Reo [10,15,13,16,25,14],
many of which fail to capture certain important features, such as the so-called
context-dependency, which is a desired feature, characterised by behaviours
which depend upon both the presence and absence of I/O requests on the bound-
ary ports of the connector. For the stochastic extension of Reo, there are three
main models: Continuous-Time Constraint Automata [11], stochastic intensional
automata [4], and stochastic Reo automata [29,30]. The first model fails to cap-
ture context-dependency, problem inherited from constraint automata. The sec-
ond model correctly captures context dependency, but it su↵ers from many draw-
backs. For one, the number of states in the automata representing even simple
connectors is large, which restricts immensely its applicability in real case stud-
ies. More worryingly, it is not a compositional model, because of the ad-hoc and
contrived composition operator. The third model was proposed as a solution for
both these drawbacks: the models are more compact and compositionally is in-
herited from Reo automata. However, the applicability of the latter model is also
constrained by the lack of tool support. In an attempt to bridge the gap, in [30],
partial translations were provided to CTMC and IMC, in the hope that then tool
support from these standard models would be available for Reo. Unfortunately,
the translations were shown to not be compositional, which results in recalculat-
ing the whole model every time a tiny change occurs in the automaton model,
which has the obvious disadvantages and again compromises the applicability.
Furthermore, the composition operator for IMC was shown to not be suitable for
many Reo models.

This paper takes a di↵erent approach. Instead of having an intermediate
automata model, we propose IMC as a semantic model for Stochastic Reo. This
o↵ers several challenges, in order to correctly capture the expressivity of Reo

connectors and the composition of connectors. We show that the obtained model
has many desired properties, including the important context dependency feature
and compositionality, which enables a powerful analysis of complex systems.
Tools like CADP [19] or IMCA [20] provide interesting and powerful means to
analyse and model check IMC. The modelling of stochastic Reo with IMC enables,
without significant e↵ort, the use of these tools and associated techniques to
reasoning about qualitative and quantitative aspects of Reo.

Organisation The paper is organised as follows. In Section 2, we recall basic def-
initions of IMC and stochastic Reo. In Section 3, we define the IMC corresponding
to basic Reo channels and discuss the adaptations that need to be done to the
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classical IMC model in order to provide a correct semantics for Reo. Section 4
contains the various operations needed to compose Reo channels and a compo-
sitionally result. We present concluding remarks and directions for future work
in Section 5.

2 Background

In this section, we introduce basic material on Interactive Markov Chains, the
coordination language Reo, and its stochastic variant.

2.1 Interactive Markov Chains

Interactive Markov Chains (IMC) [22,23] were proposed as a model for perfor-
mance evaluation of distributed systems. The approach combines systems quan-
titative modelling, based on continuous-time Markov chains (CTMC) [9,7], and
process algebra [27,8], to ensure compositionally.

An IMC exhibits two sorts of transitions: interactive and Markovian. The
former capture the system’s interaction with its environment, and their occur-
rence is assumed not to be time consuming, once externally triggered. ⌧ -labelled
transitions abstract, as usual, unobservable activity. Since they do not inter-
act with the environment, they are assumed to take place immediately, taking
precedence over Markovian transitions. The latter model a random delay in the
system’s evolution governed by a negative exponential distribution with a pa-
rameter � 2 R+. The introduction of this second type of transitions extends
smoothly classical labelled transition systems, bringing to scene continuous time
and specifying the delay probability for a state change.

Definition 1 (Interactive Markov Chain [23]). An IMC is a tuple I =
(S,Act, , , s), where

– S is a nonempty set of states.
– Act is set of actions.
– ✓ S ⇥Act⇥ S is the set of Interactive transitions.
– ✓ S ⇥ R+ ⇥ S is the set of Markovian transitions.
– s 2 S is the initial state of the chain.

Interactive transitions (s, a, s0) are usually denoted by s a s0 and represent
a change in the system from state s to state s0 through an external action a that
may be executed either immediately or blocked until the environment triggers
it. On the other hand, Markovian transitions (s, �, s0) are denoted by s

�
s0

and represent a transition from state s to state s0 within t time units with a
probability of 1� e��.t.

Internal interactive transitions (⌧ -transitions) play an important role on IMC.
Since they do not interact with the environment, no execution time is associated
to them. Therefore, an internal transition always precedes any Markovian one
specified for the same state (known as unstable state), because the probability
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to execute such transition within 0 time units is always null: 1�e��.0 = 1�e0 =
1�1 = 0. This fact is known as the maximal progress assumption. Note that this
only concerns Markovian transitions; interactive transitions may as well execute
immediately.

2.2 Reo and Stochastic Reo

Reo [6,1,2] is a channel-based model for the exogenous coordination of compo-
nents in the context of component-based software. A channel is a, normally, di-
rected communication mean with exactly two ends: a source and a sink end; but
Reo also accepts undirected channels (i.e., channels with two ends of the same
sort). Channels are composable to define more complex coordination structures
referred to as connectors. Composition of channels is made on their ends, which
form the nodes of connectors. A node may be of three distinct types: (i) source
node, if it connects only source channel ends; (ii) sink node, if it connects only
sink channel ends and (iii) mixed node, if it connects both source and sink
channel ends. The first two types may also be referred as the ports of the chan-
nel or connector. A channel is synchronous when it delays the operations at
each of its ends so that they can succeed simultaneously. Otherwise a channel is
asynchronous, exhibiting memory capabilities or the possibility of specifying an
ordering policy for content delivering. A channel may also be lossy when it de-
livers some values but loses others depending on a specified policy. Fig. 1 recalls
the basic channels used in Reo.

sync lossy syncdrain fifoe

•
fifof

Fig. 1. Primitive Reo channels.

The sync channel transmits data from one end to another whenever there
is a request at both ends synchronously, otherwise one request shall wait for
the other. The lossy channel behaves likewise, but data may be lost whenever a
request at the source end is not matched by another one at the sink end. Dif-
ferently, a fifo channel has bu↵ering capacity of (usually) one memory position,
therefore allowing for asynchronous occurrence of I/O requests. The qualifiers
e or f refer to the channel internal state (either empty or full). Finally, the
syncdrain channel accepts data synchronously at both ends and loses it.

Stochastic Reo [4,29] extends Reo by modelling coordination with a quantita-
tive perspective. Non-negative real (stochastic) values are added both to channels
and to their ends to represent, respectively, processing delay rates and I/O ar-
rival rates. The former rate models the time needed for the channel to process
data from one point to another, where point may be seen as an end, a bu↵er or
a null space where data is lost or automatically produced. One channel may be
annotated with more than one processing delay, depending on their operational
behaviour. The latter models the time between consecutive arrivals of external
I/O requests to channel ports.

Figure 2 shows the basic channels of stochastic Reo. In essence, they are the
normal Reo channels but annotated with stochastic rates. Channel ends names
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are usually omitted because they can be inferred from the rate. Stochastic Reo is

�ab
�b�a

sync

�ab
�aL �b�a

lossy

�ab
�b�a

syncdrain

�aB �Bb

�b�a

fifoe

�ab
�aL�a

�bB �Bd

�d

lossyfifo

Fig. 2. Primitive stochastic Reo channels.
still composable. Each composed channel retains its processing delay rate. The
request arrival rates, however, are only preserved for the ports of the connector.
Since mixed nodes are internal (hidden from the exterior) the arrival request
rates of the constituent nodes are ignored, meaning that they are always ready
to read/write data from/to the channels. The lossyfifo connector in Figure 2
precisely depicts this situation.

3 Interactive Markov Chains for Stochastic Reo

This section discusses the formalisation of a semantic model for stochastic Reo as
an instance of IMC. In order to capture Reo’s behaviour we will use an enriched
set of labels for the interactive transitions and also a composed state space. Then,
composition is defined building on the usual parallel composition for IMC and
eliminating transitions which are not Reo-like via a synchronisation operator.
This two-step composition is very much in the same spirit as the one defined for
Reo automata [14].

3.1 The Semantic Model

Before introducing our proposal for an IMC model for stochastic Reo, referred to
as IMCReo in the sequel, some remarks on what a transition and a state represent
in this context, are in order to build up intuition.

As expected, states capture the connector’s possible behaviour, i.e., data
arrivals and data flowing through the ports. A set of node/port names, N , and a
set of state names, Q, are assumed. Thus the state of a Reo connector comprises
three components – (R, T,Q) – where

– R, T 2 P(N ) denote the sets of ports with, respectively, pending requests
and data being transmitted. Naturally, the empty set, ;, represents absence
of requests and transmissions.

– Q 2 P(Q) is a set of internal state identifiers, which allows for distinguishing
control states in state-based connectors, i.e., connectors which admit di↵er-
ent internal configurations, such as, for instance, a bu↵er. For the latter, for
example, one must be able to distinguish between states corresponding to
an empty and a full bu↵er. Thus, Q is taken as Q = {empty, full}.
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In the context of IMC modelling of (stochastic) Reo, Markovian transitions
will be labelled by r 2 R+, representing the delays according to rate r. Interactive
transitions will be labelled by a set of ports F (corresponding to the observable
actions) that fire and allow data to flow through them. Taking sets of actions
to label transitions is crucial to correctly capture Reo semantics. Actually, ports
firing synchronously to enable data flow, are the rule rather than the exception
in Reo.

In summary, an IMCReo modeling a Reo channel, is an instance of a classical
IMC, with a structured set of states and labels. Formally,

Definition 2 (IMCReo). An IMC

Reo

is a tuple (S, Act, , , s), where

– S ✓ P(N )⇥ P(N )⇥Q is a nonempty set of states;
– Act 2 P(N ) is a set of actions;
– ✓ S ⇥Act⇥ S is a set of Interactive transitions;
– ✓ S ⇥ R+ ⇥ S is a set of Markovian transitions;
– s 2 S is the initial state.

States of the form (R, ;, Q) are referred to as request states and are repre-
sented as RQ; states of the form (;, T,Q) are referred to as transmission states
and are represented as {T}q or {tT }Q; states of the form (R, T,Q) are called as
mixed states and are represented as R {T}Q; finally, states of the form (;, ;, Q)
are represented as ;Q and denote the absence of both requests and data transmis-
sions. For all representations, the bu↵er qualifier Q may be omitted, whenever
clear from the context.

For simplicity, Markovian transitions (s, �, s0) are denoted by s
�

s0, and
Interactive transitions (s, {a1, a2, ...}, s0) by s a1a2... s0. An empty set of actions
models the internal transition ⌧ . To avoid graphical overlap of transitions, a
dashed circle is used to refer to an already represented state.

Figure 3 depicts the IMCReo for the basic stochastic Reo channels. For in-
stance, the IMCReo of a stochastic sync channel is interpreted as follows: initially,
no requests are pending neither in port a nor in port b. At a rate of �a (resp. �b)
a request arrives to port a (resp. port b). At that moment, the channel blocks
until a request arrives to the other port at rate �b (resp. �a). When state a, b is
reached, representing a configuration in which both ports have pending requests,
then both may fire. That is, actions a and b may be activated simultaneously. At
this moment, the channel starts transmitting data between a and b and evolves
back to the initial state on a rate of �ab.

4 New connectors from old

This section contains the basic result in the paper: that IMC semantics for
Stochastic Reo is compositional. Our starting point is the parallel composition of
IMC [22], suitably tuned to deal with transitions labelled by sets of actions. From
this, we get compositionality, as inherited from IMC, for free. However, parallel
composition gives rise to a number of transitions which are not compatible with
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�b �b

�a ab

�ab
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�b �b

�a ab

�ab

a

�aL
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�a a �aB �a
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b

�a a �aB �a

b

�Bb�Bb �a

�aB �Bb

�b�a

fifoe

Fig. 3. IMC for basic stochastic Reo channels

the expected behaviour for Reo connectors, as discussed below. Thus, we further
define a synchronisation operator which eliminates such transitions. It is shown
that this synchronisation operator still preserves compositionality.

4.1 Parallel composition of connectors

Let us first recall the usual definition of IMC parallel composition, adapted to
IMCReo by explicitly dealing with sets of actions.

Definition 3 (Parallel Composition). Let I = (SI , ActI , I , I , i) and
J = (SJ , ActJ , J , J , j) be two IMC

Reo

. The parallel composition of I and
J with respect to a set of actions M is defined as

I ||M J = (S,Act, , , (i, j))

where S = SI ⇥ SJ , Act = ActI [ ActJ , and and are the smallest
relations satisfying, respectively

1. If i1
AI

I i2 and AI \M = ;, then (i1, j)
AI (i2, j), for some j 2 SJ .

2. If j1
AJ

J j2 and AJ \M = ;, then (i, j1)
AJ (i, j2), for some i 2 SI .

3. If i1
AI

I i2, j1
AJ

J j2 and (AI \AJ) = M , then (i1, j1)
AI[AJ (i2, j2).
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4. i1
�

I i2, implies (i1, j)
�

(i2, j), for some j 2 SJ ,
5. j1

�
J j2, implies (i, j1)

�
(i, j), for some i 2 SI ,

Rules 1.�3. apply to interactive transitions. The first two are for independent
evolution of each connector (the other remaining in the same state). This inde-
pendence is only allowed for transitions which do not interfere with the mixed
nodes. This condition appears in a similar form in the definition of product of
Reo automata, a model for non-stochastic Reo. Rule 3. defines joint evolution:
if the nodes to be connected are ready to fire then they fire in both connectors.
Rules 4.�5. are for Markovian transitions: evolution always happens interleaved.
Figure 4 partially depicts the parallel composition of a lossy and a fifoe channel
with respect to a set M = {b}. We use a bar to separate the elements of the
pair. Due to space limitations and readability issues, we do not present the full
composition, which computes an IMCReo with more than 100 states.

;|;e

a |;e

b |;e. . .

;| b e. . .

;| c e. . .

{a}|;e

a, b |;e. . .

a | c e

a | b e

. . .

{a}| c e

. . .

{a}| b e

. . .

a | b, c e

;| c e

. . .

;| b e

a, b | b, c e

{a}| b, c e. . .

{a, b}| c {b}e

;| c {b}e

{a, b}| c f

;| c f . . .

�a

�b

�b

�c

a

�b

�c

�b

�aL

�b

�c

a

�b

a

�b

�c

�aL

�b

�aL

�b

a

ab

�ab

�bB

�bB

�ab

Fig. 4. Parallel Composition of a lossy and fifoe

4.2 Synchronisation

The definition of parallel composition, however, has to be adjusted to correctly
capture the intended semantics for channel composition in Reo. The mismatch
concerns Reo mixed nodes which are not supposed to actively block behaviour,
rather acting like a self-contained pumping station [2]. Failing to take this into
account generates unwanted behaviour, making the semantics unsound. For ex-
ample, the composition of a lossy and a fifoe, in Figure 4 allows for the data
token arriving to port a to be lost, even if the bu↵er is empty. This corresponds
to transition a | b e a

{a}| b e. But such a transition violates the mixed node
assumption in the Reo rationale in the sense that, port a fires when port b is
explicitly blocked.

The following definition captures this notion of active blocking. For notational
convenience consider that, given a node i = (R, T,Q) and a set of ports M i�M
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refers to the node where all ports in M are considered hidden, i.e., i�M= (R \
M,T,Q). For a composed node (i, j), the obvious pairwise extension (i, j)�M=
(i�M , j�M ) is used.

Definition 4 (Active blocking).

Given an IMC

Reo

I = (S1 ⇥ S2, Act, , , i), a node (i, j) actively blocks a

set of nodes M if there exists a transition (i, j) X ( , ) with X \M = ; and

– Ri \M = ; and Rj \M 6= ;, where Ri and Rj are the requests in i and j,
respectively.
or

– there exists (i0, j0) such that (i0, j0)�M= (i, j)�M and (i0, j0) Y ( , ) with
X \ Y = X and typically Y \M 6= ;.

The first condition in the definition correspond to the active blocking explained
above: for a port to fire, a mixed node in j is explicitly kept without firing.
The second condition is another form of active blocking to which we call forced
nondeterminism: there are two transitions in the chain that correspond to the
same state modulo the presence of a request in the mixed node, but in one of
them mixed nodes are explicitly blocked from firing, which again violates the
self-contained pumping station assumption about mixed node behavior in Reo.
As an example, in Figure 4, state a | c actively blocks M, because a | c a

{a}| c and there exists the state a, b | b, c such that a, b | b, c �M = a | c �M , whose

transition a, b | b, c ab
{a, b}| c {b} holds {a, b} \ M 6= ; and {a} \ {a, b} = {a}

(the action of the blocking state).
We are now ready to introduce a synchronisation operation, which removes

unwanted transitions from the chain and then prove, in Theorem 1, that it still
preserves compositionality. Again, it should be remarked this operation is quite
similar to the analogous one defined for Reo automata [13,14], which also hides
mixed nodes.

Definition 5 (Synchronisation). Given an IMC

Reo

I = (S1⇥S2, Act, , , i),
we define the synchronisation of the chain with respect to a set of mixed nodes
M by

@MI = (SM , Act \M, M , M , i)

where

– SM = {(i, j)�M | (i, j) 2 S1 ⇥ S2}
– If i X i0, and i does not actively block M , then i�MX\M

M i0�M .
– If i

�
i0 and Ri0 \M = ;, then i�M �

i0�M . Here, Ri0 are the requests
in i0.

Finally, composition on mixed nodes M is defined as @M (I1 ||M I2), where I1,
I2 are two IMCReo.

In Figure 4, we display in red transitions that are deleted because the state
is actively blocking the mixed node. We display in blue the transitions deleted
by the second condition of the synchronisation, that is Markovian transitions to
states with requests in the mixed node.
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4.3 Compositionality

A compositionality result, stating that no matter in which order connectors are
plugged their behavior is the same, can now be proved. Note that behaviour
equivalence is the usual IMC bisimilarity, as defined in [23].

Theorem 1 (Compositionality). Let I1 and I be IMC

Reo

, where Act1 is the
alphabet of I1. The following holds:

1. @M (I1 ||M1I) ⇠ I1 ||M1@MI, if Act1 \M = ;.
2. @M2(@M1I) = @M1(@M2I) = @M1[M2I.

Proof. For 1., note that a transition will be deleted from I1 ||M1I if a node blocks
behavior. However, because Act1 \M = ;, the deleted transition will also cor-
respond to a node that blocks behavior in I. Hence, in the parallel composition,
every transition with blocking source state (i, j) will be deleted if and only if
the transition is also not present in @MI. Which means such transition will also
not be present in I1 ||M1@MI. For Markovian transitions, the only kept are those
which do not land in states with requests in M , which will be the same in both
chains considered.

For 2., note that all interactive transitions in @M2(@M1I) and @M1(@M2I) are
such that the source node does not actively block M1 and M2. In other words
Ri \M1 = ;, Ri \M2 = ;, Rj \M1 6= ; and Rj \M2 6= ;. This is equivalent
to Ri \ (M1 [ M2) = ; and Rj \ (M1 [ M2) 6= ;. Hence, this corresponds to
transitions whose source node does not actively block M1 [ M2, which are all
interactive transitions in @M1[M2I. For the Markovian transitions, the equality
is a simple consequence of (i�M1)�M2= i�M1[M2 .

4.4 Sequencing and unintended request arrivals

In general, when Reo channels are set in parallel within a connector, they evolve
independently. However, when connected on their ends, data flows from channel
to channel in sequence and there is a clear intended direction of flow. Similarly
to many models, we have so far simplified the analysis and we have not explicitly
modeled the di↵erence between input and output ports, which then set the data
flow direction. This generates some imprecisions. In Figure 4, node {a, b}| c {b}e
evolves interleaved via �ab or �bB to the same state. However, this allows for the
bu↵er to become full before data is transmitted through the lossy channel, which
is not intended. Moreover, when a channel is transmitting data from a port to
another, arrival of requests might not be desired (this is of course subject of
discussion, arriving requests could also be stored), because ports are busy. Note
that this problem is only occurring in the Markov transitions.

To solve this, the following can be done. Given an IMCReo I = (S1 ⇥
S2, Act, , , i), we explicitly model the direction of flow by considering
that Act is equipped with a partial order <. That is, given two ports a, b 2 Act
if a < b then data flows from a to b or, in other words, first in a and then in b.
Given this, we can define when an IMCReo respects sequencing.

Nuno

Nuno

Nuno

Nuno

Nuno

Nuno

Nuno

Nuno

Nuno

Nuno

Nuno



Definition 6 (Sequencing). Given an IMC

Reo

I = (S,Act, , , i), where
the set of labels is equipped with a partial order <, we say that I respects sequenc-
ing if for every transition i

�
f , the set of nodes that finished transmission

in this transition, that is Ti \ Tf , does not contain any element greater than any
element in the set of nodes that still needs to transmit, that is, the elements of
Tf .

Similarly, we can also define when an IMCReo respects no arrival requests on
busy nodes.

Definition 7 (No arrivals when busy).

Given an IMC

Reo

I = (S,Act, , , i), we say that I does not allow requests

on busy nodes if for every transition i
�

f , the set of nodes that have a request
after this transition is taken, that is Ri0 , does not overlap with the set of active
nodes.

The set of active nodes for each state is easily obtained from the set of nodes
e↵ectively active (Ti) and their relations from the assumed partial order by
taking advantage of its transitivity property. This set of active nodes represent,
in fact, the nodes that transmit in each synchronous (atomic) data flow in Reo.

In order to incorporate these into the framework, one can define at a final
stage of composition a clean-up operation that deletes all the transitions that do
not comply with these properties (in case these properties are wanted). Compo-
sitionality will not be a↵ected, because all the transitions that would be deleted
in smaller components will also be deleted in larger components including these.

In Figure 4, we represent in green transitions that would be deleted by these
properties. In grey are transitions deleted because their source states are un-
reachable.

4.5 Composition examples

To now illustrate the full process of composition of IMCReo, we present three
di↵erent examples, each one with di↵erent subtleties, which are worth pointing
out. Figure 5 results from composing a lossy and a sync channel.

;|; a |;

;| c a | c

{a, b}|{b, c}

{a}| c

{a}|;

;|{b, c}

�a

�c �c

�a

ac

�ab

�bc

a

�aL

�c

�aL

�ab
�aL�a

�bc
�c

Fig. 5. The IMCReo for the composition of lossy and sync channels.

Note that the result is an IMCReo corresponding to a lossy channel with ports
a and c and processing delay resulting from the relevant operation that compose
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rates �ab and �bc. This illustrates that the sync channel behaves as the identity
of IMCReo composition, as, in fact, it is expected in Reo.

Figure 6 presents the composition of a lossy and a fifoe channel. This example
shows that data is not lost when the bu↵er is empty, unlike what happens, for
instance, with constraint automata as stressed in [14].

;|; a |;e

c |;e a | c e

{a, b}|{b}e

{a, b}| c {b}e

;|{b}e

;| c {b}e

;|;f a |;f {a}|;f

;| c f a | c f {a}| c f

;|{c}f a |{c}f {a}|{c}f

;|;e a |;e

�a

�a

�c �c

a

a

�c

�ab

�ab

�c

�bB

�bB

�c

�a

�a

c

�c

c

a

�c

c

a

�a a

�aL

�aL

�aL

�Bc �Bc

�ab
�aL�a

�bB �Bc

�c

Fig. 6. The IMCReo for the composition of lossy and fifoe channels.

Finally, Figure 7 partially depicts the IMCReo for the composition of two fifoe.
We show in this example that when the first bu↵er is full and the second is empty,
then data may flow instantaneously to the second bu↵er, freeing the first one.
The ⌧ -transitions, which appear by hiding mixed node b, explicitly model this
intended behaviour. Consequently, the maximal progression assumption would
simplify this chain by deleting Markovian transitions leaving unstable states.

5 Conclusions

In this paper, we proposed Interactive Markov chains (IMC) as a semantic model
for stochastic Reo. This has several advantages to existing models. It does not
use an intermediate automata model, which avoids extra translation steps. Fur-
thermore, it is a compositional model which is important for behavioural but
also for e�ciency/implementation purposes, since it enables local changes to the
circuit without having to recalculate the whole model. Last, but certainly not
least, IMC are a well-studied formalism with many tools and results surrounding
their theory. Casting stochastic Reo within IMC opens the door to all of these.
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�c
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�c

�a

⌧

⌧

�a
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⌧
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�Bb

�Bb

�Bb

�a

�c

�a

�aB �Bb

�a

�bB �Bc

�c

Fig. 7. The partial IMCReo for the composition of two fifoe channels.

The simplification of mixed nodes as self-pumping stations that allow for data
to be read and written with no processing delay was present since the invention
of Reo and kept when the stochastic version was designed. However, this feature
is not desired in practice. Such I/O operations take time and, therefore, may
interfere with QoS values. In order to incorporate this in the model, and achieve
an even more modular and faithful model, the following could be done. Each
channel would have its boundary nodes modeled as independent stochastic pro-
cesses with a processing delay rate. The inside of the channel would also be an
independent process with a processing delay rate and a data transmission policy.
Composition would then be achieved by taking all of these small components
together. The tools developed in this paper, like the synchronisation operation,
could be directly used for this purpose.

ECT [5] o↵ers a plugin-based integrated environment to model and analyse
Reo coordination. As a consequence of the work presented, tools to translate
basic Reo channels into IMC and to perform their composition and synchroni-
sation are in order. On the other hand, tools like CADP [19], PRISM [24,26]
allow for both the qualitative/quantitative analysis and modelling of distributed
stochastic processes. In particular, CADP is able to compose IMC and IMCA [20]
is specifically designed for the analysis of IMC. A chain of such tools for e�cient
stochastic analysis of IMCReo (the necessary output from ECT) is not only a
desired feature but also e↵ortlessly achieved3.

Acknowledgments. We thank Farhad Arbab for several suggestions and com-
ments.
3 Implementation details and information about IMC

Reo

may be seen in http://reo.

project.cwi.nl/reo/wiki/ImcReo
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