Measuring Inconsistency in Knowledge Bases
John Grant and Anthony Hunter

George Voutsadakis®

IMathematics and Computer Science
Lake Superior State University

Seminar Presentation
Universidade do Minho/Universidade de Aveiro

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 1/36



€ Measuring Inconsistency In Knowledge Bases
Introduction

o First-Order QC Logic: The Syntax

o First-Order QC Logic: The Semantics
o QC Models
o
0

©

The Inconsistency Measure
Extrinsic Inconsistency

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 2/36



Measuring Inconsistency In Knowledge Bases = Introduction

Main Points

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36




Measuring Inconsistency In Knowledge Bases = Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases  Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;

o The platform used is Quasi-classical (QC) logic;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;

o The platform used is Quasi-classical (QC) logic;

o There are

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;

o The platform used is Quasi-classical (QC) logic;

@ There are
o constants representing individuals in the knowledge base;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;

o The platform used is Quasi-classical (QC) logic;

@ There are
o constants representing individuals in the knowledge base;
o first-order statements representing knowledge (or database) integrity
constraints imposed on the data;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

9

Knowledge Bases often contain inconsistencies;
We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;
The platform used is Quasi-classical (QC) logic;
There are
o constants representing individuals in the knowledge base;

o first-order statements representing knowledge (or database) integrity
constraints imposed on the data;

©

¢ ©

o To measure the “extrinsic” inconsistency a comparison is made across
different knowledge bases;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;
o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;
o The platform used is Quasi-classical (QC) logic;
@ There are
o constants representing individuals in the knowledge base;
o first-order statements representing knowledge (or database) integrity
constraints imposed on the data;
o To measure the “extrinsic” inconsistency a comparison is made across
different knowledge bases;
@ The measure depends on

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;
o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;
o The platform used is Quasi-classical (QC) logic;
@ There are
o constants representing individuals in the knowledge base;
o first-order statements representing knowledge (or database) integrity
constraints imposed on the data;
o To measure the “extrinsic” inconsistency a comparison is made across
different knowledge bases;
@ The measure depends on
o the language used (relation symbols and constants);

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

o Knowledge Bases often contain inconsistencies;

o We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;
o The platform used is Quasi-classical (QC) logic;
@ There are
o constants representing individuals in the knowledge base;
o first-order statements representing knowledge (or database) integrity
constraints imposed on the data;
o To measure the “extrinsic” inconsistency a comparison is made across
different knowledge bases;
@ The measure depends on

o the language used (relation symbols and constants);
o the underlying domain of individuals;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 3/36



Measuring Inconsistency In Knowledge Bases Introduction

Main Points

9

Knowledge Bases often contain inconsistencies;
We want to have a measure for comparing the inconsistencies arising
in various knowledge bases;
The platform used is Quasi-classical (QC) logic;
There are
o constants representing individuals in the knowledge base;

o first-order statements representing knowledge (or database) integrity
constraints imposed on the data;

©

¢ ©

o To measure the “extrinsic” inconsistency a comparison is made across
different knowledge bases;
@ The measure depends on
o the language used (relation symbols and constants);
o the underlying domain of individuals;
It is shown that this measure accomplishes also an evaluation of the
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L-Structures

o A classical structure for a language L is a pair (D, 1), where
o D # () is the domain;
o [ is the interpretation function, assigning elements and predicates
over D to the symbols in L as follows:
o ForceC, I(c) € D;
o For P(n) € P (an n-ary predicate symbol) /(P) : D" — {0,1} is an
n-ary predicate over D;
o The following important convention will be followed to simplify the

treatment:

| maps constant symbols to themselves. ‘

o This assumption forces the consideration of languages £ = (C, P),
such that C C D, where D is the domain of interpretation of the
L-structures considered;
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o ForceC, I(c) € D;
o For P(n) € P (an n-ary predicate symbol) /(P) : D" — {0,1} is an
n-ary predicate over D;
o The following important convention will be followed to simplify the

treatment:

| maps constant symbols to themselves. ‘

o This assumption forces the consideration of languages £ = (C, P),
such that C C D, where D is the domain of interpretation of the
L-structures considered;

@ Going even further, by introducing a new constant for each element in
D\C, we assume that C = D; Thus, we work with languages
L = (D,P), where D is the domain of interpretation;
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o Let £ = (D,P) be a language;
o Let (D, 1) be an L-structure;
@ An assignment is a function A:V — D;

o Given an assignment A and x € V, an x-variant assignment A’ is an
assignment such that

A(y) = Aly), forally € V,y # x;
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Let £ = (D,P) be a language;
Let (D, /) be an L-structure;
An assignment is a function A: VYV — D;

Given an assignment A and x € V, an x-variant assignment A’ is an
assignment such that

A(y) = Aly), forally € V,y # x;

¢ © ¢ ¢

©

The extension A (abusing notation) of an assignment to terms is
defined by

[ d, ift=xand A(x)=d
M”_{¢in=d
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Let £ = (D, P) be a language;
Let (D, /) be an L-structure;
An assignment is a function A: VYV — D;

Given an assignment A and x € V, an x-variant assignment A’ is an
assignment such that

A(y) = Aly), forally € V,y # x;

The extension A (abusing notation) of an assignment to terms is
defined by

[ d, ift=xand A(x)=d
M”_{¢in=d

For a formula 6 in which x € V occurs free, and a constant d € D,
define the substitution 0[x/d] of x by d in 6 as the formula
obtained by replacing all occurrences of the free variable x by d;
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formalized as follows:

o Given a bistructure E = (D, /™,17) and an assignment A, the
decoupled satisfaction =4 for literals in £(D) is defined as follows:
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o Given a bistructure E = (D, /™,17) and an assignment A, the
decoupled satisfaction =4 for literals in £(D) is defined as follows:

: a= P(t1,...,t,) and IT(P)(A(t1),...,A(ty)) =1 or
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o Note that both an atom and its negation may be true in a bistructure;
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Quasi-Classical Bistructures

o An L-bistructure is a tuple (D, /", /7), where (D, /") and (D, ™)
are classical L-structures;

o Since IT(c) =17 (c) = ¢, I and I~ can only differ in the
interpretations of the predicate symbols;

o Intuitively, we conceive of /™ as the interpretation of positive literals
and of /= as the interpretation of negative literals; This intuition is
formalized as follows:

o Given a bistructure E = (D, /™,17) and an assignment A, the
decoupled satisfaction |=4 for literals in £(D) is defined as follows:

[ a=P(ts,....t) and IF(P)(A(tr), .., A(ts)) = 1 or
(E,A) g o iff { o P e and 1 (PYACD, . () = 1

o Note that both an atom and its negation may be true in a bistructure;

@ This constitutes the justification for the term decoupled satisfaction
and, also, provides the basis for paraconsistent reasoning;
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Every formula is logically equivalent using classical entailment to one in
prenex conjunctive normal form.

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 10 / 36



Measuring Inconsistency In Knowledge Bases First-Order QC Logic: The Semantics

Prenex Conjunctive Normal Form (PCNF) Hypothesis

9 In the sequel, the assumption is that all formulas are in the prenex
conjunctive normal form (PCNF):

o all quantifiers appear at the front;
o the matrix consists of a conjunction of clauses or a single clause;

Classical PCNF Theorem

Every formula is logically equivalent using classical entailment to one in
prenex conjunctive normal form.

@ The process of converting a given formula to PCNF involves

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 10 / 36



Measuring Inconsistency In Knowledge Bases First-Order QC Logic: The Semantics

Prenex Conjunctive Normal Form (PCNF) Hypothesis

9 In the sequel, the assumption is that all formulas are in the prenex
conjunctive normal form (PCNF):

o all quantifiers appear at the front;
o the matrix consists of a conjunction of clauses or a single clause;

Classical PCNF Theorem

Every formula is logically equivalent using classical entailment to one in
prenex conjunctive normal form.

@ The process of converting a given formula to PCNF involves
@ moving quantifiers at the front;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 10 / 36



Measuring Inconsistency In Knowledge Bases First-Order QC Logic: The Semantics

Prenex Conjunctive Normal Form (PCNF) Hypothesis

9 In the sequel, the assumption is that all formulas are in the prenex
conjunctive normal form (PCNF):

o all quantifiers appear at the front;
o the matrix consists of a conjunction of clauses or a single clause;

Classical PCNF Theorem

Every formula is logically equivalent using classical entailment to one in
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Measuring Inconsistency In Knowledge Bases

Prenex Conjunctive Normal Form (PCNF) Hypothesis

9 In the sequel, the assumption is that all formulas are in the prenex
conjunctive normal form (PCNF):

o all quantifiers appear at the front;
o the matrix consists of a conjunction of clauses or a single clause;

Classical PCNF Theorem

Every formula is logically equivalent using classical entailment to one in

prenex conjunctive normal form.
@ The process of converting a given formula to PCNF involves

@ moving quantifiers at the front;
@ converting the matrix into CNF using the commutative, associative and

distributive laws;
o rewriting — using — and V;
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Prenex Conjunctive Normal Form (PCNF) Hypothesis

9 In the sequel, the assumption is that all formulas are in the prenex
conjunctive normal form (PCNF):

o all quantifiers appear at the front;
o the matrix consists of a conjunction of clauses or a single clause;

Classical PCNF Theorem

Every formula is logically equivalent using classical entailment to one in
prenex conjunctive normal form.

@ The process of converting a given formula to PCNF involves

@ moving quantifiers at the front;

@ converting the matrix into CNF using the commutative, associative and
distributive laws;

o rewriting — using — and V;

@ In the present setting no rules involving TAUTOLOGIES or
CONTRADICTIONS are allowed in the rewriting process!
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o (E,A) s 3x0 iff, for some x-variant A’, (E, A’) |=s 0[x/A'(x)];
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o The strong satisfaction |~ is defined by structural induction on
formulas, as follows:
s (E,A) s aiff (E,A) 4 «, for « a literal;
o (E,A) s aq V- Vay iff

[(E,A) |Esay or---or (E,A) Es ap] and, forall 1 < < n,
[(E,A) Es~ «; implies (E, A) Es ®(a1 V -+ V ap, ai)];

(E,A) Es 1 A+ A b iff [(E, A) [=s ¢1 and - - - and (E, A) [Es éml;
(E, A) s 3x0 iff, for some x-variant A, (E, A) s 0]x/A'(x)];
(E, A) s Vx4 iff, for all x-variant A’, (E, A") |=s 0[x/A'(X)];

o We write E = 6 to mean that (E, A) |=s 0, for all assignments A;

9
9
9
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o Let A be a finite set of formulae and E a bistructure; E is a QC
model of A iff, for all § € A, E = 6,

o Let £L = (C,P) be a language and D a domain; We define
o GrdAt(L, D) = {P(dy,...,dy): P(n) € P and dh, ..., d, € D};
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o It is fairly obvious that a QC model E = (D, /", /7) may be
equivalently represented by a set of ground literals as follows:
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o The following notation will be used:
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QC Models

o Let A be a finite set of formulae and E a bistructure; E is a QC
model of A iff, for all § € A, E = 6;
o Let £L = (C,P) be a language and D a domain; We define
o GrdAt(L, D) = {P(di,...,d,): P(n) € P and dy, ..., d, € D};
o GrdLt(L, D) = GrdAt(L, D) U {—« : « € GrdAt(L, D)};
o It is fairly obvious that a QC model E = (D, /", /7) may be
equivalently represented by a set of ground literals as follows:

{a: E s aand a € GrdLt(L, D)};

o The following notation will be used:

o QC(L, A, D) is the class of QC models of A, where the formulas are in
L and the domain of the QC models is D;
o M denotes a QC model in the form of ground literals;
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o Let A be a finite set of formulae and E a bistructure; E is a QC
model of A iff, for all § € A, E = 6;
o Let £L = (C,P) be a language and D a domain; We define
o GrdAt(L, D) = {P(di,...,d,): P(n) € P and dy, ..., d, € D};
o GrdLt(L, D) = GrdAt(L, D) U {—« : « € GrdAt(L, D)};
o It is fairly obvious that a QC model E = (D, /", /7) may be
equivalently represented by a set of ground literals as follows:

{a: E s aand a € GrdLt(L, D)};

o The following notation will be used:
o QC(L, A, D) is the class of QC models of A, where the formulas are in
L and the domain of the QC models is D;
o M denotes a QC model in the form of ground literals; Of course this
expressibility rests on the hypothesis C C D;
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o In the sequel all languages £ = (C,P) and all domains D are assumed
finite;
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Set of Satisfied Formulas

o In the sequel all languages £ = (C,P) and all domains D are assumed
finite;

o Let £ be a language, {My,..., Mp} a set of QC models, such that,
for all i, M; C GrdLt(L, D);
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Set of Satisfied Formulas

o In the sequel all languages £ = (C,P) and all domains D are assumed
finite;

o Let £ be a language, {My,..., Mp} a set of QC models, such that,
for all i, M; C GrdLt(L, D); The set of all satisfied formulas is

SFE{My,...,Mp}) :== {60 € Fm(L) : for all i, M; =5 0};
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Set of Satisfied Formulas

o In the sequel all languages £ = (C,P) and all domains D are assumed
finite;

o Let £ be a language, {My,..., Mp} a set of QC models, such that,
for all i, M; C GrdLt(L, D); The set of all satisfied formulas is

SFE{My,...,Mp}) :== {60 € Fm(L) : for all i, M; =5 0};

@ The well known Galois connection yields

A C SF(QC(L, A, D));
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Minimal QC Models

@ Let £ be a language and A a set of formulas in £;
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Minimal QC Models

o Let £ be a language and A a set of formulas in £; The set of
minimal QC models with domain D is

MQC(L, A, D) := {M € QC(L, A, D) :
M’ C M implies M" & QC(L, A, D)};
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o Let £ be a language and A a set of formulas in £; The set of
minimal QC models with domain D is

MQC(L, A, D) := {M € QC(L, A, D) :
M’ C M implies M" & QC(L, A, D)};

@ In some sense, these are the models without irrelevant, useless
information;
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Minimal QC Models

o Let £ be a language and A a set of formulas in £; The set of
minimal QC models with domain D is

MQC(L, A, D) := {M € QC(L, A, D) :
M’ C M implies M" & QC(L, A, D)};

@ In some sense, these are the models without irrelevant, useless
information;

o Restricting attention to minimal QC models does not affect reasoning:
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Minimal QC Models

o Let £ be a language and A a set of formulas in £; The set of
minimal QC models with domain D is

MQC(L, A, D) := {M € QC(L, A, D) :
M’ C M implies M" & QC(L, A, D)};

@ In some sense, these are the models without irrelevant, useless
information;

o Restricting attention to minimal QC models does not affect reasoning:

Minimal Model Theorem

Given a language L, a set of L-formulas A and a domain D,

SF(QC(L, A, D)) = SF(MQC(L, A, D));
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o Consider £ = ({a, b},{P(1)}) and D = {a, b};
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Example |

o Consider £ = ({a, b},{P(1)}) and D = {a, b};
o Let
A = {=P(a)V P(b), P(a)};
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Measuring Inconsistency In Knowledge Bases = QC Models

Example |

o Consider £ = ({a, b},{P(1)}) and D = {a, b};
o Let
A = {=P(a)V P(b), P(a)};

o There is only one minimal QC model

M = {P(a), P(b)};
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Example |

o Consider £ = ({a, b},{P(1)}) and D = {a, b};
o Let
A = {=P(a)V P(b), P(a)};

o There is only one minimal QC model
M = {P(a), P(b)};

o The model M’ = {P(a),—P(a)} is not a QC model of A because,
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example |

o Consider £ = ({a, b},{P(1)}) and D = {a, b};
o Let
A = {=P(a)V P(b),P(a)};

o There is only one minimal QC model
M = {P(a), P(b)};

o The model M’ = {P(a),—P(a)} is not a QC model of A because, if
P(a) holds, then ®(—P(a) vV P(b),~P(a)) = P(b) must also hold;
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o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
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Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
o Let
A = {Vx(=P(x) v Q(x)), P(a), P(c), =P(c)};

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 16 / 36



Measuring Inconsistency In Knowledge Bases = QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
o Let
A = {Vx(=P(x) v Q(x)), P(a), P(c), =P(c)};

o The first sentence says, of course, that “All P’'s are Q's";
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Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};

o Let
A = {Vx(=P(x) V Q(x)), P(a), P(c),~P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};

o Let
A = {Vx(=P(x) V Q(x)), P(a), P(c),~P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models

My = {P(a), Q(a), ~P(b), P(c), =P (c), Q(c)}

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 16 / 36



Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};

o Let
A = {Vx(=P(x) V Q(x)), P(a), P(c),~P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models

My = {P(a), Q(a), =P(b), P(c),~P(c), Q(c)}
My, = {P(a),Q(a),Q(b),P(c),—nP(c),Q(c)}

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 16 / 36



Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
o Let
A = {Vx(=P(x) v Q(x)), P(a), P(c), =P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models

My = {P(a), Q(a), =P(b), P(c),~P(c), Q(c)}
My, = {P(a),Q(a),Q(b),P(C),—lP(c),Q(c)}

o The following are not QC models:
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
o Let
A = {Vx(=P(x) v Q(x)), P(a), P(c), =P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models

My = {P(a), Q(a), =P(b), P(c),~P(c), Q(c)}
My, = {P(a),Q(a),Q(b),P(c),—lP(c),Q(c)}

o The following are not QC models:

My = {P(a),~P(a),~P(b), P(c), ~P(c), Q(c)}
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
o Let
A = {Vx(=P(x) v Q(x)), P(a), P(c), =P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models

My = {P(a), Q(a), =P(b), P(c),~P(c), Q(c)}
My, = {P(a),Q(a),Q(b),P(c),—lP(c),Q(c)}

o The following are not QC models:

My = {P(a),~P(a),=P(b), P(c),~P(c), Q(c)}
My = {P(a),~P(a), Q(b), P(c), ~P(c), Q(c)}
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b,c},{P(1),Q(1)}) and D = {a, b, c};
o Let
A = {Vx(=P(x) v Q(x)), P(a), P(c), =P(c)};

o The first sentence says, of course, that “All P’'s are Q's";

o The following are QC models

My = {P(a), Q(a), =P(b), P(c),~P(c), Q(c)}
My, = {P(a),Q(a),Q(b),P(c),—lP(c),Q(c)}

o The following are not QC models:

My = {P(a),~P(a),=P(b), P(c),~P(c), Q(c)}
My = {P(a),~P(a), Q(b), P(c), ~P(c), Q(c)}

© Moreover, both M; and M are minimal QC models;
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Example Il

o Consider £ = ({a, b,c},{P(2),Q(2)}) and D = {a, b,c,d};
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Example Il

o Consider £ = ({a, b,c},{P(2),Q(2)}) and D = {a, b,c,d};
o Let

A = {VxVy3z(-P(x,y) V Q(z,y)), P(a, b), P(b, b), Q(a, c),~Q(a, c)};
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Example Il

o Consider £ = ({a, b,c},{P(2),Q(2)}) and D = {a, b,c,d};
o Let

A = {VxVy3z(-P(x,y) V Q(z,y)), P(a, b), P(b, b), Q(a, c),~Q(a, c)};

o The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q";
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Example Il

o Consider £ = ({a, b,c},{P(2),Q(2)}) and D = {a, b,c,d};
o Let

A = {VxVy3z(-P(x,y) V Q(z,y)), P(a, b), P(b, b), Q(a, c),~Q(a, c)};

o The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q";

o Every model must contain P(a, b), P(b, b), Q(a, c) and =Q(a, ¢);
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Example Il

o Consider £ = ({a, b, c},{P(2),Q(2)}) and D = {a, b, c,d};
o Let

A = {VxVy3z(-P(x,y) V Q(z,y)), P(a, b), P(b, b), Q(a, c),~Q(a, c)};

o The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q";

o Every model must contain P(a, b), P(b, b), Q(a, c) and =Q(a, ¢);

@ Moreover, every minimal model must contain exactly one of

Q(a, b), Q(b, b), Q(c, b) or Q(d, b);
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example Il

o Consider £ = ({a, b, c},{P(2),Q(2)}) and D = {a, b, c,d};
o Let

A = {VxVy3z(-P(x,y) V Q(z,y)), P(a, b), P(b, b), Q(a, c),~Q(a, c)};

o The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q";

o Every model must contain P(a, b), P(b, b), Q(a, c) and =Q(a, ¢);
@ Moreover, every minimal model must contain exactly one of

Q(a, b), Q(b, b), Q(c, b) or Q(d, b);

@ An example of a minimal QC model is
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Example Il

o Consider £ = ({a, b, c},{P(2),Q(2)}) and D = {a, b, c,d};
o Let

A = {VxVy3z(-P(x,y) V Q(z,y)), P(a, b), P(b, b), Q(a, c),~Q(a, c)};

o The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q";

o Every model must contain P(a, b), P(b, b), Q(a, c) and =Q(a, ¢);
@ Moreover, every minimal model must contain exactly one of

Q(a, b), Q(b, b), Q(c, b) or Q(d, b);

@ An example of a minimal QC model is

My = {P(a,b),P(b,b),Q(a,c),~Q(a,c),
Q(a, b), Q(d, a), (b, c), Q(c, d)};
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Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b, c,d, e};
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Measuring Inconsistency In Knowledge Bases = QC Models

Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b, c,d, e};
o Let

A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a,b,c),—P(a,b,c),P(a,d,e)};
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Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b, c,d, e};
o Let

A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, c),—P(a,b,c),P(a,d,e)};

o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;
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Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b, c,d, e};
o Let
A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, c),—P(a,b,c),P(a,d,e)};

o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

o Every minimal model must contain

{
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o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b, c,d, e};
o Let
A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, c),—P(a,b,c),P(a,d,e)};

o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

o Every minimal model must contain
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b, c,d, e};
o Let
A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, c),—P(a,b,c),P(a,d,e)};

o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

o Every minimal model must contain

{P(a, b,c),—P(a,b,c),P(a,d,e),P(a,d,c), P(a,b,e),
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b,c,d, e};
o Let

A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, c),=P(a,b,c), P(a,d,e)};

o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

o Every minimal model must contain

{P(a, b,c),—P(a,b,c),P(a,d,e),P(a,d,c), P(a,b,e),

o P(a,d,c) and P(a, b, e) are in each model because of the
multi-valued dependency;
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b,c,d, e};
o Let

A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, c),=P(a,b,c), P(a,d,e)};

o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

o Every minimal model must contain

{P(a, b,c),—P(a,b,c),P(a,d,e),P(a,d,c), P(a,b,e),
-P(a,a,c),~P(a,c,c),-P(a,d,c),—P(a, e c)}

o P(a,d,c) and P(a, b, e) are in each model because of the
multi-valued dependency;
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Measuring Inconsistency In Knowledge Bases =~ QC Models

Example IV

o Consider £ = ({a, b,c,d,e},{P(3)}) and D ={a, b,c,d, e};
o Let
A = {VxVyVzVuVv(=P(x,y,z) V =P(x,u,v) V P(x,y,v)),
P(a, b, C); _‘P(a, b, C)a P(aa d, e)};
o The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;
o Every minimal model must contain

{P(a, b,c),—P(a,b,c),P(a,d,e),P(a,d,c), P(a,b,e),
-P(a,a,c),~P(a,c,c),-P(a,d,c),—P(a, e c)}

o P(a,d,c) and P(a, b, e) are in each model because of the
multi-valued dependency;

o The negated atoms are also forced into the model because of the
same dependency;
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Conflict Base and Model Inconsistency

@ We now introduce a measure for the inconsistency present in a
knowledge base;
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Conflict Base and Model Inconsistency

@ We now introduce a measure for the inconsistency present in a
knowledge base;

@ Depending on the language £ used and the domain D, a knowledge
base may have many different minimal QC models;
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Conflict Base and Model Inconsistency

@ We now introduce a measure for the inconsistency present in a
knowledge base;

@ Depending on the language £ used and the domain D, a knowledge
base may have many different minimal QC models;
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Conflict Base and Model Inconsistency

@ We now introduce a measure for the inconsistency present in a
knowledge base;

@ Depending on the language £ used and the domain D, a knowledge
base may have many different minimal QC models;

o The measure will be a ratio between 0 and 1, with denominator the
total possible number of inconsistencies in the bistructure;

o Given a QC model M, its conflict base is defined by

Cnfl(M) :={a:a € M and —a € M};

o Recalling the finiteness hypothesis, we define the measure of
inconsistency for a model M in the context of £ and D (i.e.,
Cnfl(M) C GrdAt(L, D)) by

Cnfl(M
Modinc(M, L, D) := m;
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o Consider £ = ({},{P(2),R(1)}) and D = {a, b, c};
o Let
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George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 20 / 36



Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Example of Calculating ModInc(M, L, D)

o Consider £ = ({},{P(2),R(1)}) and D = {a, b, c};
o Let
M = {P(a,a),—P(a,a), R(a), ~R(b), P(b,c)};

@ We have
|GrdAt(L, D)| =

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 20 / 36



Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Example of Calculating ModInc(M, L, D)

o Consider £ = ({},{P(2),R(1)}) and D = {a, b, c};
o Let
M = {P(a,a),—P(a,a), R(a), ~R(b), P(b,c)};

@ We have
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@ We have
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o Let
M = {P(a,a),—P(a,a), R(a), ~R(b), P(b,c)};
@ We have
|GrdAt(L, D)| = 12;
o Moreover,

Cnfl(M) = {P(a,a)};
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Example of Calculating ModInc(M, L, D)

o Consider £ = ({},{P(2),R(1)}) and D = {a, b, c};

o Let
M = {P(a,a),—P(a,a), R(a), ~R(b), P(b,c)};
@ We have
|GrdAt(L, D)| = 12;
o Moreover,

Cnfl(M) = {P(a,a)};

o Therefore,

1
ModIinc(M, L, D) = o
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Basic Properties of the Measure

Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then

Modlnc(My, £, D) = ModInc(Ms, £, D);
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o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then
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o The property outlined in the previous bullet does not hold in general;
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Basic Properties of the Measure

Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then

Modlnc(My, £, D) = ModInc(Ms, £, D);

o The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
o Consider £ = ({a},{P(1), Q(1)}) and D = {a, b};
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Basic Properties of the Measure

Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then

Modlnc(My, £, D) = ModInc(Ms, £, D);

o The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
o Consider £ = ({a},{P(1), Q(1)}) and D = {a, b};
o Let A = {3xP(x),=P(a) vV Q(a), ~Q(a)};

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 21 /36



Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Basic Properties of the Measure

Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then

Modlnc(My, £, D) = ModInc(Ms, £, D);
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o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then

Modlnc(My, £, D) = ModInc(Ms, £, D);

o The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
o Consider £ = ({a},{P(1), Q(1)}) and D = {a, b};
o Let A = {3xP(x),=P(a) vV Q(a), ~Q(a)};
o Then MQC(L, A, D) = {My, M>}, with

M, = {P(a)7 _'P(a)a Q(a)7 _'Q(a)}
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Basic Properties of the Measure

Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then
Modlnc(My, £, D) = ModInc(Ms, £, D);

o The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
o Consider £ = ({a},{P(1), Q(1)}) and D = {a, b};
o Let A = {3xP(x),=P(a) vV Q(a), ~Q(a)};
o Then MQC(L, A, D) = {My, M>}, with

My = {P(a),=P(a), Q(a), ~Q(a)} and M, = {P(b), -P(a), ~Q(a)};
o Therefore, ModInc(My, £, D)
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Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then
Modlnc(My, £, D) = ModInc(Ms, £, D);

o The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
o Consider £ = ({a},{P(1), Q(1)}) and D = {a, b};
o Let A = {3xP(x),=P(a) vV Q(a), ~Q(a)};
o Then MQC(L, A, D) = {My, M>}, with
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Basic Properties of the Measure

Anti-monotonicity Laws

o If £1 C L5, then ModInc(M, L3, D) < ModInc(M, L1, D);
o If Dy C Dy, then ModInc(M, L, D;) < ModInc(M, L, Dy);

o For fixed £ and D, if A contains only ground formulas and
My, My € MQC(L, A, D), then
Modlnc(My, £, D) = ModInc(Ms, £, D);

o The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
o Consider £ = ({a},{P(1), Q(1)}) and D = {a, b};
o Let A = {3xP(x),=P(a) vV Q(a), ~Q(a)};
o Then MQC(L, A, D) = {My, M>}, with

My, = {P(a), ~P(a), Q(a), ~Q(a)} and Mz = {P(b), ~P(a),~Q(a)};
o Therefore, ModInc(My, £, D) > ModIlnc(Ms, L, D);
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Preferred QC Models

o To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:
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Preferred QC Models

o To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

o Consider a language £ and a domain D; Let A be a set of
L-formulas;
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Preferred QC Models

o To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

o Consider a language £ and a domain D; Let A be a set of
L-formulas; Define the set PQC(L, A, D) of preferred QC models
of A with domain D by

PQC(L,A,D) = {M e MQC(L,A,D) :
for all M" € MQC(L, A, D), |Cnfl(M)| < |Cnfl(M")]};
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class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

o Consider a language £ and a domain D; Let A be a set of
L-formulas; Define the set PQC(L, A, D) of preferred QC models
of A with domain D by

PQC(L,A,D) = {M e MQC(L,A,D) :
for all M" € MQC(L, A, D), |Cnfl(M)| < |Cnfl(M")]};

@ Revisiting the preceding example, recall

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 22 / 36



Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Preferred QC Models

o To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

o Consider a language £ and a domain D; Let A be a set of
L-formulas; Define the set PQC(L, A, D) of preferred QC models
of A with domain D by

PQC(L,A,D) = {M e MQC(L,A,D) :
for all M" € MQC(L, A, D), |Cnfl(M)| < |Cnfl(M")]};

@ Revisiting the preceding example, recall
o L=({a},{P(1),Q(1)}); D ={a, b};
A = {3xP(x),~P(a) vV Q(a),~Q(a)};
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Preferred QC Models

o To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

o Consider a language £ and a domain D; Let A be a set of
L-formulas; Define the set PQC(L, A, D) of preferred QC models
of A with domain D by

PQC(L,A,D) = {M e MQC(L,A,D) :
for all M" € MQC(L, A, D), |Cnfl(M)| < |Cnfl(M")]};

@ Revisiting the preceding example, recall
o £=({a},{P(), QQ)}); D = {a, b};
A = {3xP(x),=P(a) vV Q(a), ~Q(a)};

o Then MQC(L, A, D) = {My, M5}, with

My = {P(a),~P(a), Q(a), ~Q(a)} and M, = {P(b),=P(a),~Q(a)};
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Preferred QC Models

o To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

o Consider a language £ and a domain D; Let A be a set of
L-formulas; Define the set PQC(L, A, D) of preferred QC models
of A with domain D by

PQC(L,A,D) = {M e MQC(L,A,D) :
for all M" € MQC(L, A, D), |Cnfl(M)| < |Cnfl(M")]};

@ Revisiting the preceding example, recall
o L=({a},{P(1),Q(1)}); D ={a, b};
A = {3xP(x),=P(a) vV Q(a), ~Q(a)};
o Then MQC(L, A, D) = {My, M5}, with
My = {P(a),=P(a), Q(a),~Q(a)} and Mz = {P(b), =P (a),~Q(a)};
o Therefore, PQC(L, A, D) = {M,};

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 22 / 36



Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Minimal vs. of Minimal Conflict Base

o There exist non-minimal QC models which possess a minimal conflict
base:
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Minimal vs. of Minimal Conflict Base

o There exist non-minimal QC models which possess a minimal conflict
base: The following is an example:

s Consider £ = ({a},{P(1)}) and D = {a, b};
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Minimal vs. of Minimal Conflict Base

o There exist non-minimal QC models which possess a minimal conflict
base: The following is an example:

o Consider £ = ({a},{P(1)}) and D = {a, b};

o Let A ={P(a)};

o If M ={P(a), P(b)}, then M € QC(L, A, D), but, clearly,

M ¢ MQC(L, A, D);
o However, |Cnfl(M)| = 0, thus, M is of minimal conflict base;
o We focused attention on MQC(L, A, D) to avoid inclusion of

superfluous information; Recall, also, that we do not lose (from the
deductive point of view) any information;

@ For a particular class of formulas, all minimal models are preferred:
Theorem (Minimal Models for Universal Formulas)

Given £, A and D, if for all @ € A, 6 does not have any existential
quantifiers, then PQC(L, A, D) = MQC(L, A, D).
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Non-Standard Behavior of Existential Quantification

o Consider £ = ({a, b},{P(1),Q(1)}) and D = {a, b};
o Consider, also,
Ay = {3xP(x),~P(a) vV Q(a), ~Q(a)};
Ay = {P(a)V P(b),~P(a) vV Q(a),~Q(a)};

o In classical logic, since D = {a, b}, the sentences IxP(x) and
P(a) v P(b) would be interchangeable;

o But in this case, setting

My = {P(a),~P(a), Q(a), ~Q(a)};
My = {P(b),~P(a),~Q(a)};

we get MQC(L, A1, D) = {My, My}, whereas
MQC(ﬁ, AQ, D) = {M2};
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o Consider £ = ({a, b},{P(1),Q(1)}) and D = {a, b};
o Consider, also,
A1 = {IxP(x),~P(a) v Q(a), ~Q(a)};
Ay = {P(a) v P(b),~P(a) vV Q(a),~Q(a)};
o In classical logic, since D = {a, b}, the sentences IxP(x) and

P(a) v P(b) would be interchangeable;
o But in this case, setting

My = {P(a),~P(a), Q(a), ~Q(a)};
My = {P(b),~P(a),~Q(a)};
we get MQC(L, A1, D) = {My, My}, whereas
MQC(L, Ay, D) = {M,};
o The discrepancy is of course due to the difference between the
semantics of disjunction as compared to that of classical logic;
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

Uniformity of Inconsistency Measure

o For fixed £ and D, the inconsistency measure Modlnc measures the
inconsistency of a set A in a uniform manner: If
My, My € PQC(L, A, D), then |Cnfl(M;)| = |Cnfl(M>)|, whence
ModInc(My, £, D) = Modlnc(My, L, D);

@ Thus, even if there exist many different preferred QC models of A, all
such models have identical inconsistency measures;
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@ Example:
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o Let
Ay = {P(a)A=P(a), Q(a) A (Q(b) V Q(c) V Q(d))};
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Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

An Example
@ Example:
o Consider £ = ({a, b, c,d},{P(1),Q(1)}) and D = {a, b, ¢, d};
o Let
A1 = {P(a) A=P(a), Q(a) A (Q(b) V Q(c) V Q(d))};
Ay, = {P(a)A-P(a),Q(a) vV Q(b)};
o We have

PQC(£L, A1, D) = {{P(a), ~P(a), Q(a), Q(b)},
{P(a), ~P(a), Q(a), Q(c)}, {P(a), =P(a), Q(a), Q(d)}};
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A1 = {P(a) A=P(a), Q(a) A (Q(b) V Q(c) V Q(d))};
A, = {P(a)A=P(a),Q(a) v Q(b)};
o We have

PQC(£L, A1, D) = {{P(a), ~P(a), Q(a), Q(b)},
{P(a), =P (a), Q(a), Q(c)}, {P(a), =P(a), Q(a), Q(d)}};
PQC(L, A, D) = {{P(a), ~P(a), Q(a)}, {P(a), ~P(a), Q(b)}};

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 26 / 36



Measuring Inconsistency In Knowledge Bases = The Inconsistency Measure

An Example
@ Example:
o Consider £ = ({a, b, c,d},{P(1),Q(1)}) and D = {a, b, ¢, d};
o Let
A1 = {P(a) A=P(a), Q(a) A (Q(b) V Q(c) V Q(d))};
Ay, = {P(a)A-P(a),Q(a) vV Q(b)};
o We have

PQC(£L, A1, D) = {{P(a), ~P(a), Q(a), Q(b)},
{P(a), =P (a), Q(a), Q(c)}, {P(a), =P(a), Q(a), Q(d)}};
PQC(L, A, D) = {{P(a), ~P(a), Q(a)}, {P(a), ~P(a), Q(b)}};

o Thus, for all M € PQC(L, A1, D), ModInc(M, L, D) = % and, for all
M € PQC(L, A, D), Modinc(M, £, D) = 4;
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Extrinsic Inconsistency of a Theory

Theorem
Given £ and A, if D; and D> are two domains of the same size and
My € PQC(ﬁ,A, Dl), M, € PQC(ﬁ,A, Dg), then

ModInc(My, £, D1) = ModInc(Ma, £, D>);
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Extrinsic Inconsistency of a Theory

Theorem

Given £ and A, if D; and D> are two domains of the same size and
My € PQC(L:,A, Dl), M, € PQC(L:,A, D2), then

ModInc(My, £, D1) = ModInc(Ma, £, D>);

o The extrinsic inconsistency Thinc(A, £) of a theory A in a
language L is a sequence

<I’1,f2, r3,.. ‘>:

where, for all n > 1, r, = ModInc(M, L, D,), where D, is a domain of
size nand M € PQC(L, A, D,), if such a model exists, and r, = *
(null value), otherwise;
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Extrinsic Inconsistency of a Theory

Theorem

Given £ and A, if D; and D> are two domains of the same size and
My € PQC(L:,A, Dl), M, € PQC(L:,A, D2), then

ModInc(My, £, D1) = ModInc(Ma, £, D>);

o The extrinsic inconsistency Thinc(A, £) of a theory A in a
language L is a sequence

<I’1,f2, r3,.. ‘>:

where, for all n > 1, r, = ModInc(M, L, D,), where D, is a domain of
size nand M € PQC(L, A, D,), if such a model exists, and r, = *
(null value), otherwise;

@ The intention is to measure how the inconsistency of A in L evolves
as the size of the domain increases;
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Some Examples

o If £ = ({a},{P(1)}) and A = {P(a),~P(a)}, then
11
) 57 57 ° o '>v
o If £ = ({a, b}, {P(1)}) and A = {P(a),=P(a), P(b),~P(b)}, then

Thinc(A, L) = (1
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o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
P(c),—P(c)}, then

Thinc(A, L) =
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o If L= ({a,b},{P(1)}) and A = {P(a),—=P(a), P(b),~P(b)}, then
Thinc(A, L) = (x, % %,)

o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
P(c),—P(c)}, then
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o If £L=({},{P(1), R(1)}) and A1 = {Vx(P(x) A =P(x)), VxQ(x)}
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o If L= ({a,b},{P(1)}) and A = {P(a),—=P(a), P(b),~P(b)}, then
Thinc(A, L) = (x, % %,)

o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
P(c),—P(c)}, then
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o If £L=({},{P(1), R(1)}) and A1 = {Vx(P(x) A =P(x)), VxQ(x)}

Thinc(A, L) = (*,%,1, —

Then Thinc(Ay, £) =
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o If £ = ({a}, {P(1)}) and A = {P(a),~P(a)}, then
11

Thinc(A, L) = (1, 573 D
o If L= ({a,b},{P(1)}) and A = {P(a),—=P(a), P(b),~P(b)}, then
Thinc(A, L) = (x, % %,)

o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
P(c),—P(c)}, then

33

FURD

o If £L=({},{P(1), R(1)}) and A1 = {Vx(P(x) A =P(x)), VxQ(x)}

Thinc(A, L) = (*,%,1, —

Then Thinc(Aq, L) = (%, %, %,)
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Thinc(A, L) = (1, 573 D
o If L= ({a,b},{P(1)}) and A = {P(a),—=P(a), P(b),~P(b)}, then
Thinc(A, L) = (x, % %,)

o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
P(c),—P(c)}, then
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o If £L=({},{P(1), R(1)}) and A1 = {Vx(P(x) A =P(x)), VxQ(x)}

and Ay = {3Ix(P(x) A —|P( )) VxQ(x)};
Then Thinc(Aq, L) = (%, =, 2, )

Thinc(A, L) = (*,%,1, —
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o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
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o If £L=({},{P(1), R(1)}) and A1 = {Vx(P(x) A =P(x)), VxQ(x)}

and Az = {Ix(P(x) A =P(x)), VxQ(x)};

Then Thinc(A1, L) = (%, %, %, ...y and Thinc(Az, L) =

Thinc(A, L) = (*,%,1, —
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Some Examples

o If £ = ({a},{P(1)}) and A = {P(a),~P(a)}, then
11

Thinc(A, L) = (1, 573 D
o If L= ({a,b},{P(1)}) and A = {P(a),—=P(a), P(b),~P(b)}, then
Thinc(A, L) = (x, % %,)

o If £L={({a,b,c},{P(1)}) and A = {P(a),~P(a), P(b), ~P(b),
P(c),—P(c)}, then

33

FURD

o If £L=({},{P(1), R(1)}) and A1 = {Vx(P(x) A =P(x)), VxQ(x)}

and Az = {Ix(P(x) A =P(x)), VxQ(x)};

Then Thinc(Ay,£) = (3,4,2,...) and Thinc(A2, £) = (3, 1, %, S
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Observations

Suppose Thinc = (x1,x2,...); If |C| = k, k > 1, then, for all 1 </ < k,
x; = * and, for all i > k, x; # *.
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Measuring Inconsistency In Knowledge Bases ~ Extrinsic Inconsistency

Some Observations

Proposition

Suppose Thinc = (x1,x2,...); If |C| = k, k > 1, then, for all 1 </ < k,
x; = x and, for all i > k, x; # *.

Proposition

Suppose Thinc = (x1,x2,...); If there is an r; € {r, 2, ...}, such that
ri =0, then (ry, r,...) is of the form (x,...,*,0,...,0).
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Observations

Proposition

Suppose Thinc = (x1,x2,...); If |C| = k, k > 1, then, for all 1 </ < k,
x; = x and, for all i > k, x; # *.

Proposition

Suppose Thinc = (x1,x2,...); If there is an r; € {r, 2, ...}, such that
ri =0, then (ry, r,...) is of the form (x,...,*,0,...,0).

o If Thinc(A1,L1) = (n,r,...) and Thinc(Az, L2) = (s1,5,...), we
define Thinc(A1, £1) = Thinc(Ay, L) iff, for all i > 1, r; < s; or

ri = *x Or §; = *,
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Observations

Proposition

Suppose Thinc = (x1,x2,...); If |C| = k, k > 1, then, for all 1 </ < k,
x; = x and, for all i > k, x; # *.

Proposition

Suppose Thinc = (x1,x2,...); If there is an r; € {r, 2, ...}, such that
ri =0, then (ry, r,...) is of the form (x,...,*,0,...,0).

o If Thinc(A1,L1) = (n,r,...) and Thinc(Az, L2) = (s1,5,...), we
define Thinc(A1, £1) = Thinc(Ay, L) iff, for all i > 1, r; < s; or
ri = *x Or §; = *,

o Thinc(Aq, L1) < Thinc(As, L) abbreviates
Thinc(Aq, £1) =< Thinc(Az, £3) and Thinc(Aaz, £2) £ Thinc(Aq, L1);
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Measuring Inconsistency In Knowledge Bases ~ Extrinsic Inconsistency

Some Comparisons

o In case £1 = L5, we say that A; has smaller than or equal
inconsistency as A, and write Ay <5 Ay;
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Comparisons

o In case £1 = L5, we say that A; has smaller than or equal
inconsistency as A, and write Ay <5 Ay;

o For fixed A and L, it is not necessarily the case that
Thinc(A, L) = (r1, ra,...) is such that, for all i, if r; # %, then
ri 2 rit1;
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Comparisons

o In case £1 = L5, we say that A; has smaller than or equal
inconsistency as A, and write Ay <5 Ay;

o For fixed A and L, it is not necessarily the case that
Thinc(A, L) = (r1, ra,...) is such that, for all i, if r; # %, then
i 2 rit1;
Example: Consider, for instance, £ = ({},{P(2),Q(1)}) and
A = {VxVy(P(x,y) A =P(x, y))};
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Some Comparisons

o In case £1 = L5, we say that A; has smaller than or equal
inconsistency as A, and write Ay <5 Ay;

o For fixed A and L, it is not necessarily the case that
Thinc(A, L) = (r1, ra,...) is such that, for all i, if r; # %, then
i 2 rit1;
Example: Consider, for instance, £ = ({},{P(2),Q(1)}) and
A = {VxVy(P(x,y) A =P(x,y))}; Then Thinc(A, L) = (3, 3,
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Comparisons

o In case £1 = L5, we say that A; has smaller than or equal
inconsistency as A and write A; <5 Ay;
o For fixed A and L, it is not necessarily the case that
Thinc(A, L) = (r1, ra,...) is such that, for all i, if r; # %, then
i 2 rit1;
Example: Consider, for instance, £ = ({},{P(2),Q(1)}) and
A = {VxVy(P(x,y) A =P(x,y))}; Then Thinc(A,£) = (3,5,3,...);

If Ay C Ay, then Thinc(A1, £) < Thinc(Az, £).
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Some Comparisons

o In case £1 = L5, we say that A; has smaller than or equal
inconsistency as A and write A; <5 Ay;

o For fixed A and L, it is not necessarily the case that
Thinc(A, L) = (r1, ra,...) is such that, for all i, if r; # %, then
i 2 rit1;
Example: Consider, for instance, £ = ({},{P(2), Q(1)}) and
A = {VxVy(P(x,y) A =P(x,y))}; Then Thinc(A,£) = (3,5,3,...);

Proposition
If Ay C Ay, then Thinc(A1, £) < Thinc(Az, £).

Proposition

If £L1 = (C1,P1) and Ly = (C2,P2), and L1 C L, (meaning C; C C, and
P1 C Pa), then Thinc(A, L) < Thinc(A, L1).

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 30/ 36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

More Comparisons

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spri

2013 31 /36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(A1, £1) = Thinc(Az, £5);
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More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
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o Example
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More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(A1, £1) = Thinc(Az, £5);

o Example
o For instance, consider

L1 =({a},{P(1)}) A ={P(a)}
Ly = ({a}, {P(1)})
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More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(A1, £1) = Thinc(Az, £5);

o Example
o For instance, consider

L1 =({a},{P(1)}) Ay = {P(a)}
Ly = ({a}, {P(1)}) A, = {P(a), ~P(a)}
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More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(A1, £1) = Thinc(Az, £5);

o Example
o For instance, consider

L1 =({a},{P(1)}) Ay = {P(a)}
Ly = ({a}, {P(1)}) A, = {P(a), ~P(a)}

o Then
Th|nC(A1, El) j Th|nC(A2, ,62)
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(A1, £1) = Thinc(Az, £5);

o Example and Counterexample:
o For instance, consider

L1 =({a},{P(1)}) Ay = {P(a)}
Ly = ({a}, {P(1)}) A, = {P(a), ~P(a)}

o Then
Th|nC(A1, El) j Th|nC(A2, ,62)
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(Aq, £1) =< Thinc(Az, L7);
o Example and Counterexample:
o For instance, consider

L1 = ({a}, {P(1)}) Ay = {P(a)}
Ly = ({a},{P(1)}) A, = {P(a), ~P(a)}
L3 = ({a}, {P(1), Q(1)})

o Then
Th|nC(A1, El) j Th|nC(A2, ,62)
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(Aq, £1) =< Thinc(Az, L7);
o Example and Counterexample:
o For instance, consider

L1 = ({a}, {P(1)}) Ay = {P(a)}
Ly = ({a}, {P(1)}) A, = {P(a),~P(a)}
Ly = ({a}, {P(1), Q(1)}) As={P(a),~P(a), Q(a)};

o Then
Th|nC(A1, El) j Th|nC(A2, ,62)
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

More Comparisons

o If Ay C Ap and £1 C L5, it does not necessarily follow that
Thinc(Aq, £1) =< Thinc(Az, L7);
o Example and Counterexample:
o For instance, consider

Ly = ({a}, {P(1)}) Ay ={P(a)}
Lz = ({a}, {P()}) Az ={P(a),~P(a)}
L3 =({a},{P(1), Q(1)}) Asz={P(a),~P(a), Q(a)}:
o Then
Thinc(Aq, £1) = Thinc(Az, £7)

o However,
ThInc(A37 £3) = Th|nC(A2, Ez);
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory
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Measuring Inconsistency In Knowledge Bases ~ Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem

If Ay and Aj are QC equivalent sets of formulas in the language £, then
Thinc(A1, £) = Thinc(Ay, £);
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Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem

If Ay and Aj are QC equivalent sets of formulas in the language £, then
Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A;
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Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem

If Ay and Aj are QC equivalent sets of formulas in the language £, then
Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem

If Ay and Aj are QC equivalent sets of formulas in the language £, then
Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);

o Example: If £ = ({},{P(1), Q(1)}),
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem

If Ay and Aj are QC equivalent sets of formulas in the language £, then
Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);

o Example: If £ = ({},{P(1), Q(1)}), A1 = {Vx(P(x) A =P(x)),
Vx(Q(x) A =Q(x))}
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem

If Ay and Aj are QC equivalent sets of formulas in the language £, then
Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);

o Example: If £ = ({},{P(1), Q(1)}), A1 = {Vx(P(x) A =P(x)),
Vx(Q(x) A =Q(x))} and Ay = {Vx(P(x) A =P(x))},
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem
If Ay and Aj are QC equivalent sets of formulas in the language £, then

Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);
o Example: If £ = ({},{P(1), Q(1)}), A1 = {Vx(P(x) A =P(x)),

Vx(Q(x) A =Q(x))} and Ay = {Vx(P(x) A —=P(x))}, then
Thinc(A;1) = Thinc(Az) =
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem
If Ay and Aj are QC equivalent sets of formulas in the language £, then

Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);
o Example: If £ = ({},{P(1), Q(1)}), A1 = {Vx(P(x) A =P(x)),

Vx(Q(x) A =Q(x))} and Ay = {Vx(P(x) A =P(x))}, then
Thinc(A1) = Thinc(Az) = (1,1,...),
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem
If Ay and Aj are QC equivalent sets of formulas in the language £, then

Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);

o Example: If £ = ({},{P(1), Q(1)}), A1 = {Vx(P(x) A =P(x)),
Vx(Q(x) A =Q(x))} and Ay = {Vx(P(x) A =P(x))}, then
Thinc(A1) = Thinc(Az) = (1,1,...), whereas Thinc(Ay, L) <
Thinc(A1, £),
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Intrinsic Inconsistency of a Theory

o For A, A’ sets of L-formulas, A is QC equivalent to A’ iff for every
M, M is a QC model of A iff it is a QC model of A’;

Theorem
If Ay and Aj are QC equivalent sets of formulas in the language £, then

Thinc(A1, £) = Thinc(Ay, £);

o For a fixed theory A consider the language L consisting exactly of the
predicate and constant symbols appearing in A; The intrinsic
inconsistency of A is defined by

Thinc(A) := Thinc(A, £);

o Example: If £ = ({},{P(1), Q(1)}), A1 = {Vx(P(x) A =P(x)),
Vx(Q(x) A =Q(x))} and Ay = {Vx(P(x) A =P(x))}, then
Thinc(A1) = Thinc(Az) = (1,1,...), whereas Thinc(Ay, L) <
Thinc(Aq, £), the addition of Q reducing the inconsistency of Ay;
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Comparing Intrinsic Theory Inconsistencies
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Measuring Inconsistency In Knowledge Bases ~ Extrinsic Inconsistency

Comparing Intrinsic Theory Inconsistencies

o A theory A; has smaller than or equal inconsistency as Ao,
written A; < Ay, iff Thinc(A1) < Thinc(A»);
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Comparing Intrinsic Theory Inconsistencies

o A theory A; has smaller than or equal inconsistency as Ao,
written Ay < Ay, iff Thinc(A1) < Thinc(Ay);

o All consistent theories have an intrinsic inconsistency
(%,...,%,0,...,0), where the number of %'s depends on the number
of constants in the language;
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Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Comparing Intrinsic Theory Inconsistencies
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@ Any inconsistent theory has greater inconsistency than any consistent
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written Ay < Ay, iff Thinc(A1) < Thinc(Ay);

o All consistent theories have an intrinsic inconsistency
(%,...,%,0,...,0), where the number of %'s depends on the number
of constants in the language; Thus, they have the same inconsistency;

@ Any inconsistent theory has greater inconsistency than any consistent
theory;

o Examples: Let us fix £ = ({},{P(2)}) and D = {a, b, c};

o The theory A = {VxVy(P(x,y) A =P(x,y))} has one preferred QC
model
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Comparing Intrinsic Theory Inconsistencies

o A theory A; has smaller than or equal inconsistency as Ao,
written A; < Ay, iff Thinc(A1) < Thinc(A»);

o All consistent theories have an intrinsic inconsistency
(%,...,%,0,...,0), where the number of %'s depends on the number
of constants in the language; Thus, they have the same inconsistency;

@ Any inconsistent theory has greater inconsistency than any consistent
theory;

o Examples: Let us fix £ = ({},{P(2)}) and D = {a, b, c};

o The theory A = {VxVy(P(x,y) A =P(x,y))} has one preferred QC
model My = {P(a, a), ~P(a,a),...,P(c,c),~P(c,c)};
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Comparing Intrinsic Theory Inconsistencies

o A theory A; has smaller than or equal inconsistency as Ao,
written A; < Ay, iff Thinc(A1) < Thinc(A»);

o All consistent theories have an intrinsic inconsistency
(%,...,%,0,...,0), where the number of %'s depends on the number
of constants in the language; Thus, they have the same inconsistency;

@ Any inconsistent theory has greater inconsistency than any consistent
theory;
o Examples: Let us fix £ = ({},{P(2)}) and D = {a, b, c};
o The theory A = {VxVy(P(x,y) A =P(x,y))} has one preferred QC
model My = {P(a, a), ~P(a,a), ..., P(c,c),—P(c,c)}; Therefore,

Modinc(My, £,D) = § =1;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 33 /36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Comparing Intrinsic Theory Inconsistencies

o A theory A; has smaller than or equal inconsistency as Ao,
written A; < Ay, iff Thinc(A1) < Thinc(A»);

o All consistent theories have an intrinsic inconsistency
(%,...,%,0,...,0), where the number of %'s depends on the number
of constants in the language; Thus, they have the same inconsistency;

@ Any inconsistent theory has greater inconsistency than any consistent
theory;

o Examples: Let us fix £ = ({},{P(2)}) and D = {a, b, c};

o The theory A = {VxVy(P(x,y) A =P(x,y))} has one preferred QC
model My = {P(a, a), ~P(a,a), ..., P(c,c),—P(c,c)}; Therefore,
Modlnc(Ms, £, D) = g = 1; M is totally inconsistent;
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Examples (Cont'd)

o Examples: Still considering £ = ({},{P(2)}) and D = {a, b, c};
o The theory A, = {Ix3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One of them is Moy = {P(a, b), ~P(a, b)}; Therefore,
Modlinc(Moy, £, D) = 3;
o The theory Az = {Vx3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One is
Ms1 = {P(a,a), ~P(a, a), P(b, c),~P(b, c), P(c, a), ~P(c, a)};
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o Examples: Still considering £ = ({},{P(2)}) and D = {a, b, c};

o The theory A, = {Ix3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One of them is Moy = {P(a, b), ~P(a, b)}; Therefore,
Modlinc(Moy, £, D) = 3;

o The theory Az = {Vx3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One is
Msy = {P(a, a), ~P(a, a) P(b c),~P(b,c), P(c,a),~P(c,a)}; So,
ModInc(Msq, £, D) =

31
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o The theory A, = {Ix3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One of them is Moy = {P(a, b), ~P(a, b)}; Therefore,
Modlinc(Moy, £, D) = 3;

o The theory Az = {Vx3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One is
Msy = {P(a, a), ~P(a, a) P(b c),~P(b,c), P(c,a),~P(c,a)}; So,
ModInc(Msq, £, D) =

o The theory Ay = {EIxVy(P(x y) A =P(x,y))} has 9 preferred QC
models; One is
M = {P(b,a),—P(b, a), P(b,b),=P(b, b), P(b,c),=P(b,c)};
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Examples (Cont'd)

o Examples: Still considering £ = ({},{P(2)}) and D = {a, b, c};

o The theory A, = {Ix3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One of them is Moy = {P(a, b), ~P(a, b)}; Therefore,
Modlinc(Moy, £, D) = §

o The theory Az = {Vx3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One is
Msy = {P(a, a), ~P(a, a) P(b c),~P(b,c), P(c,a),~P(c,a)}; So,
ModInc(Msq, £, D) =

o The theory Ay = {EIxVy(P(x y) A =P(x,y))} has 9 preferred QC
models; One is
Ma = {P(b, a), ~P(b, a), P(
Therefore, ModInc(May, £, D

b, b), ~P(b, b), P(b, c),~P(b, c)};
) =

b
1.
3!
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o Examples: Still considering £ = ({},{P(2)}) and D = {a, b, c};
o The theory A, = {Ix3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One of them is Moy = {P(a, b), ~P(a, b)}; Therefore,
Modlinc(Moy, £, D) = §
o The theory Az = {Vx3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One is
Msy = {P(a, a), ~P(a, a) P(b c),~P(b,c), P(c,a),~P(c,a)}; So,
ModInc(Msq, £, D) =
o The theory Ay = {EIxVy(P(x y) A =P(x,y))} has 9 preferred QC
models; One is
My = {P(b7 3)7_'P(b7 2) (b b)7_'P(b b) P(b C) _'P(b C)}
Therefore, ModInc(May, £, D) = 3;
o For the theories above, the intrinsic complexities are, respectively,

(L1, (L5 0 (La 4 ) and (1,420
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o Examples: Still considering £ = ({},{P(2)}) and D = {a, b, c};
o The theory A, = {Ix3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One of them is Moy = {P(a, b), ~P(a, b)}; Therefore,
Modlinc(Moy, £, D) = §
o The theory Az = {Vx3y(P(x,y) A =P(x,y))} has 9 preferred QC
models; One is
Msy = {P(a, a), ~P(a, a) P(b c),~P(b,c), P(c,a),~P(c,a)}; So,
ModInc(Msq, £, D) =
o The theory Ay = {EIxVy(P(x y) A =P(x,y))} has 9 preferred QC
models; One is
May = {P(b,a), P (b, a), P(b, b), =P(b, b), P(b, ¢), ~P(b, c)};
Therefore, ModInc(May, £, D) = 3;
o For the theories above, the intrinsic complexities are, respectively,

(L1, (L5 0 (La 4 ) and (1,420
o So

Thinc(Az) <ine Thinc(As3) =inc Thinc(A4) <ine Thinc(Ay);
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A Final Theorem

Existence Theorem

For any fraction ¢, with r <'s, there exists a theory A, such that

Thinc(A) = <£, 2—'5
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A Final Theorem
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For any fraction ¢, with r <'s, there exists a theory A, such that

Thine(A) = (5, —, =, ...).
25° 3s

0|~

o Simply take £ = ({a}, {P1(1),...,Ps(1)});
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r r
Thlnc(A) = < ,2—5, g,)

0|~

o Simply take £ = ({a}, {P1(1),...,Ps(1)});

A = {Vx(Pi(x) A -+ A Ps(x)),=P1(a),...,2Pr(a)};

o What is the number |GrdAt(L, D,)|?

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 35/ 36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

A Final Theorem

Existence Theorem

For any fraction ¢, with r <'s, there exists a theory A, such that

r r
Thlnc(A) = < ,2—5, g,)

0|~

o Simply take £ = ({a}, {P1(1),...,Ps(1)});

A = {Vx(Pi(x) A -+ A Ps(x)),=P1(a),...,2Pr(a)};

o What is the number |GrdAt(L, D,)|? ns;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 35/ 36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

A Final Theorem

Existence Theorem

For any fraction ¢, with r <'s, there exists a theory A, such that

r r
Thlnc(A) = < ,2—5, §,>

0|~

o Simply take £ = ({a}, {P1(1),...,Ps(1)});

A = {Vx(Pi(x) A -+ A Ps(x)),=P1(a),...,2Pr(a)};

o What is the number |GrdAt(L, D,,)|? ns;
o What is the number |Cnfl(M)| if M € PQC(L, A, D,)?

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 35/ 36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

A Final Theorem

Existence Theorem

For any fraction ¢, with r <'s, there exists a theory A, such that

r r
Thlnc(A) = < ,2—5, §,>

0|~

o Simply take £ = ({a}, {P1(1),...,Ps(1)});

A = {Vx(Pi(x) A -+ A Ps(x)),=P1(a),...,2Pr(a)};

o What is the number |GrdAt(L, D,,)|? ns;
o What is the number |Cnfl(M)| if M € PQC(L, A, D,)? r;

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 35/ 36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

A Final Theorem

Existence Theorem

For any fraction ¢, with r <'s, there exists a theory A, such that

r r
Thlnc(A) = < ,2—5, §,>

0|~

o Simply take £ = ({a}, {P1(1),...,Ps(1)});

A = {Vx(Pi(x) A -+ A Ps(x)),=P1(a),...,2Pr(a)};

o What is the number |GrdAt(L, D,)|? ns;
o What is the number |Cnfl(M)| if M € PQC(L, A, D,)? r;
o Thus r, = ModInc(M, L, D,) = £;

ns’

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 35/ 36



Measuring Inconsistency In Knowledge Bases Extrinsic Inconsistency

Many Thanks!

MANY THANKS «

o the hospitality

o your attention during the seminar!

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 36 / 36



	Measuring Inconsistency In Knowledge Bases
	Introduction
	First-Order QC Logic: The Syntax
	First-Order QC Logic: The Semantics
	QC Models
	The Inconsistency Measure
	Extrinsic Inconsistency


