Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

f Software ENgineering

EN A channel-based coordination model for component
composition

F. Arbab

Report SEN-RO203 FeeruArY 28, 2002

CWI is the National Research Insfitute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI'is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

A Channel-based Coordination Model for Component
Composition

Farhad Arbab

email: farhad@cwi.nl
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

In this paper, we present Pew, a paradigm for composition of software components based
on the notion of mobile channels. Pew is a channel-based exogenous coordination model
wherein complex coordinators, called connectors are compositionally built out of simpler ones.
The simplest connectors in Pew are a set of channels with well-defined behavior supplied
by users. Pew can be used as a language for coordination of concurrent processes, or as
a “glue language” for compositional construction of connectors that orchestrate component
instances in a component-based system. The emphasis in Pew is on connectors and their
composition only, not on the entities that connect to, communicate, and cooperate through
these connectors. Each connector in Pew imposes a specific coordination pattern on the
entities (e.g., components) that perform I/O operations through that connector, without the
knowledge of those entities.

Channel composition in Pew is a very powerful mechanism for construction of connectors
We demonstrate the expressive power of connector composition in Pew through a number of
examples. We show that exogenous coordination patterns that can be expressed as (meta-
level) regular expressions over I/O operations can be composed in Pew out of a small set of
only five primitive channel types.

2000 ACM Computing Classification: C.2.4, D.1.3, D.1.m, D.3.2, D.3.3, F.1.2
Keywords and Phrases: Coordination, IWIM, Automata, Fibration.

1 Introduction

Modular design and construction of software involves modules that rather intimately know and rely on
each other’s interfaces and fit together like pieces in a jigsaw puzzle. In contrast, software components
are expected to be more independent of each other and the specific application environments wherein
they are deployed. Because modules can be less independent of their application environments, the
provisions for the required interfacing among them can be designed into the modules that make up a
modular system. However, if the functionality of each such module is to be supported by a component
instead, the bulk of this interfacing must be left out of the individual components, because provisions for
interfacing of a component depend on the context wherein it is deployed and the other components that
it may interact with. The components that comprise a system, thus, typically do not exactly fit together
as pieces of a jigsaw puzzle: they leave significant interfacing gaps that must somehow be filled with
additional code. Such interfacing code is often referred to as “glue code” and is typically highly special
purpose and specific. Simplified programming languages, sometimes called scripting languages, are often
used to write such glue code.

The (scripting) programs that constitute the glue code are inherently no different than other software.
In complex systems, the bulk of the specialized glue code by itself can grow in its size and rigidity,
rendering the system hard to evolve and maintain, in spite of the fact that this inflexible code wraps and
connects reusable, maintainable, and replaceable components.

An alternative to writing scripts or specialized glue code is to construct the glue code compositionally,
out of primitive connectors. A promising approach in this direction is to use channels as the primitives out
of which such connectors are constructed. Pew defines the primitive operations that allow composition
of channels into complex connectors.

A channel is a point-to-point medium of communication with its own unique identity and two distinct
ends. Channels can be used as the only primitive constructs in communication models for concurrent sys-
tems. Like the primitive constructs in other communication models, channels provide the basic temporal
and spatial decouplings of the parties in a communication, which are essential for explicit coordina-
tion. Channel-based communication models are “complete” in the sense that they can easily model the
primitives of other communication models (e.g., message passing, shared spaces, or remote procedure
calls). Furthermore, channel-based models have some inherent advantages over other communication
models, especially for concurrent systems that are distributed, mobile, and/or whose architectures and
communication topologies dynamically change while they run:

e Efficiency: Like remote procedure calls and message passing, channel-based models support point-
to-point communication. As such, in contrast to shared data space models, the intended target of
communication is always unique and internally known to the system. In truly distributed systems,
this allows more efficient implementations of point-to-point models.

e Security: In shared data space models, the data in every communication (if not its actual infor-
mation content) is always exposed for everyone to observe and consume. Furthermore, third parties
can, accidentally or intentionally, produce data that look like, and thus may get co-opted as, the
data of some particular communication. In contrast, point-to-point models shield communication
from accidental exposure to or intentional interference by third parties.

e Architectural Expressiveness: Figure 1 shows examples of the connections among component
instances (represented as boxes) using three different communication models. In this figure, channels
and direct connections are shown as straight lines; the shared data space is shown as an amorphous
blob; and the software bus is shown as an elongated rectangle. A point-to-point communication
model of an application (Figure 1.a) represents its communication pattern and is highly expressive
of its architecture: in such a model, it is clear to see which other components or entities can
possibly be affected if a given component or entity is modified or replaced. Models such as shared
data spaces (Figure 1.b) and software buses (Figure 1.c) are not architecturally expressive because
they contain no explicit representation of such relevant information as which specific components
or entities actually communicates with each other.

e Anonymity: Anonymous communication means that the parties involved in a communication need
not necessarily know each other. In contrast to remote procedure calls or message passing models,
channel-based models can support the anonymous communication which is one of the hallmarks of
shared data space models.

The characteristics of channel-based models are attractive from the point of view of coordination.
Dataflow models, Kahn networks [12], and Petri-nets can be viewed as specialized channel-based models
that incorporate certain basic constructs for primitive coordination. IWIM [1, 13] is an example of a more
elaborate coordination model based on channels, and Manifold [2, 8] is an incarnation of IWIM as a real
coordination programming language that supports dynamic reconfiguration of Kahn network topologies.

A common strand running through these models is a notion that is called “exogenous coordination” in
IWIM [3]. This is the concept of “coordination from outside” the entities whose actions are coordinated.
Exogenous coordination is already present, albeit in a primitive form, in dataflow models: unbeknownst
to a node, its internal activity is coordinated (or, in this primitive instance, merely synchronized) with the

C1 Cc2 C1 C3 C1 c2

Tuple Space
‘ Shared Software Bus ‘
c3 c4 c2 c4
Cc3 c4 C5
(a) peer—to—peer (b) Shared Data Space (c) Software Bus

Figure 1: Architectural expressiveness

rest of the network by the virtue of the input/output operations that it performs. IWIM and Manifold
allow much more sophisticated exogenous coordination of active entities in a system.

In this paper we describe Pew, a channel-based model for exogenous coordination introduced in [6, 5].
The name Pew is pronounced “rhe-oh” and comes from the Greek word pew which means “[I] flow” (as
water in streams and channels). In plain English text, Pew is best transcribed as Reo.

Our work on Pew builds upon the IWIM model of coordination and the coordination language Mani-
fold, and extends our earlier work on components. In [4] a language for dynamic networks of components
is introduced, and in [10] a compositional semantics for its asynchronous subset is given. A formal model
for component-based systems is presented in [7], together with a formal-logic-based component interface
description language that conveys the observable semantics of components, a formal system for deriv-
ing the semantics of a composite system out of the semantics of its constituent components, and the
conditions under which this derivation system is sound and complete. A concrete incarnation of mobile
channels to support our formal model for component-based systems is presented in [14]. Generalization
of data-flow networks for describing dynamically reconfigurable or mobile networks has also been studied
in [9] and [11] for a different notion of observables using the model of stream functions.

Pew is based on a calculus of channels wherein complex connectors are constructed through composi-
tion of simpler ones, the simplest connectors being an arbitrary set of channels with well-defined behavior.
Pew can be used as the “glue code” in Component Based Software Engineering, where a system is com-
positionally constructed out of components that interact and cooperate with each other anonymously
through Pew connectors.

The rest of this paper is organized as follows. The basic concepts of components, connectors, channels,
etc. are introduced in Section 2. What Pew expects from channels is described in Section 3. Most of
the channel operations defined in Section 3 are not to be used in the (instances of) components directly;
they are low-level operations that are used internally by Pew to define its higher-level operations on
connectors. Connectors and channel composition are discussed in Section 4. Section 5 summarizes the set
of operations that the (instances of) components can perform. Patterns and channel types are described
in Sections 6 and 7, respectively. Sections 8, 9, and 10 provide an insight into the operational semantics
of Pew with hints of its actual implementation. Section 11 contains a number of examples of simple
connectors constructed out of channels. In Section 12 the expressiveness of the compositional paradigm
of Pew is demonstrated through a number of more complex connectors that can be used to implement any
coordination pattern that can be expressed as a regular expression over channel input/output operations.
Section 13 contains a number of examples of non-trivial connectors constructed out of simpler connectors.
In Section 14 we describe how some other coordination models can be emulated in Pew. Finally, a
summary of our conclusions and future work is presented in Section 15.

2 Basic Concepts

Pew is a coordination model and as such has very little to say about the computational entities whose
activities it coordinates. These entities can be fragments or modules of sequential code, passive or active
objects, threads, processes, agents, or software components. Without loss of generality, we refer to these
entities as component instances in Pew. From the point of view of Pew, a system consists of a number
of component instances executing at one or more locations, communicating through connectors that

coordinate their activities. This is shown in Figure 2, where component instances are represented as
boxes, channels as straight lines, and connectors are delineated by dashed lines. Each connector in Pew
is, in turn, constructed compositionally out of simpler connectors, which are ultimately composed out of
channels. This is why each dashed closed curve representing a connector in Figure 2 contains only a set
of channels connected together in a specific topology.

c1 ¢ c2 c1 ¢ s 4 c1 s C4 o .

g " g)
| [\ / - /] " /
! I ' » Sl s ! I
' / I i DA REN N | | /
v J I ' ' N \ | \ /
N L | i / \) |))
Sd- . \ ' \ I | ' /
] \ / \ A N ; /
c2 » C5 . —e Cc3 C5 /
R - b K K
/ v ,

d !
c3 | / !
/

c3 s C6 c2 ¢ : c6

(a) a 3-way connector (b) a 6-way connector (c) two 3-way connectors and a 6-way connector
Figure 2: Components and connectors

A component instance, p, is a non-empty set of active entities (e.g., processes, agents, threads,
actors, etc.) whose only means of communication with the entities outside of this set is through in-
put/output operations that they perform on a (dynamic) set of channel ends that are connected to p.
The communication among the active entities inside a component instance, and the mechanisms used
for this communication, are of no interest. Likewise, Pew is oblivious to the synchronization, mutual
exclusion, and coordination that may have to take place among the active entities inside a component
instance for their proper utilization of the channel ends that are connected to that component instance.
All these details are internal to a component instance and, thus, irrelevant. What is relevant is only
the inter-component-instance communication which takes place exclusively through channels that com-
prise Pew connectors. Indeed, the constituents inside a component instance may themselves be other
component instances that are connected by Pew connectors.

A component is a software implementation whose instances can be executed on physical or logical
devices. Thus, a component is an abstract type that describes the properties of its instances.

A physical or logical device where an active entity executes is called a location. Examples of a
location include a Java virtual machine; a multi-threaded Unix process; a machine, e.g., as identified by
an IP address; etc. A component instance may itself be distributed, in the sense that its constituents
may be executing at different locations (in which case, this too is an internal detail of the component
instance to which Pew is oblivious). Nevertheless, there is always a unique location associated with
every (distributed) component instance, indicating where that component instance is (nominally) located.
There can be zero or more component instances executing at a given location, and component instances
may migrate from one location to another while they execute (mobility). As far as Pew is concerned,
the significance of a location is that inter-component communication may be cheaper among component
instances that reside at the same location.

The only primitive medium of communication between two component instances is a channel, which
represents an atomic connector in Pew. A channel has its own unique identity. Channels are dynamically
created in Pew and they are automatically garbage collected; i.e., they are not explicitly destroyed. A
pattern is permanently associated with every channel at its creation time as its filter. The filter of a
channel restricts the set of values that can flow through that channel.

A channel itself has no direction, but each channel in Pew has exactly two directed ends, with their
own identities, through which components refer to and manipulate that channel and the data it carries.
There are two types of channel ends: sources and sinks. A source channel end accepts data into its
channel. A sink channel end dispenses data out of its channel. A channel end that is known to a
component instance can be used by any of the active entities inside that component instance in Pew
operations, which are described in Section 5.

Channels are used in Pew exclusively to transfer data using input/output operations performed on

Operation Con. | Description

create(chantype[, filter]) - Creates a channel with the wildcard (*) or the specified filter as its filter,
and returns the identifiers of its two channel ends.

_forget (cev) N changes cev such that it no longer refers to the channel end it designates.

_move (cev, loc) Y moves cev to the location loc.

_connect([t,] cev) N Connects the specified channel end, cev, to the component instance that
contains the active entity that performs this operation.

_disconnect (cev) N Disconnects the specified channel end from the component instance that
contains the active entity that performs this operation.

_wait([t,] conds) N Suspends the active entity that performs this operation, waiting for the
conditions specified in conds to become true for the specified channel ends.

_read([t,] inp[, v[, patll) Y Suspends the active entity that performs this operation, waiting for a
value that can match with pat, to become available for reading from the
sink channel end inp into the variable v. The _read operation is non-
destructive: the value is copied from the channel into the variable, but the
original remains intact.

_take([t,] inp[, v[, patll) Y This is the destructive variant of _read: the channel loses the value that
is read.

_write([t,] outp, v) Y Suspends the active entity that performs this operation, until it succeeds
to write the value of the variable v to the source channel end outp.

Table 1: Primitive channel operations

their ends (specifically, observe that channels do not support “message passing” with the “method-call”
semantics). A subset of Pew operations (e.g., the input/output operations) can be performed by (an entity
inside) a component instance on a channel end, only if the channel end is connected to that component
instance. The identity of a channel-end may be known to zero or more component instances, but each
channel end can be connected to at most one component instance at any given time. The connection
of a channel end to a component instance is a logical notion that is independent of the locations of the
channel end and the component instance. The active entities inside a component instance that shares
the same location with one of its connected channel ends may be able to more efficiently manipulate
that channel end, but co-location (of component instances and their connected channel ends) is not a
prerequisite for any such operation.

Both components and channels are assumed to be mobile in Pew. A component instance may move
from one location to another during its lifetime. When this happens, the channel ends connected to this
component instance remain connected, preserving the topology of channel connections. Furthermore,
a channel end connected to a component instance may be moved by the active entities inside that
component instance to another location, perhaps to enhance the efficiency of subsequent operations
on this channel end, still preserving the topology of channel connections. Irrespective of locations, a
channel end connected to a component instance may be disconnected from that component instance, and
connected to another component instance. This, of course, dynamically changes the topology of channel
connections in the system.

3 Primitive Channel Operations

The set of primitive operations on channels and channel ends in Pew is summarized in Table 1. Operations
whose names begin with an underscore are to be used internally by Pew only: (the active entities inside)
component instances are not allowed to perform these operations directly.

The first column in Table 1 gives the syntax of the operations. Square brackets are used as meta-
symbols to indicate optional parameters. The argument chantype designates a channel type, e.g., one of
the identifiers that appear in Tables 3 and 4.

e The parameter filter is a pattern (see Section 6) that will be assigned to the newly created channel
as its filter.

e The parameter loc identifies a location.

e The parameter cev stands for a channel-end-value, which is either a source or a sink end of a
channel.

e The optional parameter t indicates a time-out value greater than or equal to 0. When no time-out
is specified for an operation, it defaults to co. An operation returns with a result that indicates
failure if it does not succeed within its specified time-out period.

e The parameter conds is a channel wait condition expression described in Section 3.6.
e The parameter inp is a sink of a channel, from which data items can be obtained.
e The parameter outp is the source of a channel, into which data items can be written.

e The parameter v is a variable from/into which a data item is to be transferred into/from the
specified channel end.

e The parameter pat is a pattern that must match with a data item for it to be transferable to v.

The second column in Table 1 indicates whether or not a connection between the component instance
and the channel end involved in an operation is a prerequisite for the operation. Clearly, this is irrelevant
for the create operation. The operations _forget, _connect, _disconnect, and the conditions in _wait
can specify any channel end irrespective of whether or not it is connected to the component instance
involved. The -move and the I/O operations _read, write, and _take, on the other hand, fail if the
active entities that perform them reside in component instances that are not connected to the channel
ends involved in these operations.

Every channel type in Pew must support the primitive operations in Table 1, with a “reasonable
variation” of the semantics for each operation as described below. We allow “reasonable variations” in
the precise semantics of these primitives because we wish to allow for such varieties of channels as “read-
only” channels, “immutable” channels, and “lossy channels” each of which may require slight deviations
in the exact semantics of how some of these operations are supported. For instance, a read-only channel
may not support the destructive effect of _take, an immutable channel may not allow destruction or
modification of the data items it contains through _take and _write, and a lossy channel may throw
away certain data items at the time of their _write, etc.

3.1 Channel create

The create operation creates a channel and returns the identifiers of its pair of channel ends. The
ends of a newly created channel are not initially connected to any component instance. Like other
values, channel end identifiers can be spread within or among component instances by copying, parameter
passing, or through writing/reading them to/from channel ends. This way, channel ends created in an
active entity within one component instance can become known in other active entities in the same or
another component instance. There is no explicit operation in Pew to delete a channel. In practice,
useless channels that can no longer be referred to by any (active entity in any) component instance may
be garbage collected.

3.2 Channel forget

The _forget operation changes its cev argument such that it no longer refers to the channel end it
designates. An active entity that (indirectly) performs this operation (by performing its corresponding
Pew operation forget described in Section 4.1.1) causes cev to be forgotten by all active entities inside
the same (immediately enclosing) component instance. This contributes to the eligibility of a channel as
a candidate for garbage collection.

3.3 Channel _move

The _move operation moves the channel end identified by its cev argument to the specified location.
Although mobility of channel ends has significant consequences both for the applications as well as the
implementation of channels, it is indeed transparent to Pew. The only consequence of moving a channel
end is that it may allow more efficient access to the channel end and the data content of the channel
by subsequent channel operations performed by the active entities at the new location. The location or
moving of a channel end does not disrupt the state of or the flow of data through the channel.

3.4 Channel connect

The _connect operation succeeds when the specified channel end is connected to the component instance
that contains the active entity performing it. Pending connect requests on the same channel end are
granted on a first-come-first-serve basis.

The _connect operation allows the same channel end to be dynamically passed around to be used
by different component instances, while it preserves the one-to-one property of channel connections: at
any given time, there is at most one component instance connected to each of the two ends of a channel.
This way, Pew guarantees the soundness and completeness properties that are shown to be required for
compositionality [7].

3.5 Channel _disconnect

The _disconnect operation succeeds when the specified channel end is disconnected from the component
instance that contains the active entity performing it. Disconnecting a channel end pre-empts and
retracts all _read, take, and _write operations that may be pending on that channel end; as far as these
operations are concerned, it is as if the channel end were not connected to the component instance in the
first place. One end of a channel is oblivious to whether or not its opposite end is connected or moves.

3.6 Channel wait

The _wait operation succeeds when its condition expression is true. The parameter conds is a boolean
combination (using and, or, not, and parentheses for grouping) of a set of predefined primitive con-
ditions on channel ends such as _connected(cev), _disconnected(cev), _empty(cev), _full(cev),
_contains(cev, pat), etc. Although the primitive conditions that appear in a wait expression may
refer to different channels, a _wait operation preserves the atomicity of its expression: it succeeds only if
the expression as a whole is true.

For completeness, Pew requires the negation of every channel condition _zzz to also be defined
as mnotzzrr. Thus, for the conditions mentioned above, the following negative conditions must also
be defined for each channel type: notconnected(cev), _notdisconnected(cev), _notempty(cev),
motfull(cev), notcontains(cev, pat),etc. While notconnected(cev) and notdisconnected(cev)
will always be semantically the same as _disconnected(cev) and _connected(cev), respectively, the
relationship between notempty(cev) and _full(cev), for instance, depends on the specific semantics
of different channel types.

The _wait operation applies De Morgan’s law on its condition expression to push boolean not op-
erators all the way down to be “absorbed” by its primitive channel conditions. Thus, for instance,
—(_connected(z) A _full(y)) becomes —_connected(z)V -_full(y), which allows the two negation oper-
ators to be absorbed by their respective primitive conditions, yielding the simplified “positive” condition
expression notconnected(z) V notfull(y).

3.7 Channel _read

The _read operation succeeds when a data item that matches with the specified pattern pat is available
for reading through the sink channel end inp and it is read into the specified variable v. If no explicit
pattern is specified, the default wild-card pattern * is assumed. When no variable is specified, no actual

reading takes place, but the operation succeeds when a suitable data item is available for reading. Observe
that the _read operation is non-destructive, i.e., the data item is only copied but not removed from the
channel.

3.8 Channel take

The _take operation is the destructive version of _read, i.e., the data item is actually removed from the
channel. When no variable is specified as the destination in a _take operation, the operation succeeds
when a suitable data item is available for taking and it is removed through the specified channel end.

3.9 Channel write

The _write operation succeeds when the content of the specified variable either (1) does not match with
the filter of the channel to which the source outp belongs, or (2) it matches the channel filter and is
consumed by the channel.

4 Connectors

A connector is a set of channel ends and their connecting channels organized in a graph of nodes and
edges such that:

e Every channel end coincides on exactly one node.
e Zero or more channel ends coincide on every node.

e There is an edge between two (not necessarily distinct) nodes if and only if there is a channel whose
ends coincide on those nodes.

We use z — N to denote that the channel end z coincides on the node N, and the function Node(z) to
designate the unique node on which the channel end z coincides. For a node N, we define

Sre(N)={z|z— NAz
is a source channel end} to be the set of source channel ends that coincide on N. Analogously,
Snk(N)={z |z— NAz

is a sink channel end} is the set of sink channel ends that coincide on N.

A node N is called a source node if Src(N) # 0 A Snk(N) = (. Analogously, N is called a sink
node if Src(N) =0 A Snk(N) # 0. A node N is called a mixed node if Src(N) # 0 A Snk(N) # 0.

Observe that the graph representing a connector is not directed. However, for each channel end z. of
a channel ¢, we use the directionality of z, to assign a local direction in the neighborhood of Node(z.) to
the edge that represents c. The local direction of the edge representing a channel ¢ in the neighborhood
of the node of its sink z. is presented as an arrow emanating from Node(z.). Likewise, the local direction
of the edge representing a channel ¢ in the neighborhood of the node of its source z. is presented as an
arrow pointing to Node(z.).

By definition, every channel represents a (simple) connector. More complex connectors are constructed
in Pew out of simpler ones using the join operation described in Section 4.1.6.

4.1 Node Operations

The create operation in Table 1 inherently deals with channels and channel ends and as such has no
counterpart for nodes. Table 2 shows the counterparts of the rest of the operations in Table 1 that work
on nodes instead of channel ends.

Operation Con. | Description

forget (N) N This operation atomically performs the set of operations _forget(z), Vz — N.

move (N, loc) Y This operation atomically performs the set of operations _move(z, loc),
Vz — N.

connect ([t,] N) N If N is not a mixed node, this operation atomically performs the set of oper-
ations _connect([t,], z), Vo — N.

disconnect (N) N This operation atomically performs the set of operations _disconnect(z),
Vz — N.

wait([t,] nconds) N This operation succeeds when the conditions specified in nconds become true.

read([t,] N[, v[, patll) Y If N is a sink node connected to the component instance, this operation suc-
ceeds when a value compatible with pat is non-destructively read from any
one of the channel ends z — N into the variable v.

take([t,] N[, v[, patll) Y If N is a sink node connected to the component instance, this operation suc-
ceeds when a value compatible with pat is taken from any one of the channel
ends z — N and read into the variable v.

write([t,] N, v) Y If N is a source node connected to the component instance, this operation
succeeds when a copy of the value v is written to every channel end z — N
atomically.

join(Ny, Ng) Y If at least one of the nodes N1 and Ng is connected to the component instance,
this operation produces a new node that is the result of the destructive merg-
ing the two nodes N; and N3 (i.e., Ny and N2 no longer exist after the join).

split (N[, quoinl) N This operation produces a new node N’ and splits the set of channel ends that
coincide on the node N between the two nodes N and N’ according to the set
of edges specified in quoin.

hide(N) N This operation hides the node N such that it cannot be used in any other
operation.

Table 2: Node operations

The names of the operations in Table 2 do not have underscore prefixes: they are meant to be used by
components. The operations in Table 2 are defined only on non-hidden nodes (see Section 4.1.8). They
all fail with an appropriate error if any of their node arguments is hidden. As in Table 1, the second
column in Table 2 shows whether the connectivity of (all channel ends coincident on) the node argument
is a prerequisite for each operation.

4.1.1 Node Forget

A forget operation performed by (an active entity inside) a component instance on a node N, atomically
performs the set of channel operations _forget(z), for all channel ends z that coincide on node N.

4.1.2 Node I/O Operations

A read, take, or write operation performed by (an active entity inside) a component instance becomes
and remains pending (on that node or its subsequent heirs, as described in Section 4.1.6) until either its
time-out expires, or the conditions are right for the execution of its corresponding channel end opera-
tion(s). These operations can succeed only if the nodes they refer to are connected to the component
instances that (contain the active entities that) perform them. Because mixed nodes cannot be connected
to any component instance (see Section 4.1.4), read, take, and write cannot be performed on mixed
nodes.

The precise semantics of read, take, and write, as well as the semantics of mixed nodes, depend on
the generic properties of the channels that coincide on their involved nodes. This is described in Section 9.

Intuitively, read and take operations nondeterministically obtain one of the suitable values available
from the sink channel ends that coincide on their respective nodes. The write operation, on the other
hand, replicates its value and atomically writes a copy to every source channel end that coincides on its
node parameter.

4.1.3 Node Move

As defined in Table 2, the move operation atomically moves all channel ends that coincide on its node
argument to its location argument. This may allow more efficient access to these channel ends by
subsequent operations performed at the specified location. There are three occasions where moving a node
may be useful. First, when a component instance connects to a node, it typically intends to subsequently
perform some I/O operations on that node. Thus, often a move operation immediately follows a connect.
Second, when a component instance moves from one location to another, all of its currently connected
nodes should also move together with it to preserve the efficiency of its subsequent channel end operations
at its new location. In this case, the (non-Pew) component-instance-move operation should perform the
respective node move operations as well. Third, a distributed component instance may move a node to a
location in order to allow more efficient operations on that node by its internal active entities.

4.1.4 Node Connection

As defined in Table 2, the connect and disconnect operations atomically connect and disconnect all
channel ends that coincide on their node arguments to their respective component instances. Only source
and sink nodes (not mixed nodes) can be connected to component instances. Thus, a connect fails if its
argument node is a mixed node.

When a node is disconnected from a component instance, all read, take, and write operations
pending on that node are pre-empted and retracted; as far as these operations are concerned, it is as if
the node were not connected to the component instance in the first place.

4.1.5 Node Conditions

The nconds in wait is a boolean combination of primitive node conditions, which are the counterparts
of the primitive channel end conditions of _wait in Table 1. For every (positive or negative) primitive
condition on a channel end x, e.g., .connected(x), _disconnected(x), _empty(x), _-full(x), etc., Pew
defines two corresponding primitive conditions on a node N, e.g., connected(N) and connectedAll(N),
disconnected(N) and disconnectedAl1l(N), empty(N) and emptyAll(N), full(N) and fullA1ll(N),
etc. A primitive node condition without the All suffix is true for a node N when its corresponding
channel end condition is true for some channel end x — N. Analogously, a primitive node condition that
ends with the suffix A11, is true for a node N when its corresponding channel end condition is true for all
channel ends x — N.

Note the precedence of not, which is applicable at the channel end level, over A11l, which applies at
the node level: the condition notemptyAll(N), for instance, is true if all channel ends that coincide on the
node N are non-empty. The situation where not all channel ends coincident on a node N are empty can be
expressed as the condition notempty (N), which holds if there exists at least one channel end coincident
on N that is non-empty.

A wait operation thus translates its node condition expression into a channel end condition expression,
and uses it to perform a _wait operation.

4.1.6 Node Composition

The composition operation join(Ny, N2) succeeds only if at least one of the two nodes N; and Nj is
connected to the component instance, p, containing the active entity that performs this operation. The
effect of join is the (destructive) merge of the two nodes N; and N5 into a new node, N; i.e., all channel
ends that previously coincided on either N; or N9, now coincide on the one and the same node, N. If Ny
and Ny are both connected to p and N is not a mixed node, then p remains connected to (all channel ends
coincident on) the node N; otherwise, p is disconnected from (all of the channel ends that coincide on)
the node N. In other words, p may lose its previous connection to N1, Ny, or both, or it may “retain” its
previous connection to both of them by remaining connected to their common heir, N.

When p loses its previous connection with any of the nodes Ny and N, all read, take, and write
operations pending on that node are retracted. Otherwise, all operations pending on N; and Ny become

10

pending on their common heir, N. Specifically, observe that if, e.g., Ny is connected to p and Ng is connected
to another component instance, ¢, then a join(N;, N3) performed by an active entity inside p does not
disrupt any operation (issued by an active entity inside ¢) that may be pending on Na. See Section 9 for
the semantics of mixed nodes and the semantics of I/O operations on other nodes.

4.1.7 Node Splitting

A split operation performed on a node N produces a new node N’ and divides the set of channel ends
that coincide on N between the two nodes N and N’. The newly created node, N, is not connected to any
component instance. The split operation does not require its node argument, N, to be connected to the
component instance (that contains the active entity) that performs it. Furthermore, it does not affect
the connection of N to any component instance that it may be connected to. Consequently, except when
all channel ends coincident on N are assigned to N’ after the split, any I/O operation that may be pending
on N before the split, remains unaffected and pending on N after the split. In the degenerate case where
N is left with no coincident channel ends after the split, any I/O operation pending on this node fails.

Different versions of the split operation, with different signatures, allow different ways of specifying
how the coincident channel ends are to be split between the old and the new nodes. One way or the
other, the ends of the channels that form the “exterior angle” at the splitting node constitute the quoin
of the split operation, and they are the ones that are moved to the new node.

In split (N, S), the parameter S is a set of channel ends and every channel end z — N such that
z € S is moved to the new node, N'. The operation split(N) moves all sink channel ends z — N to the
new node N’, leaving only source channel ends to coincide on N. The quoin of the split in split(N, M)
is defined through the set @ of channels with one end on each of the two nodes N and M: the ends of the
channels in) that coincide on N are moved to N'.

HHHHA
A

(@) (b) ©
~ N\ !
s
(d) (e) ® (9)

Figure 3: Examples of join and split

Figure 3 shows a few examples of join and split operations. By joining the sink and the source
ends of the two channels in Figure 3.a, we obtain the connector in Figure 3.b. A split performed on
the mixed node in Figure 3.b inverses the join operation and produces the two independent channels of
Figure 3.a. Joining the source and the sink nodes of the connector in Figure 3.b, produces the connector
in Figure 3.c. Similarly, the connector in Figure 3.b can be obtained by splitting one of the mixed nodes
of the connector in Figure 3.c. Analogously, the pairs of Figures 3.d and e and f and g show connectors
that are related to each other through a one-node join and split operations, respectively.

4.1.8 Hiding Nodes

The hide(N) operation is an important abstraction mechanism in Pew: hiding a node N ensures that N
can no longer be used in any other operation (by any active entity in any component instance). This
guarantees that the topology of channels coincident on N can no longer be modified by anyone.

11

5 User-level Operations

User-level operations are the ones that Pew allows the active entities inside component instances to
perform. They consist of the set of operations in Table 2, plus the create operation in Table 1; i.e., all
those operations whose names do not have an underscore prefix. Accordingly, only node (not channel
end) conditions can be used by components in wait condition expressions.

For convenience, we extend the operations in Table 2 to also accept channel ends as abbreviations for
nodes: a channel end x appearing in place of a node N in any of the operations in Table 2 stands for the
node Node(x). Analogously, a channel end x appearing in place of a node N in any of the primitive node
conditions in a wait operation is treated as an abbreviation for the node Node(x).

The convenience of using channel ends instead of nodes as arguments of Pew operations has the
practical advantage of alleviating the need for components to deal with nodes explicitly as separate
entities. The components know and manipulate only channel ends. Channel ends are created by the
create operation in Table 1, and are passed as arguments to the operations in Table 2, where they actually
represent the nodes that they coincide on, rather than specific channel ends. This makes components
immune to the dynamic creation and destruction of the nodes whose coincident channel ends they use,
while third parties perform join and split operations on those nodes.

6 Patterns

Pew uses patterns to regulate channel input/output operations. A pattern is an expression that matches
(in the sense of unification in logic programming) a data item when it is written to, read from, or simply
flows through a channel. A pattern is associated with each channel at its creation time. These patterns
restrict the values that can flow through their respective channels. Furthermore, read operations can
specify patterns that must match the items they read.

We write d 5 p to denote that the data item d matches with the pattern p, and d # p to denote
otherwise.

The atomic patterns are type identifiers (e.g., int, real, string, number, etc.) that match with any
one of their instances, plus the wild-card pattern (*). A specific value is a pattern that matches only
itself. Patterns can be composed into tuple structures using angular brackets (< and >). Thus, <int,
string> is a pattern that matches any pair that consists of an integer and a string. Matched patterns can
bind free variables, which in turn can be used to enforce additional constraints. For instance, <int*x,
2.4, x> matches any triplet consisting of the same integer as its first and third element, with the real
value 2.4 as its second.

A pattern can be augmented with additional constraints in square brackets. For instance, <int*x,
*, int*y>[x > y] matches with any triplet with two integers as its first and third elements, as long as
the first element is numerically greater than the third. The pattern <int*x, stringl[a+b*c], real*y>
[y >= 3+*x] matches triplets consisting of an integer, a string, and a real number, where the real number
is greater than or equal to 3 times the integer, and the string consists of one or more occurrences of “a”
followed by zero or more occurrences of “b” with a single “c” at its end.

7 Channel Types

Pew assumes the availability of an arbitrary set of channel types, each with its well-defined behavior.
A channel is called synchronous if it delays the success of the appropriate pairs of operations on its
two ends such that they can succeed only simultaneously; otherwise, it is called asynchronous. An
asynchronous channel may have a bounded or an unbounded buffer (to hold the data items it has already
consumed through its source, but not yet dispensed through its sink) and may or may not impose a
certain order on the delivery of its contents. A lossy channel may deliver only a subset of the data items
that it receives, and lose the rest.

Although every channel in Pew has exactly two ends, they may or may not be of different types.
Thus, a channel may have a source and a sink end, two source ends, or two sink ends. The behavior of

12

Type Description

Sync has a source and a sink. The pair of I/O operations on its two ends can succeed only simultaneously.

SyncDrain has two source ends. The pair of I/O operations on its two ends can succeed only simultaneously. All
data items written to this channel are lost.

SyncSpout has two sink ends. The pair of I/O operations on its two ends can succeed only simultaneously. Each sink
of this channel acts as an unbounded source of data items that match with the channel filter. Data items
are produced in a non-deterministic order. The data items taken out of the two sinks of this channel are
not related to each other.

LossySync has a source and a sink. The source end always accepts all data items that match the filter of the channel.
If there is no matching I/O operation on the sink end of the channel at the time that a data item is
accepted, then the data item is lost; otherwise, the channel transfers the data item exactly the same as
a Sync channel, and the I/O operation at the sink end succeeds.

Table 3: Examples of synchronous channel types

a channel may depend on such parameters as its filter, its synchronizing properties, the number of its
source and sink ends, the size of its buffer, its ordering scheme, its loss policy, etc.

While Pew assumes no particular fixed set of channel types, it is reasonable to expect that a certain
number of commonly used channel types will be available in all implementations and applications of Pew.
Tables 3 and 4 show a non-exhaustive set of interesting channel types and their properties. Most of the
channel types in these tables are mentioned here as indicative examples only; a few will be used further
in this paper as the building blocks for more complex connectors to demonstrate the expressiveness of
Pew.

7.1 Channel Type Sync

The Sync channel type represents the typical synchronous channels. A _read(t, y., v, p) on the sink y. of
a channel ¢ of this type succeeds only if there is a _write(t', z., d) operation pending on the source z. of
this channel and the data item d matches both with the filter of ¢ as well as the read-pattern p. In this
case, d is copied into the read-variable v, the _read operation succeeds, but the _write remains pending.

A write(t',z., d) operation succeeds only if either 1) d does not match with the filter of ¢; or 2) there
is a _take(t, yc, v, p) operation pending on the sink y. of the channel ¢, and the data item d matches
both with the filter of ¢ as well as the take-pattern p. In the latter case, d is copied into the read-variable
v, and the _take and the _write operations both succeed simultaneously.

7.2 Channel Type SyncDrain

A SyncDrain is a lossy channel that allows pairs of _write operations pending on its opposite ends to
succeed simultaneously, thus, synchronizing them. A _write operation whose value does not match with
the channel filter succeeds immediately. All written values are lost.

7.3 Channel Type SyncSpout

A SyncSpout channel is an unbounded source of data items that match with its channel filter, and can
be taken from its opposite ends only simultaneously in some non-deterministic order. While the pair
of _take operations performed on the opposite ends of a SyncSpout are synchronized by the channel,
the two data items taken by these operations are independent of each other. For example, <x, y> =
create(SyncSpout, int*x[0 <= x, x <= 10]) creates a SyncSpout each of whose two sink ends x
and y produces an unbounded sequence of integers between 0 and 10 in some non-deterministic order.
Read operations on x and y succeed immediately independent of each other and successive read operations
on the same end, of course, produce the same integer (read is non-destructive). However, a take operation
on one end can succeed only simultaneously with another take operation at the other end.

13

Type Description

Ordered has a source and a sink, and an unbounded buffer. The source end always accepts all data items that
match the filter of the channel. The accepted data items are kept in the internal buffer of the channel.
The appropriate operations on the sink end of the channel obtain their matching data items out of the
buffer in the same order in which they entered the channel.

Orderedn is the bounded version of Ordered with the channel buffer capacity of n data items.

FIFO has a source and a sink, and an unbounded buffer. The source end always accepts all data items that
match the filter of the channel. The accepted data items are kept in the internal FIFO buffer of the
channel. The appropriate operations on the sink end of the channel obtain the contents of the buffer in
the FIFO order.

FIFOn is the bounded version of FIFO with the channel buffer capacity of n data items.

Bag is similar to FIFO, except that its internal buffer is an unbounded bag (multi-set).

Bagn is the bounded version of Bag with the channel buffer capacity of n data items.

Set is similar to Bag, except that no duplicate data items can exist in the channel buffer, and all such duplicate
data items are lost.

Setn is the bounded version of Set with the channel buffer capacity of n data items.

DelaySet is similar to Set, except that the I/O operation that attempts to insert a duplicate data item into the
channel is delayed until its respective data item is taken out of the channel buffer by some other I/O
operation.

DelaySetn is the bounded version of DelaySet with the channel buffer capacity of n data items.

KeyedSet can accept only tuples of one or more elements as valid data items. The first element in each tuple is

considered to be the key for that tuple. No two data items with the same key can exist in the channel
buffer at the same time. Inserting a new tuple with the same key as that of another tuple already in the
channel buffer, replaces the old tuple with the new one.

KeyedSetn is the bounded version of KeyedSet with the channel buffer capacity of n data items.

AsyncDrain has two source ends. The channel guarantees that two operations on its two ends never succeed simulta-
neously. The channel is fair by alternating between its two ends and giving each a chance to dispose of
a data item. All data items written to this channel are lost.

AsyncSpout has two sink ends. The channel guarantees that two operations on its two ends never succeed simultane-
ously. The channel is fair by alternating between its two ends and giving each a chance to obtain a data
item from the channel. The values obtained from the two ends of the channel are not related to each
other.

ShiftFIFOn is the lossy version of FIFOn, where the arrival of a data item when the channel buffer is full, triggers the
loss of the oldest data item in the buffer, to make room for the new arrival.

LossyFIFOn is the lossy version of FIFOn, where all newly arrived data items when the channel buffer is full, are lost.

Table 4: Examples of asynchronous channel types

7.4 Channel Types Ordered and Orderedn

The Ordered, and Orderedn channel types, where n is an integer greater than zero, represent unbounded
asynchronous and bounded asynchronous ordered channels. A _write to an Ordered channel always
succeeds, and a _write to an Orderedn succeeds onl y if either 1) the written value does not match with
the channel filter (in which case it is lost); or otherwise 2) the number of data items in i ts buffer is less
than its bounded capacity, n. A _read or _take from an ordered or orderedn channel suspends until
there is a data item in the channel buffer that matches the _read or _take pattern. If multiple matches
are possible, the first (i.e., oldest) in the buffer that satisfies the match is selected. The matching data
item is then (destructively) obtained and the operation succeeds.

7.5 Channel Types FIF0 and FIFOn

The FIF0, and FIFOn channel types, where n is an integer greater than zero, represent the typical
unbounded asynchronous and bounded asynchronous FIFO channels. A _write to a FIFO channel always
succeeds, and a _write to a FIFOn channel succeeds only if either 1) the written value does not match
with the channel filter (in which case it is lost); or otherwise 2) the number of data items in its buffer
is less than its bounded capacity, n. A read or _take from a FIFO or FIFOn channel suspends until the
first (i.e., oldest) data item in the channel buffer matches with the _read or _take pattern, in which case,
it is (destructively) obtained and the operation succeeds.

14

7.6 Bags and Sets

The channel types Bag, Bagn, DelaySet, and DelaySetn, where n is an integer greater than zero, are
asynchronous channels with (un)bounded buffer capacities, but unlike FIF0 and FIFOn they do not impose
any ordering on the delivery of their buffer contents. A _read or _take operation on the sink of such
a channel succeeds by (non-deterministically) selecting one of the data items in the channel buffer that
match the pattern specified in the operation. Bag and Bagn channels allow multiple copies of the same
data item to be present in their buffers at the same time. DelaySet and DelaySetn channels do not
allow duplicates: an attempt to _write a duplicate data item into one of these channels suspends until
its corresponding data item no longer exists in the channel buffer.

7.7 Channel Types KeyedSet and KeyedSetn

A KeyedSet channel is an asynchronous channel with an unbounded buffer. Every item written into this
channel must be a non-empty tuple. The first element of each tuple is considered as its key. The key
value of every tuple in the buffer of a channel of this type must be unique. Writing a tuple whose key
value is the same as the key value of an existing tuple, replaces the old tuple in the buffer with the new
one.

KeyedSet channels are used to construct dynamic records or forms. For instance, a channel of this
type may contain the tuples <"FirstName", "Joe">, <"LastName", "Blo">, <"SocialSecurityNo",
"555-12-3456">, <"Sex", "Male">, <"Age", 46> <"Pets", <"Cat", "Fluffy">, <"Dog", "Spike">,
<"Goldfish", "Wanda">>, <"Wife", wsnk>, and <"Children", clsnk, c2snk, c3snk>, where wsnk,
clsnk, c2snk, and c3snk, are references to the sink ends of other KeyedSet-type channels, containing
the records describing Joe Blo’s wife and three children.

The KeyedSetn channel is the bounded version of the KeyedSet channel, where the integer n > 0 is
the maximum capacity of its buffer. Other useful variations of channel types in this family include:

e a read-only version of the KeyedSet or KeyedSetn that ensures that _take operations do not actually
remove values from its buffer;

e a delayed version of the KeyedSet or KeyedSetn that guarantees that an attempt to _write a tuple
with the same key as another one already in the channel buffer is delayed until the latter is removed
(i.e., by a _take); and

e an tmmutable version of the KeyedSet that combines the behavior of the delayed and the read-only
versions to make all tuples in the channel buffer immutable (i.e, once a tuple enters the channel, it
cannot be removed, nor modified).

7.8 Channel Types AsyncDrain and AsyncSpout

AsyncDrain and AsyncSpout are analogous to SyncDrain and SyncSpout, respectively, except that they
guarantee that, respectively, the pairs of _write and the pairs of _take operations on their opposite ends
never succeed simultaneously. These channel types are important basic synchronization building blocks
for the construction of more complex connectors.

7.9 Lossy Channels

An important class of channel types is the so-called lossy channels. These are the channels that do not
necessarily deliver through their sinks every data item that they consume through their sources. For
instance, SyncDrain and AsyncDrain channels are lossy channels that lose every data item written to
them.

A channel can be lossy because when its bounded capacity becomes full, it follows a policy to, e.g.,
drop the new arrivals (overflow policy) or the oldest arrivals (shift policy). ShiftFIFOn is a bounded
capacity FIFO channel that loses the oldest data item in its buffer when its capacity is full and a new
data item is to be written to the channel. Thus, (up to) the last n arrived data items are kept in its

15

channel buffer. A LossyFIFOn channel, on the other hand, loses the newly arrived data items when its
capacity is full.

An asynchronous channel may be lossy because it requires an expiration date for every data item it
consumes, and loses any data item that remains in its buffer beyond its expiration date. Other channels
may be lossy because they implement other policies to drop some of the data items they consume.

For instance, Set and Setn channel types are the lossy counterparts of Bag, Bagn, DelaySet, and
DelaySetn. Like DelaySet and DelaySetmn, they do not allow duplicate data items in their buffers.
Unlike DelaySet and DelaySetn, they do not delay the success of write operations that attempt to
insert duplicate data items; instead, they lose the duplicate data items.

A LossySync channel behaves the same as a Sync channel, except that a write operation on its source
always succeeds immediately. If a compatible read or take operation is already pending on the sink of a
LossySync channel, then the written data item is transferred to the pending operation and both succeed.
Otherwise, the write operation succeeds and the data item is lost.

An interesting class of lossy channels is annihilator channels. An annihilator channel is an asyn-
chronous channel that partitions a subset of all data items that can enter its buffer into two (not nec-
essarily disjoint) sets of values and anti-values. Whenever a value and its anti-value happen to be in
the buffer of such a channel, they immediately annihilate each other and are both lost. For instance, an
annihilator bag channel whose filter allows only numbers in its buffer may interpret negative numbers as
anti-values for their positive counterparts. Thus, whenever a number z enters this channel, it either (1)
remains in the buffer if it does not already contain a —z; or (2) the z and a —z are both lost, otherwise.
Observe that in this case, the number 0 may or may not be defined as its own anti-value.

8 Channel Behavior

The channel types described in Section 7 are indicative of the richness and the diversity of the behavior
of channels allowed in Pew. However, Pew is not directly aware of the behavior of any particular channel.
Pew expects every channel type to be able to provide a “reasonable implementation” of the operations
in Table 1.

The set of operations in Table 1, thus, describes the common behavior of all channels in Pew.
However, the operations in Table 1 are not sufficient to describe the full behavior of different channel
types. As far as Pew is concerned, the generic behavior of a channel ¢, whose source and sink are z,
and y., respectively, is defined indirectly through three functions:

e filter(c) is the filter of the channel c.

e offers(y.,p) is the multi-set of pairs (y.,d) for each d in the multiset of values that may be
assigned to a variable v in a _take(0, y., v, p).

e takes(z., d) is true for a data item d if d 5 filter(c) and the state of ¢ allows _write(0, z., d) to
succeed.

For completeness, we define offers(z.,p) = 0, for all patterns p, and takes(y., d) = false, for all data
items d.

In addition to its common and generic behavior, each channel type also has a specific behavior. The
specific behavior of a channel type is the precise semantics that relates its generic behavior, its common
behavior, and its internal state. Although the specific behavior of a channel is important wherever it is
used, the Pew operations are semantically independent of the specific behavior of channels.

9 Dataflow Through Nodes

The (active entities inside) component instances can write data values to source nodes and read/take
them from sink nodes, using the node operations defined in Table 2. Generally, everything flows in Pew
from source nodes through channels and mixed nodes down to sink nodes. Some data items get lost in

16

the flow, and some settle as sediments in certain channels for a while before they flow through, if ever. It
is the composition of channels into connectors, together with the node operations read, take, and write,
that yield this intuitive behavior in Pew. In this section, we informally describe the operational semantics
of mixed nodes and the read, take, and write operations on nodes. Our exposition is intended to show
the fundamentals of a truly distributed implementation of Pew. We ignore certain aspects of timing and
all locking issues here to simplify our presentation.

For a data item d and the source z. of a channel ¢, we define:

accepts(z.,d) = d # filter(c) V takes(z, d) (1)
and further extend this definition for a node N as:

false if N is a sink node

accepts(N,d) = { Nsesre(n) accepts(z, d) otherwise ?

The semantics of write’ing a data item d to a node N with a time-out of 0 < ¢t < oo can now be
defined as follows.

Definition 1 A write operation write(t, N, d) remains pending on the node N, until either (1) its time-
out t expires, in which case the write operation fails; or (2) the predicate accepts(N, d) is true, and the
set of operations {_write(oo,z,d) | z — Src(N) A takes(z, d)} atomically succeeds, in which case the
write operation succeeds.

Observe that a _write operation is performed only for those channel ends in Definition 1 for which
takes(z, d) is true. By the definition of the take predicate, above, this guarantees that every such
_write operation immediately succeeds.

We use the predicate II(O) to designate whether or not the operation O is pending (on its respective
node). The special symbol € represents “no channel end” in the following definition. The multi-set of
pairs identifying the values offered by a node N is thus defined as:

of fers(N, p) — { Wa . murive(s, v, a)ynaspile)} if Nis a source node 3)
e sk () offers(z, p) otherwise

According to this definition, a source node offers only the multi-set of values proposed by the write
operations pending on that node, each as the second element of a pair whose first element indicates “no
channel end.” A mixed node cannot be involved in any write operation in Pew. Therefore, the multi-set
of the values offered by a mixed or a sink node is the (multi-set) union of all values offered by all of its
coincident sinks.

The semantics of take’ing a value that matches with a pattern p from a node N into a variable v

before the time-out 0 < t < oo, can now be defined as follows.

Definition 2 A take operation take(t, N, v, p) remains pending on the node N, until either (1) its time-
out t expires, in which case the take operation fails; or (2) Iy, d) € offers(N,p) and the operation
_take(oo, z, v, d) succeeds on a non-deterministically (but fairly) selected channel end z — N such that
(y,d) € offers(z,p), in which case the take operation succeeds.

Observe that a _take operation is performed in Definition 2 only on a channel end z for which offers(z, p)
contains an appropriately matching data item. By the definition of the offers predicate, above, this
guarantees that such a _take operation succeeds in finite time.

Semantically, a read(t, N, v, p) operation is analogous to take(¢, N, v, p), but its details are beyond
the scope of this paper.

Because mixed nodes cannot be connected to components, the possibility of having a mixed node
involved in a read, take, or write operation is precluded. A mixed node automatically transfers all
eligible data items from its coincident sinks to its coincident sources. The multi-set 7(N) of the pairs
representing the data items that are eligible for transfer at a mixed node N is defined as

7(N)={{y,d) | (y,d) € offers(N,) A accepts(N,d)}. (4)

17

1 while (true) do

2 suspend until 7(N) is non-empty

3 for each (y,d) € 7(N) do

4 _take(oo, y, v, d)

5 for each z +— Src(N) do

6 if (takes(z,d)) then _write(oo,z,d)
7 done

8 done

9

done

Table 5: Semantics of a mixed node

Definition 3 The semantics of a mized node N in Pew is defined as the execution of the infinite loop in
Table 5 by an independent process dedicated to N. The actions in each iteration of the for-loop on line
3, starting with the selection of a (y,d) € 7(N), are performed atomically.

Observe that the contents of 7(N) may change between the two lines 2 and 3, and, of course, from one
iteration of the for-loop on line 3 to the next. However, once a (y,d) € 7(N) is selected on line 3, all
operations in the iteration of the loop (up to line 8) are performed atomically. This means that the
channels whose ends coincide on N are properly locked for the duration of each iteration to ensure that
their states do not change by any action other than those in that iteration.

Furthermore, note that the _take on line 4 specifies the pre-selected data item d as its take-pattern,
which can match only with d. Observe that d is selected on line 3 such that (y, d) € offers(y, %), which
guarantees that (1) the _take operation on line 4 succeeds in finite time; and (2) the _take operation on
line 4 indeed takes the value d out of the channel y (and assigns it to the take-variable v). Moreover,
the write(oo, z, d) operation on line 6 is performed only if takes(z, d) is true. This guarantees that the
_write operation on line 6 succeeds in finite time.

When a mixed node is created by a join or split operation, a new dedicated process is created
to reify its semantics. Analogously, when a mixed node is destroyed by a join or split operation, its
corresponding dedicated process is destroyed.

10 Generic Behavior of Channels

It is instructive to consider a few common channel types as examples to see how their generic behavior
can be expressed in Pew. In this section, we describe the behavior of some of the channels in Tables 3
and 4.

10.1 Generic Behavior of Asynchronous Channels

The existence of buffers in asynchronous channels means that the behavior of one end of an asynchronous
channel is decoupled from that of the other and, instead, depends on its buffer. This makes the behavior
of asynchronous channels simpler to describe. For instance, the behavior of some of the channels presented
in Table 4 is described in the rest of this section.

10.1.1 Generic Behavior of Ordered

Consider an Ordered channel ¢ and let z. and y, be its source and sink ends, respectively. Let the sequence
B(c) = (Bg, Bx—1,...B2, By) represent the buffer of the channel ¢, where By is its oldest element. The
generic behavior of ¢ is defined by the function filter(c), which returns the pattern assigned to ¢ as its

18

filter upon its creation, and the following two functions.

Ye, B; if there exists a smallest 1 < ¢ < k such that B; 5 p
offers(ye,p) = { é{)< & otherwise

(5)

takes(z., d) = d 3 filter(c) (6)

This states that what the sink end of ¢ offers (for reading or taking) is the empty set if the buffer of ¢
contains no suitable matching element, and a singleton (containing the oldest data element that matches
p), otherwise.

10.1.2 Generic Behavior of Orderedn

The behavior of a Orderedn channel is identical to that of a Ordered, except that its bounded capac-
ity may prevent it from accepting values when it is full. Let ¢ be a Orderedn channel with B(c) =
(Bg, Br—1, ...Ba, By) representing its buffer, as in Section 10.1.1. Clearly, the constraint |B(c)| < n must
be maintained by this channel, where || represents the length of the sequence a. The generic behavior
of ¢ is defined by the function filter(c), which returns the pattern assigned to c¢ as its filter upon its
creation, and the following two functions.

Ye, B; if there exists a smallest 1 < ¢ < k such that B; 5 p
offers(ye,p) = { é{)< & otherwise

(7)
takes(z.,d) = d 3 filter(c) A |B(c)| < n (8)

This states that takes(z., d) succeeds as long as the number of data items in the (bounded) buffer
of ¢ is less than its capacity, n.

10.1.3 Generic Behavior of FIFO

Consider a FIFO channel ¢ (as described in Table 4) and let z. and y. be its source and sink ends,
respectively. Let the sequence B(c) = (B, Bk—1,...Ba, B1) represent the buffer of the channel ¢, where
By is its oldest element. The generic behavior of ¢ is defined by the function filter(c), which returns the
pattern assigned to c as its filter upon its creation, and the following two functions.

offers(y.,p) = { é<yc’ Bi)} ioftfe(rizizée ()VBi>p (9)
takes(z., d) = d > filter(c) (10)

This states that what the sink end of ¢ offers (for reading or taking) is the empty set if the buffer of
¢ is empty, and a singleton (containing the first data element to be taken), otherwise.

10.1.4 Generic Behavior of FIFOn

The behavior of a FIFOn channel is identical to that of a FIF0, except that its bounded capacity may
prevent it from accepting values when its bounded capacity is full. Let ¢ be a FIFOn channel with
B(c) = (By, Bx_1, -..Ba, By) representing its buffer, as in Section 10.1.3. Clearly, the constraint |B(c)| < n
must be maintained by this channel, where |a| represents the length of the sequence a. The generic
behavior of ¢ is defined by the function filter(c), which returns the pattern assigned to c as its filter upon
its creation, and the following two functions.

offers(y.,p) = { (‘Z{)<ycv By)} ioftfe(rizii ()VB1>p (1)
takes(z.,d) = d 3 filter(c) A |B(c)| < n (12)

This states that takes(z., d) succeeds as long as the number of data items in the (bounded) buffer
of ¢ is less than its capacity, n.

19

10.1.5 Generic Behavior of Bag

The behavior of a Bag channel c is similar to that of a FIFO, except that the multi-set offers(y.) yields
all the elements in its buffer that match with the specified pattern. The generic behavior of ¢, in this
case, is defined by the function filter(c), which returns the pattern assigned to ¢ as its filter upon its
creation, and the following two functions.

offers(ye,p) = {(yc, d) | d € B(c) N d 3 p} (13)

takes(z., d) = d 3 filter(c) (14)

10.1.6 Generic Behavior of Bagn

The behavior of a Bagn channel ¢ is the same as that of a Bag channel, except that it refuses to take any
more values when its bounded buffer capacity is full. The generic behavior of ¢, in this case, is defined
by the function filter(c), which returns the pattern assigned to c¢ as its filter upon its creation, and the
following two functions.

offers(yc,p) = {(Ye,d) | d € B(¢) Ad > p} (15)

takes(z.,d) = d 3 filter(c) A |B(c)| < n (16)

10.1.7 Generic Behavior of Set and Setn

A Set is the same as a Bag: the fact that it loses duplicates is part of its specific behavior which does not
affect its generic behavior expressed through offers and takes. The generic behavior of a Set channel ¢
is defined by the function filter(c), which returns the pattern assigned to c as its filter upon its creation,
and the equations 13 and 14, defined in Section 10.1.5.

Analogously, the behavior of a Setn channel is defined by its filter(c) and the equations 15 and 16,
defined in Section 10.1.6.
10.1.8 Generic Behavior of DelaySet and DelaySetn

A DelaySet channel behaves the same as a Bag, except that for its takes(z., d) to be true, it must also
be the case that d does not exist in its buffer. The generic behavior of a DelaySet channel ¢ is defined
by the function filter(c), which returns the pattern assigned to ¢ as its filter upon its creation, and the
following two functions.

offers(ye,p) = {(yc, d) | d € B(c) N d 3 p} (17)

takes(z.,d) = d 3 filter(¢) A d & B(c) (18)
Analogously, the takes(z., d) for a DelaySetn is defined as:

takes(z.,d) = d 3 filter(c) ANd & B(c) AN|B(c)| < n (19)

10.1.9 Generic Behavior of KeyedSet and KeyedSetn

The generic behavior of a KeyedSet channel ¢ is defined by the function filter(c), which returns the
pattern assigned to c¢ as its filter upon its creation, and the following two functions.

offers(y.,p) = {(¢e,d) | d € B(c) A d 3 p} (20)
takes(z.,d) = d > filter(c) ANd = (k) o« (21)

20

The takes predicate ensures that the values that can enter the channel are tuples of the form (k) o «,
where k is an arbitrary value called key, « is an arbitrary possibly empty tuple, and o is the concatenation
operator. The specific behavior of a KeyedSet channel ensures that there is no more than a single tuple
with the same key in the channel buffer at any given time, by replacing an old tuple with a new tuple
that has the same key.

The behavior of a KeyedSetn is derived from that of a KeyedSet by imposing the constraint of its
bounded capacity in the, by now, obvious manner.

10.1.10 Generic Behavior of AsyncDrain

The generic behavior of an AsyncDrain channel ¢ with the z, and y. as its two source ends is dynami-
cally defined by its specific behavior. Effectively, the two predicates takes(z.,p) and takes(y.,p) each
alternates between true and false, as the specific behavior of ¢ alternates between a _take operation on
each of its ends. This guarantees that an AsyncDrain channel never consumes data items through its
two ends simultaneously. Thus, if its two ends happen to coincide on the same node, it is impossible for
them to consume anything at all, because the semantics of flow through nodes requires all consumers on
that node to consume their values simultaneously (see Section 9).

10.1.11 Generic Behavior of AsyncSpout

The generic behavior of an AsyncSpout channel ¢ with the z. and y. as its two sink ends is defined
dynamically through its specific behavior. Effectively, the two functions offers(z.,p) and offers(y., p)
yield singletons or the empty set, as ¢ alternates and performs an immediate _write (i.e., with a time-out
value of 0) on each of its two ends. This guarantees that an AsyncSpout channel never produces data
items through its two ends simultaneously.

10.1.12 Generic Behavior of ShiftFIFOn and LossyFIFOn

The generic behavior of ShiftFIFOn and LossyFIFOn channels is identical to that of a FIFOn channel:
the fact that they may lose their contents when their capacity is full, and the different policies they use
to determine which data item to lose, are all part of the details of their specific behavior. As far as the
Pew operations are concerned, these channel types behave as if they were FIFOn channels.

10.2 Generic Behavior of Synchronous Channels

The generic behavior of synchronous channels can be defined in terms of the properties of the nodes on
which their ends coincide. For instance, we define the behavior of some of the channels presented in
Table 3.

10.2.1 Generic Behavior of Sync

The generic behavior of a Sync channel ¢ whose source and the sink ends are, respectively, z. and y.,
is defined by the function filter(c) which returns the patters assigned to c as its filter upon its creation,
and the following two functions.

takes(z.,d) = d > filter(c) All(_take(oo, Yy, v,p)) Ad D p (22)

offers(yc, p) = {(yc, d) | (2, d) € offers(Node(z.,p))}. (23)

10.2.2 Generic Behavior of SyncDrain

The generic behavior of a SyncDrain ¢ whose two source ends are z, and y., is dynamically defined by its
specific behavior. Effectively, the two predicates takes(z.,p) and takes(y.,p) simultaneously become
true, as per its specific behavior, ¢ atomically performs a pair of _take operations on its two end.

21

10.2.3 Behavior or SyncSpout

The generic behavior of a SyncSpout ¢ whose two sink ends are z. and y., is defined dynamically through
its specific behavior. Effectively, the two functions offers(z.,p) and offers(y.,p) yield singletons or
the empty set, as ¢ atomically performs a pair of _write operations on its two ends.

10.2.4 Generic Behavior of LossySync

The generic behavior of a LossySync ¢ whose source and sink ends are, respectively, . and y., is defined
by the function filter(c) which returns the patters assigned to ¢ as its filter upon its creation, and the
following two functions.

takes(z., d) = d 3 filter(c) (24)

offers(y.,p) = {{yc, d) | (z,d) € offers(Node(z.,p))}. (25)

This reflects the fact that the state of a LossySync channel allows it to consume a data item regardless
of whether or not a matching I/O operation is pending on its opposite end, and either transfers or loses
the data item.

11 Channel Composition

The utility of channel composition can be demonstrated through a number of simple examples. For
convenience, we represent a channel by the pair of its source and sink ends, i.e., ab represents the channel
whose source and sink ends are, respectively, a, and b. Two channels, ab and cd can be joined in
one of the three configurations shown in Figures 4.a-c. For instance, the connectors in Figures 4.a-c
can be created as follows. We can obtain two channels of types t1 and t2, with filters f1 and £2,
by simply creating them: <a, b> = create(tl, f1) and <c, d> = create(t2, £2). The connector
in Figures 4.a-c are constructed out of such two channels by performing the operations join(b, c),
join(b, d), and join(a, c), respectively. Observe that the channel ends a, b, ¢, and d used in these
join operations (or any other operation that expects a node rather than a channel end) is merely a
short-hand for the nodes Node(a), Node(b), Node(c), and Node(d), respectively.

a b a b.ce d a bce
a b,c d >b d ac l
f f
c
a b c d e
a b,c,e d
a b a b
9 f,h,i j
c
c d
f 9 h i

Figure 4: Examples of channel composition and connectors

11.1 Flow-through Connectors

In this section we show how the informal semantics of Pew supports our intuitive expectation of the
behavior of the connector in Figure 4.a: that it simply allows data items to flow through the junction

22

node, from the channel ab to the channel cd. Let
N = Node(b) = Node(c). (26)
Because N is not a source node and Snk(N) = {b}, from equation 3 we have
offers(N,*) = offers(b, %). (27)
Similarly, because N is not a sink node and Src(N) = {c}, equation 2 gives
accepts(N, d) = accepts(c, d). (28)
Using equation 1 to expand the right-hand-side of equation 28 yields
accepts(N, d) = d 7 filter(cd) V takes(c, d). (29)
Equations 27 and 29 together simplify equation 4 into
T(N) = {{y,d) | (y,d) € offers(b,*) A (d # filter(cd) V takes(c, d))}. (30)

Consider the semantics of the mixed node N as presented in Table 5. The behavior of the channels
defined in Section 8 shows that offers(b,*) can contain only pairs of the form (b, z). Thus, (y,d) on
line 3 can match only if y = b.

By equation 30, the _take operation on line 4 in Table 5 removes every data item d for which
(b, d) € offers(b,) and d 7 filter(cd) V takes(c, d) holds. This removes every data item d from the
channel ab that either does not match with the filter of the channel cd, or for which takes(c, d) is true.
Because Src(N) = {c}, the only value that the variable z can assume on line 5 is £ = ¢, which means
the if-statement on line 6 executes only once for this value of z. If d matches with the filter of cd, then
takes(c, d) must be true, in which case the _write(oo, ¢, d) operation on line 6 succeeds in finite time to
write the data item d into the channel cd. If d does not match with the filter of cd, it is simply lost.

11.2 Merger

The configuration of channels in Figure 4.b allows write operations on a and c, and read or take
operations on b and d; the channel ends b and d can be used interchangeably, because they both stand
for their common node. A read or take from this common node delivers a value out of ab or cd, chosen
non-deterministically, if both are non-empty. Thus, assuming the channels are not lossy, this connector
produces through the common node of b and d, a non-deterministic merge of the values that arrive on a
and b.

11.3 Replicator

The configuration of channels in Figure 4.c allows write operations on a and c, wherein the two channel
ends are interchangeable, and read or take operations on b and d. A write on (the common node of)
a (and c) succeeds only if both channels are capable of consuming a copy of the written data. If they
are both of type FIFO, of course, all writes succeed. However, if even one is not prepared to consume the
data, the write suspends.

11.4 Take-Cue Regulator

The significance of the “replication on write” property in Pew can be seen in the composition of the three
channels ab, cd, and ef in the configuration of Figure 4.d. Assume ab and cd are of type FIFO and ef
is of type Sync. The configuration in Figure 4.d, then, shows one of the most basic forms of exogenous
coordination: the number of data items that flow from ab to cd is the same as the number of take
operations that succeeds on f. Compared to the configuration in Figure 4.a, what we have in Figure 4.d
is a connector where an entity can count and regulate the flow of data between the two channels ab

23

and cd by the number of take operations it performs on f. The entity that regulates and/or counts the
number of data items through f need not know anything about the entities that write to a and/or take
from d, and the latter two entities need not know anything about the fact that they are communicating
with each other, or the fact that the volume of their communication is regulated and/or measured.

11.5 Write-Cue Regulator

The composition of channels in Figure 4.e is identical to the one in Figure 4.d, except that now ef is
of type SyncDrain. The functionality of this configuration of channels is identical to that of the one in
Figure 4.d, except that now write operations on f regulate the flow, instead of takes.

1 WCRegulator(m)

2 (a, x1) = create(Sync)

3 (x2, b) = create(Sync)

4 (x, y) = create(SyncDrain)
5 connect (x1)

6 connect (x2)

7 join(x, x1)

8 join(x1, x2)

9

hide(x)
10 c =)
11 for i = 1 ton do
12 (u, wy = create(Sync)
13 c=co (u
14 connect (w)
15 join(y, w)
16 done
17 hide(y)
18 return (a, b, c)

Table 6: Pew code for a generic Write-Cue Regulator connector

11.6 Barrier Synchronizers

We can use this fact to construct a barrier synchronization connector, as in Figure 4.f. Here, the
SyncDrain channel ef ensures that a data item passes from ab to cd only simultaneously with the
passing of a data item from gh to ij (and vice versa). If the four channels ab, cd, gh, and ij are all of
type Sync, our connector directly synchronizes write/take pairs on the pairs of channels a and d, and g
and j. This simple barrier synchronization connector can be trivially extended to any number of pairs,
as shown in Figure 4.g.

11.7 Encapsulation and Abstraction

Figure 4.h shows the same configuration as in Figure 4.e. The enclosing box in Figure 4.h introduces
our graphical notation for presenting the encapsulation abstraction effect of the hide operation in Pew.
The box conveys that a hide operation has been performed on all nodes inside the box (in this case, just
the one that corresponds to the common node of the channel ends b, ¢, and e in Figure 4.e). As such,
the topology inside the box is immutable, and can be abstracted away: the whole box can be used as a
“connector component” that provides only the connection points on its boundary. In this case, assuming

24

that the channels connected to a and b are of type Sync, the function of the connector can be described
as “every write to c enables the transfer of a data item from a to b.

Through parameterization, the configuration and the functionality of such connector components can
be adjusted to fit the occasion. For instance, Figure 4.i shows a variant of the connector in Figure 4.h,
where a write to either c¢ or d enables the transfer of a data item from a to b. The Pew code that
instantiates a generic connector of this type is shown in Table 6. The parameter n specifies the number of
desired regulator points. The return value of a call to this function is a triple that contains the identities
of the connector’s primary input and output nodes, followed by a sequence of the identifiers for its n
regulator nodes. A WCRegulator(1) call produces (a slightly modified version of) the connector shown
in Figure 4.h. A WCRegulator(2) call produces the connector shown in Figure 4.i.

OHOOOOC

Figure 5: More examples of channel composition and connectors

11.8 Special Spouts

Figure 5.a shows a spout whose two sinks are joined on the same node. A SyncSpout channel in this
configuration behaves in a peculiar way: each of its sink ends can release a value only if the other end
also does so simultaneously. However, because the two sinks coincide on the same node, through which
no more than one value can pass at any time, this connector acts as a “dry well” never producing any
values.

In contrast, an AsyncSpout channel in this same configuration never blocks, because by definition, the
channel never produces two values through its two ends simultaneously. Every opportunity to transfer a
value from the node succeeds to obtain a value from either one or the other sink end of the channel.

11.9 Special Drains

Figure 5.b shows a drain whose two source ends are joined on the same node. An AsyncDrain channel
in this configuration behaves in a peculiar way: each of its source ends can consume a value only if the
other end does not do so simultaneously. However, because the two sources coincide on the same node,
the replication semantics of “write” implies that a transfer to each source end can succeed only if they
both consume at the same time. Thus, this connector acts as a blocking device: it never consumes any
values.

In contrast, a SyncDrain channel in this same configuration never blocks, because every value written
(or transferred into) this node will be duplicated and both copies can always be consumed simultaneously,
by the definition of the behavior of the SyncDrain.

11.10 Repeater

Figure 5.c shows a FIFO channel whose ends are joined together with the sink end of another, say Sync,
channel on a common node, c. A write to a succeeds immediately, because the value can directly be
transferred to ¢ and consumed by the source end of the FIFO channel. Once a value exists in the FIFO
channel, it will indefinitely cycle through the node c: this node will always find a value is available for
taking through a coincident sink node (that of the FIF0) and will always be able to write this value to
all of its coincident source ends (i.e., that of the FIF0). Although this configuration itself is static, once a
value is written to this connector, an endless cycle of activity ensues. This cycling continues undisturbed

25

even if the Sync channel is split away from node c, yielding the configuration in Figure 5.d. However,
joining the source end of a Sync channel on to node ¢, as in Figure 5.e, immediately stops the cycling
activity: the value can pass through and cycle only once every time a copy of it can also be consumed
through node a.

The FIFQ channel in the connector in Figure 5.e acts as a repeater that indefinitely produces copies of
its contents; a write in Figure 5.c effectively “loads” the repeater; the Sync channel in Figure 5.e regulates
the cycling and the replication to take place at exactly those times when values can be taken through
node a. In contrast, if the channel ca in Figure 5.e is also a FIF0, then the cycling and replication process
will go on indefinitely, independent of the timing of the activity on node a.

Combining the two configurations in Figures 5.c and e, we have the connector in Figure 5.f, which
acts as a shuffle repeater: all values in the looped FIFO channel cc are cycled in sequence and replicated
through node c; and every write on node a succeeds and inserts its value somewhere within the current
sequence of cycling values, which yields the effect of the shuffling of the order of the values written to a.

11.11 Constant Repeater

Figure 5.g shows a SyncDrain channel ac joined with a SyncSpout channel be, with their common node,
c, hidden to preserve their topology. The number 5 on channel bc is its filter: the only value this spout
can produce is the number 5. For all practical purposes, the connector in Figure 5.g can be seen as a
single synchronous channel with a peculiar behavior. Analogous to a regular Sync channel, this connector
allows pairs of write and take operations to succeed on its two “ends” a and b, only simultaneously. The
peculiar behavior of this “synchronous channel” is that regardless of what value is written to a, it always
produces the same constant value (in this case the number 5) through b.

11.12 Ordering

The connector in Figure 6.a consists of three channels: ab, ac, and bc. The channels ab and ac are
SyncDrain and Sync, respectively. The channel bc is of type FIFO1. The filters of all channels are
the wild-card pattern *. Let us consider the behavior of this connector, assuming a number of eager
producers and consumers are to perform write and take operations on the three nodes in this connector.
Observe that it is irrelevant whether the producers and consumers in question are component instances
that perform write and take operations, or alternatively, other channels with available data items and
available channel capacities. However, to simplify our presentation, we assume the nodes of our connector
are connected to appropriate component instances that are prepared to perform suitable write and take
operations on them.

The nodes a and b can be used (successfully) in write operations only; and the node ¢ can be used
(successfully) only in take operations. A write on either a or b will remain pending at least until there is
a write on both of these nodes; it is only then that both of these operations can succeed simultaneously
(because of the SyncDrain between a and b). For a write on a to succeed, there must be a matching
take pending on ¢, at which time the value written to a is transferred and consumed by the take on c.
Simultaneously, the value written to b is transferred into the FIF01 channel be (which is initially empty,
and thus can consume and hold one data item). As long as this data item remains in bc, no other write
operations can succeed on a or b; the only possible transition is for another take on c to consume the
contents of the bc channel. Once this happens, we return to the initial state and the cycle can repeat
itself.

The behavior of this connector can be seen as imposing an order on the flow of the data items written
to a and b, through c: the data items obtained by successive take operations on c consist of the first
data item written to a, followed by the first data item written to b, followed by the second data item
written to a, followed by the second data item written to b, etc. We can summarize the behavior of our
connector as ¢ = (ab)*, meaning the sequence of values that appear through c consist of zero or more
repetitions of the pairs of values written to a and b, in that order. Observe that the a and the b in the
expression (ab)* do not represent specific values; rather, they refer to the write operations performed
on their respective nodes, irrespective of the actual data items that they write. In other words, we may

26

b c be =y
a, a, .

Sequencer
Sequencer
c d
d c a —
¥) / Inhibitor ¢
i
A &
) c
</,/
'Y ; e
Lo} ! b A Inhibitor ¢
e f

Figure 6: Connectors for more complex coordination

consider the expression (ab)* not as a regular expression over values, but rather as a meta-level regular
expression over the I/O operations that produce (isomorphic) sequences or streams of values on their
respective nodes.

12 Expressiveness

The producers and consumers connected to the nodes a, b, and c of the connector in Figure 6.a are
completely unaware of the fact that this connector coordinates them through their innocent take and
write operations to impose a specific ordering on them. This interesting coordination protocol emerges
due to the composition of the specific channels that comprise this connector in Pew. It is natural at this
point to wonder about the expressiveness of the composition paradigm of Pew, i.e., Given a (small) set of
primitive channel types, what coordination patterns can be implemented in Pew by composition of such
channel types?

In this section we demonstrate, by examples, that Pew connectors composed out of only five simple
basic channel types can (exogenously) impose coordination patterns that can be expressed as regular
expressions over I/O operations on their nodes. These five channel types consist of Sync, SyncDrain,
AsyncDrain, an asynchronous channel with the bounded capacity of 1 (e.g., FIF01), and a lossy version
of the latter (e.g., ShiftFIF01 or LossyFIF01).

27

12.1 Sequencer

Consider the connector in Figure 6.b. As before, the enclosing box represents the fact that the details of
this connector are abstracted away and it provides only the four nodes a, b, ¢, and d for other entities
(connectors and/or component instances) to (in this case) take from. Inside this connector, we have four
Sync and four FIF01 channels connected together. The first (leftmost) FIFO1 channel is initialized to
have a data item in its buffer, as indicated by the presence of the symbol “o0” in the box representing
its buffer. The actual value of this data item is irrelevant. The take operations on the nodes a, b, c,
and d can succeed only in the strict left to right order. This connector implements a generic sequencing
protocol: we can parameterize this connector to have as many nodes as we want, simply by inserting
more (or fewer) Sync and FIF01 channel pairs, as required. What we have here is a generic sequencer
connector.

Figure 6.c shows a simple example of the utility of our sequencer. The connector in this figure consists
of a two-node sequencer, plus a pair of Sync channels and a SyncDrain channel connecting each of the
nodes of the sequencer to the nodes a and c, and b and c, respectively. The connector in Figure 6.c
is another connector for the coordination pattern expressed as ¢ = (ab)x. However, there is a subtle
difference between the connectors in Figures 6.a and c: the one in Figure 6.a never allows a write to a
succeed without a matching write to b, whereas the one in Figure 6.c allows a write to a succeed (if
“its turn has come”) regardless of the availability of a value on b.

It takes little effort to see that the connector in Figure 6.d corresponds to the meta-regular expression
¢ = (aab)*. Figures 6.c and d show how easily we can construct connectors that correspond to the Kleen-
closure of any “meta-word” using a sequencer of the appropriate size. To have the expressive power of
regular expressions, we need the “or” as well.

12.2 Inhibitor

The connector in Figure 6.e is an inhibitor: values written to d flow freely through to c, until some value
is written to i, after which the flow stops for good.

Our “or” selector can now be constructed out of two inhibitors and two LossyFIF01 channels, plus
some other connector for non-deterministic choice. The connector in Figure 6.f is a particular instance of
such an “or” connector. The channel connecting the nodes a and b in this connector is an AsyncDrain.
It implements a non-deterministic choice between a and b if both have a value to offer, and otherwise
it selects whichever one arrives first. Each of the nodes a and b is connected to the inhibitor node of
the inhibitor connector that regulates the flow of the values from the other node to c. Thus, if a value
arrives on a before any value arrives on b, this connector blocks the flow from b to ¢ for good and we
have ¢ = a*. Symmetrically, we have ¢ = b*, and we can thus write, in general, ¢ = (a|b)x*.

13 Examples of Connector Construction

In this section we examine a number of non-trivial connectors through which we demonstrate how some
useful and more complex connectors can be composed out of simpler ones.

in in
in out
m open open o ____
» C close c close c
z Valve ®---- Valve
*
\ y
Valve Controller @
Sequencer Sequencer
L0 |
out out
a b c

Figure 7: Valves

28

13.1 Valve

The inhibitor connector in Figure 6.e (Section 12.2) has an irreversible behavior: once a value is written
to i it inhibits the flow of values from d to ¢ permanently, and there is no way to “unblock” this flow.
The connector in Figure 7.a looks and behaves very much like such an inhibitor, except that successive
values written to c alternately inhibit and resume the flow from in to out nodes. We call the connector
in Figure 7.a a valve, and say successive values written to node c effectively close and open this valve,
regulating the flow from in to out.

The difference between the inhibitor in Figure 6.e and our valve is that we have a new “Valve Con-
troller” connector in place of the FIF01 channel of Figure 6.e. Whereas a value entering the FIFO1 channel
permanently blocks the cycling of the token value, preventing the flow, we expect the valve controller to
alternately disable and enable the flow from x to y, inhibiting and allowing the cycling of the token and
the flow from in to out. The exact details of how such a connector is constructed is irrelevant at this
point; we will consider two versions of such a valve controller in Sections 13.4 and 13.5. For our purposes,
it suffices to imagine that the connector labeled “Valve Controller” in Figure 7.a behaves similar to its
corresponding FIFO1 channel in Figure 6.e, except that values written to c alternately “deposit” and
“remove” the data item that blocks the cycling of the token contained in the FIFO1 channel yv.

The behavior of the valve is, thus, as follows. The valve is initially open. While open, all values flow
from in to out. The arrival of the first value on c closes the valve. While closed, no value flows from in
to out. The arrival of the subsequent values on c alternately open and close the valve.

13.2 Dual Control Valve

The functionality of the valve shown in Figure 7.a is very useful, but the exact way in which this valve
is opened and closed can be made more flexible by dedicating a separate control for each of these two
states. We refer to a valve connector that exposes two separate control nodes, one for opening and one
for closing the valve, as a dual control valve.

A dual control valve can be composed out of a binary sequencer and a simple valve, as shown in
Figure 7.b. The box labeled “Valve” in Figure 7.b is exactly the valve shown in Figure 7.a. The box
labeled “Sequencer” in Figure 7.b is the same as the one shown in Figure 6.c. Each of the two nodes of
the sequencer in Figure 7.b is connected to a SyncDrain channel and all other channels in this figure are
Sync channels.

It is not difficult to see that the sequencer in Figure 7.b orders the control values written to the
exposed nodes open and close such that the values that arrive on node c of the valve represent tokens
to alternately close and open the valve. Observe that this version of our valve strictly performs every
single open and close request, and strictly orders them alternately so that they make sense: an open
valve cannot be opened, so such an action is delayed until after the valve is closed; and the same goes for
closing a closed valve.

13.3 Dual Control Valve with Over-ride

The strictness of the dual control valve in Figure 7.b in performing every open and close operation may
not be appropriate in some situations. We may wish to have a dual control valve that interprets opening
of an open valve and closing of a closed valve as no-operations. Such a valve, in effect, over-rides the
requested operation if it agrees with its status. We refer to this version of our connector as a dual control
valve with over-ride.

Figure 7.c shows our dual control valve with over-ride. Compared to the dual control valve in Fig-
ure 7.b, we see that the only difference is that the two Sync channels connected to open and close nodes
are replaced with LossySync channels, represented as dashed arrows. The effect of these LossySync
channels is that if a (close or open) value is not expected by the sequencer, the value is lost. Thus, once
the valve is open, the sequencer allows only a close token to come through; all open tokens will be lost.
Likewise, once the valve is closed, the sequencer expects only an open token, and the LossySync channel
loses all other close tokens.

29

FlusherComponent (chantype t)
{
(a, g) = create(Sync)
(e, b) = create(Sync)
(¢, £) = create(Sync)
connect(g)
connect (e)
connect (f)
run Flusher(t, g, e, f)
10 return (a, b, c)
11}

© 00 ~NO U WN =

Table 7: The flusher component

13.4 Dynamic Valve Controller

Clearly, the box labeled “Valve Controller” in Figure 7.a cannot be a simple channel, because it exposes
three channel ends (labeled x, y, and z). This leaves two possibilities: it can be an instance of either
a component, or a connector. In this section we consider the valve controller as a component instance,
because its functionality presents an opportunity to demonstrate the utility of some of the dynamic
aspects of Pew. We see in Section 13.5 that this same functionality can also be realized as a static
connector composed of channels.

Table 7 shows the pseudo-code of a simple component that we can use to instantiate our valve
controller. An instance of this component requires an actual parameter that identifies a channel type.
Specifically, our valve controller can be instantiated as FlusherComponent (FIF01). The code in Table 7,
then, creates three Sync channels; connects and passes one end of each of these channels, together with
the parameter FIF01, to the Flusher function; and returns the other ends of the three Sync channels.
Observe that the run keyword on line 9 indicates that the Flusher function starts executing as a separate
active entity (e.g., as a thread or a process) within the same component instance. Thus, although
FlusherComponent terminates and returns, an active entity will remain in this component instance
executing the code of the Flusher function.

c c c
f l f l f
al g gl el e b a g gl ele b g g gl e b
di d2 | di d2 elyy d2
=@ ' =@
a b c

Figure 8: Flusher configurations

Table 8 shows the code of the Flusher function. Figure 8.a shows the configuration of the channels
created in this component instance right before the while loop on line 5 in the Flusher function. There
are five channels involved: the three channels created in FlusherComponent (only one end of each of
which is known in the Flusher function, as indicated by the dashed boxes in Figure 8), and the two
channels created in the Flusher function itself. Statements 6 and 7 join the ends of the FIFO1 channels
such that there is a connection between a and b. Statement 8 causes the active entity executing the
Flusher function to suspend until it can consume a value through f. Meanwhile, the connection from

30

1 Flusher(chantype t, outp g, inp e, inp f)
2 |

3 (d1, d2) = create(AsyncDrain)
4 (g1, el) = create(t)

5 while (true) do

6 join(g, gl)

7 join(e, el)

8 take (£)

9 gl = split(g, e)

10 el = split(e, gl)

11 connect (d1)

12 connect (e)

13 connect (g)

14 join(dl, el)

15 wait(gl, empty)

16 el = split(el, gl)

17 done

18 }

Table 8: The flusher function

a to b behaves exactly the same as a FIFO1 channel. This configuration is shown in Figure 8.b. When
a value is written to c, the active entity executing the Flusher function executes the code on lines 9
and 10, which splits the connections in Figure 8.b and reverts the configuration back to the one shown
in Figure 8.a. The connect statements on lines 11 through 13 ensure that their respective channel ends
are connected to the component instance, so that the subsequent join operations can succeed. Next, the
join on line 14 changes the configuration to the one shown in Figure 8.c, at which point the active entity
executing the Flusher function waits (on line 15) until the FIFO1 channel is flushed empty through its
connection with the AsyncDrain channel. Once this happens, the split on line 16 reverts the configuration
back to the one in Figure 8.a, and the next iteration begins.

We can see that in each iteration, the arrival of a value on c flushes the contents of the FIFO1 buffer
that connects a to b.

z

X

X

-1/1 Converter =f

y -1
-9,
1 b (ab)* &, WC Regulator 49 y
x Annihilatorl -1/1 p Y
u
a b

Figure 9: Static valve controller and -1/1 converter

13.5 Static Valve Controller

The same functionality of the box labeled “Valve Controller” in Figure 7.a, as implemented by the
component described in Section 13.4, can also be implemented as a connector with a static topology. Such
a static valve controller is shown in Figure 9.a. It consists of a connector labeled “-1/1 Converter” plus
an annihilator channel, uv, and two Sync channels, xu and yu. The annihilator channel (see Section 7.9)
uy has a bounded capacity of 1 and treats the values -1 and 1 as each other’s anti-values: if its buffer

31

contains a -1 (or 1) value, then writing a 1 (or -1) value succeeds on this channel, the two (anti-)values
annihilate each other, flushing the buffer of the channel to empty.

A node or channel end may be internally known to a connector under a different name that it is
known to other components or connectors. This is shown in Figure 9 by having different names for the
same node inside and outside of a box that represents a connector.

The function of the box labeled “-1/1 Converter” is to produce through y an alternating sequence of
-1 and 1 values, every time a value is written to z. This connector is described in Section 13.6. Assuming
that the annihilator channel is initially empty, and a -1 or 1 value is never written to its exposed channel
end x nor taken through its exposed channel end y, it is not difficult to see that this connector allows
values written to its exposed channel end x flow through its exposed channel end y, until a value is written
to z, which injects a -1 through u into the annihilator channel. As soon as this value enters the buffer
of the annihilator, the flow from the controller’s exposed channel ends x to y stops. Because this value
is never consumed through y, it remains in the buffer of the annihilator until another value is written to
z, injecting a 1 through u into the annihilator channel. At this point, the 1 can enter the annihilator’s
buffer and erase the -1 value, allowing the flow from x to y to resume.

13.6 A -1/1 Converter

It is easy to construct the -1/1 converter used in Figure 7.a as a connector composed out of some of
the other connectors we have already discussed earlier in this paper. Figure 7.b shows this connector
constructed out of two AsyncSpout channels, a binary sequencer, and a write-cue regulator. The binary
sequencer, labeled “(ab)*” in Figure 7.b, is either the one shown in Figure 6.a (Section 11.12) or Figure 6.c
(Section 12.1). The write-cue regulator is the connector shown in Figure 4.e (Section 11.5).

Every write to x allows a value to pass within the WC Regulator from its node a to its node d, which
is exposed as node y to the external world. The node known as a in the WC Regulator is the same node
known as c in the binary sequencer. The sequence of values that this sequencer produces through this
node consists of the alternating values -1 and 1. Therefore, every write to the node x of this connector
produces a -1 or 1 through its node y.

14 Modeling Other Models

The variety of channels that can be used in Pew makes it easy to construct other coordination models.
For instance, we consider how Manifold and a Linda-like shared tuple space model can be modeled in
Pew in the following two subsections.

14.1 Manifold

The constructs in the coordination language Manifold [1, 8] can be described in Pew in a straight-forward
manner. A port in Manifold is simply a synchronous channel. Following the Manifold’s rules of access, the
source ends of input ports and the sink ends of output ports are publicized for access from the outside
of their owner processes, while their opposite ends are kept private. A Manifold stream is a process
that administers a Pew FIFO channel. The main function of this administrator process is to force the
Manifold’s prescribed disconnection at one end of a stream when the connection at its other end breaks.
Connection of a stream to a port in Manifold is a join of the respective ends of their corresponding FIFO
and synchronous channels in Pew. Disconnection in Manifold is a split in Pew.

The event-based communication of Manifold can be emulated through special channels in Pew. We
stipulate a special pair of “event-in” and “event-out” ports for every Manifold process through which it
receives the event occurrences it is interested in. The (static or dynamic) subscription of a process to
an event source is modeled in Pew by connecting the event-out port of the event source to the event-in
port of the observer process by a FIFO channel. Raising an event, then, multi-casts the message (i.e.,
the event occurrence) to all (subscriber) processes currently connected to the event-out port of an event
source.

32

14.2 Tuple Spaces

A Linda-like tuple space can be constructed in Pew using a bag channel type. The identity of a tuple
space will be the pair of channel ends that identify its corresponding bag channel. Each Linda operation
then consists of a function that accepts this tuple space identity as one of its parameters and uses it to
refer to the appropriate end of its bag channel.

The following algorithm shows the example of a Linda-like read operation. This algorithm takes the
identifier of the tuple space, (tsrc, tsnk), a variable, v, and a pattern, and returns in v a copy of a
value in the tuple space that matches with that pattern.

Lrd({outp tsrc, inp tsnk), var v, pattern pat)
connect (tsnk)
read(tsnk, v, pat)
disconnect (tsnk)

}

Table 9: Linda read operation

This function first suspends its caller until it is granted the (exclusive) connection to the sink of
the bag channel representing the tuple space. Next, it performs a read operation, and subsequently
disconnects from the sink channel end.

15 Conclusion

Pew is an exogenous coordination model wherein complex coordinators, called connectors, are constructed
by composing simpler ones. The simplest connectors correspond to a set of channels supplied to Pew. So
long as these channels comply with a non-restrictive set of requirements defined by Pew, the semantics
of Pew operations, especially its composition, is independent of the specific behavior of channels. These
requirements define the generic aspects of the behavior of channels that Pew cares about, ignoring the
details of their specific behavior. The composition of channels into complex connectors in Pew relates
their specific semantics to each other in a manner that is independent of their specific semantics.

The semantics of composition of connectors in Pew and their resulting coordination protocols can be
explained and understood intuitively because of their strong correspondence to a metaphor of physical
flow of data through channels. This metaphor naturally lends itself to an intuitive graphical representation
of connectors and their composition that strongly resembles (asynchronous) electronic circuit diagrams.
Pew connector diagrams can be used as the “glue code” that supports and coordinates inter-component
communication in a component based system. As such, drawing Pew connector diagrams constitutes a
visual programming paradigm for coordination and component composition.

Connector composition in Pew is very flexible and powerful. Our examples in this paper demonstrate
that exogenous coordination protocols that can be expressed as regular expressions over I/O operations
correspond to Pew connectors composed out of a small set of only five primitive channel types.

Our on-going work on Pew in our group includes the formalization of its semantics based on the
coalgebraic methodology, which has been developed as a general behavioral theory for dynamical systems.
Moreover, we are working on an implementation of Pew to support composition of component based
software systems in Java, and the development of logics for reasoning about connectors.

33

16 Acknowledgment

I am thankful for the discussions and the collaboration of all my colleagues, especially F. Mavaddat, M.
Bonsangue, F. de Boer, and J. Guillen Scholten, who have directly or indirectly contributed to the ideas
in Pew. I am also thankful to J. Rutten for his keen interest in Pew and his inspiring preliminary work
on a coalgebraic formal semantics for it. The members of the bi-weekly ACG seminar of J. de Bakker at
CWI patiently heard and enthusiastically discussed various aspects of Pew in three different afternoon
sessions in 2001. I am grateful for their attention and the creative influence of these discussions.

References

[1]

F. Arbab. The IWIM model for coordination of concurrent activities. In Paolo Ciancarini and Chris
Hankin, editors, Coordination Languages and Models, volume 1061 of Lecture Notes in Computer
Science, pages 34-56. Springer-Verlag, April 1996.

F. Arbab. Manifold version 2: Language reference manual. Technical report, Centrum voor Wiskunde
en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1996. Available on-line
http://www.cwi.nl/ftp/manifold /refman.ps.Z.

F. Arbab. What do you mean, coordination? Bulletin of the Dutch Association for Theoretical
Computer Science, NVTI, pages 11-22, 1998.
Available on-line http://www.cwi.nl/NVTI/Nieuwsbrief/nieuwsbrief.html.

F. Arbab, F.S. de Boer, and M.M. Bonsangue. A coordination language for mobile components. In
Proc. ACM SAC’00, 2000.

F. Arbab and F. Mavaddat. Coordination through channel composition. In F. Arbab and C. Talcott,
editors, Coordination Languages and Models: Proc. Coordination 2002, volume 2315 of Lecture Notes
in Computer Science, pages 21-38. Springer-Verlag, April 2002.

Farhad Arbab. Coordination of mobile components. In Ugo Montanari and Vladimiro Sassone,
editors, FElectronic Notes in Theoretical Computer Science, volume 54. Elsevier Science Publishers,
2001.

Farhad Arbab, F. S. de Boer, and M. M. Bonsangue. A logical interface description language for
components. In Antonio Porto and Gruia-Catalin Roman, editors, Coordination Languages and
Models: Proc. Coordination 2000, volume 1906 of Lecture Notes in Computer Science, pages 249—
266. Springer-Verlag, September 2000.

M.M. Bonsangue, F. Arbab, J.W. de Bakker, J.J.M.M. Rutten, A. Scutelld, and G. Zavattaro.
A transition system semantics for the control-driven coordination language manifold. Theoretical
Computer Science, 240:3-47, 2000.

M. Broy. Equations for describing dynamic nets of communicating systems. In Proc. 5th COMPASS
workshop, volume 906 of Lecture Notes in Computer Science, pages 170-187. Springer-Verlag, 1995.

F. S. de Boer and M. M. Bonsangue. A compositional model for confluent dynamic data-flow
networks. In M. Nielsen and B. Rovan, editors, Proc. International Symposium of the Mathematical
Foundations of Computer Science (MFCS), volume 1893 of Lecture Notes in Computer Science,
pages 212-221. Springer-Verlag, August-September 2000.

R. Grosu and K. Stoelen. A model for mobile point-to-point data-flow networks without channel
sharing. Lecture Notes in Computer Science, 1101:504-77, 1996.

G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor,
Information Processing ’74: Proceedings of the IFIP Congress, pages 471-475. North-Holland, New
York, NY, 1974.

34

[13] P. Katis, N. Sabadini, and R. F. C. Walters. A formalization of the IWIM model. In Antonio Porto
and Gruia-Catalin Roman, editors, Coordination Languages and Models: Proc. Coordination 2000,
volume 1906 of Lecture Notes in Computer Science, pages 267—283. Springer-Verlag, September 2000.

[14] Juan Guillen Scholten. MoCha: A model for distributed Mobile Channels. Master’s thesis, Leiden
University, May 2001.

35

