Science of Computer Programming 77 (2012) 779-798

Contents lists available at SciVerse ScienceDirect

cience of Computer
rogramming

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

SAT-based verification for timed component connectors
S. Kemper

Centrum Wiskunde en Informatica, Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT

ATfiCl_e history: Component-based software construction relies on suitable models underlying compo-
Received 30 November 2009 nents, and in particular the coordinators which orchestrate component behaviour. Veri-
Received in revised form 3 February 2011 fying correctness and safety of such systems amounts to model checking the underlying
Accepted 8 February 2011

system model. The model checking techniques not only need to be correct (since system
sizes increase), but also scalable and efficient.
In this paper, we present a SAT-based approach for bounded model checking of

Available online 24 February 2011

ﬁg:ggrcdsr'lstraim automata Timed Constraint Automata, which permits true concurrency in the timed orchestration
Abstraction refinement of components. We present an embedding of bounded model checking into propositional
Model checking logic with linear arithmetic. We define a product that is linear in the size of the system,
SAT and in this way overcome the state explosion problem to deal with larger systems. To
Component-based software engineering further improve model checking performance, we show how to embed our approach into

an extension of counterexample guided abstraction refinement with Craig interpolants.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Component-based software engineering supports constructing large systems by composing individual components. The
correctness and safety of these concurrent systems depend on inter-component communication actions which happen at
the right time. Components are often only available as black boxes; therefore, there is a need for component connectors
that provide exogenous coordination, i.e., coordination from without [2]. As such, these component connectors require true
concurrency in time, which combines synchrony and asynchrony, to express complex coordination patters.

The computational complexity introduced by the infinite state space of these real-time systems leads to severe limitations
in scalability even within very well-established model checkers like UppPAAL (http://www.uppaal.com). Aside from the
omnipresent state explosion problem [14] already present in finite state model checking, current model checking techniques
for real-time systems are still limited in the number of concurrent quantitative temporal observations (measured by clocks).
A particularly dramatic cause of the state explosion problem is the exponential blow-up obtained by forming the cross
product for parallel composition. To avoid this, we define a linear-size parallel composition for the logical representation
of TCA. By providing an initial valuation for step 0, typically only a reduced part of the full parallel composition has to be
expanded from our representation during satisfiability checking (SAT solving).

Very sophisticated and well-optimised techniques (e.g., [28]) guide high-end SAT solvers to explore only a comparably
narrow fragment around the part of the state space relevant for the particular safety property. We build upon this
development by choosing a linear arithmetic/propositional encoding, a philosophy that has successfully proven its great
potential in finite state systems [13]. With this basis, we exploit the particularities of transition systems induced by TCA
using abstraction refinement to deal with the challenges of infinite states.

E-mail address: s.kemper@cwi.nl.

0167-6423/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.02.003

http://dx.doi.org/10.1016/j.scico.2011.02.003
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
http://www.uppaal.com
http://www.uppaal.com
http://www.uppaal.com
http://www.uppaal.com
mailto:s.kemper@cwi.nl
http://dx.doi.org/10.1016/j.scico.2011.02.003

780 S. Kemper / Science of Computer Programming 77 (2012) 779-798

gy
2:00»0 c

Fig. 1. TCA, conceptual view.

1.1. Timed constraint automata

Timed Constraint Automata [4] (TCA) are a combination of constraint automata [5] (CA) and timed automata (TA) with
location invariants [1]. Originally defined as a semantical model for the channel based coordination language Reo [3] (and
so far having been used for this single purpose only), they offer a powerful coordination mechanism for channel based
coordination languages in general. In this work, we exploit the full modelling spectrum of the formalism, by directly using
TCA to implement coordinating connectors in networks where timed components communicate by exchanging data through
multiple channels. The behaviour of the network is given by synchronisation between channel ends (ports).

While the functionality of channels is often limited to synchrony and (FIFO) buffering, TCA allow connectors with arbitrary
behaviour. These connectors provide exogenous coordination, by imposing a certain communication pattern - for example
reordering or delays — on associated components. TCA are compositional, which allows to easily build complex connectors
out of simpler ones.

Most action-based (coordination) models, like e.g. finite state machines, I/O automata or TA, permit only a single action
per transition. As a consequence, synchrony, and concurrent execution of actions in the parallel composition, is reduced to
arbitrary interleavings plus nondeterminism. Especially for timed systems (like TA) - aside from being unintuitive - this does
not correctly capture the nature of distributed systems, since it imposes a sequential order on actions which conceptually
happen at the same time. Moreover, from a technical point of view, the presence of all possible interleavings amplifies the
state explosion problem. In contrast, TCA allow sets of actions on each transition, which permits true concurrency, as this
directly models (truly atomic) synchronous communication through different ports.

In this way, TCA provide a coordination model to implement component connectors, which combines the notions of
real-time and true concurrency, and allows for complex coordination patterns including both synchrony and asynchrony.

Example 1.1 (Introduction). Fig. 1 shows our conceptual notion of networks of TCA. The network presented here consists of
three components C4, C; and C3, and a central connector CO, which is connected to the components through ports A, B and
C, respectively. Throughout the paper, we will use the connector CO as a running (toy) example. The basic idea of CO is to
repeatedly receive data from components C; (through port A) and C, (through B), and to send this data to C; (through C).
Depending on constraints on the received data, either component C; or C, is connected to - i.e., data is transmitted between
- component C3 (dynamic reconfiguration). Note that this is just a toy example, used to illustrate the concepts introduced
in this paper. For a more meaningful example, consider Section 6.

1.2. Abstraction refinement

Abstraction refinement [14,19] is a promising direction of research to overcome the challenges of the state explosion
problem and infinite state model checking, while preserving correctness of verification results. Abstraction techniques based
on over-approximation (also called conservative approximation) enrich the system behaviour, by removing constraints that
are considered irrelevant for verifying a particular property. These techniques may yield false negatives: a safety property
is rejected in the abstract system, though it holds in the original system. If, however, the abstract system is safe (no error
state is reachable) then, by over-approximation, so is the original.

Based on the representation of TCA in propositional logic with linear arithmetic, iterative abstraction refinement consists
of the following steps: applying the abstraction function to the representation, we automatically produce a simpler
abstract version of it. After unfolding the resulting transition formula k times, a satisfiability check solves the bounded
reachability question in the abstract system. Depending on the outcome, the system has either been proven safe (error
state is unreachable) within bound k, or needs to be analysed with respect to an abstract counterexample (concretised),
again using SAT solving. If the abstract counterexample has a counterpart in the non-abstracted system, then the system
is unsafe. Otherwise, the counterexample is spurious and results from an inappropriate choice of abstraction. Analysing the
counterexample (with Craig interpolants derived by the SAT solver, e.g. FOCI (based on [25]) or MathSAT [24]) then helps to
refine the abstraction and start over until the system is proven safe (within bound k) or unsafe.

1.3. Contributions

The main contributions of this paper can be summarised as follows: we extend the (expressiveness of the) basic definition
of TCA [4], by generalising from finite data domains to countably infinite data domains.

We then develop a formal framework for direct investigation and verification of TCA: we define a constraint-based
representation of TCA in propositional logic with linear arithmetic. These constraints capture the current state of connectors
in the network, and possible synchronisations of connectors with each other and the environment. In this way, we can

S. Kemper / Science of Computer Programming 77 (2012) 779-798 781

benefit from existing SAT and constraint solving techniques when model checking safety and correctness properties of the
connectors.

Based on the representation of TCA, we define an abstraction function, which removes constraints that are considered
irrelevant to a particular property, and which in this way reduces the state explosion problem and increases the manageable
system size.

We finally illustrate the approach by means of a case study.

Implementation. Most parts of the framework presented here are already publicly available as plug-in for the
Eclipse Coordination Tools (ECT, [16]): we have extended the CA editor to support editing of TCA (including various
syntactical checks, e.g. well-formedness of clock constraints). Within this platform, we have implemented the translation
of TCA to propositional formulae with linear arithmetic constraints (front end), as described in this paper. Further, we have
implemented the generation of input files for the MATHSAT solver (back end), including support for products of TCA, allowing
us to analyse the underlying TCA in detail. Having split the formula generation in two parts, it is very easy to switch to another
solver, by just exchanging the back end. The remaining parts, in particular interactive abstraction refinement, are scheduled
to be part of future releases of the ECT. See Section 6 for more details on tool support.

Organisation of the paper. In the next section, we discuss some related work. After introducing TCA and bounded model
checking (BMC) in Section 2, we present a faithful representation of TCA in propositional logic with linear arithmetic for BMC
in Section 3, and prove soundness and completeness of the representation in Section 4. In Section 5, we introduce a uniform
abstraction, extend the algebraic perspective on soundness from Section 3 to correspondence results about abstraction, and
briefly recall how to exploit spurious counterexamples for refining abstractions. In Section 6, we discuss an example in
more detail, and point out available tool support. Finally, Section 7 concludes the paper and discusses some future work.

1.4. Related work

Our model of simultaneous execution of an arbitrary number of actions comes closest to Pratt’s higher dimensional
automata (HDA, [29]). There, n-dimensional transitions (with sets of n actions) represent the truly concurrent execution of
n independent events; yet HDA contain all mutually exclusive executions (concurrent execution of a subset of actions) of
these events as well.

The basic idea of TCA is equivalent to Pratt’s approach: we model true concurrency by allowing sets of actions on each
transition. We further extend the model in three ways. First, we add synchronisation, which is straightforward once true
concurrency is established. On execution of a transition, matching actions (here: channel ends/ports connected together)
are said to synchronise, while independent actions still execute concurrently as before. Second, we add the notion of
real-time to the model, to allow for complex real-time coordination patterns. As a third extension, we do not require the
mutually exclusive executions to be present, and in this way permit to model systems which contain only true concurrency.
Furthermore, our approach is compositional, which eases modelling of complex connectors.

There are a number of process algebras and languages which permit true concurrency, for example Esterel [9], SCCS [27],
or real-time agents [12]. Yet, none of them provides the combination of features which our approach supports. The former
two only handle discrete time, and do not support asynchronous systems. In addition, Esterel only allows for deterministic
reactive systems. Real-time agents support both synchrony and asynchrony, but synchronisation is binary, by matching
complementary actions. Moreover, communication is restricted to pure synchronisation, i.e., without passage of data values.

Most standard process algebras provide extensions to support real-time, e.g. CCS, CSP or ACP [32,30,8], where ACP is the
most general with respect to communication [7]. Yet, it does not allow for true concurrency. Synchronisation is realised
by a user-defined binary synchronisation function, and the simultaneous occurrence of n actions is modelled by arbitrary
interleaving (i.e., n—1 applications of the synchronisation function) plus nondeterminism, again imposing a sequential order
on the execution of concurrent actions. In contrast to the aforementioned, in our framework, we combine all these features,
and provide a simple, direct and easily understandable way of modelling nondeterministic interactive systems, which permit
true concurrency of an arbitrary number of actions, and allow both synchronous and asynchronous communication, with
or without value passing, in real-time.

Abstraction refinement approaches have been proposed by for example Jhala and McMillan [20], and by Clarke et al. [14].
In [20], the authors use interpolants to generate refinements, while taking into account specific characteristics of the
property to be checked. A limitation, however, is the fact that they rely on an appropriate initial choice of predicates for
predicate abstraction. Our approach can be considered as a quick (hence, scalable) approximation of predicate abstraction,
where predicate discovery is evident by exploiting the nature of TCA. The approach in [14] works with Kripke structures
originating from finite state programs. In contrast, our approach deals with the challenges of infinite state model checking,
as introduced by the notion of real-time clocks. Further, we directly use a formula representation which is tailored for SAT-
based bounded model checking.

In this paper,! we extend the SAT-based approach for TA presented by Kemper and Platzer [22] in a number of ways.
We take into account the special transition characteristics of TCA, in particular the truly atomic execution of actions which

1 Being an extended version of [21], we have extended the data domain of TCA (from finite to) countably infinite domains, added correctness proofs
for TCA product, representation and abstraction, a more detailed case study, improved the abstraction function, and have shown how to include certain
infinite behaviour in the model checking process.

782 S. Kemper / Science of Computer Programming 77 (2012) 779-798

happen at the same time. We extend the formula representation, by adding data constraints and handling of concrete data
values. We extend the simple, yet powerful abstraction function from [22] with a more refined handling of the different
syntactic categories in the formula. Our abstraction function is then able to preserve more information in the abstract case
than the corresponding abstraction function in [22] (while reasoning about the same level of abstraction), which reduces
the number of spurious counterexamples.

The model checker Vereofy (http://www.vereofy.de) provides tools for model checking (untimed) CA, but to the best of
our knowledge, the framework presented in this work is the first approach for model checking TCA.

2. Timed constraint automata

In this section, we introduce the standard notations for TCA [4] in the time domain Time=R.q, and for BMC [13,10], and
we model our running example.

2.1. Syntax

In what follows, let ? be a finite, nonempty set of ports, through which TCA exchange data values, and let Data be a
(possibly infinite but) countable set of data values which can be sent or received via ports. For simplicity of representation,
we assume a special element | €Data representing “no data”.

Definition 2.1 (Data Constraint, Clock Constraint). A data assignment §€DA(P) over (data domain Data and) port set P is a
mapping §:P— Data, assigning to each port AP the currently pending data value. If no data is pending, §(A) evaluates to
the special value “no data”. We may write d, for § (A). A clock valuation veV(X) over a set of clocks X is a mapping v:X— Time,
assigning to each clock x€X its current value. Data constraints dceDC(P) over (Data and) P, and clock constraints cceCC (X)
over X are defined as follows:

dc ::= true | dy=d | dy=dp | dc; Adc, | —dc, with A, Be? and d€Data
cc = true | x~n | cc; Accy, withxeX, neNand ~ e{<, <, =, >, >}.

Other data constraints, for example d,€D, DT Data, dc, Vdc,, or dcy—dc,, are defined as abbreviations (“syntactic sugar”)
in the standard way. We use = for the standard satisfaction relation. For example, vi=(x~c) iff v(x)~c.

Note that we assume clock constraints to be convex, i.e., they do not contain Vv, — [1]. Intuitively, convexity of a clock
constraint cc means that for any two clock valuations v and v/, with v(x) <v’(x) for some clock x, if vi=cc and v’ =cc, then
v’ l=cc for all v’ with v(x) <v”(x) <v’(x). This property is used for efficient representation. Non-convex clock constraints
however can be simulated by splitting locations (for invariants) or transitions (for guards).

Definition 2.2 (Timed Constraint Automaton). A TCA (over Data)is a tuple 7=(S, X, P, E, so, I), with S a finite set of locations,
sp€S the initial location, X a finite set of clocks, ? a finite set of ports, I:S— CC(X) a function assigning a clock constraint
(location invariant) to every location, and ECS x2” xDC(P) x CC(X) x2* xS the finite set of transitions. For every transition
e=(s, P, dc, cc, X, s')€E, we require dceDC (P) (data guard of e) and cce CC(X) (clock guard of e), and both satisfiable. X is the
clock set of e, P the port set of e; if P=0, e is called invisible, otherwise, it is called visible.

The idea of invisible transitions is that they do not represent observable data flow (since P={, note that dc=true in
this case, since we require dceDC (P)), but just serve for internal synchronisation purposes, for example by resetting clocks.
Visible transitions, on the other hand, correspond to observable behaviour: an element e=(s, P, dc, cc, X, s')€E describes
a transition from location s to location s’, where data flows through all ports in the port set P. After the TCA has delayed
in location s for a positive amount of time (during which the invariant I(s) of s needs to be satisfied), it may execute the
transition and move to location s’, provided that the data values pending at ports in P satisfy the data guard dc, and the clock
values satisfy the clock guard cc and the invariant I(s’) of the target location s'. The firing of the transition, i.e., the location
change from s to §', is considered to be instantaneous. On execution of the transition, all clocks in the clock set X are reset
to zero. The timing constraints will be made explicit in the definition of semantics (Definition 2.8).

We do not impose any semantic constraints on data and clock guards. Clock guards may for example “overlap”, like
Xx<4 A x>3. Yet, due to convexity, this simply reduces the number of satisfying valuations. Moreover, guards do not need to
be complete, i.e., cover every possible valuation. This may lead to so-called timelocks 2 [31], but by definition, such behaviour
is excluded from the semantics (see Definition 2.8 and explanations thereafter).

We now introduce the TCA for our running example.

Example 2.3 (TCA). Fig. 2 shows the TCA of the connector CO (left, cf. Example 1.1) and a simple component C (right), which
may communicate through port A. We assume Data={1, 2} (thus, actually Data={1, 2, L }), and we omit constraints equal
to true as well as empty sets on transitions.

2 Asan example of a timelock, consider a location with invariant x<3 and a single outgoing transition with clock guard x<2. The location cannot be left
once v(x)>2, and as soon as v(x)=3, time cannot progress anymore, since the automaton is neither allowed stay in the location nor allowed to leave it.

http://www.vereofy.de
http://www.vereofy.de
http://www.vereofy.de
http://www.vereofy.de

S. Kemper / Science of Computer Programming 77 (2012) 779-798 783

{A},da=1

{A}7d,4:1,z::0 {B},dBZQ,Z‘ZZO y>2,y:=0
{A},da=2

{A},da=2 {B},dp=1 y>2,y:=0

Fig. 2. TCA Example.

{A}:dA=17y22,$5=07 y:=0 {B}vdB:27x::0

=3

C}, do=2,x<3

{A}> da=2,y>2,y:=0 {B}7 dp=1

Fig. 3. TCA Example: Product.

The intended behaviour of CO is as follows: it accepts data value 1 through port A, and data value 2 through port B. All
other data values are discarded, represented by the two self loops in location i (“idle”). When receiving data value 1 through
A (upper left transition), CO moves to location cy, and resets its clock x. This is done to force an upper time bound on the
delivery of data values through C. If in location c1, the data value can be transmitted through C before clock x has reached the
threshold, CO moves back to the initial location (lower left transition), where it is ready to accept the next input. Otherwise
- i.e., the data value cannot be transmitted before three time units have elapsed - the invariant (x<3) of location c; forces
CO to leave c; and to move back to location i (centre left transition), without transmitting the data value. The explanation
for c, is analogous.

The behaviour of component C is simple: it repeatedly sends data items through port A, with a minimum delay of 2
time units between subsequent transmissions. Note that in the graphical representation, we use assignment rather than set
notation for the clocks contained in the clock set.

Remark 2.4 (Notation of TCA). If not stated otherwise, we shall assume the constituents of a TCA 7 to be denoted as
T=(S,X, P, E, so, I), and of a TCA 7; to be denoted as Z;=(S;, X, P;, Ei, So.i, I;), for ieN.

Within a system of TCA, two automata synchronise - i.e., communicate - if the port sets of the involved transitions
coincide on common ports. This gives rise to the following definition.

Definition 2.5 (Product of TCA). Let 7; be TCA over Data;, i=1, 2, with X;NX,=¢ and S;NS,; =@ (can be achieved by renaming
the constituents in one of the TCA). The product of 7; and 75 is a new TCA T10<7,=(S, X, P, E, so, I) over Data,UData,, with
5=S81x%83, X=X1UXy, P=P1UP,, I:S1 xS — CC(X1UX7) such that I(s1, s2)=I1(51) ALz (S2), So=(S0.1, So0,2), and E is defined by
(s1, Py, dcy, ccq, X1, 1) €E4
(52, Py, dcy, cc3, X3, 55)€E,
P1NPy = P,NPq, Py 75@, Pz?é@, dcy /\dczyéfalse
({s1, $2), P1UP, dci Adcy, coiAccy, X1UXy, (s), s5))€E

(1)

(51, P, dcq, cc1, Xy, S))€Eq, PINP, = B, 5,€85,
({51, S2), Py, dcy, cc1, Xy, (8], $2))€E

(2)

and the symmetric rule of the latter.

Rule (1) captures the synchronisation of visible transitions: the nonempty port sets have to coincide on common ports, i.e.
data flows through the same set of shared ports on both transitions. The case where P;NP,=P,NP1=¢ (i.e., the set of shared
ports is empty) represents a system step where each automaton performs a local visible transition, (concurrent execution
of independent actions). Rule (2) describes the execution of a local transition (visible or invisible) in one automaton, while
the other automaton remains in its current location. Note that in case this local transition in the first automaton is preceded
by a time delay, the second automaton actually performs a delay transition. An example for the product construction can be
found in Fig. 3: it shows the product TCA COx<(C, for the TCA presented in Example 2.3.

Proposition 2.6 (Product of TCA). The product of TCA is commutative and associative, up to isomorphy of location names.

Proof. 1. Commutativity follows from the commutativity of U on port and clock sets, and the commutativity of A on data
and clock constraints.

784 S. Kemper / Science of Computer Programming 77 (2012) 779-798

2. Associativity follows from the associativity of U on port and clock sets, the associativity of A on data and clock
constraints, and the fact that for P;C%;, i=1, 2, 3, if P,NP3=P3NP,, PiN(P,UP3)=PN(P,UP3) and P;NP,=P,NP¢, then

It may be required to hide some ports of a TCA from the environment. For example, in the product construction, the
common ports could be considered to become “internal” ports, and thus not be visible from the outside any more. The
hiding operation (cf. [4]) removes all information about a set of ports 0C? from a TCA. To ensure correct timed behaviour of
transitions with port sets PCO - namely that such transitions may only be taken after a positive amount of time - we need
to introduce an additional clock.

Definition 2.7 (Hiding in TCA). Let 7 be a TCA, x¢X a clock, and OC?. The hiding of port set O in 7 yields a new TCA
T\o=(S, XUx, P\O, E', 5o, I), where E’ is given by
(s, P, dc, cc, X, s')eE, (P=@) v(P\O#£0))
(s, P\O, dc\y, cc, XUx, s")eE
(s, P,dc, cc,X,s')eE, ##PCO
(s, @, true, ccA(x>0), XUx, s')eE’

(3)

(4)

Here, dc\, denotes the data constraint which is derived from dc by replacing all literals (dy=d), —(da=d), (da=dp) and
—(dp=dp) (cf. Definition 2.1) by true for all A€O.

The basic idea is to obtain transitions of 7'\, from transitions of 7 by reducing the port set (and data constraint) to ports
not contained in O (3). If the resulting transition in 7'\ is invisible, while the underlying transition in 7 is visible (4), the
new clock x is used to ensure correct timed behaviour: since x is reset on all transitions, the additional constraint (x>0)
ensures the elapse of a positive amount of time before the (now invisible) transition can be taken.

2.2. Semantics

TCA model true concurrency, by allowing sets of ports on each transition. As a consequence, a positive amount of time
has to elapse before every visible transition (while invisible transitions may be instantaneous). The underlying idea is that
all actions which happen at the same time are truly atomic and thus collapse to a single transition. The semantics of TCA is
defined as the set of runs of the associated labelled transition system (LTS) G+ [4].

Definition 2.8 (Associated LTS). Let T be a TCA. The associated LTS &+ is a tuple 57=(Q, qo, —), with 9C(Sx V(X)) the set
of configurations, such that vi=I(s) for every (s, v)€9Q, go=(So, 0) the initial configuration, with 0(x)=0 for all x€X, and the
transition relation — CQOx2% xDA(P)xTime x Q is given by

(s, P,dc, cc,X,s)eE

t>0,t>t'>0: v+t'=I(s) (s, 9, true, cc, X, s')€E
(v+0)[X:=0]=I(s"), v+tl=cc V[X:=0]=I(s)
6€DA(P) : §=d
S e ®) e ©
(s, v) 225 (s, v+E[X:=0]) (s, v), Z25.(¢, v[X:=0])

Valuation v+t (timeshift) increases all clocks by the same amount of time ¢, and valuation v[X:=0] (modification) resets
the values of all clocks xeX to zero.

Rule (5) captures the constraints described after Definition 2.2, for both visible and invisible transitions: before the
transition can be fired, a positive amount of time (t>0) has to elapse, during which the invariant I(s) needs to be satisfied
(second row). At time ¢, the transition is fired and resets all clocks in the clock set to zero, provided that the clock guard is
satisfied before the resetting of clocks, and the invariant of the target location is satisfied after the resetting of clocks (third
row). Moreover, the data values pending at the ports (given by the data assignment §) have to satisfy the data guard (fourth
row). Rule (6) captures the fact that invisible transitions may be instantaneous; it can be seen as a simplification of (5) for
P={ and t=0.

A run of & starting in configuration q, denoted by r, is a sequence of transitions r=q"%% q; ... which is either
time divergent (i.e. infinite, and t+t'+ - - - =00) or finite and ends in a terminal configuration (s, v) (i.e. without outgoing
transitions, allowing for infinite passage of time: Vt >0:v+t=I(s)). The trace semantics of T is given by the set Run; of initial

P8t
—

3 Dueto convexity, these constraints can be relaxed in the representation, since it is enough to check the invariant at the beginning and at the end of the
time delay.

S. Kemper / Science of Computer Programming 77 (2012) 779-798 785

runs (i.e., starting in the initial configuration) of &+. With Runry, we denote the set of finite prefixes of elements of Run+
of (at most) length k. In (7), we show a run of the product CO><C (cf. Fig. 3) of length 5.

((i, c), [;zg >(A),dA=2,2.5 ((i, c), X31::265]> (A},dg=1,2 <<Cla c). [;z(o)]> {Chdc=1.1

(1. L) 292 {0, [G28]) 22 (o) [32])

(7)

2.3. Bounded model checking

Bounded model checking (BMC) has turned out to be amongst the most promising approaches for verification of safety
properties [13,10]. These properties declare what should not happen - or equivalently, what should always happen - and
are typically expressed as reachability properties. Safety properties can be disproved with a finite counterexample, i.e., a
finite run, where the last configuration contains a contradiction to the property. The principle of BMC for safety properties
is to examine prefix fragments of the transition system, and successively increase the exploration bound until it reaches (a
computable indicator of) the diameter of the system - in which case the system has been proven safe - or an unsafe run has
been discovered [6].

Definition 2.9 (Bounded Safety). Let 7 be a TCA, s€S an error location. 7 is safe with respect to s within bound k, denoted by
T =—39s, if there is no run in Runz, containing s. Otherwise, 7 is unsafe with respect to s.

The lifting of —3¢s to reason about configurations rather than locations is straightforward. On the basis of these
reachability properties, other bounded LTL specifications can be verified as well, using the encoding in [6].

3. Representation of timed constraint automata

In this section, we construct a formula ¢(7") in propositional logic with linear arithmetic that represents the behaviour
of a TCA 7 (given by the runs of &G, cf. Section 2.2), by defining transition characteristics from step t-1 to step t, teN.g
(Section 3.2). For BMC, we unfold ¢(7") k times (for k steps), which yields a formula ¢(7), representing all (prefixes of)
runs of & for k steps, and we show how to extend this finite unfolding to infinite, ultimately periodic runs (Section 3.3).
The formula ¢ (7),, together with a representation of the safety property, is unsatisfiable iff 7 is safe within bound k (cf.
Definition 2.9). Finally, we give a representation of the product of two TCA which is linear in the size of the automata
(Section 3.4), and we show how the notion of hiding is defined on the formula representation (Section 3.5).

3.1. Basic components

The possible behaviour of a TCA depends on the values of its constituents (clocks, locations, data pending at ports),
and changes over time. Therefore, we “parametrise” the variables representing these constituents by the step t they are
evaluated in, and we call this localisation: the localisation v of a formula v is obtained by adding index t to all variable
symbols occurring in v. Thus, if v is of vocabulary x, s, d, then v, is of vocabulary x;, s, d; instead. In particular, we use:

Locations For every location s€S, the Boolean variable s, represents whether the TCA is in location s in step t.

Data values, ports The injective mapping A:Data— N maps each d;eData to a natural number n' (the representation of d;),
with 0En°&nt representing . For every port A€ ®, the Boolean activity variable A of A represents whether data
flows through A in step t, and the natural data variable DA, of A represent which data occurs at A in step t. In case
of no data flow, DA, evaluates ton™.

Data constraints For a data constraint dc = (ds=d;) (cf. Definition 2.1), with A(d;)=n?, the formula A;Adcs, with
dcy = (DA.=n?), evaluates to true iff §(A)=d; in step t. For a data constraint dc = (ds=dp), the formula
A AByAdcy, with dcy = (DA,=DBy), evaluates to true iff dy=dp in step t.

Clocks For every clock x€ X, the rational variable x. (clock reference) represents the absolute point in time where x was last
reset prior to step t. An additional rational variable z. (absolute time reference) represents the absolute amount
of time that has passed until step t. The clock value of x at step t is thus obtained by z; —x;. Note that linear
arithmetic is equisatisfiable for rational and real variables [22].

Clock constraints For a clock constraint cc = x~n (cf. Definition 2.1), the formula z, —x;~n, denoted as ccy, evaluates to
true iff cc holds in step t, and the formula z, —x_y ~n (inter-step representation), denoted as cc,, evaluates to
true iff cc holds in step t and x has not been reset since step t-1.

The representation of other constraints is straightforward, using conjunctions (and negations, for data constraints) of the
aforementioned representations.

The inter-step representation is needed for correct representation of delayed transitions in &+ (5), i.e. transitions which
are preceded by a positive amount of time: the invariant of the target location s’ is evaluated under the valuation v+t [X:=0],
that means after the time delay and after the execution of the transition. In contrast, the invariant of the source location s
and the clock guard of the transition are evaluated under the valuation v+t, that means after the passage of time, but before
the execution of the transition. The inter-step representation is used to access the clock value at this particular point in time
“in the middle” of the execution step. See Example 3.3 for more details.

786 S. Kemper / Science of Computer Programming 77 (2012) 779-798

¢"(T) = 8o AT A AN —soA A (TAoA(DAo=nT)) A (8)
SES,s#5 Ae?
/\ (x0=0) A(zo=0)
xeX
"oy = s A AN Ag A N —Ay Adee A N (Re=21) A 9)
AeP AgP xeX
N\ Ze=%t1) A(Ze1 <Zi) AcCoa AL(S)ga A St AL(S),
xé€X
WinviSible(e/) = s5e1 A A7 A A\ Re=2¢) A (10)
Ae? xeX
A Re=%¢1) A(Ze1<2Z¢) Accia AL(S)gp A s's AL(s)),
xgX
(ptranS(T) — \/ (pvisible(e) V. \/ goinvisibIE(e/) (11)
ecE,P#£) e'€E,P=0)
gDlocation(,]—) — \/(st A /\ _,S’t) (12)
ses s'eS,s'#s
e (T) = A (—Ay v —~(DAy=n")) A(A; V(DAy=n")) (13)
AeP
(p(T) — gDmit (T) A gotrans(,]—) A (plocation (T) A (pdata_value(,]—) (14)

Fig. 4. Transition relation representation.
3.2. Transition relation

The representation of the transition relation needs to take care of the special behaviour of TCA, namely, that every visible
transition has to be preceded by a positive time delay, whereas invisible transitions may be instantaneous. It constrains
the possible valuations of variables representing the configuration at subsequent step t depending on those at step t-1.
Conceptually, the delay is represented by evolving from t-1 to t, while the (instantaneous) location change takes place at t.

Definition 3.1 (Timed Constraint Automaton Representation). Let T be a TCA, let e=(s, P, dc, cc, X, s’) and €' =(s, @, true,
cc, X, ') be avisible and invisible transition in 7, respectively. The formula representation ¢(7') of the transition relation of T
is defined in (14) in Fig. 4.

The automaton starts in its initial location s (8) in step O (to avoid confusion with localisation indices, we denote the

initial location as s rather than sy, so its representation is s, rather than the odd-looking (s¢),), the invariant of which has
to be satisfied, data must not flow through any port, and all clocks are set to zero. Before executing a visible transition (9) in
step t, 7 is in location s. After the elapse of a positive amount of time (z._; <z), after which the invariant I(s),, of s and
the clock guard ccy 5 of the transition hold, 7 switches to location §’, the invariant of which has to hold. All clocks referenced
in the clock set X are set to the actual point in time, while the values of the other clocks do not change. Data flows through
all ports A contained in the port set P, while the other ports are inactive, and the data constraint dc;, is satisfied. Due to
convexity, the invariant needs to be checked at the end of the time delay only, as it inductively holds at the beginning
(8). The execution of an invisible transition (10) is similar, except that the amount of time elapsed may be zero, and data
must not flow through any port. The disjunction of all visible and invisible transitions expresses nondeterministic transition
choice (11). In any step, the current location is unique (12), and the special value “no data” may only be pending at inactive
ports (13).
Remark 3.2 (Finite Data Domain). If |Data|=k (finite), we require the elements of Data to be mapped to subsequent natural
numbers (remember that A(_L)=0, and A is injective), such that A(Data)={0, ..., k—1} C N, and we add a constraint
Ncy (DAL <k—1) to pdatavalue (13) This speeds up verification, since the number of possible valuations (for data variables)
decreases.

Example 3.3 (Representation of TCA). Consider again the TCA C in Fig. 2. With A such that A(L)=0, A(1)=1, and A(2)=2,
the representation of C according to Definition 3.1 is given in (15) (we omit constraints equal to true).

@™ (C) = co A —Ao A(DAo=0) A(yo=0) A(zo=0)
@"SPR(C) = (coq A By ADA=1) A(Ye=21) A(Ze1 <Zt) A(Ze—Fe1>2) ACy) V
(Ce-1 A By ADAL=2) A(Yt=2¢) A (Ze1<2Zt) AN(Zg—F1-1>2) A Cy)
(ptrans (C) — gDUiSible (C)
@0 () = (DA, <2) A(—Ay V —(DAy=0)) A(A; V(DA =0)))
(€)= ¢™(€) APT™(C) A @™ () (15)

S. Kemper / Science of Computer Programming 77 (2012) 779-798 787
3.3. Unfolding for bounded model checking

In order to represent the reachability problem of BMC for a TCA 7 in logic, the formula representation ¢ (7) (14) is
unfolded, i.e., instantiated for all steps up to bound k. The resulting formula ¢ (7)), is called k-unfolding of 7, and is defined
in (16), where v, denotes the localisation (cf. Section 3.1) of ¥, with index t replaced by j.

(M= N oD (16)
1<j<k
Intuitively, a satisfying interpretation (called model) o of ¢ (7)) corresponds to a run of &+ of length k, i.e., to one possible
behaviour of 7 for the first k steps. Consequently, the set V(¢(7)y) of all models of ¢ (7); describes all possible behaviours
of 7 for the first k steps. Moreover, certain models of ¢(7); not only correspond to finite runs, but to infinite, ultimately
periodic runs. An infinite, ultimately periodic run is a run of the form (cf. Definition 2.8)

Pg.80:to P,5.t PLoLY Py .oy .ty PLoLY Py .8yt
golototy . Pt a a

that means a run which, after some finite prefix (qo to q;), executes the loop from q; back to g, infinitely often. Conceptually,
such an infinite, ultimately periodic run can be seen as a run of length k

o Pg.80.tg o ﬂ)(h P84 o Pl/‘sl/‘[l/ s

where the last configuration gy is equal to configuration q; (I<k). The cycle condition (17) expresses this (cf. [6]): it
requires the variables constituting the configurations (i.e., locations and clock values, cf. Sections 2.2 and 3.1) to be equal in
steps | and k. A model of ¢ (7)), which in addition satisfies the cycle condition, thus corresponds to an infinite, ultimately
periodic run.

@ (T) = \l/k(/\(sk=sl) AN (zx—x)=(z1—%1))) (17)
0<I< sesS XeX
(e = @5 (T) A (T (18)

The conjunction of k-unfolding and cycle condition (18) allows us to reason about infinite, ultimately periodic runs only,*
while (16) includes both infinite, ultimately periodic runs and finite runs of length k.

In what follows, we shall reason about ¢ (7)), only. Yet, since every model of ¢ (7). ¢ is also a model of ¢(7)y, all results
are valid for (7)) ¢ as well.

Checking the reachability of an error location s amounts to conjoining ¢ (7); with the representation p d:efso\/si Vo Vg
of the reachability property, such that 7 }=,—3¢s holds iff the conjunction ¢ (7)), Ap is unsatisfiable. Lifting p to reason about
configurations or even execution sequences is straightforward. For example, an LTL property s— (s’ (“if the current location
is s, then the next location will be s”") can be represented as p=(sqA8’1)V(81A8'2)V + - - (81 AS'y).

3.4. Product of timed constraint automata

The cross product of TCA, as defined in Definition 2.5, is exponential in the worst case, which is a severe limitation to the
size of systems that can be verified. Here, we define a logical representation of systems of TCA which is linear in the number
of automata. The basic idea is to retain the representations of the individual automata, and model check their juxtaposition.
We require variables representing common ports to have the same name in both representations, such that constraints
involving these ports are automatically satisfied simultaneously in both representation.

To model single local transitions, as described by (2) in Definition 2.5, we introduce explicit delay transitions
(cf. Section 2.1): the representation of a delay transition @%@ (s) in location s is defined in (19). Note that these delay
transitions are in accordance with Definition 2.2, as they correspond to invisible loops of the form (s, @, true, true, @,).
Therefore, in particular, (19) permits zero-delays. For two TCA 7; and 73, with X;NX, =@ and S;NS,=¢ (can be achieved by
renaming the constituents in one of the TCA), the representation of 70<T;, denoted as ¢(710<73), is given in (20), where (11)
is understood to be the disjunction of (9), (10) and (19). The k-unfolding of the product is defined in the same way as for
individual automata, it is shown in (21).

‘pdelay(s) =58t A N TA A N\ (®e=%1) A(Ze1<2¢) AL(S)ep A sy AL(S), (19)
Ae? XeX
W (T1<Tz) = ¢(T1) N @(T2) (20)
O(Ti<Tp)k = /\k§0(71><7'2)j/r (21)
1<j<

4 Yet, every model of (18) still corresponds to a finite run of length k, namely, the prefix of the infinite, ultimately periodic run which stops after reaching
configuration g; for the second time.

788 S. Kemper / Science of Computer Programming 77 (2012) 779-798

©
T —————0(Th
runl S lmodel
— >

Runy, models of ¢(T)
~_
p

Fig. 5. Correctness of representation.

Note that the existence of such a linear product is not immediately clear, but in fact is a result of our design decision
of explicitly mentioning all ports on each transition (cf. (9), (10) and (19)). This decision - though seeming unnecessary at
first glance - together with the assumption that common ports have the same name, ensures that transitions in different
TCA may only be executed in parallel if they fulfil the conditions described in Definition 2.5. In this way, we do not need to
mention all possible synchronisations (which are allowed by (1) and (2)) explicitly, and thus avoid the exponential blow-up.

3.5. Hiding

The hiding operation removes all information about a set of ports O from a TCA 7, cf. Definition 2.7. Hiding a set of ports
0 in the formula representation ¢ (7)) amounts to existential quantification over the corresponding variables, i.e., activity
and data variables of the ports in O, cf. Section 3.1. For a TCA 7, with formula representation ¢(7), and a port set 0C®, the
formula representation ¢(7'\,) of automaton 7\, corresponds to

30¢(7), (22)

W]th 0= UAEO,OS[Sk{At 5 DAt}

In Definition 2.7, an additional clock is introduced to ensure correct timed behaviour of invisible transitions in 7'\ ;, which
originate from visible transitions in 7. Here, we do not need to introduce an additional clock: the formula representation of
a visible transition explicitly requires a positive amount of time to elapse ((zs-1 <z), cf. (9)). Since 0 does not contain clock
variables, this constraint remains unchanged even in case the transition becomes invisible, and therefore, correct timed
behaviour, as required by Definition 2.7, is guaranteed.

3.6. Discussion

In this section, we have established a framework for exhaustive BMC of TCA, and we have shown that the unfolding not
only covers finite runs (for BMC), but also infinite, ultimately periodic runs.

Using propositional formulae as intermediate representation (“front end”), we may fall back on the abstraction
refinement framework of [22] (“back end”), and, more importantly, we can take advantage of existing high-performance
SAT solving technologies. Our representation is specifically tailored for SAT solving: (13) is in conjunctive normal form (CNF)
with binary clauses only, and (8), (9) and (10) almost entirely consist of unit clauses. With respect to speed of verification,
this is very efficient: the 2-SAT problem is polynomial, and formulae with n unit clauses can be solved in O(nn).> Due to the
disjunctive nature of transition choices, (11) is not in CNF, but it could easily be transformed to short CNF (see e.g. [18])
when introducing new symbols.

The restriction to convex clock constraints does not reduce the expressiveness of our model (cf. Section 2.1), but on the
contrary significantly simplifies the representation formulae, since clock constraints need to be checked at the beginning
and at the end of a time delay only, rather than at all intermediate points (cf. (9) and (10)). We further simplify verification by
defining a product representation which is linear in the number of automata (20). In this way, we also avoid the exponential
state space blow-up when forming the cross product.

Though communication is often regarded as a one-to-one relation, our representation is already suited for general n-ary
communication: by having ports carrying the same name in more than two automata, our approach naturally generalises
to one-to-many or even many-to-many communication models.

In the next section, we prove that our formula representation is correct and complete with respect to the underlying TCA.

4. Correctness of the representation

For the representation ¢(7') to be faithful (i.e., exhibit the same behaviour as 7°), every model of ¢ (7) has to correspond
to a run of length k, and vice versa. To prove this, we show that the diagram in Fig. 5 commutes.

The commutative property expresses that models of ¢ (7)), have a bijective correspondence to runs of the original TCA 7,
denoted by the maps ¢ and t: the run t(¢(r)) of the model ¢ (r) belonging to a run r again is r, and the model ¢ (t (o)) of
arun 7 (o) belonging to a model ¢ againis o.

5 Note that (12) could be expressed in CNF with binary clauses as well. Yet, it is not, but is rather tailored for abstraction already: after abstraction, the
formula in CNF would loose the information of mutual exclusion, and result in a too coarse abstraction.

S. Kemper / Science of Computer Programming 77 (2012) 779-798

789

Remark 4.1 (Notation). In what follows, we use the notation of representation variables introduced in Section 3.1, and we

use the symbol ~ to refer to any arithmetic comparison (cf. Definition 2.1).

For a TCA 7, we use the symbols &, r and Runyy to refer to the associated LTS, a run of S, and the set of all runs of
&7 up to length k (cf. Section 2.2). Further, we use the symbols ¢ (7), 0 and V(¢(7);) to refer to its k-unfolding, a model

of ¢(7)y, and the set of all models of ¢(7), respectively (cf. Section 3.3).

We first show that the formula representation is sound, i.e., that every model o €V(¢(7)y) yields a run r eRunr.

Definition 4.2 (Derived Run). For o €V(¢(7)y), the derived runr, is

P1.,81, Py.,89, Py,.,8, .
To=(lo, vo) ZL2 (Iy, vy) 2222 Befell (1 wy), with

I, =s,iffo(sy,) = t, ° (1)
Vg (%) = 0/(2x;) —0 (X;)s (i)
Pe= U Axa, (iii)
O'(Ak/-»l):tt
S.1(A) = A™'(@Y), iff o (DAg,1)=n"#n",” and (iv)
tya = 0 (2y.)—0o (2x) (v)
for all 0<k;<k, 0<k’ <k. The derived run for products of TCA is
o (o1, lo.2), vo) 2 L BN (U,), wi),
which is defined in the same way, except for rewriting (i) to
lvi=s, ifo(sy) =t andseS;, i=1,2, (i
Lemma 4.3 (Soundness). For o €V(¢(T)x), the derived run r, is a run of &1 of length k, i.e., r, ERunry.
Proof. Induction on k.
1A obE=@(T)o: o(éo)@tt for the initial location s, thus logi For all clocks x, vo(x)go (zo)—a(xo)go, and thus
ro=(S, 0)€Runo.
IH o =@(T): e €Rungy for k>0.
IS TEQ(Diat 1o = (lo,vo) L L T () et Bl (g vyq), and - either of=¢ " (€)eaye or

o =™ (€)1 ¢ (cf. (16)) for some e.
Case o |:<p”’5'b""(e),,1/[(*): let e=(s, P, dc, cc, X, §') (cf. (9)), then
=5, L 25, bt 20 (2i1) —0 (2).-
® Vg =Vt [X: 0] we have
for xeX: vi,q (X) 0 (Zx1)—0 (qu) 5 (Zie1)—0 (Zs1)=0
for XX : View1 (X) =0 (Zi11) —0 (Xies1) =0 (Ziey1) —0 (X)=
(o (Zk) 0 (%)) (0 (Zka1) —0 (Zk)) = Vi (%) +Lyat

o Vpttiq =cc: for cc=x~c B CCria= (Zge1 —X)~C. Because o |=ccy, 14 (see (*))(m particular (o (zx)—o (xx))~C

(1), and thus Vk(X)‘f‘tkﬂlH_ (0 (21)—0 (3:0)) +(0 (Ze1) —0 (210)) =0 (i) —0 (x30) .
® Pt = Uy 110 A =P
o Spa=dc: fordc (dA d;), we have 8,1 (A) "2V A1 (i)'

def. A

A1 (A(d)=d;, thus 8,1 =(dy=d)). For de=(da=dp),

we have dCp = SDAM _DBlE])) Since o =dcy,, (because of (x)), in partlcularo(DAk,l)(a(DBk,l)(11 for some

nt, thus 8,1 (A) ™27 A1 () "278,,1 (B), and therefore 8,1 =(da=ds).

Thus, (s, ve) 2250 (¢ v 4£,.1[X:=0]) is obtained from e using (5).
Caseal:((p'”““b’e(egvl),l/t (xx): let e=(s, ¥, true, cc, X, §') (cf. (10)), then

. lk_s l,m =S},1 ki1 =0 (z}m) 0 (2x), V1, and v+t [=cc as before
L k&l— 0 (Aget)=t “kel =

o 81120, because o (Ay,1) = £f and o (DAw,1) ='n for all A

e SEtrue forall §.

Thus, (s, vk)%) (', v+ti1[X:=0]) is obtained from e using (5) in case t;,;>0, and using (6) in case ty,;=0.

6 Foreach k, there exists exactly one such location s, cf. (12).
7 Als injective, with A(d;)=n* (cf. Section 3), thus n* erange(A).

8 Here and in the remainder of the proof, we only show the basic cases for clock and data constraints, but the results directly carry over to Boolean

combinations of these.

790 S. Kemper / Science of Computer Programming 77 (2012) 779-798

Finally, we get r,€Runry,;, and we define 7:V(¢(7)r)—Runz, such that for every interpretation oeV(¢(T)y),
7(0)=r, €Rungy is the derived run.

Proposition 4.4 (Derived Run, Product). For o € V(¢(Ti0<T)y), the derived run r, is a run of &7, of length k, ie,
s €ERUNT ooy k-

Proof (Sketch). The proof is along the same lines as the proof of Lemma 4.3. In IS, we first show that for i = 1, 2, reducing
the transition

Ppy1,90; Ny
(1, Be2), vi) TR (a1, Bet,2)s Vied)s

to the constituents of 7; yields a transition e;=(ly ;, Pr.1.i, dci, cCi, Xi, ls1.i) of T;, with Pj,q i <P, (remember that delay
transitions are a special case of invisible transitions). We then argue that all possible combinations of e; and e, correspond
to a valid execution in the product automaton (Definition 2.5):

e Two visible transitions corresponds to parallel execution, that means to a transition of the form (1).

e A delay transition together with an (in)visible transition corresponds to one automaton performing a local (in)visible
transition, while the other remains in its current location, thus, to a transition of the form (1).

e Two delay transitions correspond to a delay step of the product automaton, which - though not explicitly specified
in Definition 2.5 - can be combined with the following transition to yield a transition of either form (1) or (2).

e A visible and an invisible transition correspond to a set of sequences of transitions of the form (2), each sequence
comprising first the visible transition with delay d, followed by the invisible transition with delay d’, d>0, d’>0. Similarly
for two invisible transitions, with delays d and &', d, d’>0.

Finally, we get r, €Runz,.z, k.
We now show that the formula representation is complete, i.e., for every run r eRunry, we can find a model o €V (¢ (7)y).

Definition 4.5 (Derived Interpretation). For r eRunzy, the derived interpretation o, over (the variables in) ¢ (7)y is

or(sw) = tt iff s=l, ff otherwise (vi)
oy (zw) = 0iff K =0, 0, (zyw_1)+ty otherwise (vii)
or(xy) = 07 (2x) — Vi (%) (viii)
o, (Ay) = tt iff K >0 and AcPy, ff otherwise (ix)
or(DAw) = A(8x (A)) iff K >0 and APy, n* otherwise (x)

for all 0<k’<k. The derived interpretation for products of TCA is defined in the same way, except for rewriting (vi) to

or(sw) = tiff s=ly ;, s€S;, i=1, 2, and £f iff s£ly ;, s€S;, i=1, 2 (vi")

Lemma 4.6 (Completeness). For reRunry, the derived interpretation o, is a model of the k-unfolding of 7, that means
or EQ(T e

Proof. Induction on k.

IA r={lp, vo): o,(so) Dt for lo=s (initial location 5), a,(so) U#f otherwise. o,(zo)_O o (x o)@)ar(zo) vo(x)=0

for all xeX, and ar(Ao) “$f and ar(DAO)_)n for all Aeﬂ’jr For I(3)=x~c,° 1(8)y=2¢—Xo"~C. Because vol=I(5)
(Definition 2.8), in particular O=vo(x)~c (%). So, o;(%o)~c, that means o, =I(8),, thus o; =™t (T), and so
(p(T)o=¢™ (T)) or =9 (T)o.

H r=(lo, vo) F211 SRk (1 v): oy =@ (T, for k>0.
IS r=(lo, vo) Lo Ptk () Pt Yttt o Ly) € Rungpe: let e be the transition of 7 underlying

(L, vy Pt Bt t g oy 0y (visible or invisible), e=(s, P, dc, cc, X, §).
Case visible: Py,17#%, 8k.1 79, and ty,1>0. Then
° a,(sk*l)(>)tt iff s=I,1, and ff otherwise.
L O'T(de) Ur(zk)+tk+1>o'r(zk)
xgxﬂu)r(Zp,1)—0= Ur(qu)df
= 07 (2r) Hte — Vi1 (X) =
Ur(Zk)-Hkq—Vk(X) b1 =
07 (Z1) — Ve (X) 207 (i)
° a,(Ak,l) ‘i iff AePy,1, and ff otherwise

(viii)
® Or (X}ul) =0y (Zk§1)_vk§1 (X) =

9 Here and in the remainder of the proof, again we only show the basic cases for data and clock constraints.

S. Kemper / Science of Computer Programming 77 (2012) 779-798 791

o 0, (DAiv1) 2 A (841 (A)) iff A€Pyq, and o't otherwise

e Fordc = (dA d) we have dcy,y = Ak*l/\(DAkd—nl) Because 6,1 =dc (Definition 2.8), especially d,1 (A)=d;,
i.e. a,(DAk*i) A(Sk,l (A)=A(d;) _% 8 and therefore o, =dcy,s.

For dc = (ds=dp), we have dcy,y = Ak,lABk,l/\(DAk*l_DBk*l) Because (SM =dc (Definition 2.8), we have
Sre1(A)= BM(B) d;, for some d;eData. Thus ar(DAk*l) A((Sk,l(A)) A(dj)=n*, and also
or(DBk,l) A((SM (B))=A(d;)=n?, and therefore o, |=dcy,;.

e For I(s)=(x~c), we have I(8)y,4r=(2x1—Xk)~C. Bec(ause v+tEI(s) for all 0<t<ty,; (Definition 2.8), i
particular vg(x) -1 E(Xx~0); thus 0;(zg,1)—0r (%) = (07 (Zx) Ftie1) — (07 (Zw) H 0k () =V (X) +tie1 ~c, and
therefore o, =1(8)y.14. The argumentation for o, =ccy,14 and o, =1(8')y,; is similar.

From the above, we get o=@ "€ (€)1 (9) (50 orE=@"™ (Daye (11)), or=@" " (T)ye1ye (12), and

07 =V (T a1 (13).

Case invisible: Py,1=#¥, 8y,1=9, dc=true, and t>0. Then
07 (Sx.1) and oy (X.1) as before.
07 (Ziat) = 07 (Zk) +tu1 > 07 Z>k)
0 (Age1) =1F, and o, (Dhy,1)=n" for all A.
0 E=1(S)kar Or ECCri1a, aNd 07 =1(s")y,; as before.
The data constraint true is trivially satisfied.
From the above, we get o; @™ %€ (e),1/c (10) (s0 v E@™ (Dkaye (11)), 01 @M (T)1y (12), and

b= (T e (13).

Finally, we get oy =¢ (T),1, and we define ¢:Runz,— V(¢ (7)) such that for every run reRunzy, ¢ (r)=o,€V(p(T)y) is the
derived interpretation.

Proposition 4.7 (Derived Interpretation, Product). For r €Runz,..z, . the derived interpretation o, is a model of ¢ (Ti><T),
ie. o €V(p(Ti<Ta)i).

Proof (Sketch). The proof is along the same lines as the proof of Lemma 4.6. In IS, we show that for i=1, 2, the derived
interpretation o, for reRunz,..z, .1, reduced to the variables of ¢ (7;)i, is a model of ¢ (7). Because delay transitions are
special cases of invisible transitions (cf. Section 3.4), we directly get o €V(p(71<72)k).

Using the above, we can now show the main theorem.
Theorem 4.8 (Soundness, Completeness). The representation TCA, as defined in Definition 3.1, is sound and complete.

Proof. This follows directly from Lemmas 4.3 and 4.6.

5. Abstraction

Having defined a framework for exhaustive BMC of TCA in Section 3, we now show how to further increase the
manageable system size, and overcome the state explosion problem, by using abstraction refinement techniques. We show
how to adapt the abstraction technique of abstraction by merging omission (MO) [22] to our representation. MO is a simple
and fast but nevertheless powerful abstraction technique specifically tailored to work on logical formulae. The removal of
constraints considered irrelevant to the particular safety property yields an over-approximation.

5.1. Abstraction by merging omission

The basic idea of MO is to reduce the system complexity by decreasing the number of symbols in ¢ (7°), while retaining as
much information about the TCA transition characteristics as possible (the abstract formula is weaker than ¢(7), though).
It is defined for formulae in negation normal form (NNF), to which ¢(7°) can be easily transformed. MO uniformly works on
the different syntactical categories: it merges (Boolean) location and (natural) port variables, by mapping them to the same
image according to a map of merging, and it removes (rational) clock variables and arithmetic constraints according to a set
of omission.

Definition 5.1 (Abstraction by Merging Omission). Let 7 be a TCA, let ¢(7) be in NNF. Let S, X, P, and Pp, be the
variable sets representing locations, clocks, port activity variables and port data variables, respectively, all without indices;
let P=(SUP,), let ¥ :Ppy—P, a mapping such that vePp, and ¥ (v)=v’€P, are data and activity variable of the same port.
Let © € XUCC(X)UDC(Pp,) be a set not containing compound formulae, let y :P—PUP’ be a mapping, with P’ some fresh
set of propositional variables, and y (p)=y (p") only if (p, p’€S) or (p, p'€P,) (i.e., ¥ cannot merge a location with a port).

The abstraction by merging omission with respect to © and y (or simply abstraction) of ¢(7), denoted as ao ,, (¢(7)), is
defined in (26). We may omit O and y inap , (¢(7)) if they are clear form the context.

792 S. Kemper / Science of Computer Programming 77 (2012) 779-798

L L=—p, peP, y (p)=id (23a)
L cont(L) N(OUP) = 4, Yve(cont(L)NPp):y (9 (v))=id (23b)
y(l) L=peP (23¢)
o' (L) =3 y@) =-p, peP, 3p'€P in the same conjunct as p: y (p)=y (p)) (23d)

=-p, peP, Ap’€P in the same conjunctasp:y (p)=y (p),

-y (L 23e
r) 3-p”, p”€P, in the same conjunctasp:y (p)=y (p") (23¢)

true otherwise (23f)
o' (FAG) =o' (F) Ad/(G) (24a)
a'(FVG) =d'(F)va'(G) (24b)
ve= N (C V p)<Dp) (25)

pey(P) peyl(p)
a(p(7)) = & (P(T)) A Ve (26)

Here, F and G are formulae in NNF, L a literal, cont(L) the set of atomic formulae and variables occurring in L.

Fig. 6. Abstraction by merging omission.

MO uniformly captures abstraction on all syntactic categories contained in ¢(7°): negative propositional variables not
meant to be abstracted (i.e., where y is the identity) are kept unchanged (23a), so are clock and data constraints (positive or
negative) not contained in O (23b). However, we may retain only those data constraints that reason about ports not merged
by v, since the conjunction of data constraints may become unsatisfiable otherwise.!® This is ensured by the constraint
Yve(cont (L)NPpy):y (¥ (v))=id in (23b).

The map y is applied to all positive propositional variables (23c). For negative propositional variables p (i.e., which occur
as —p) meant to be abstracted, we distinguish two cases: if there exists a positive propositional variable p’ in the same
innermost conjunct/disjunct as p, and with the same image under y (i.e., p and p’ are to be merged), we replace p with its
positive image under y (23d). The idea is that positive propositional variables are used to describe the “behaviour” - source
and target of a transition, for example — while negative propositional variables are used to ensure consistency - mutual
location exclusion, for example. Therefore, if such p’ exists, we can dismiss the literal —p, since p and p’ are mapped to the
same image under y, and we do not need the consistency constraint anymore. Note that replacing —p by true is possible as
well, but this would yield a much coarser abstraction. If no such p’ exists, but a instead a negative propositional variable p”
with the same image under y (23e), then we replace p and p” by their negative image under y. In all other cases, @ maps the
literal to true (23f). In this way, o performs a quick variant of existential abstraction [14], while exploiting the structural
relationships of clocks and TCA, and taking advantage of our formula representation.

In order to guarantee that MO yields an over-approximation, we further need to keep track of the relation between
symbols in P and their abstract counterparts in P'. For this reason, we add the constraint y,, (25) to the abstract formula.

Remark 5.2 (Notation). Without confusion, in what follows we use the symbol « only, and omit the symbol «’. For example,
for a literal L, o (L) denotes o’ (L).

With this, we get the following lemma.

Lemma 5.3 (Abstraction by Weakening). MO yields an over-approximation, that means « (F) is weaker than F in the sense that
the implication F— « (F) is valid (true in all models).

Lifting « to the presence of localisations is straightforward: y and O are understood oblivious to indices in the NNF
of ¢(7), such that indices directly carry over to ¢(7), unchanged (defining different abstractions for different steps
is possible using the same definition of o but we consider it to be less useful). Note that « is homomorphic with
respect to {A, v}, which proves the equality of «(¢(7),) and a(¢ (7)), (except for speed of computing the abstraction,
where a (¢ (7))y is superior).

The major difference between our abstraction function and the one presented in [22] is the fact that we do not in general
map negative propositional variables to true, since this would effectively remove the mutual exclusion constraint for
locations (12) as well as part of the consistency constraint on data values (13). Instead, we take into account the special
characteristics of our formula representation, and the syntactic context of the propositional variable (23d), (23e), and in this
way retain more information. See Section 5.2 for further details.

10 Suppose a transition f with port set {A, B} and data constraint ((dy=1)A(dz=2)), and ports A and B are to be merged into port C. Straightforward
syntactic replacement of port data variables would yield a transition f with port set {C} and data constraint ((dc=1)A(dc=2)). While the data constraint
of f is satisfiable, the data constraint of f’ is not satisfiable; such abstraction would not yield an over-approximation anymore.

S. Kemper / Science of Computer Programming 77 (2012) 779-798 793

i

7 11
L4 ~ 4 -
T e(T)k 2 e(T)k T
runl modell Jmodel lrun
S C T

—_— = ~ _—
Runtp V(M) ————— V(M) _— Rungy

Fig. 7. Strong correctness of abstraction.

Example 5.4 (Abstraction). Consider again the formula representation of component C, presented in Example 3.3. To
abstract from timing information, we choose O={y}, and y =id. The result of applying « with respect to y and O to the
formula representation ¢(C) (15) is shown in (27).

Ol((pinit (C)) = co A —hp /\(DAO:O) /\(ZOZO)
o (@ 5P (C)) = (ot A Ay A(DAL=1) Az 1 <2Zt) A
Ce) V(Cot A Ay A(DAL=2) A(Ze1 <Z¢) A Ce)

a((ptrans (C)) — a((pvfsib[E(c))
a(p-rae(c)) = (DAy<2) A(—A; V =(DA;=0)) A(A; V(DA =0))

a(@(0) = a(@™(C)) Aa (@™ (C)) Aa(p™™-"me(c)) (27)

5.2. Correctness

For « to yield a correct over-approximation, every finite run of the concrete system 7 (represented by a model of ¢(7)y,
see Theorem 4.8) has to be reproducible in the abstract case, which is already captured in Lemma 5.3. Here, we prove an
even stronger correctness result, which in particular emphasises the structural relationships between concrete and abstract
formula: By showing that Fig. 7 commutes, we conclude the existence of a homomorphism hi between concrete and abstract
set of runs.

The idea of the proofis as follows: since o works locally, it retains the formula structure of (14). In particular, the structure
of clock and data constraints is preserved, as these constraints either remain in the formula unchanged or are replaced by
true. Therefore, there exists some TCA T of the same representation go(T)k = a(p(T)k) (up to logical equivalence), and
the subdiagrams (i) and (iii) commute according to Theorem 4.8. According to Lemma 5.3, the subdiagram (ii) commutes
as well (as every model of <p(T)k is a model of «(¢(T)y)), such that the whole diagram commutes. Hence, the existence of a
homomorphism hy, is a direct consequence, and we get

Theorem 5.5 (Correctness of Abstraction). MO, as defined in Definition 5.1, yields a correct over-approximation on sets of runs.

For a detailed discussion and proof (including the proof of Lemma 5.3), we refer to the extended version of this paper,
available at www.cwi.nl/~kemper.

5.3. Abstraction refinement

In this section, we give a brief overview of our abstraction refinement methodology. The general abstraction refinement
paradigm [14] consists of three steps: (1) generate the initial abstraction, (2) model check the abstract system, and, if
required, (3) refine the abstraction.

Generate the initial abstraction. If there is no additional knowledge about the system, the initial abstraction simply
removes from ¢ (7)) all symbols in CC(X)UDC (Pp,), and merges all symbols in S to a single one (we refer to [14]
for improved techniques), thereby collapsing to a single trivial location (accordingly for ports). Yet, the next
refinement iterations will quickly discover more relevant parameters.

Model checking the abstract system. If «(¢ (7)), together with a representation p of the safety property (cf. Section 3.3),
is unsatisfiable, the system is safe within bound k (cf. Definition 2.9, Theorem 4.8 and Theorem 5.5). Otherwise, the
counterexample needs to be concretised, which amounts to checking ¢ (7)¢Ap, in conjunction with the variable
valuations 7t representing the abstract counterexample, and concretising constraints of the form u— sVvr for all
locations and ports s and r with y (s)=y (r)=u. This check can be done very quickly, since the single abstract
counterexample is highly restrictive. If the conjunction is satisfiable, a counterexample to the property is found.
Otherwise, the counterexample is spurious, and the abstraction needs to be refined.

www.cwi.nl/~kemper
www.cwi.nl/~kemper
www.cwi.nl/~kemper
www.cwi.nl/~kemper

794 S. Kemper / Science of Computer Programming 77 (2012) 779-798

4 af e dc o

14 S R O

5 BY o 4p DY

Fig. 8. ABP Connector, conceptual overview.

Refining the abstraction. To identify ill-abstracted parameters, we stratify the formulae ¢ (7), p and 7 (i.e., align them
along their unfolding depth k), and derive a sequence of Craig interpolants (e.g. [25]),!" one for every bisection
into prefix and suffix. By definition, both the prefix of the first interpolant G=false and the suffix of the last
interpolant G=true are unsatisfiable, and, for P being the set of symbols subject to abstraction, at least one of the

symbols in P\d=efcont(G)ﬂP has been wrongly abstracted.

The difficulty - in particular in automatic abstraction refinement - is then to define heuristics describing the
application of the two refinement strategies (a) refine a symbol from /A, and (b) rule out the (sub)run represented
by the common parts of the prefix of G and the suffix of G. The former quickly collapses to the concrete system
if applied too frequently, while the latter cannot yield results as long as essential parameters are inadequately
abstracted. Thus, it is necessary to define heuristics that strike a suitable balance between (a) and (b).

The fully automatic heuristic presented in [22] (together with its optimisations) is a compromise between the
drawbacks of the two alternatives: after refining a parameter (a), a fixed number of runs (fractions of the unfolding
depth k have turned out to be most promising) is ruled out (b) before refining the next symbol according to (a).

5.4. Discussion

We do not have to distinguish between abstraction of different constituents of TCA, since a works uniformly depending
just on the different syntactical categories (propositional, natural, real variables), which happen to represent different
concepts of TCA. Yet, in contrast to [22], our abstraction function does not remove negative propositional variables from
the formula in case the map of merging y is the identity for these, and moreover retains more information for negative
propositional which are to be abstracted. This speeds up the verification process, since we preserve a bigger part of the
formula structure of ¢ (7°), which not only provides more meaningful results, but therefore also results in less cycles in the
abstraction refinement loop.

Proving a strong correctness result in Section 5.2 permits to conclude the existence of a corresponding effective
abstraction technique on TCA which produces 7. Yet, the formalisation of the direct construction will be much less uniform
than what has been presented here.

As a second major result of the strong correctness proof,'> we get that every abstraction satisfying Lemma 5.3 is already
proven correct in our framework. The existence of the abstract TCA 7, however, is not a general consequence, but a particular
result of our strong correctness. This makes « a very powerful and universal technique, yet it remains efficient due to its
purely syntactical definition.

6. Example: alternating bit protocol

In this section, we present an example in more detail, to provide a better understanding of the framework presented in
this paper. For each modelling/analysis step, we point out the available tool support, and in Section 6.4, we present some
preliminary experimental results. All files mentioned are available at http://www.cwi.nl/~kemper/ABPexample/.

We model a network protocol, which ensures successful transmission of data elements between sender and receiver
over unreliable channels. This so-called alternating bit protocol (ABP) is one of the standard benchmarks in the context of
component-based systems and process algebra, and has been discussed in detail for example in [26,17,23].

Essentially following the description in [26], we design a compositional connector ABP from four subconnectors: the
sender S, the receiver R, and two unreliable channels ¢; and ¢, connecting the former two, see Fig. 8. The channels may
loose, but not corrupt or duplicate, data at random. Yet, it is very easy to change this behaviour, simply by exchanging the
channels ¢y and/or ¢;. For an overview of how to model timed channels with different behaviour, see e.g. [4]. The intended
behaviour of ABP is as follows: after accepting input (from the network), S starts a timer, and sends the message to R
via ¢q. S attaches a control bit b to the message, and as acknowledgement expects from R the corresponding control bit b
through c¢,. After that, S is ready to accept another input from the environment, which it sends to R with attached control
bit —b. If the timer expires before S receives the acknowledgement b, or if it receives an acknowledgement —b (which it
ignores), it resets the timer and resends the message with bit b.

11 Craig interpolant for an inconsistent pair of formulae (A, B) is a formula C that is implied by prefix A, inconsistent with suffix B and contains
only common symbols of A and B; it is thus an over-approximation of A and an under-approximation of —B.

12 Mainly subdiagrams (i) and (ii) in Fig. 7.

http://www.cwi.nl/~kemper/ABPexample/
http://www.cwi.nl/~kemper/ABPexample/
http://www.cwi.nl/~kemper/ABPexample/
http://www.cwi.nl/~kemper/ABPexample/
http://www.cwi.nl/~kemper/ABPexample/
http://www.cwi.nl/~kemper/ABPexample/

S. Kemper / Science of Computer Programming 77 (2012) 779-798 795

{A}7 {B}7 {A}7 {B}
da=(1.m), ()45=0 da=(0.m), ()dr=1
=0 (B} (I}, dy=m, =0
L dg=1 =0 0

x=2, T z=2, l{B}v

z:=0 x:=0 dp=0

{I},dr=m,z:=0
{ct, {C},

y=2, y:=0 Qdc:l y=2, y:=0 Qdc:(]

Bl o e
~_ dC:(Ovom)v ~_ 7

{O}ﬂ {D}, dp=1, T v= {D}, dp=0,

y:=0 y:=0

{C}, de=(1,m), y:=0
! 1
e C@D N il C@D ()

Fig. 9. Sender (top), receiver (middle), and connecting channels (bottom) of the ABP.

Component R works complementary: it receives a message, together with a control bit b, from S. After delivering the
message to the network, R sets a timer, and sends bit b as acknowledgement to S. Next, it expects a message with bit
—b. If the timer expires, or the next message is tagged with b again (which it ignores), R resets the timer and resends the
acknowledgement b.

We assume an arbitrary but fixed, finite set of messages Msg. The data domain is Data=MsgU{0, 1} x MsgU{0, 1}. The
elements of Data correspond to messages sent from the environment to S, and from R to the environment (AMsg), control
bit/message pairs sent from S to R ({0, 1} x Msg), and acknowledgements sent from R to S ({0, 1}). The (data parametrised)
TCA for S, R, ¢; and ¢, are shown in Fig. 9, where we use m to refer to any element of Msg.!> We have modelled the TCA in
the editor available within the ECT [16] (file ABP . ea). For the data parametrisation, we used the “state memory extension”.

6.1. Representation

The formula representation of ABP (cf. (20)) is given by
P(ABP) = p(SeaRe<ici<icy) = @(S) A p(R) A g(c1) A g(ca).

From within the TCA editor, we can automatically generate the formula representation in MATHSAT format. The editor
offers customisation for a variety of parameters, including for example the unfolding depth, the size of the data domain, or
selecting the automata for which to generate the formulae (one up to all). Moreover, the editor takes care of whether or not
delay transitions need to be generated (only for two or more automata, cf. Section 3.4), and it offers to choose up to one
location per automaton to generate a simple reachability property. In the future, a direct link to the MATHSAT tool as well
as an option to specify a more complex (reachability) property will be available.

For a system of this size, a comparably small unfolding depth of e.g. 20 is usually enough to check for reachability of error
states. For performance comparison, and to show that our approach scales very well on reachability properties, we compare
three unfolding depths, for k{20, 50, 100}. Formula ABP in files ABPk . msat contains the representation of the k-unfolding
¢ (ABP)y. The formula representation is not really human readable (and actually is not intended to be, since it will become
a mere internal format in the future). Yet, for the interested reader, we have added some comments to the files, to help
understanding the representation.

13 for example, send0,, represents a set of | Msg| locations, one for each element of Msg.

796 S. Kemper / Science of Computer Programming 77 (2012) 779-798

k=20 k=50 k=100
—Buffer Error —Buffer Error —Buffer Error
ABPK 1.2s, 1.1s, 49.3s, 12.4s, 2976.5s, 77.8s,
21.7MB 21.8MB 81.2MB 44.5MB | 815.2MB | 108.5MB
1.4s, 0.7s, 887.6s, 5.9s, segm. 28.2s,
ABPkabs1 21.86MB | 20.4MB | 301.3MB | 35.8MB fault 66.4MB
1.3s, 208.7s, segm.
ABPkabs2 | 19 s\MB - 189.7MB - fault -

All experiments have been carried out with MATHSAT, on an Intel Core 2 Quad
with 2.83GHz, 8GB RAM and Fedora 10.

Fig. 10. Preliminary experimental results.
6.2. BMC

While the internal behaviour of ABP ensures reliable transmission of messages over unreliable channels, from the
outside, it behaves as a perfect buffer of capacity one (cf. [26]). That is, it accepts and delivers messages from and to the
network alternately, and the order of data elements is not changed. The alternation is described by the LTL formula

a(I = O=1U0)) A0 — O(=0ul))), (28)

which expresses that between any two communications through port I, there is a communication through port O, and vice
versa.

Formula Buffer in files ABPk.msat contains the encoding of (28) for the corresponding depth, essentially following
the approach of [6]. To reason about ultimately periodic runs, we assume a loop from step k back to step 1, encoded in
formula LOOPBACK. We verify the above property by checking'# the conjunction ABPA—Buf fer ALOOPBACK. The outcome
is “unsatisfiable”, which means that data flow through ports I and O alternates (literally: there exists no run in ABP where
data flow does not alternate).

To check for the correct order of data elements, we identify a set of error states {(waiti,,, outi,), (sendi,,, outi,)}, i=1, 2,
m, ne Msg, m#n. Reachability of any of these states corresponds to a state of ABP where S has received data item m through
I, but R is about to send data item n (% m) through O (we use the previous result that data flow through I and O alternates).
Formula Error in files ABPk.msat contains the representation of the reachability property, cf. also Section 3.3. To check
for reachability of any of the error states, we check the conjunction ABPAError. The result is “unsatisfiable”, so none of the
error states is reachable, and thus data items are sent to the environment in the same order as they were received.

6.3. Abstraction

The idea of abstraction is to increase the manageable system size and the speed of verification, by removing constraints
which are considered irrelevant to the particular safety property (cf. Section 5). Timing information can be considered
irrelevant for both Buf fer and Error. Consequently, we define ©O;={x, y} and y;=id. The resulting formula representation
ABPabs1 of ap, ,, (¢ (ABP) is given in files ABPkabs1.msat.

Since Buffer does not rely on exact data values, but only reasons about activity of ports, we may define an even
coarser abstraction, which in addition removes information about the exact data values: O,={x, y, (d;=m), (do=m)},
Yy (waitiy)=waiti, y,(sendi,)=sendi, and y,(outiy)=outi, for i=1,2 and all memsg. The resulting formula
representation ABPabs2 of wp, ,, (¢ (ABP)y is given in files ABPkabs2 . msat. Checking ABPabs2A—Buffer ALOOPBACK
(Error does not hold anymore) gives the expected result of “unsatisfiable” (as before).

The support for abstraction is not yet publicly available, though the theory is already implemented. A user interface for
interactive abstraction (and refinement) will be available in future releases of the ECT.

6.4. Preliminary experimental results

Some preliminary experimental results are shown in Fig. 10.

The results clearly show that our approach is tailored to reachability properties, and that on these, it scales very well for
large unfolding depths. While for k=20, the two properties take around the same time and memory consumption, checking
Error is factor 4 faster, with factor 2 less memory, than Buffer for k=50, and almost factor 40 faster, with factor 8 less
memory, for k=100. Comparing the same property on different unfolding depths, time and memory consumption increase
by factors 40 and 4 (k=20 to k=50), and factors 60 and 10 (k=50 to k=100) for Buf fer, while these factors are limited to
11 and 2 (k=20 to k=50) and 6 and 2.5 (k=50 to k=100) for Error.

14 Using MATHSAT, mathsat -solve -input=msat -logic=QF_LRA -split_eq INPUTFILE. See [24] for a detailed description of how to use
the tool.

S. Kemper / Science of Computer Programming 77 (2012) 779-798 797

As a second result, Fig. 10 shows the improved performance for Error on the abstract system, while for Buffer,
performance decreases, even leading to a segmentation fault for k=100. Though this might seem surprising at first glance,
the reason is obvious: since Buffer reasons about all possible runs, and the abstract system permits more runs than the
concrete system, checking Buf f er on the abstract system is more expensive. What can be seen though is a slightly improved
performance when comparing the two abstractions.

7. Conclusion and future work

In this paper, we have presented a SAT-based approach for bounded model checking of TCA. We have defined an
embedding of bounded model checking for systems of TCA into propositional logic with linear arithmetic, and introduced
a uniform logic-based abstraction for clocks, locations, port names and data values. This logical representation directly
benefits from state-of-the-art SAT solving techniques, and allows a linear-size representation of parallel composition. We
expect the structural relationships underlying the abstraction to provide the basis for a framework to generalise our work
to other scenarios. For example, our approach can be straightforwardly applied to other automata models for coordination
mechanisms, like for example intentional automata [15] or guarded automata [11].

Besides this, future work includes performance comparisons when using a logarithmic encoding for locations and ports
(though automatic abstraction is more involved in that case), and the application and comparison of both variants on case
studies. We want to improve the abstraction function, to retain even more information about mutual exclusion and data
values, when abstracting from locations and ports. After having defined an abstraction that is tailored towards TCA in this
paper, naturally the next step is to define tailor-made refinement heuristics for TCA, by exploiting the algebraical and logical
principles underlying them. As a first step, we plan to add isomorphy inference reasoning to strategy (b) (cf. Section 5.3).
We further plan to investigate how the notion of bisimulation carries over to the formula representation, and how it can be
preserved under abstraction.

We believe our framework provides means to better understand the functioning of TCA, Reo coordinators and Reo
networks [3] (for which TCA serve as formal model). To further improve this, we plan to integrate a back translation from
formulae to TCA into the ECT (exploiting the fact that all transformations preserve the formula structure, cf. the correctness
of abstraction proof for details), such that e.g. the result of abstraction can be viewed as a TCA in the editor. Our framework
further facilitates verification of these connectors, for example whether an implementation meets its specification. We plan
to implement a translation from LTL properties to our formula representation, using the encoding in [6]: the encoding is
straightforward, but - unlike reachability properties — even for small properties it quickly reaches the limit of what can be
done with pen and paper. We intend to use the framework within a testing environment of Reo networks, which will enables
us to perform black and white box testing (e.g., check the feasibility of a certain interaction behaviour), and support controller
synthesis (bounding a subset of the variables, we get a constraint on solvability which includes non-hidden variables only).

Acknowledgement

Part of this research has been funded by the Dutch BSIK/BRICKS project.

References

[1] Rajeev Alur, Timed automata, in: N. Halbwachs, D. Peled (Eds.), CAV, in: LNCS, vol. 1633, Springer, 1999, pp. 8-22.
[2] Farhad Arbab, What do you mean, coordination? Bulletin of the Dutch Association for Theoretical Computer Science (NVTI) (1998) 11-22.
[3] Farhad Arbab, Reo: a channel-based coordination model for component composition, Mathematical Structures in Computer Science 14 (3) (2004)
329-366.
[4] Farhad Arbab, Christel Baier, Frank S. de Boer,].J.M.M. Rutten, Models and temporal logical specifications for timed component connectors, Software
and System Modeling 6 (1) (2007) 59-82.
[5] Farhad Arbab, Christel Baier,].].M.M. Rutten, M. Sirjani, Modeling component connectors in Reo by constraint automata (extended abstract), Electronic
Notes in Theoretical Computer Science 97 (2004) 25-46.
[6] G.Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani, Bounded model checking for timed systems, in: D. Peled, M.Y. Vardi (Eds.), FORTE, in: LNCS,
vol. 2529, Springer, 2002, pp. 243-259.
[7] J.C.M. Baeten, A brief history of process algebra, Theoretical Computer Science 335 (2-3) (2005) 131-146.
[8] J.C.M. Baeten, C.A. Middelburg, Process Algebra with Timing, Springer-Verlag New York, Inc, Secaucus, NJ, USA, 2002.
[9] Gérard Berry, The foundations of esterel, in: Gordon D. Plotkin, Colin Stirling, Mads Tofte (Eds.), Proof, Language, and Interaction, The MIT Press, 2000,
pp. 425-454.
[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan Zhu, Bounded model checking, Advances in Computers 58 (2003)
118-149.
[11] M.M. Bonsangue, D. Clarke, A. Silva, Automata for context-dependent connectors, in: J. Field, V.T. Vasconcelos (Eds.), COORDINATION, in: LNCS, vol.
5521, Springer, 2009, pp. 184-203.
[12] Luca Cardelli, Real time agents, in: Mogens Nielsen, Erik Meineche Schmidt (Eds.), ICALP, in: Lecture Notes in Computer Science, vol. 140, Springer,
1982, pp. 94-106.
[13] E.M. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving, Formal Methods in System Design 19 (1) (2001) 7-34.
[14] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, Journal of the ACM 50
(5)(2003) 752-794.
[15] David Costa, Formal Models for Component Connectors, Ph.D. Thesis, Vrije Universiteit Amsterdam, 2010.
[16] Eclipse Coordination Tools, http://reo.project.cwi.nl/.
[17] Wan Fokkink, Introduction to Process Algebra, Springer-Verlag New York, Inc, Secaucus, NJ, USA, 2000.
[18] R.Hdhnle, Short CNF in finitely-valued logics, in: H.J. Komorowski, Z.W. Ras (Eds.), ISMIS, in: LNCS, vol. 689, Springer, 1993, pp. 49-58.

http://reo.project.cwi.nl/

798 S. Kemper / Science of Computer Programming 77 (2012) 779-798

[19] T.A. Henzinger, R. Jhala, R. Majumdar, K.L. McMillan, Abstractions from proofs, in: N.D. Jones, X. Leroy (Eds.), POPL, ACM, 2004, pp. 232-244.

[20] R.]Jhala, K.L. McMillan, Interpolant-based transition relation approximation, in: K. Etessami, S.K. Rajamani (Eds.), CAV, in: LNCS, vol. 3576, Springer,
2005, pp. 39-51.

[21] Stephanie Kemper, SAT-based verification for timed component connectors, Electronic Notes in Theoretical Computer Science 255 (2009) 103-118.

[22] Stephanie Kemper, A. Platzer, SAT-based abstraction refinement for real-time systems, Electronic Notes in Theoretical Computer Science 182 (2007)
107-122.

[23] Kim Guldstrand Larsen, Robin Milner, Verifying a protocol using relativized bisimulation, in: Thomas Ottmann (Ed.), ICALP, in: Lecture Notes in
Computer Science, vol. 267, Springer, 1987, pp. 126-135.

[24] The MATHSAT 4 SMT solver, http://mathsat4.disi.unitn.it.

[25] K.L. McMillan, An interpolating theorem prover, in: K. Jensen, A. Podelski (Eds.), TACAS, in: LNCS, vol. 2988, Springer, 2004, pp. 16-30.

[26] R. Milner, Communication and Concurrency, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[27] Robin Milner, Calculi for synchrony and asynchrony, Theoretical Computer Science 25 (1983) 267-310.

[28] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an efficient SAT solver, in: DAC, ACM, 2001, pp. 530-535.

[29] Vaughan R. Pratt, Modeling concurrency with geometry, in: POPL, 1991, pp. 311-322.

[30] G.M. Reed, A.W. Roscoe, A timed model for communicating sequential processes, Theoretical Computer Science 58 (1988) 249-261.

[31] Stavros Tripakis, Verifying progress in timed systems, in: Joost-Pieter Katoen (Ed.), ARTS, in: Lecture Notes in Computer Science, vol. 1601, Springer,
1999, pp. 299-314.

[32] W.Yi, CCS + Time = an interleaving model for real time systems, in: J.L. Albert, B. Monien, M. Rodriguez-Artalejo (Eds.), ICALP, in: LNCS, vol. 510,
Springer, 1991, pp. 217-228.

http://mathsat4.disi.unitn.it

	SAT-based verification for timed component connectors
	Introduction
	Timed constraint automata
	Abstraction refinement
	Contributions
	Related work

	Timed constraint automata
	Syntax
	Semantics
	Bounded model checking

	Representation of timed constraint automata
	Basic components
	Transition relation
	Unfolding for bounded model checking
	Product of timed constraint automata
	Hiding
	Discussion

	Correctness of the representation
	Abstraction
	Abstraction by merging omission
	Correctness
	Abstraction refinement
	Discussion

	Example: alternating bit protocol
	Representation
	BMC
	Abstraction
	Preliminary experimental results

	Conclusion and future work
	Acknowledgement
	References

