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There are
constants representing individuals in the knowledge base;
first-order statements representing knowledge (or database) integrity
constraints imposed on the data;

To measure the “extrinsic” inconsistency a comparison is made across
different knowledge bases;

The measure depends on
the language used (relation symbols and constants);
the underlying domain of individuals;

It is shown that this measure accomplishes also an evaluation of the
“intrinsic” inconsistency of a knowledge base;
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Given an assignment A and x ∈ V, an x-variant assignment A′ is an
assignment such that

A′(y) = A(y), for all y ∈ V, y 6= x ;
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Given an assignment A and x ∈ V, an x-variant assignment A′ is an
assignment such that

A′(y) = A(y), for all y ∈ V, y 6= x ;

The extension A (abusing notation) of an assignment to terms is
defined by

A(t) =

{

d , if t = x and A(x) = d

d , if t = d

For a formula θ in which x ∈ V occurs free, and a constant d ∈ D,
define the substitution θ[x/d ] of x by d in θ as the formula
obtained by replacing all occurrences of the free variable x by d ;
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Since I+(c) = I−(c) = c , I+ and I− can only differ in the
interpretations of the predicate symbols;

Intuitively, we conceive of I+ as the interpretation of positive literals
and of I− as the interpretation of negative literals; This intuition is
formalized as follows:

Given a bistructure E = (D, I+, I−) and an assignment A, the
decoupled satisfaction |=d for literals in L(D) is defined as follows:

(E ,A) |=d α iff

{

α = P(t1, . . . , tn) and I+(P)(A(t1), . . . ,A(tn)) = 1 or
α = ¬P(t1, . . . , tn) and I−(P)(A(t1), . . . ,A(tn)) = 1

Note that both an atom and its negation may be true in a bistructure;

This constitutes the justification for the term decoupled satisfaction

and, also, provides the basis for paraconsistent reasoning;
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Prenex Conjunctive Normal Form (PCNF) Hypothesis

In the sequel, the assumption is that all formulas are in the prenex
conjunctive normal form (PCNF):

all quantifiers appear at the front;
the matrix consists of a conjunction of clauses or a single clause;

Classical PCNF Theorem

Every formula is logically equivalent using classical entailment to one in
prenex conjunctive normal form.

The process of converting a given formula to PCNF involves

moving quantifiers at the front;
converting the matrix into CNF using the commutative, associative and
distributive laws;
rewriting → using ¬ and ∨;

In the present setting no rules involving TAUTOLOGIES or
CONTRADICTIONS are allowed in the rewriting process!
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(E ,A) |=s α1 ∨ · · · ∨ αn iff

[(E ,A) |=s α1 or · · · or (E ,A) |=s αn] and, for all 1 ≤ i ≤ n,
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(E ,A) |=s φ1 ∧ · · · ∧ φm iff [(E ,A) |=s φ1 and · · · and (E ,A) |=s φm];
(E ,A) |=s ∃xθ iff, for some x-variant A′, (E ,A′) |=s θ[x/A

′(x)];
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We write E |=s θ to mean that (E ,A) |=s θ, for all assignments A;
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model of ∆ iff, for all θ ∈ ∆, E |=s θ;

Let L = 〈C,P〉 be a language and D a domain; We define

GrdAt(L,D) = {P(d1, . . . , dn) : P(n) ∈ P and d1, . . . , dn ∈ D};
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It is fairly obvious that a QC model E = (D, I+, I−) may be
equivalently represented by a set of ground literals as follows:

{α : E |=s α and α ∈ GrdLt(L,D)};
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model of ∆ iff, for all θ ∈ ∆, E |=s θ;

Let L = 〈C,P〉 be a language and D a domain; We define

GrdAt(L,D) = {P(d1, . . . , dn) : P(n) ∈ P and d1, . . . , dn ∈ D};
GrdLt(L,D) = GrdAt(L,D) ∪ {¬α : α ∈ GrdAt(L,D)};

It is fairly obvious that a QC model E = (D, I+, I−) may be
equivalently represented by a set of ground literals as follows:

{α : E |=s α and α ∈ GrdLt(L,D)};

The following notation will be used:

QC(L,∆,D) is the class of QC models of ∆, where the formulas are in
L and the domain of the QC models is D;
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It is fairly obvious that a QC model E = (D, I+, I−) may be
equivalently represented by a set of ground literals as follows:

{α : E |=s α and α ∈ GrdLt(L,D)};

The following notation will be used:

QC(L,∆,D) is the class of QC models of ∆, where the formulas are in
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QC Models

Let ∆ be a finite set of formulae and E a bistructure; E is a QC

model of ∆ iff, for all θ ∈ ∆, E |=s θ;

Let L = 〈C,P〉 be a language and D a domain; We define

GrdAt(L,D) = {P(d1, . . . , dn) : P(n) ∈ P and d1, . . . , dn ∈ D};
GrdLt(L,D) = GrdAt(L,D) ∪ {¬α : α ∈ GrdAt(L,D)};

It is fairly obvious that a QC model E = (D, I+, I−) may be
equivalently represented by a set of ground literals as follows:

{α : E |=s α and α ∈ GrdLt(L,D)};

The following notation will be used:

QC(L,∆,D) is the class of QC models of ∆, where the formulas are in
L and the domain of the QC models is D;
M denotes a QC model in the form of ground literals; Of course this
expressibility rests on the hypothesis C ⊆ D;
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Let L be a language, {M1, . . . ,Mm} a set of QC models, such that,
for all i , Mi ⊆ GrdLt(L,D); The set of all satisfied formulas is

SF({M1, . . . ,Mn}) := {θ ∈ Fm(L) : for all i , Mi |=s θ};

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 13 / 36



Measuring Inconsistency In Knowledge Bases QC Models

Set of Satisfied Formulas

In the sequel all languages L = 〈C,P〉 and all domains D are assumed
finite;

Let L be a language, {M1, . . . ,Mm} a set of QC models, such that,
for all i , Mi ⊆ GrdLt(L,D); The set of all satisfied formulas is

SF({M1, . . . ,Mn}) := {θ ∈ Fm(L) : for all i , Mi |=s θ};

The well known Galois connection yields

∆ ⊆ SF(QC(L,∆,D));
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Let L be a language and ∆ a set of formulas in L; The set of
minimal QC models with domain D is
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Measuring Inconsistency In Knowledge Bases QC Models

Minimal QC Models

Let L be a language and ∆ a set of formulas in L; The set of
minimal QC models with domain D is

MQC(L,∆,D) := {M ∈ QC(L,∆,D) :
M ′ ⊂ M implies M ′ 6∈ QC(L,∆,D)};

In some sense, these are the models without irrelevant, useless
information;

Restricting attention to minimal QC models does not affect reasoning:

Minimal Model Theorem

Given a language L, a set of L-formulas ∆ and a domain D,

SF(QC(L,∆,D)) = SF(MQC(L,∆,D));
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Example I

Consider L = 〈{a, b}, {P(1)}〉 and D = {a, b};

Let
∆ = {¬P(a) ∨ P(b),P(a)};
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Let
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Example I

Consider L = 〈{a, b}, {P(1)}〉 and D = {a, b};

Let
∆ = {¬P(a) ∨ P(b),P(a)};

There is only one minimal QC model

M = {P(a),P(b)};

The model M ′ = {P(a),¬P(a)} is not a QC model of ∆ because, if
P(a) holds, then ⊗(¬P(a) ∨ P(b),¬P(a)) = P(b) must also hold;
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Let
∆ = {∀x(¬P(x) ∨ Q(x)),P(a),P(c),¬P(c)};
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The following are QC models

M1 = {P(a),Q(a),¬P(b),P(c),¬P(c),Q(c)}
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The following are not QC models:

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 16 / 36



Measuring Inconsistency In Knowledge Bases QC Models

Example II

Consider L = 〈{a, b, c}, {P(1),Q(1)}〉 and D = {a, b, c};

Let
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Example II

Consider L = 〈{a, b, c}, {P(1),Q(1)}〉 and D = {a, b, c};

Let
∆ = {∀x(¬P(x) ∨ Q(x)),P(a),P(c),¬P(c)};

The first sentence says, of course, that “All P ’s are Q’s”;

The following are QC models

M1 = {P(a),Q(a),¬P(b),P(c),¬P(c),Q(c)}
M2 = {P(a),Q(a),Q(b),P(c),¬P(c),Q(c)}

The following are not QC models:

M ′
1 = {P(a),¬P(a),¬P(b),P(c),¬P(c),Q(c)}

M ′
2 = {P(a),¬P(a),Q(b),P(c),¬P(c),Q(c)}
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Example II

Consider L = 〈{a, b, c}, {P(1),Q(1)}〉 and D = {a, b, c};

Let
∆ = {∀x(¬P(x) ∨ Q(x)),P(a),P(c),¬P(c)};

The first sentence says, of course, that “All P ’s are Q’s”;

The following are QC models

M1 = {P(a),Q(a),¬P(b),P(c),¬P(c),Q(c)}
M2 = {P(a),Q(a),Q(b),P(c),¬P(c),Q(c)}

The following are not QC models:

M ′
1 = {P(a),¬P(a),¬P(b),P(c),¬P(c),Q(c)}

M ′
2 = {P(a),¬P(a),Q(b),P(c),¬P(c),Q(c)}

Moreover, both M1 and M2 are minimal QC models;
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Consider L = 〈{a, b, c}, {P(2),Q(2)}〉 and D = {a, b, c , d};

Let

∆ = {∀x∀y∃z(¬P(x , y) ∨ Q(z , y)),P(a, b),P(b, b),Q(a, c),¬Q(a, c)};
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Consider L = 〈{a, b, c}, {P(2),Q(2)}〉 and D = {a, b, c , d};

Let

∆ = {∀x∀y∃z(¬P(x , y) ∨ Q(z , y)),P(a, b),P(b, b),Q(a, c),¬Q(a, c)};

The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q”;
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Consider L = 〈{a, b, c}, {P(2),Q(2)}〉 and D = {a, b, c , d};

Let

∆ = {∀x∀y∃z(¬P(x , y) ∨ Q(z , y)),P(a, b),P(b, b),Q(a, c),¬Q(a, c)};

The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q”;
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Consider L = 〈{a, b, c}, {P(2),Q(2)}〉 and D = {a, b, c , d};

Let

∆ = {∀x∀y∃z(¬P(x , y) ∨ Q(z , y)),P(a, b),P(b, b),Q(a, c),¬Q(a, c)};

The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q”;

Every model must contain P(a, b),P(b, b),Q(a, c) and ¬Q(a, c);

Moreover, every minimal model must contain exactly one of
Q(a, b),Q(b, b),Q(c , b) or Q(d , b);
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Consider L = 〈{a, b, c}, {P(2),Q(2)}〉 and D = {a, b, c , d};

Let

∆ = {∀x∀y∃z(¬P(x , y) ∨ Q(z , y)),P(a, b),P(b, b),Q(a, c),¬Q(a, c)};

The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q”;

Every model must contain P(a, b),P(b, b),Q(a, c) and ¬Q(a, c);

Moreover, every minimal model must contain exactly one of
Q(a, b),Q(b, b),Q(c , b) or Q(d , b);

An example of a minimal QC model is
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Example III

Consider L = 〈{a, b, c}, {P(2),Q(2)}〉 and D = {a, b, c , d};

Let

∆ = {∀x∀y∃z(¬P(x , y) ∨ Q(z , y)),P(a, b),P(b, b),Q(a, c),¬Q(a, c)};

The first sentence imposes the constraint that “Every value of second
attribute of P must appear as value of second attribute of Q”;

Every model must contain P(a, b),P(b, b),Q(a, c) and ¬Q(a, c);

Moreover, every minimal model must contain exactly one of
Q(a, b),Q(b, b),Q(c , b) or Q(d , b);

An example of a minimal QC model is

M1 = {P(a, b),P(b, b),Q(a, c),¬Q(a, c),
Q(a, b),Q(d , a),Q(b, c),Q(c , d)};
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;
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Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

Every minimal model must contain
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Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

Every minimal model must contain

{P(a, b, c),¬P(a, b, c),P(a, d , e),P(a, d , c),P(a, b, e),
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

Every minimal model must contain

{P(a, b, c),¬P(a, b, c),P(a, d , e),P(a, d , c),P(a, b, e),

P(a, d , c) and P(a, b, e) are in each model because of the
multi-valued dependency;
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

Every minimal model must contain

{P(a, b, c),¬P(a, b, c),P(a, d , e),P(a, d , c),P(a, b, e),
¬P(a, a, c),¬P(a, c , c),¬P(a, d , c),¬P(a, e, c)}

P(a, d , c) and P(a, b, e) are in each model because of the
multi-valued dependency;
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Example IV

Consider L = 〈{a, b, c , d , e}, {P(3)}〉 and D = {a, b, c , d , e};

Let

∆ = {∀x∀y∀z∀u∀v(¬P(x , y , z)∨ ¬P(x , u, v) ∨ P(x , y , v)),
P(a, b, c),¬P(a, b, c),P(a, d , e)};

The first sentence presents a multi-valued dependency of the second
and third attributes of P on the first attribute;

Every minimal model must contain

{P(a, b, c),¬P(a, b, c),P(a, d , e),P(a, d , c),P(a, b, e),
¬P(a, a, c),¬P(a, c , c),¬P(a, d , c),¬P(a, e, c)}

P(a, d , c) and P(a, b, e) are in each model because of the
multi-valued dependency;

The negated atoms are also forced into the model because of the
same dependency;
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We now introduce a measure for the inconsistency present in a
knowledge base;

Depending on the language L used and the domain D, a knowledge
base may have many different minimal QC models;

The measure will be a ratio between 0 and 1, with denominator the
total possible number of inconsistencies in the bistructure;
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Conflict Base and Model Inconsistency

We now introduce a measure for the inconsistency present in a
knowledge base;

Depending on the language L used and the domain D, a knowledge
base may have many different minimal QC models;

The measure will be a ratio between 0 and 1, with denominator the
total possible number of inconsistencies in the bistructure;

Given a QC model M, its conflict base is defined by

Cnfl(M) := {α : α ∈ M and ¬α ∈ M};
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Conflict Base and Model Inconsistency

We now introduce a measure for the inconsistency present in a
knowledge base;

Depending on the language L used and the domain D, a knowledge
base may have many different minimal QC models;

The measure will be a ratio between 0 and 1, with denominator the
total possible number of inconsistencies in the bistructure;

Given a QC model M, its conflict base is defined by

Cnfl(M) := {α : α ∈ M and ¬α ∈ M};

Recalling the finiteness hypothesis, we define the measure of

inconsistency for a model M in the context of L and D (i.e.,
Cnfl(M) ⊆ GrdAt(L,D)) by

ModInc(M,L,D) :=
|Cnfl(M)|

|GrdAt(L,D)|
;
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Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};
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Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};

We have
|GrdAt(L,D)| =
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Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};

We have
|GrdAt(L,D)| = 12;
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Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};

We have
|GrdAt(L,D)| = 12;

Moreover,
Cnfl(M) =
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Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};

We have
|GrdAt(L,D)| = 12;

Moreover,
Cnfl(M) = {P(a, a)};
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Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};

We have
|GrdAt(L,D)| = 12;

Moreover,
Cnfl(M) = {P(a, a)};

Therefore,

ModInc(M,L,D) =
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Example of Calculating ModInc(M ,L,D)

Consider L = 〈{}, {P(2),R(1)}〉 and D = {a, b, c};

Let
M = {P(a, a),¬P(a, a),R(a),¬R(b),P(b, c)};

We have
|GrdAt(L,D)| = 12;

Moreover,
Cnfl(M) = {P(a, a)};

Therefore,

ModInc(M,L,D) =
1

12
;
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
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Basic Properties of the Measure
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If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 =

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 21 / 36



Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)}
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 =
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For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 = {P(b),¬P(a),¬Q(a)};

Therefore, ;
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 = {P(b),¬P(a),¬Q(a)};

Therefore, ModInc(M1,L,D) ;
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Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 = {P(b),¬P(a),¬Q(a)};

Therefore, ModInc(M1,L,D) ModInc(M2,L,D);
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Basic Properties of the Measure

Anti-monotonicity Laws

If L1 ⊆ L2, then ModInc(M,L2,D) ≤ ModInc(M,L1,D);

If D1 ⊆ D2, then ModInc(M,L,D2) ≤ ModInc(M,L,D1);

For fixed L and D, if ∆ contains only ground formulas and
M1,M2 ∈ MQC(L,∆,D), then

ModInc(M1,L,D) = ModInc(M2,L,D);

The property outlined in the previous bullet does not hold in general;
The following is a counterexample:

Consider L = 〈{a}, {P(1),Q(1)}〉 and D = {a, b};
Let ∆ = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 = {P(b),¬P(a),¬Q(a)};

Therefore, ModInc(M1,L,D) > ModInc(M2,L,D);

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 21 / 36



Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Preferred QC Models

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 22 / 36



Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Preferred QC Models

To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:
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To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

Consider a language L and a domain D; Let ∆ be a set of
L-formulas;
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Preferred QC Models

To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

Consider a language L and a domain D; Let ∆ be a set of
L-formulas; Define the set PQC(L,∆,D) of preferred QC models

of ∆ with domain D by

PQC(L,∆,D) = {M ∈ MQC(L,∆,D) :
for all M ′ ∈ MQC(L,∆,D), |Cnfl(M)| ≤ |Cnfl(M ′)|};
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Preferred QC Models

To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

Consider a language L and a domain D; Let ∆ be a set of
L-formulas; Define the set PQC(L,∆,D) of preferred QC models

of ∆ with domain D by

PQC(L,∆,D) = {M ∈ MQC(L,∆,D) :
for all M ′ ∈ MQC(L,∆,D), |Cnfl(M)| ≤ |Cnfl(M ′)|};

Revisiting the preceding example, recall
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Preferred QC Models

To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

Consider a language L and a domain D; Let ∆ be a set of
L-formulas; Define the set PQC(L,∆,D) of preferred QC models

of ∆ with domain D by

PQC(L,∆,D) = {M ∈ MQC(L,∆,D) :
for all M ′ ∈ MQC(L,∆,D), |Cnfl(M)| ≤ |Cnfl(M ′)|};

Revisiting the preceding example, recall
L = 〈{a}, {P(1),Q(1)}〉; D = {a, b};
∆ = {∃xP(x),¬P(a) ∨Q(a),¬Q(a)};
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Preferred QC Models

To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

Consider a language L and a domain D; Let ∆ be a set of
L-formulas; Define the set PQC(L,∆,D) of preferred QC models

of ∆ with domain D by

PQC(L,∆,D) = {M ∈ MQC(L,∆,D) :
for all M ′ ∈ MQC(L,∆,D), |Cnfl(M)| ≤ |Cnfl(M ′)|};

Revisiting the preceding example, recall
L = 〈{a}, {P(1),Q(1)}〉; D = {a, b};
∆ = {∃xP(x),¬P(a) ∨Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 = {P(b),¬P(a),¬Q(a)};
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To focus attention to the “least inconsistent” models we restrict the
class of minimal QC models to that of preferred QC models, i.e.,
those minimal ones with a minimal conflict base:

Consider a language L and a domain D; Let ∆ be a set of
L-formulas; Define the set PQC(L,∆,D) of preferred QC models

of ∆ with domain D by

PQC(L,∆,D) = {M ∈ MQC(L,∆,D) :
for all M ′ ∈ MQC(L,∆,D), |Cnfl(M)| ≤ |Cnfl(M ′)|};

Revisiting the preceding example, recall
L = 〈{a}, {P(1),Q(1)}〉; D = {a, b};
∆ = {∃xP(x),¬P(a) ∨Q(a),¬Q(a)};
Then MQC(L,∆,D) = {M1,M2}, with

M1 = {P(a),¬P(a),Q(a),¬Q(a)} and M2 = {P(b),¬P(a),¬Q(a)};

Therefore, PQC(L,∆,D) = {M2};
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There exist non-minimal QC models which possess a minimal conflict
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Consider L = 〈{a}, {P(1)}〉 and D = {a, b};
Let ∆ = {P(a)};
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Minimal vs. of Minimal Conflict Base

There exist non-minimal QC models which possess a minimal conflict
base: The following is an example:

Consider L = 〈{a}, {P(1)}〉 and D = {a, b};
Let ∆ = {P(a)};
If M = {P(a),P(b)}, then M ∈ QC(L,∆,D), but, clearly,
M 6∈ MQC(L,∆,D);
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There exist non-minimal QC models which possess a minimal conflict
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Consider L = 〈{a}, {P(1)}〉 and D = {a, b};
Let ∆ = {P(a)};
If M = {P(a),P(b)}, then M ∈ QC(L,∆,D), but, clearly,
M 6∈ MQC(L,∆,D);
However, |Cnfl(M)| = 0, thus, M is of minimal conflict base;
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There exist non-minimal QC models which possess a minimal conflict
base: The following is an example:

Consider L = 〈{a}, {P(1)}〉 and D = {a, b};
Let ∆ = {P(a)};
If M = {P(a),P(b)}, then M ∈ QC(L,∆,D), but, clearly,
M 6∈ MQC(L,∆,D);
However, |Cnfl(M)| = 0, thus, M is of minimal conflict base;

We focused attention on MQC(L,∆,D) to avoid inclusion of
superfluous information;
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There exist non-minimal QC models which possess a minimal conflict
base: The following is an example:

Consider L = 〈{a}, {P(1)}〉 and D = {a, b};
Let ∆ = {P(a)};
If M = {P(a),P(b)}, then M ∈ QC(L,∆,D), but, clearly,
M 6∈ MQC(L,∆,D);
However, |Cnfl(M)| = 0, thus, M is of minimal conflict base;

We focused attention on MQC(L,∆,D) to avoid inclusion of
superfluous information; Recall, also, that we do not lose (from the
deductive point of view) any information;
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Let ∆ = {P(a)};
If M = {P(a),P(b)}, then M ∈ QC(L,∆,D), but, clearly,
M 6∈ MQC(L,∆,D);
However, |Cnfl(M)| = 0, thus, M is of minimal conflict base;

We focused attention on MQC(L,∆,D) to avoid inclusion of
superfluous information; Recall, also, that we do not lose (from the
deductive point of view) any information;

For a particular class of formulas, all minimal models are preferred:
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Minimal vs. of Minimal Conflict Base

There exist non-minimal QC models which possess a minimal conflict
base: The following is an example:

Consider L = 〈{a}, {P(1)}〉 and D = {a, b};
Let ∆ = {P(a)};
If M = {P(a),P(b)}, then M ∈ QC(L,∆,D), but, clearly,
M 6∈ MQC(L,∆,D);
However, |Cnfl(M)| = 0, thus, M is of minimal conflict base;

We focused attention on MQC(L,∆,D) to avoid inclusion of
superfluous information; Recall, also, that we do not lose (from the
deductive point of view) any information;

For a particular class of formulas, all minimal models are preferred:

Theorem (Minimal Models for Universal Formulas)

Given L,∆ and D, if for all θ ∈ ∆, θ does not have any existential
quantifiers, then PQC(L,∆,D) = MQC(L,∆,D).
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Non-Standard Behavior of Existential Quantification

Consider L = 〈{a, b}, {P(1),Q(1)}〉 and D = {a, b};

Consider, also,

∆1 = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
∆2 = {P(a) ∨ P(b),¬P(a) ∨ Q(a),¬Q(a)};
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Non-Standard Behavior of Existential Quantification

Consider L = 〈{a, b}, {P(1),Q(1)}〉 and D = {a, b};

Consider, also,

∆1 = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
∆2 = {P(a) ∨ P(b),¬P(a) ∨ Q(a),¬Q(a)};

In classical logic, since D = {a, b}, the sentences ∃xP(x) and
P(a) ∨ P(b) would be interchangeable;
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Consider L = 〈{a, b}, {P(1),Q(1)}〉 and D = {a, b};

Consider, also,

∆1 = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
∆2 = {P(a) ∨ P(b),¬P(a) ∨ Q(a),¬Q(a)};

In classical logic, since D = {a, b}, the sentences ∃xP(x) and
P(a) ∨ P(b) would be interchangeable;

But in this case, setting

M1 = {P(a),¬P(a),Q(a),¬Q(a)};
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Consider, also,

∆1 = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
∆2 = {P(a) ∨ P(b),¬P(a) ∨ Q(a),¬Q(a)};

In classical logic, since D = {a, b}, the sentences ∃xP(x) and
P(a) ∨ P(b) would be interchangeable;

But in this case, setting

M1 = {P(a),¬P(a),Q(a),¬Q(a)};
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Non-Standard Behavior of Existential Quantification

Consider L = 〈{a, b}, {P(1),Q(1)}〉 and D = {a, b};

Consider, also,

∆1 = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
∆2 = {P(a) ∨ P(b),¬P(a) ∨ Q(a),¬Q(a)};

In classical logic, since D = {a, b}, the sentences ∃xP(x) and
P(a) ∨ P(b) would be interchangeable;

But in this case, setting

M1 = {P(a),¬P(a),Q(a),¬Q(a)};
M2 = {P(b),¬P(a),¬Q(a)};

we get MQC(L,∆1,D) = {M1,M2}, whereas
MQC(L,∆2,D) = {M2};
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Non-Standard Behavior of Existential Quantification

Consider L = 〈{a, b}, {P(1),Q(1)}〉 and D = {a, b};

Consider, also,

∆1 = {∃xP(x),¬P(a) ∨ Q(a),¬Q(a)};
∆2 = {P(a) ∨ P(b),¬P(a) ∨ Q(a),¬Q(a)};

In classical logic, since D = {a, b}, the sentences ∃xP(x) and
P(a) ∨ P(b) would be interchangeable;

But in this case, setting

M1 = {P(a),¬P(a),Q(a),¬Q(a)};
M2 = {P(b),¬P(a),¬Q(a)};

we get MQC(L,∆1,D) = {M1,M2}, whereas
MQC(L,∆2,D) = {M2};

The discrepancy is of course due to the difference between the
semantics of disjunction as compared to that of classical logic;
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George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 25 / 36



Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Uniformity of Inconsistency Measure

For fixed L and D, the inconsistency measure ModInc measures the
inconsistency of a set ∆ in a uniform manner: If
M1,M2 ∈ PQC(L,∆,D), then

George Voutsadakis (LSSU) Measuring Inconsistency Aveiro/Braga, Spring 2013 25 / 36



Measuring Inconsistency In Knowledge Bases The Inconsistency Measure
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For fixed L and D, the inconsistency measure ModInc measures the
inconsistency of a set ∆ in a uniform manner: If
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Measuring Inconsistency In Knowledge Bases The Inconsistency Measure

Uniformity of Inconsistency Measure

For fixed L and D, the inconsistency measure ModInc measures the
inconsistency of a set ∆ in a uniform manner: If
M1,M2 ∈ PQC(L,∆,D), then |Cnfl(M1)| = |Cnfl(M2)|, whence
ModInc(M1,L,D) = ModInc(M2,L,D);

Thus, even if there exist many different preferred QC models of ∆, all
such models have identical inconsistency measures;
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An Example

Example:

Consider L = 〈{a, b, c , d}, {P(1),Q(1)}〉 and D = {a, b, c , d};
Let

∆1 = {P(a) ∧ ¬P(a),Q(a) ∧ (Q(b) ∨ Q(c) ∨ Q(d))};
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An Example

Example:

Consider L = 〈{a, b, c , d}, {P(1),Q(1)}〉 and D = {a, b, c , d};
Let

∆1 = {P(a) ∧ ¬P(a),Q(a) ∧ (Q(b) ∨ Q(c) ∨ Q(d))};
∆2 = {P(a) ∧ ¬P(a),Q(a) ∨ Q(b)};

We have

PQC(L,∆1,D) = {{P(a),¬P(a),Q(a),Q(b)},
{P(a),¬P(a),Q(a),Q(c)}, {P(a),¬P(a),Q(a),Q(d)}};
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Example:

Consider L = 〈{a, b, c , d}, {P(1),Q(1)}〉 and D = {a, b, c , d};
Let

∆1 = {P(a) ∧ ¬P(a),Q(a) ∧ (Q(b) ∨ Q(c) ∨ Q(d))};
∆2 = {P(a) ∧ ¬P(a),Q(a) ∨ Q(b)};

We have

PQC(L,∆1,D) = {{P(a),¬P(a),Q(a),Q(b)},
{P(a),¬P(a),Q(a),Q(c)}, {P(a),¬P(a),Q(a),Q(d)}};

PQC(L,∆2,D) = {{P(a),¬P(a),Q(a)}, {P(a),¬P(a),Q(b)}};
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An Example

Example:

Consider L = 〈{a, b, c , d}, {P(1),Q(1)}〉 and D = {a, b, c , d};
Let

∆1 = {P(a) ∧ ¬P(a),Q(a) ∧ (Q(b) ∨ Q(c) ∨ Q(d))};
∆2 = {P(a) ∧ ¬P(a),Q(a) ∨ Q(b)};

We have

PQC(L,∆1,D) = {{P(a),¬P(a),Q(a),Q(b)},
{P(a),¬P(a),Q(a),Q(c)}, {P(a),¬P(a),Q(a),Q(d)}};

PQC(L,∆2,D) = {{P(a),¬P(a),Q(a)}, {P(a),¬P(a),Q(b)}};

Thus, for all M ∈ PQC(L,∆1,D), ModInc(M ,L,D) = 1
8 and, for all

M ∈ PQC(L,∆2,D), ModInc(M ,L,D) = 1
8 ;
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Extrinsic Inconsistency of a Theory

Theorem

Given L and ∆, if D1 and D2 are two domains of the same size and
M1 ∈ PQC(L,∆,D1), M2 ∈ PQC(L,∆,D2), then

ModInc(M1,L,D1) = ModInc(M2,L,D2);
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Extrinsic Inconsistency of a Theory

Theorem

Given L and ∆, if D1 and D2 are two domains of the same size and
M1 ∈ PQC(L,∆,D1), M2 ∈ PQC(L,∆,D2), then

ModInc(M1,L,D1) = ModInc(M2,L,D2);

The extrinsic inconsistency ThInc(∆,L) of a theory ∆ in a

language L is a sequence

〈r1, r2, r3, . . .〉,

where, for all n ≥ 1, rn = ModInc(M,L,Dn), where Dn is a domain of
size n and M ∈ PQC(L,∆,Dn), if such a model exists, and rn = ∗
(null value), otherwise;
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Extrinsic Inconsistency of a Theory

Theorem

Given L and ∆, if D1 and D2 are two domains of the same size and
M1 ∈ PQC(L,∆,D1), M2 ∈ PQC(L,∆,D2), then

ModInc(M1,L,D1) = ModInc(M2,L,D2);

The extrinsic inconsistency ThInc(∆,L) of a theory ∆ in a

language L is a sequence

〈r1, r2, r3, . . .〉,

where, for all n ≥ 1, rn = ModInc(M,L,Dn), where Dn is a domain of
size n and M ∈ PQC(L,∆,Dn), if such a model exists, and rn = ∗
(null value), otherwise;

The intention is to measure how the inconsistency of ∆ in L evolves
as the size of the domain increases;
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Some Examples

If L = 〈{a}, {P(1)}〉 and ∆ = {P(a),¬P(a)}, then

ThInc(∆,L) =
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Some Examples

If L = 〈{a}, {P(1)}〉 and ∆ = {P(a),¬P(a)}, then

ThInc(∆,L) = 〈1,
1

2
,
1

3
, . . .〉;
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Proposition

Suppose ThInc = 〈x1, x2, . . .〉; If |C| = k , k ≥ 1, then, for all 1 ≤ i < k ,
xi = ∗ and, for all i ≥ k , xi 6= ∗.
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If ThInc(∆1,L1) = 〈r1, r2, . . .〉 and ThInc(∆2,L2) = 〈s1, s2, . . .〉, we
define ThInc(∆1,L1) � ThInc(∆2,L2) iff, for all i ≥ 1, ri ≤ si or
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Suppose ThInc = 〈x1, x2, . . .〉; If there is an ri ∈ {r1, r2, . . .}, such that
ri = 0, then 〈r1, r2, . . .〉 is of the form 〈∗, . . . , ∗, 0, . . . , 0〉.

If ThInc(∆1,L1) = 〈r1, r2, . . .〉 and ThInc(∆2,L2) = 〈s1, s2, . . .〉, we
define ThInc(∆1,L1) � ThInc(∆2,L2) iff, for all i ≥ 1, ri ≤ si or
ri = ∗ or si = ∗.

ThInc(∆1,L1) ≺ ThInc(∆2,L2) abbreviates
ThInc(∆1,L1) � ThInc(∆2,L2) and ThInc(∆2,L2) 6� ThInc(∆1,L1);
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In case L1 = L2, we say that ∆1 has smaller than or equal
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L
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ThInc(∆,L) = 〈r1, r2, . . .〉 is such that, for all i , if ri 6= ∗, then
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Example: Consider, for instance, L = 〈{}, {P(2),Q(1)}〉 and
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ThInc(∆,L) = 〈r1, r2, . . .〉 is such that, for all i , if ri 6= ∗, then
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Proposition

If ∆1 ⊆ ∆2, then ThInc(∆1,L) � ThInc(∆2,L).
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ThInc(∆,L) = 〈r1, r2, . . .〉 is such that, for all i , if ri 6= ∗, then
ri ≥ ri+1;
Example: Consider, for instance, L = 〈{}, {P(2),Q(1)}〉 and
∆ = {∀x∀y(P(x , y) ∧ ¬P(x , y))}; Then ThInc(∆,L) = 〈12 ,

2
3 ,

3
4 , . . .〉;

Proposition

If ∆1 ⊆ ∆2, then ThInc(∆1,L) � ThInc(∆2,L).

Proposition

If L1 = 〈C1,P1〉 and L2 = 〈C2,P2〉, and L1 ⊆ L2 (meaning C1 ⊆ C2 and
P1 ⊆ P2), then ThInc(∆,L2) � ThInc(∆,L1).
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If ∆1 ⊆ ∆2 and L1 ⊆ L2, it does not necessarily follow that
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For instance, consider
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If ∆1 ⊆ ∆2 and L1 ⊆ L2, it does not necessarily follow that
ThInc(∆1,L1) � ThInc(∆2,L2);

Example and Counterexample:

For instance, consider
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If ∆1 ⊆ ∆2 and L1 ⊆ L2, it does not necessarily follow that
ThInc(∆1,L1) � ThInc(∆2,L2);

Example and Counterexample:

For instance, consider
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Then
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For instance, consider
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More Comparisons

If ∆1 ⊆ ∆2 and L1 ⊆ L2, it does not necessarily follow that
ThInc(∆1,L1) � ThInc(∆2,L2);

Example and Counterexample:

For instance, consider

L1 = 〈{a}, {P(1)}〉 ∆1 = {P(a)}
L2 = 〈{a}, {P(1)}〉 ∆2 = {P(a),¬P(a)}
L3 = 〈{a}, {P(1),Q(1)}〉 ∆3 = {P(a),¬P(a),Q(a)};

Then
ThInc(∆1,L1) � ThInc(∆2,L2)

However,
ThInc(∆3,L3) � ThInc(∆2,L2);
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Example: If L = 〈{}, {P(1),Q(1)}〉, ∆1 = {∀x(P(x) ∧ ¬P(x)),
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〈∗, . . . , ∗, 0, . . . , 0〉, where the number of ∗’s depends on the number
of constants in the language; Thus, they have the same inconsistency;

Any inconsistent theory has greater inconsistency than any consistent
theory;

Examples: Let us fix L = 〈{}, {P(2)}〉 and D = {a, b, c};
The theory ∆1 = {∀x∀y(P(x , y) ∧ ¬P(x , y))} has one preferred QC
model M1 = {P(a, a),¬P(a, a), . . . ,P(c , c),¬P(c , c)}; Therefore,
ModInc(M1,L,D) = 9
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Examples: Still considering L = 〈{}, {P(2)}〉 and D = {a, b, c};
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models; One of them is M21 = {P(a, b),¬P(a, b)}; Therefore,
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9 ;
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3 ;
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models; One is
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3 ;

For the theories above, the intrinsic complexities are, respectively,
〈1, 1, . . .〉, 〈1, 14 ,

1
9 , . . .〉, 〈1,

1
2 ,

1
3 , . . .〉 and 〈1, 12 ,

1
3 , . . .〉;
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Examples: Still considering L = 〈{}, {P(2)}〉 and D = {a, b, c};
The theory ∆2 = {∃x∃y(P(x , y) ∧ ¬P(x , y))} has 9 preferred QC
models; One of them is M21 = {P(a, b),¬P(a, b)}; Therefore,
ModInc(M21,L,D) = 1

9 ;
The theory ∆3 = {∀x∃y(P(x , y) ∧ ¬P(x , y))} has 9 preferred QC
models; One is
M31 = {P(a, a),¬P(a, a),P(b, c),¬P(b, c),P(c , a),¬P(c , a)}; So,
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9 = 1
3 ;

The theory ∆4 = {∃x∀y(P(x , y) ∧ ¬P(x , y))} has 9 preferred QC
models; One is
M41 = {P(b, a),¬P(b, a),P(b, b),¬P(b, b),P(b, c),¬P(b, c)};
Therefore, ModInc(M41,L,D) = 1

3 ;

For the theories above, the intrinsic complexities are, respectively,
〈1, 1, . . .〉, 〈1, 14 ,

1
9 , . . .〉, 〈1,

1
2 ,

1
3 , . . .〉 and 〈1, 12 ,

1
3 , . . .〉;

So

ThInc(∆2) <inc ThInc(∆3) =inc ThInc(∆4) <inc ThInc(∆1);
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Thus rn = ModInc(M,L,Dn) =
r

ns
;
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Many Thanks!

MANY THANKS for

the hospitality

your attention during the seminar!
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