Journal of Visual Languages and Computing & (msn) nss-am

Contents lists available at SciVerse ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvic

Compositional and behavior-preserving reconfiguration
of component connectors in Reo

Christian Krause *!**, Holger Giese ?, Erik de Vink®

2 Hasso Plattner Institute for Software Systems Engineering, Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
b Department of Mathematics & Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ARTICLE INFO ABSTRACT

This paper has been recommended for
acceptance by Shi Kho Chang

It is generally accepted that building software out of loosely coupled components, such
as in service-oriented systems or mobile networks, yields applications that are more
robust against changes and failure of single components than monolithic systems. In
order to accommodate for changes in the environment or in the requirements, and
anticipate to a component failure, applications are often dynamically adapted by means
of a reconfiguration. In this paper, we target the visual channel-based coordination
language Reo and introduce a combined structural and behavioral model for graph-based
component connectors in Reo. Exploiting concepts from category theory, we model
reconfigurations of connectors as transformations of the underlying connector graphs.
We show that our connector model has a compositional semantics and lift structural
reconfigurations to the semantical level. As a concrete application of our framework, we
introduce a notion of behavior-preserving reconfiguration for Reo and provide a
sufficient condition to ensure behavior-preservation statically.
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1. Introduction

A common approach in software engineering is based
on the idea of dividing a system into two orthogonal
aspects: (i) the computation performed by a set of (black-
boxed) components or services, and (ii) their coordination
using specific ‘glue code’. Engineering systems using this
principle has the advantage that there is clear separation
between the encapsulated functional behavior implemen-
ted in the components on the one hand, and the description
of their allowed interactions in the form of communication
protocols on the other.

In order to be able to reason about such systems or to
(semi-) automatically derive implementations of them, mod-
els with precise semantics are vital. While the specification of
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the components or services is usually based on behavioral
models, e.g. automata or process algebraic descriptions, the
composition and the interaction of these functional building
blocks is often described using graphical models, e.g. various
kinds of Petri nets or structural component connector
models.

In this paper, we specifically target component con-
nectors in the channel-based coordination language Reo
[1]. In Reo, the coordination of components and services is
realized using arbitrarily complex connectors which are
represented by graphs that consist of a set of commu-
nication channels connected by nodes. While the structure
of component connectors is graph-based, their semantics
can be given in terms of automata, e.g. constraint automata
[2].

In practice, however, the complexity of the modeled
systems and changes in their requirements or protocols
demand to adapt them at runtime. Adjusting a component
connector to accommodate for changes in the protocol
or to reflect new goals, can be achieved by means of a
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reconfiguration. Often, reconfiguration not only involves
the changing of the runtime parameters of single channels
or components, but also requires structural modifications
at the level of the component connectors.

In a promising line of research, the theory of graph
transformation is used to model reconfigurations at the
structural level of systems, e.g. reconfigurations of com-
ponent connectors [3], Petri nets [5], mobile networks [6]
and software architectures [7]. In all these areas, graphs
are used because they provide a both natural and formal
representation of the structure of the systems in terms of
their topology. The idea of graph transformation is to
rewrite substructures using matched transformation rules.
Such rules provide a syntax to specify structural precondi-
tions in the form of local contexts of system elements, and
moreover allow the engineer to define and execute com-
plex reconfigurations as atomic structural modifications.

When using graphs to model the structure of systems
and graph transformation to realize their reconfiguration,
one of the major challenges is to predict the impact of a
structural modification on the behavioral semantics of the
systems at hand. For instance, when dynamically adding
new channels or nodes to a component connector in Reo,
it is important to understand the effect on its execution
semantics. In such situations, it is often crucial to ensure
that certain behavioral properties are preserved by the
reconfiguration.

1.1. Approach and contributions

In this paper, we consider graph transformation-based
reconfiguration of component connectors in Reo, as e.g.
employed already in [3,4]. In order to reason about the
impact of a structural reconfiguration of a Reo connector
on its semantics, we present a combined structural and
behavioral model for Reo, called distributed constraint
automata with state memory (DCASM).

Our model permits to specify the topology of a con-
nector together with the semantics of its constituent
channels and components and has moreover enough
expressive power to derive implementations of Reo that
can be used in practice. Specifically, it permits to specify
data constraints over infinite data domains by symbolic
representations using memory cells as introduced in [8],
and moreover carries relevant structural information, i.e.,
the topology information of the component connectors.

The framework presented in this paper builds on
concepts from category theory which facilitates an abstract
and elegant way of defining operations and reasoning
about properties. Specifically, we define the composition
of connector models in our framework using universal
properties and phrase the semantics in terms of a compo-
sitional functor, which derives behavioral automata mod-
els from graphical connector models.

We facilitate the theory of algebraic graph transforma-
tion [9] to model reconfigurations as structural transfor-
mations of connector graphs as employed in [3,4]. Due to
the compositionality of the semantics functor, we are able
to lift a structural reconfiguration of a connector graph to
the semantical level, i.e., to its automata semantics. Using
this approach, we are able to investigate the impact of a

structural change in a connector on its overall behavior.
As a concrete application of our framework, we introduce
a notion of a behavior-preserving reconfiguration and give
a sufficient condition to ensure behavior-preservation
statically.

This paper extends the results presented in [10] as
follows. We generalize the basic model of distributed port
automata in [10] to the more expressive model of dis-
tributed constraint automata with state memory. Thereby,
data constraints for channels (even over infinite data
domains) can be modeled in our framework. We transfer
the compositionality result for distributed port automata
in [10] to the level of distributed constraint automata with
state memory in this paper. Furthermore, we show expli-
citly how graph transformation can be employed to model
structural connector reconfigurations and formally define
the induced reconfiguration at the semantical level. To the
best of our knowledge, none of the existing models for Reo
provides a concept for defining and checking behavior-
preserving reconfiguration, as introduced in this paper.

1.2. Overview

In Section 2, we recall relevant notions from category
theory. We assume familiarity with the fundamental
concepts, such as categories, functors and (co)limits. In
Section 3, we discuss the modeling concepts for building
component connectors in Reo. Specifically, we recall the
notions of channels and nodes and explain how they can
be composed to construct complex connector graph
models. In Section 4, we define the formal semantics of
Reo in terms of constraint automata with state memory
(CASM) and introduce a notion of simulation to relate two
automata. In Section 5, we present a categorical view of
the CASM model where we consider automata as objects
and simulations as morphisms between objects. More-
over, we define the parallel composition for CASM in
categorical terms, i.e., using a universal property.
In Section 6, we recall the basic concepts of distributed
graph transformation, which are essential in our catego-
rical framework to model the topology of connectors. In
Section 7, we combine the categorical models of Sections
5 and 6 to obtain an integrated structural and behavioral
model of component connectors, called distributed con-
straint automata with state memory (DCASM). This model
builds on concepts from category theory and constitutes
the core of our framework. As one of our central results,
we show that the semantics of connectors in this model is
compositional, i.e., that a structural gluing of connector
graphs corresponds to a parallel composition in the
automata semantics. In Section 8, we discuss how the
theory of graph transformation can be applied in our
framework to model the reconfiguration of component
connectors. Reconfigurations are specified at the struc-
tural level of component connectors, specifically using
graph transformation rules that modify the structure of
connectors. The compositional semantics of our DCASM
model allows us further to formally define the impact of a
structural reconfiguration of a connector on its automata
semantics. We exploit this correspondence to define a
notion of behavior-preserving reconfiguration. We discuss
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related work in Section 9 and present our conclusions and
possible directions for future work in Section 10.

2. Preliminaries

In the following, we briefly recall notions from category
theory which are relevant for the framework presented in
this paper. For a comprehensive introduction, we refer to
standard category theory textbooks, e.g. [11,12].

Categories. A category C consists of (i) a class of objects
obj, (ii) a class of morphisms homc(A,B) for each pair of
objects A and B, and (iii) a binary composition operation
_o_: homc(A,B) x homc(B,C)—homc(A,C). For every object A there
must exist a unique morphism ids: A—A, called the
identity of A, such that foidy=f and idjog=g for all
morphisms f : A»B and g : B—A. Moreover, o is required
to be associative, i.e., (fog)oh=foe-n. The category Set has
sets as objects, functions as morphisms and function com-
position as composition operation. The category Graph has
directed graphs as objects, i.e. tuples G = (V,E,s,t) with set of
nodes V, set of edges E, and functions s,t : E—V assigning a
source node s(e) and a target node t(e) to each edge, graph
homomorphisms as morphisms, and function composition
as composition operator. The category C° is obtained from
a category C by reverting all morphisms in C.

Functors & natural transformations. A functor F : C—D
(also called a diagram of shape C in D) associates to each
object A € C an object F(A) € D, and to each morphism f :
A—B e Camorphism F(f) : F(A)— F(B) € D, such that iden-
tity morphisms and composition are preserved. A contra-
variant functor reverses morphisms, i.e., it maps f : A—~B
to F(f) : F(B)— F(A). For two functors F,G : C—D, a natural
transformation # : F— G associates to every object Ae C a
morphism #, : F(A)—>G(A) e D such that for every f:
A—B € C it holds that 5z0F()=G(f)on,. An adjunction con-
sists of two functors F : D—C and G : C— D together with
a family of bijections @y y : homc(F(Y),X)—homp(Y,G(X))
that is natural in X and Y, i.e. G(f)o®xy(h)og=dy.y(fohore fOT
allf:X-»X inCandg:Y' —Y inD.

Limits & colimits. A cone for a diagram F: C—-D is an
object N ¢ D together with a family of D-morphisms
Y= a)acc Where y,: N>F(A), for all AeC, such that
F(f)oy,=y; for every f : A—B in C. A limit for F is a cone
(N, y) for F such that for any other cone (N',y’) for F there
exists a unique morphism h : N'>N such that y, =y,oh
for every object A e C. A colimit in C is a limit in C°.
A pullback is the limit over a cospan (a diagram of the shape
e—«<.). A pushout is the colimit over a span (a diagram of the
shape e~.-.). A functor is called (co)continuous if it pre-
serves all (co)limits.

3. Channel-based coordination with Reo

Reo [1]? is a channel-based coordination language for
component-based and service-oriented software systems.

2 Reo can also serve as a formal basis for other high-level modeling
languages. For example, mappings from business process modeling
languages, specifically from BPEL, BPMN, and UML2 sequence diagrams
are available [13]. In our earlier work in [14], we have also shown that a
simpler variant of the model presented in this paper is already

Coordination in Reo is performed using circuit-like con-
nectors which are built out of primitive channels and
nodes. These connectors coordinate components or ser-
vices from outside and without their knowledge, which is
also referred to as exogenous coordination. Reo connectors
define and implement the allowed interactions between
the active entities in a network by means of communica-
tion protocols. This includes aspects of concurrency,
buffering, ordering, data flow and manipulation.

In the following, we recall the basic notions of Reo and
give some introductory examples.

3.1. Channels

Channels in Reo are entities that have exactly two
ends, which can be either source or sink ends. Source ends
accept data into, and sink ends dispense data out of their
channel. Reo allows directed channels as well as so-called
drain and spout channels, which have respectively two
source and two sink ends. Channels may impose con-
straints on the data flow at their ends. For instance, they
can synchronize or mutually exclude data flow, provide
buffering or apply data transformations. Although chan-
nels can be defined by users in Reo, a small set of basic
channels suffices to implement rather complex coordina-
tion patterns.

A set of commonly used channels is given in Table 1.
The Sync channel consumes data items at its source end
and dispenses them at its sink end. The I/O operations are
performed synchronously and without any buffering.
Consequently, the channel blocks if the party at the sink
end is not ready to receive any data. The LossySync
channel behaves in the same way, except that it does
not block the party at its source end. Instead, the data
item is consumed and destroyed by the channel if the
receiver is not ready to accept it. The SyncDrain channel is
also a synchronous channel, but it differs in the fact that it
has two source ends through which it consumes and
destroys data items synchronously. Complementary, the
AsyncDrain consumes a data item from only one of its
source ends and can therefore be used to realize mutual
exclusion. None of the channels considered so far buffer
data items. Buffering can be implemented using the FIFO1
channel, which is a directed, asynchronous channel with a
buffer of size one. The Filter channel uses a data con-
straint, e.g. a regular expression, to decide whether a data
item should be passed to the sink end or destroyed by the
channel. Finally, the Transform channel applies a function
to all data items passing through and can therefore be
used for data conversion.

3.2. Nodes

To construct connectors, channels can be joined
together using nodes in Reo. A node can be of one out of
three types: source, sink or mixed, depending on whether

(footnote continued)
expressive enough to model (reconfigurable) Petri nets with finite
capacities.
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Table 1
Graphical notations of some common Reo channels.

Sync LossySync SyncDrain AsyncDrain FIFO1 Filter Transform
—_— - > > < —{—1— — W —D—
all coinciding channel ends are source ends, sink ends or a T wour
len

combination of both. Source and sink nodes together form
the boundary of a connector, allowing interaction with its
environment. A source node acts as a synchronous repli-
cator, i.e., it atomically copies incoming data items to all
of its outgoing source ends. On the other hand, a sink
node acts as a non-deterministic merger, i.e., it randomly
chooses a data item from one of the sink ends for delivery
to its connected component. Mixed nodes combine both
behaviors by atomically consuming a data item from one
sink end and replicating it to all source ends. This can be
seen as a 1:n synchronization, as opposed to 1:1
synchronizations (Milner style), or synchronizations of
all coinciding channel ends (Hoare style). The choice of
the sink end is made non-deterministically. We stress that
nodes do not perform any buffering.

3.3. Connectors

In Reo, channels and nodes are joined together to build
so-called connectors which serve as the glue code between
components or services. These connectors coordinate the
interactions between the functional building blocks of the
system and constrain their behavior to enforce their
cooperation.

An important aspect of Reo is that nodes do not buffer
data items and, thus, allow synchrony to propagate
through a connector. For instance, a connector consisting
of an arbitrary long sequence of Sync channels joined
together using nodes has the same qualitative behavior as
a single Sync. However, in general Reo allows an arbitrary
mixing of synchrony and asynchrony. Moreover, data-
aware channels, such as Filter and Transform can be used
to realize connectors whose behavior is influenced by the
communicated data and which can apply data conver-
sions as well.

Remark 1 (Boundary nodes). For clarity, we depict
boundary nodes as open circles and mixed nodes as filled
circles in all diagrams.

Example 1. Fig. 1 depicts a component connector in Reo
for a simple instant messenger application. Two client
components exchange messages via a connector. Mes-
sages are sent into FIFO1 channels and are thus buffered.
When they leave the buffer, they are synchronously
replicated by the nodes behind the FIFO1 s and sent to
both clients. This can succeed only if both clients are
ready to accept data. In a nutshell, this connector ensures
that clients get — as an acknowledgment - a copy of their
own message when the other client has successfully
received it.

1

——Jin B ¥ D out

Fig. 1. A simple instant messenger application in Reo.

4. Constraint automata semantics for Reo

Among others, semantics of Reo connectors can be
given using constraint automata with state memory (CASM)
[8,18]. In the following, let Data denote a global, possibly
infinite data domain. In CASM, states can be enriched with
local memory cells. These memory cells can be seen as
symbolic and thus finite representation for the data
elements in Data. Communication and synchronization
in CASM is realized using port names. Intuitively, a
component can write or read data items to the public
ports of a connector, formally represented by its con-
straint automaton with state memory. Such data items
can be stored in memory cells and later updated or output
via another port of the connector. Also, data stored in the
memory cells of a CASM can influence, via the data
constraints in which it can be used, the transitional
behavior of the modeled connector. Note also that these
automata are expressive enough to derive executable
coordinator models from connectors, e.g. in the form of
generated Java code in the Reo implementation in the
Extensible Coordination Tools (ECT) [15,14].

4.1. Data constraints

We first introduce the language for data constraints,
used later as guards on transitions in constraint automata
with state memory.

Definition 1 (Data value). Let a finite set of port names P
and a finite set of memory cells M =Ms U M7 be given.
The set of data values over P and M, written as DV(P,M),
is defined by the grammar

v =d|d(p)|sx|ty

where d ranges over Data, p over P, x over Ms and y over
Mr.

A data value is either (i) a constant d € Data, (ii) a data
item d(p) currently observed at the port p € P, (iii) the
content s.x of the memory cell x € Ms in the source state
of a transition, or (iv) the content t.y of the memory cell
y € Mr in the target state of a transition.
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Definition 2 (Data constraint). The set of data constraints
over the set of port names P and set of memory cells M,
written as DC(P,M), is defined by the grammar

g = 1|T|-glgnglgvelv=1)
where v ranges over DV(P,M).

Equality of data values, together with falsum 1 and
verum T, are the primitive ingredients of data constraints.
Furthermore, data constraints can be negated and com-
bined by conjunction and disjunction, where we use the
standard Boolean laws to define equivalence of data
constraints. We define the preorder <, which we interpret
as logical implication, by putting g, < g, < (g, &) =g;-

Intuitively, a data constraint is a (composite) expres-
sion which allows to compare data values. We use data
constraints as guards of transitions—the data constraint
should evaluate to true for the transition to be enabled.
Note that using the data values s.x and ty, the memory
cell x of the source, and the memory cell y of the target
state of the transition can be inspected. Typically, we
interpret a constraint ty=d(p) as a write operation
where the data item at p is stored in y. Analogously, we
interpret a constraint d(p) = s.x as a read operation where
a component receives at port p the data value currently
stored in x. For brevity, we also write d, for d(p).

4.2. Constraint automata with state memory

Now, we formally define the notion of a constraint
automaton with state memory. Our definition is in com-
pliance with the ones given in [8,18].

Definition 3 (Constraint automaton with state memory).
A constraint automaton with state memory A=(Q,P,M,T,
.0, Q%) consists of

e a finite set of states Q with Q° < Q a non-empty set of
initial states,

a finite set of port names P,

a finite set of memory cells M,

a finite set of transitions T,

a memory cell location function u: M—Q,

a transition function 0 : T—Q x 2 x DC(P,M) x Q, such
that for every t € T with 0(t) = {q,F,g,q' >, it holds that
g € DC(F,M’) where M’ = Ms U My with Ms = u~'(q) and
Mr = p(q).

For a transition t with 0(t)= <q,F,g,q’>, we usually
write q—'g>q’ with q,q’ € Q the source and target state of
the transition, F = P the set of synchronously firing ports,
and g the enabling data constraint or guard. Note that this
guard can refer only to firing ports, i.e. the ports in F, and
the memory cells of the source and target states, i.e. Mg
and My, respectively. For the operational semantics of
CASM we refer the reader to [18].

The constraint automata with state memory for the
most common channel types in Reo are summarized in
Table 2. Note that for the directed Sync channel, the data
item observed at its source end and its sink end must be
identical, whereas for the SyncDrain any two data items
can be read from its two source ends. We also include two

Table 2
Constraint automata with state memory for some common Reo
primitives.

Sync(A,B)

(o {A, B} (da =dp)

‘)@ {A, B} (ds = dg)
{A}

~Oo {4, B}

9(% {4}
{B}

Filter(A,B) {A, B} e(da) A(dy =dp)

AcgJ{-’;} —e(dy)

(o {A. B} (dg = f(d.))

{A,C} (da =do)
zg {B,C} (dg =d¢)

=2 {A,B,C} (dy = dp) A(dp = do)

{A} (t.x=da)

~O—— =0

{B} (dg =s.x)

LossySync(A,B)

SyncDrain(A,B)
AsyncDrain(A,B)

Transform(A,B)
Merger(A,B,C)

Replicator(A,B,C)
FIFO1(A,B)

primitives with three ports each: the Merger and the
Replicator. Having three ports, these primitives are no
channels. They can be used to compositionally construct
the behavior of nodes (cf. [19]). Replicators essentially
synchronize all ends, whereas mergers implement a
mutual exclusion of the incoming ends. All modeled
primitives except for the FIFO1 are stateless, i.e., they
have only one state.

The automaton for the FIFO1 channel illustrates the
use of state memory. The transition via the firing set {A}
and the guard (t.x =d,) models a data flow at the port A
and the fact that data item observed at A is stored in the
memory cell x of the state representing the full buffer on
the right. Similarly, the transition via the firing set {B} and
the guard (dg =s.x) represents the data flow out of the
buffer to the port B. The intuition is that the data item
observed for this transition, captured in the memory cell
x, should be the same as the one observed at the port A
before.

4.3. Simulations

To relate different constraint automata with state
memory, we next introduce a notion of simulation. A
simulation between two constraint automata with state
memory essentially consists of a structure-preserving
mapping of states, transitions, port names and memory
cells. However, typically we assume that the port names
of the target automaton form a subset of the port names
of the source automaton. Therefore, we define the map-
ping of port names in the opposite direction, i.e. from port
names of the target to port names of the source auto-
maton. Moreover, we ensure consistency of firing events
using conditions on the transitions of the automata. We
first need to introduce a technical definition.
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Definition 4 (Substitution). Given a data value v € DV
(P, My) and two functions fp : P, —»P; and f), : M; - M,.
The set of data values v[fp,f] = DV(P,,M,) is defined as

dif p.fml = {d}

d(p)lf pf m] = (d(P2) |fp(D2) =1}
s.mi[fp.ful = {sSp(m))
tmy[fp.fy] = {tfu(m))

Given a data constraint g € DC(P{,M;), the data constraint
glfp.fm] € DC(P,,M>) is obtained from g by substituting all
subconstraints of the form ‘(v = v)’ by the conjunction

W2 =v5)|va € vilfp.frl Vs € Vilfpfuld

Note that a constraint (v; =v}) is replaced by an empty
conjunction (equivalent to T) if at least one of the sets
vilfpfml or vi[fp.fyl is empty. This may occur for data
values of the form d(p) where p is not in the image of fp.
Now we are in the position to define our notion of
simulation for constraint automata with state memory.

Definition 5 (Simulation). Let A; =(Q;,P;,M;T;,14;,0,QY),
where i € {1,2}, be two constraint automata with state
memory. A simulation f:.A4;-A; is a tuple f=(fq,
fpfmfr) consisting of four functions fg:Qq—Qa, fp:
Py — P],fM : My —> M, andfT :T1-T,, such that

1. fo(Q)=Q)

2. pyofy=foom

3. if fr(ty) = to, with 01(t1) = {q1,F1,81,9; > and Ox(t2) =
{q3,F2,85.95 >, then the following conditions hold: (i)
fol@) =g, and fo(q)=qj, (ii) fp'(F1)=Fa, and (iii)
gilfpful <&

Note that ports names, as in Definition 4, are mapped
in the opposite direction, i.e. fp : P, > P;. Requirement 1
ensures that the initial states are preserved. Requirement
2 ensures that the mapping of states and the mapping of
memory cells are compliant with the memory locations.
Finally, requirement 3 ensures consistency of the mapped
transitions, i.e., the simulation (i) connects source and
target states, (ii) preserves firing of ports, and (iii) maps a
guard g; to a guard g, only if g; implies g,, modulo
substitution of port names and memory cells.

If there exists a simulation between two constraint
automata with state memory A; and A,, we also write
A1 <A, and interpret 4, as an abstraction of A;. In fact, a
simulation can be used to introduce an abstraction by (i)
forgetting some of the port names, (ii) weakening data
constraints, (iii) making two or more states indistinguish-
able, or (iv) abstracting from the contents of memory cells.

We denote the fact that there exists a bijective simula-
tion between two automata by A; ~ A,. A simulation fis
called bijective if all the maps fq, fp, fi and fr are bijective.
Note that this notion of behavioral equivalence is
obviously stronger than trace equivalence and strong
bisimilarity [20]. However, isomorphy is the natural
notion of equivalence which arises in a categorical setting,
as we will have in Section 5.

Remark 2 (t-transitions and e-memory cells). For all
primitives listed in Table 2, we adapt their constraint
automata by‘aTdding for each state g in the automaton (i) a
transition g—gq, and (ii) a memory cell ¢, or just ¢ for
short. The additional transitions can be interpreted as
silent steps, which do not change the internal state of the
primitive. In a simulation f : A; — A, a transition of Aj,
which does not involve any of the ports in A4, can be
mapped to such a silent transition in .4,. Similarly,
mapping a memory cell y in 4; to ¢ in A, is used to
abstract from the content of y. Thus, we consider only
weak simulations for the examples in this paper.

Example 2 (Simulation). An example of a simulation is
depicted in the upper part of Fig. 2. The mapping of the
states is indicated using equal indices of the state names.
The mapping of port names from right to left is the
obvious inclusion fp : {A,B} < {A,B,C}. The memory cell x
in the source automaton is mapped to x in the target
automaton, whereas y is mapped to ¢. The transitions via
the port C in the source automaton are mapped to
T-transitions in the target automaton. For example, the
LHS transition <q;’,{C},dc =s.y,q; > corresponds to the
RHS transition <q;,0,T,q; >. Similarly, the LHS transition
{q;.{A,Chtx=dyadc =Sy,q, > corresponds to the RHS
transition <qq,{A},tx=ds,q; .

The Reo connectors from which the automata are
derived are shown in the lower part of Fig. 2. The simula-
tion relates the parallel composition of FIFO1(A,B) and

{4}
(t.:L' :dA)

(t.z=da)A(dc=s.y)

{B}

(dp=s.z)A(t.y=dp)

{A}
(t..’L‘ =d‘4)

0,T " {Az ) 0T
{c} S
(de=s.y) - @
5 {B} ez
le] (dH:sAx)[ ]
[, 2, 9]

A x B y

C

A x B

Fig. 2. A simulation of constraint automata with memory (top) and the Reo connectors from which the automata are derived (bottom).
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FIFO1(B,C) with a single FIFO1(A,B). Intuitively, the simula-
tion establishes an abstraction in which the details of
FIFO1(B,C) are hidden, in line with the absence of the
channel FIFO1(B,C) in the RHS connector. Note that, to
derive the constraint automata for composite connectors,
we introduce a parallel composition operator in Section 5.

5. The category of constraint automata with state
memory

To obtain a categorical and, thereby, a more abstract
view on constraint automata with state memory, we
introduce the category CASM in the following. This will
enable us to define a parallel composition operator in
terms of a universal property, and later, to obtain a formal
model of component connectors in Reo which integrates
their structural and behavioral aspects.

Definition 6 (Simulation composition and identity). Given
two simulations f = (fo.fp.f1.f7) : A1 > A2 and g =(gq.&p,
gw.8r) : A2 — Asz. The simulation gof is defined as gof = (g,
of o.frogrenciuerm. FOr @ constraint automaton with state
memory A= (Q,P,M,T,u,0,Q°) the simulation id4: A—.A
is defined as id 4 = (idq,idp,id,idr).

Definition 7 (Category CASM). The category CASM is
defined as the category with constraint automata with
state memory as objects, and simulations as morphisms
(cf. Definitions 3, 5 and 6).

It is straightforward to check that identity is neutral
and composition of simulations is associative. In the
following, we investigate some of the properties of the
category CASM.

Lemma 1 (Final object in CASM). Let 1 € CASM be the
constraint automaton with state memory that consists of a
single state q, an empty set of port names, a single memory

. . 0T
cell &, and a single transition g— q. Then for any automaton
A € CASM there exists a unique simulation !4 : A—1.

Lemma 1 states that the CASM depicted in Fig. 3, also
denoted as 1, is the most ‘general’ constraint automaton
with state memory—in the sense that it is a valid
abstraction of any possible CASM: A=<1. Note also that
the final object is, as always in categorical approaches,
defined up to isomorphism. A simulation is an isomorph-
ism if and only if it is bijective.

As we show in the following, the parallel composition
of constraint automata with state memory can be defined
in terms of a universal property, specifically using pull-
backs in CASM.

Lemma 2 (Pullbacks in CASM). Given a cospan of CASM-

simulations AliAo{iAz. Then the span Aﬂ‘—/ .A3f—2>A2
with Ajs defined below is the corresponding pullback. Using

(D=2 0,T
€]

Fig. 3. Final object in CASM.

the notation 0;(t;)= {q;,Fi.g;,q/ > for a transition t; € T;,
i=1..3, the automaton As is given by:

® Q3 =0Q;xq,Q; (pullback in Set, analogously for Qg)

® P3 =P;+p, P, (pushout in Set)

[ ] M3 =M1 XM(]MZ (pullback in Set)

o T3={<t1,t) € Ty x To| (Fy.1(t1) =Fo,r(E2) A (f1 p(F1) =
Fop(F2))

® L3(<X1,X2>) = Uy (X1), Up(X2) >

e 03(<t1,t2)) = <<q1,q2 > .F14+F,F2.(81 1) pf1 w1 A 821,
P'f/z,M])v q1.q2"> >

The simulation f', : A3 —A; consists of the projections f 4,
" F1.1o and the injection f1 p. The simulation f : A3 — A,
is defined analogously.

Example 3 (Pullbacks in CASM). The pullback diagram in
Fig. 4 illustrates the parallel composition of a FIFO1(A,B)
and a FIFO1(B,C) over their shared port B, which yields a
FIFO2(A,C). The simulations are defined analogously to
Example 2. The transitions via {B} in 4; and A, are
synchronized over the transition via {B} in 4. The
transitions via {A} in .4, and via {C} in A, are both mapped
to the t-transition in A4y. Thus, transitions can be syn-
chronized with a t-transition, yielding interleaved beha-
vior, or can be synchronized with each other, yielding a
concurrent transition via {A,C} in Ajs.

We use the default notation for pullbacks of constraint
automata with state memory, i.e., we write A3 =.4;x
4, 42. Compared to the join operator for constraint auto-
mata with state memory introduced in [18], the parallel
composition via pullbacks is more expressive. While the
join operator in [18,2] synchronizes only over a shared set
of port names, the parallel composition via pullbacks
enables the composition of two automata A4;, A, over
another automaton .4o—the latter can be seen as a shared
context of the former. This shared context can be used to
synchronize 4; and .4, not only over shared port names,
but also over corresponding states and memory cells. The
join operator in [18,2] is a special case of a pullback in
which A4, is stateless, i.e., has only one state. Moreover,
our parallel composition is derived from the simulation
notion using a universal property. The categorical con-
struction using pullbacks furthermore includes the
morphisms into the original automata and thereby relates
them with the resulting constraint automaton with simu-
lations. Using these simulations, the local state of a
subconnector, e.g. a channel, can be derived from the
global state of the composite connector.

Since the category of constraint automata with state
memory has final objects and pullbacks, it follows imme-
diately that it is complete.

Theorem 1 (Completeness of CASM). The category of con-
straint automata with state memory is finitely complete, i.e.,
for every finite diagram in CASM there exists a limit.

6. Categorical notions for distributed objects

The examples in the previous sections, particularly
Example 2 of a CASM simulation and Example 3 of a

Please cite this article as: C. Krause, et al., Compositional and behavior-preserving reconfiguration of component
connectors in Reo, Journal of Visual Languages and Computing (2012), http://dx.doi.org/10.1016/j.jvlc.2012.09.002



dx.doi.org/10.1016/j.jvlc.2012.09.002
dx.doi.org/10.1016/j.jvlc.2012.09.002
dx.doi.org/10.1016/j.jvlc.2012.09.002

8 C. Krause et al. / Journal of Visual Languages and Computing 1 (1) s—m

(t.I:dA)

(t.x=da)A(dc=s.y)

(tT:dA)

Fig. 4. A pullback of constraint automata with state memory, modeling the parallel composition of a FIFO1(A,B) represented by .4; and a FIFO1(B,C)
represented by .4, over their shared port B as captured by the simulations to A,.

CASM pullback, indicate that there is a close correspon-
dence between the structure of connectors in terms of
graphs on the one hand, and their semantics in terms of
automata on the other. To formally describe this corre-
spondence we use the framework of distributed graph
transformation, as introduced by Taentzer [21], and later
generalized to the notion of transformation of distributed
objects by Ehrig et al. [22]. In this section, we recall the
basic concepts of this framework and present a new result
on compositionality of the flattening functor for distrib-
uted graph transformation. In Section 7, we will then
show how distributed graph transformation can be used
to integrate the structure and semantics of component
connectors.

6.1. Distributed objects and morphisms

Distribution of graphs or, more generally, of objects
can be described by providing an additional layer of
abstraction, namely by modeling the topology of a system
using a so-called network graph. The nodes in a network
graph correspond to objects and the edges to morphisms
between objects. Intuitively, a node in a network graph
can be used to model a physical or logical location of an
object, whereas an edge indicates some kind of inclusion

or mapping of the source object into the target object.
Multiple outgoing edges from one object indicate that the
object is shared among all target objects.

Definition 8 (Distributed object [22]). Given a category C.
A distributed object (N, D) consists of a graph N, called the
network graph, and a commutative diagram D :N-C,
where the graph N is interpreted as a finite category.

The network graph N describes the topology of the
system. The diagram D associates to every node n € N an
object D(n)e C and to every edge nSsn in N a
C-morphism D(e) : D(n)—D(n’). Following [22], this dia-
gram is required to be commutative, i.e., for any two
paths pq,p; : n-sn' in N, it must hold that D(p,) =D(p,).
This arises from the assumption that the morphisms
associated with edges are used to represent the shared
parts among objects.

Example 4 (Distributed object). An example of a distrib-
uted object is depicted in the top of Fig. 5. Formally, the
distributed object is given by a diagram of the shape
e, 1.6, a Span in the category Set. The set in every
node can be interpreted as its interface. Specifically, if a
node n e N is used to model a Reo primitive such as a
channel, the set D(n) can be identified with its port
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{4, B} (B} {B,C}

|-
{A, B,C}

Fig. 5. A distributed object modeling two primitives with a shared
interface (top) and its flattening (bottom).

names. In this way, the distributed object in Fig. 5 can be
used to model the structure of a component connector in
Reo: (i) the node with the set {A,B} corresponds to a
channel between A and B, (ii) the node with the set {B,C}
corresponds to a channel between B and C, and (iii) the
node with the set {B} and its outgoing edges model the
sharing of the Reo node B among the two channels. Note
that this model is purely structural and describes only the
topology of the connector, but not its semantics.

Definition 9 (Distributed morphism [22]). Let (Ny,D;) and
(N2,D,) be two distributed objects over the category C.
A morphism f=(fy.fp): (N1,D1)—(N3,D;) consists of a
graph morphism fy : N> N, and a natural transforma-
tion f : D1 —»Dyofy.

Dile)

Di(n) Dy(n)
In St
Dy(f(n)) LD py(£(n'))

The natural transformation fp assigns to every node n
of the network graph N; a graph morphism f} :
D1(n)— Dy (f(n)) which is called the local morphism of n.
Furthermore, for every edge n->n' in N; the above
diagram commutes, where for brevity we just write f for
the network morphism fy. Distributed objects and their
morphisms form the category Dis(C) [22].

6.2. Flattening of distributed objects

The flattening of a distributed object can be under-
stood as a way of gluing together the objects of all nodes
in the network graph along their shared parts. Formally,
the flattening of a distributed object (N, D) can be
achieved by considering the colimit of the diagram D
[21]. It is well-known that this flattening extends to a
functor F : Dis(C)— C, given that C is cocomplete [23]. This
definition is rather elegant because it defines the flatten-
ing in terms of a universal property, and not by means of
an algorithm or by referring to an operational semantics.

Example 5 (Flattening of distributed objects). Flattening of
the distributed object in the top of Fig. 5 yields the set
{A,B,C} depicted on the bottom. When interpreting the
distributed object as a structural model of a component
connector in Reo, the flattening yields the set of all port
names of this connector.

Considering flattening of distributed objects is parti-
cularly interesting when distribution is used to provide
logical structure to a flat system. The distributed model
can be interpreted as a more high-level view on a flat

structure. In this perspective, it is crucial to know whether
flattening interacts well with composition. Composing
two distributed objects in Dis(C) and flattening the result
should yield the same outcome as first flattening both
distributed objects and then composing them in C. Since
the composition of two structural objects, such as graphs,
is commonly modeled by their union, compositionality of
the flattening functor F requires that F preserves the
categorical equivalent of unions, i.e., pushouts, or more
generally, colimits.

Theorem 2 (Flattening preserves colimits [10]). Let C be a
cocomplete category. The flattening functor F : Dis(C)—C
has a right adjoint and is therefore cocontinuous.

Distributed objects can be used to describe a logical
partitioning of an otherwise flat structure. Due to
Theorem 2, composition and transformation of distribu-
ted objects can be transparently implemented on the
underlying flat structure. In Section 7, this result will be
furthermore the key to show compositionality of the
CASM semantics for Reo connectors.

7. Distributed constraint automata with state memory

In this section, we present a categorical model of
component connectors in Reo, which incorporates (i) the
CASM semantics of all primitives, i.e., the channels and
components of the connector, and (ii) the structural
aspects of the connector, i.e., its topological information.
To this end, we combine the categorical model of con-
straint automata with state memory introduced in Section
5 with the categorical model of distributed objects pre-
sented in Section 6.

We model the topology information of a connector
using a network graph of a distributed object, as explained
in Example 4 above. However, instead of considering only
the interfaces of primitives as network nodes, we now also
incorporate their semantics. Specifically, we consider dis-
tributed objects in which the nodes in the network graph
are constraint automata with state memory, and the edges
are simulations. However, since simulations map port
names in the opposite direction, we need to consider
reversed simulations.

Definition 10 (Category DCASM). The category of distrib-
uted constraint automata with state memory is defined as
DCASM = Dis(CASM°P).

Reo connectors can be modeled as objects in DCASM.
We identify every primitive with its corresponding CASM
(cf. Table 2 and Remark 2). Additionally, for every node X
we consider a stateless CASM with a transition via {X}. Now
we consider all these automata as vertices in a network
graph and create for every pair of a primitive and a node an
edge between them in the network graph. The edge points
toward the CASM of the primitive. However, the CASM-
simulation goes in the opposite direction and maps all
transitions of the primitive that involve the adjacent node X
to the self loop transition via {X}, and all other transitions to
the t-transition. The reason for inverting the edges is the
contravariance of the port name mapping in simulations
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and can be informally motivated by the argument that the
edges in the network graph represent primarily structural
mappings of the port names, which are mapped in the
opposite direction by simulations.

Example 6 (FIFO2 as a distributed CASM). We argued in
Example 4 that the distributed object in Fig. 5 can be
interpreted as a structural model of a connector which
consists of two channels connected by a node. In the
category DCASM we can incorporate also the semantics of
the channels. Fig. 6 depicts the Reo connector (bottom)
and the corresponding distributed constraint automaton
with state memory (top) for two connected FIFO1 chan-
nels. Note that the edges in the network graph point from
the node to the channels, indicating the structural embed-
ding of port names. However, the edges formally corre-
spond to inverse simulations, i.e., simulations from the
FIFO1 channels to the node, forming a cospan in CASM.

7.1. Composing connectors

In categorical approaches where morphisms are used
as structural mappings between objects, the composition
of objects can be described using the categorical equiva-
lent of unions, i.e., using pushouts. The objects of the
category DCASM are connectors and their morphisms are
structural mappings of network graphs together with
simulations between the primitives of the connector.
Therefore, pushouts or, more generally, colimits are also
the natural choice for composition in DCASM.

Theorem 3. The category DCASM is finitely cocomplete, i.e.,
for every finite diagram in DCASM there exists a colimit.

This follows from Theorem 1 and the fact that cocom-
pleteness of a category C implies cocompleteness of Dis(C)
[22].

Using pushouts, connectors modeled as objects in
DCASM can be composed by gluing together their respec-
tive network graphs. Note that in this view, the semantics
of all primitives of the connectors is usually fixed, i.e., it is
allowed to identify primitives of the same type only.
Formally, the simulations between the primitives are
isomorphisms. In this situation, the automata in the net-
work nodes are not changed when composing two con-
nectors using pushouts and, thus, the composition is of
purely structural nature. However, the case where the

0,1 {AY 0T 0, T
(t.I:dA)

€ {B} E,T €

[](d32&$)[ } &

o 17 | — | Bt

simulations between the primitives are not isomorphisms
has also interesting applications. Essentially, it allows us to
identify primitives of different types or with parameters.
For instance, consider two connectors, both containing a
Filter channel, one with a filter constraint ¢ and the other
one with a different filter constraint ¢’. Then it is possible
to glue these two connectors by identifying the two Filter
channels, e.g. by mapping them to the same Sync channel.
The composition result will then contain a single Filter
channel with the filter constraint cac'.

7.2. Semantics of connectors

We have demonstrated how an object in DCASM can
be used to model the structure of a connector together
with the automata semantics of its primitives. However,
we have not shown yet how to derive the semantics of a
composite connector in terms of the parallel composition
of all its primitives.

Let (N,D) ¢ DCASM be a distributed constraint auto-
maton with state memory, where N is the network graph
and D is a diagram in CASM. Then the constraint
automaton with state memory that represents the seman-
tics of the connector is given by the colimit over D. Since
the edges in the network graph are inverse simulations,
the colimit of D corresponds to a limit in CASM. Moreover,
we have shown in Section 6.2 that the colimit of dis-
tributed objects extends to a functor, i.e., the flattening
functor F: Dis(C)—C for distributed objects. Therefore,
applying F to DCASM yields a semantics functor for
connectors.

Definition 11 (Semantics functor). Let F:DCASM—
CASM® be the flattening functor for distributed con-
straint automata with state memory. By reverting the
arrows, F induces the contravariant functor

Sem : DCASM — CASM

which is called the semantics functor for distributed
constraint automata with state memory.

Example 7 (Semantics functor). Fig. 7 shows the applica-
tion of the semantics functor to the FIFO2 connector. The
colimit over the network graph corresponds to a limit in
CASM. Specifically, the limit coincides here with the
pullback in Fig. 4.

0T B} 0T

e Gt e
[e] (dc:sy)[ ]

O—/—1->0—/—1>0

A X

y C

Fig. 6. Reo connector FIFO2 (bottom) and the corresponding distributed CASM (top).
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Fig. 7. FIFO2 connector as a DCASM (top) and its semantics as a CASM (bottom).

Due to the categorical approach, it is straightforward
to show the compositionality of the semantics functor.

Theorem 4 (Compositionality of the semantics functor).
The semantics functor Sem : DCASM—CASM is composi-
tional, i.e., it maps colimits in DCASM to limits in CASM.

Thus, we have established that a structural gluing of
connectors in DCASM which is realized by a pushout of
their respective network graphs has a corresponding
semantical join operation, i.e., a pullback of their corre-
sponding automata. Note also by Theorem 2 it follows
that the structure and the semantics of connectors are
tightly connected, i.e., they form a pair of adjoint functors.

8. Reconfiguration by graph transformation

We have shown in Section 7 that the category DCASM
provides a sound structural and semantical model for
component connectors in Reo. The parallel composition of
connectors was defined using structural gluings of net-
work graphs, formally given by pushouts in DCASM. In
this section, we show that reconfigurations, i.e., structural
transformations of connectors can be defined and carried
out following the double pushout (DPO) approach to graph
transformation [24,9]. Moreover, since our models also
include semantical information, it is possible to statically
check whether reconfigurations are behavior-preserving.

In the double pushout approach, a transformation rule
is defined as a span of injective morphisms in a category C.
To apply the DPO approach to component connectors in
Reo, we can simply choose DCASM for the category C in the
following definitions.

Definition 12 (Rule [24]). Given a category C, a rule
p= (L<[—I<—T>R) consists of three objects L, K and R, called
the left-hand side, the gluing object, and the right-hand
side, respectively and morphisms ¢: K—L and r : K—R.

The left-hand side L of a rule p defines the (structural)
pattern that must be matched to apply p. The gluing
object K contains all elements that are not removed by the
rule and R additionally includes those elements that
should be added to the object, which - in our case - is a
Reo connector modeled by an object in DCASM. To
reconfigure a given connector M, a transformation rule p
can be applied to M with respect to a morphism m : L— M,
called the match. This match defines in which part of the
connector M, the reconfiguration should take place and
ensures further that the required structural patterns exist.
The actual reconfiguration of the network M using the
rule p with the match m is formally defined by a double
pushout diagram.

Definition 13 (Transformation [24]). Given a rule p=
(L<51<—r>R), an object M and a morphism m:L—-M, a
transformation M™'N is defined as the double pushout
diagram

et g Tip

ml (PO) l (PO) l

M<=—C—N

Operationally, the connector M is reconfigured by (i)
removing the occurrence of L\¢(K) in M, yielding the
intermediate connector C, and (ii) adding a copy of
R\r(K) to C. The DPO approach has been applied to many
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A X B A X B
Oo—{/—1-0—0
=
C Y D
Fig. 8. The structural reconfiguration rule AddBarrierSync.

high-level structures, such as typed attributed graphs,
hypergraphs and Petri nets. For a detailed discussion on
DPO graph transformation we refer to [9]. Here, we focus
on the application of graph transformation to model
reconfigurations of component connectors.

Example 8 (Structural reconfiguration). Fig. 8 depicts the
left-hand side and right-hand side of a reconfiguration
rule, called AddBarrierSync. The objects are depicted in
the standard graph notation for Reo connectors, but are
formally given by objects in DCASM, analogously to Fig. 6.
For brevity, we omit the gluing object K, which coincides
with L here. The connector in the right-hand side is called
buffered barrier synchronizer.® Intuitively, this connector
synchronizes the two buffered communication channels
between A and B, and C and D. Thus, data items can be
delivered only together. The structural reconfiguration
rule AddBarrierSync allows us to extend the barrier syn-
chronizer to an unbounded number of channels by sub-
sequently adding the lower part of the right-hand side of
the rule.

8.1. Semantical reconfiguration

Since the CASM semantics is compositional for push-
outs, we can lift the concept of structural reconfigurations
based on double pushouts to the semantical level, simply
by applying the semantics functor to the productions and
transformations. Formally, a structural reconfiguration
rule given as a span in DCASM is mapped to a semantical
reconfiguration rule given as a cospan in CASM. Analo-
gously, a double pushout diagram for a structural recon-
figuration yields a double pullback diagram

f—Ltsjoul B

RERREE

M——=C~—N
for the corresponding semantical reconfiguration.

Example 9 (Semantical reconfiguration). Fig. 9 depicts the
derived semantical reconfiguration rule .AddBarrierSync
for the structural reconfiguration rule AddBarrierSync in
Fig. 8. The gluing object K is identical to the left-hand side L.
Note that the two automata are related by a simulation
from the right-hand side to the left-hand side of the rule.
The state mapping is indicated using equal indices of the

3 The unbuffered variant of the barrier synchronizer in Reo was
introduced in [1].

state names. The port name map is the obvious inclusion
from left to right.

Because of the compositionality of the semantics
functor, we obtain a means to analyze the impact of a
structural reconfiguration of a connector on its semantics.
As a specific example, we discuss a notion of behavior-
preservation in the following.

8.2. Behavior-preserving reconfiguration

Since in our approach, we define reconfigurations as
structural transformations of component connectors, it is
important to be able to analyze the impact of a reconfi-
guration on the semantics of a connector. In this section,
we introduce a notion of behavior-preservation for recon-
figurations and show how it can be ensured by means of a
static check.

To motivate our formal notion of behavior-preserving
reconfiguration, we consider again the reconfiguration
rule AddBarrierSync in Fig. 8. For this rule, we would
like to ensure the following informal notion of behavior-
preservation: If the connector allows a directed commu-
nication from a component at the node A to a component
at the node B before applying the reconfiguration rule
AddBarrierSync, than this communication should also be
possible after the reconfiguration. Thus, the ability of
sending data through the channels between A and B
should be preserved by the reconfiguration. More gener-
ally, we would like to ensure that the reconfiguration does
not remove any behavior. AddBarrierSyne.m

Formally, we need to show that if M = N for
an arbitrary connector model M and an arbitrary match
m, then also M =<N. Thus, we need to prove that there
exists a simulation between the semantics of the con-
nectors before and after the reconfiguration. Such a
simulation can be interpreted as a refinement, in the
sense that every behavior of M should be also possible in
N. However, the existence of such a simulation turns out
to be too strong as a general requirement for behavior-
preservation. In particular, a reconfiguration may add new
nodes, such as C,Y and D in the rule AddBarrierSync,
which should not be relevant for defining the simulation.
Therefore, we first introduce a technical notion for
restricting the port name sets of constraint automata
with state memory.

Definition 14 (Port name restriction). Let A= (Q,P,M,
T,,u,@,QO) be a constraint automaton with state memory,
and f: A—X a simulation. We define the constraint
automaton with state memory

A|X = (Q.fp(Px).M,T, 11,0 X,Q°

such that 0(t)=<q,F.g8,q' ) < 0|X(t)=<{q,FNfpPx).g|X,
q'» where g|X is the guard obtained from g by removing
all subconstraints ‘v = vy’ where vy =d, or v, =d, with
péfp(Px). We define the simulations o = (idq,idy,fp,idr)
A- A|X and f; = (fo.fu.idp.fr) : A|X— .

Intuitively, for a given simulation f : A— X, the auto-
maton A|X is derived from 4 by restricting its port name
set to those port names that have a preimage in .
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Fig. 9. The derived semantical reconfiguration rule .AddBarrierSync.

All other port names of A are hidden. This notion of port
name restriction is moreover a factorization of f into o
and f, i.e., the diagram

r—L spef pics o

ST P

M C~—NIC~ N

commutes. In the following, we define a notion of
behavior-preserving reconfiguration rule.

Definition 15 (Behavior-preserving reconfiguration rule).
A semantical reconfiguration rule p=(L—K<R) is
called behavior-preserving if for any reconfiguration
MZE N given by the cospan M—C« N it holds that
M=N|C.

Note that A|C is the automaton N restricted to the
port names that are preserved by the rule. Therefore,
behavior-preserving rules ensure that the input and out-
put of the reconfiguration are related by a simulation,
where the output is restricted to the port names pre-
served by the reconfiguration.

In the following, we provide a sufficient condition for
ensuring behavior-preservation of reconfigurations,
which can be checked statically, i.e., for a given seman-
tical reconfiguration rule.

Theorem 5 (Behavior-preserving reconfiguration). Given a
semantical reconfiguration rule p = (C—@ICJ—R) and a simu-
lation IC%R\IC, such that f,.of =idc. Then p is behavior-
preserving, i.e., M=<N|C

r ¢ K Br RUC O R

m[ CT (PB) ’FC’ Tn
M c NIC——N

Bk
Example 10 (Behavior-preserving reconfiguration). Given
the semantical reconfiguration rule .AddBarrierSync=
(-5 K LR) in Fig. 9, where £ =K. The automaton R|K
is derived from R by restricting the port name sets to
{A,X,B}, i.e., by removing the port names C,Y,D. Then we
can define a simulation f: X—>R|K from the left-hand
side to the right-hand side by mapping state q; to q; and

state g, to qgj. For this simulation, f,of =idc holds. Thus,
the rule .AddBarrierSync is behavior-preserving.

Note that Theorem 5 provides us with a sufficient
condition for checking whether a rule is behavior-
preserving. In practice, this check can be carried out by
constructing a simulation f, which yields the identity
when composed with f,. As a first approximation, the
simulation f can be constructed as a relation relc
Qx x Qg, which is initialized as rel = {<{r(q),q9> |q € Qz}
and subsequently reduced by checking locally for all
transitions in K the existence of compatible transitions
in R|IC. If after this reduction rel is left-total, then there
also exists a simulation f with the desired properties and
we have shown that the reconfiguration rule is behavior-
preserving. Thus, the check for behavior-preservation
can be done automatically and statically for a given
reconfiguration rule.

In a more general setting, behavior-preserving recon-
figuration rules can be used to ensure properties which
assert the existence of a path in a reconfigurable con-
nector. Specifically, assume that a desired property ¢
holds for the system in its initial configuration A4, i.e.
Ak ¢, and the property is preserved by simulations, i.e.,
A=p A A=< A implies A =¢. Then, by showing that all
reconfiguration rules of the system are behavior-preser-
ving, we have established that ¢ holds for all possible
configurations of the system. Note that there can be
infinitely many configurations, and that the size of the
connector graphs and their corresponding automata is in
general unbounded.

9. Related work
9.1. Reconfiguration in Reo

The reconfiguration approach presented in this paper
extends the work in [10] and [14], where port automata
are used as underlying semantical framework. Port auto-
mata, as introduced in [27], are an abstraction of con-
straint automata that do not include data. Constraint
automata [2] and their extension with state memory
[8,18] come equipped with a parallel composition opera-
tor, which is a special case of the composition using
pullbacks presented in this paper. Since the structure of
connectors is not explicitly modeled in these papers,
structural reconfigurations in terms of transformations
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of connector graphs cannot be described in these models.
A basic logic for reasoning about connector reconfigura-
tions in Reo, including a model checking algorithm is
presented in [28]. As before, connectors are also not
formalized as graphs in this work. Moreover, the reconfi-
guration operations are rather low-level and provide no
means for a rule-based definition of reconfigurations.
Behavior-preserving reconfiguration is also not considered.
Graph transformation based reconfigurations for Reo
are also considered in [3]. Reasoning about dynamic
reconfigurations is accomplished by modeling both the
execution and the reconfiguration semantics as graph
transformations. This enables state space generation and
analysis using model checking. However, the approach
lacks compositionality and is therefore difficult to apply
in general. Reconfiguration for Reo using graph transfor-
mation where dataflow events trigger the reconfiguration
are considered in [29]. A model for distributed connectors
and their reconfiguration is discussed in [4]. However, the
semantics of connectors is not taken into consideration.

9.2. Petri nets and workflow nets

Compositionality of semantics and graph-based recon-
figuration has been also studied for various kinds of Petri
nets. A marking graph semantics of Petri nets is proposed
in [30]. Similarly to our approach the authors show
compositionality of this semantics using a pair of adjoint
functors. A compositional semantics for open Petri nets
based on deterministic processes is presented in [31].
Behavior preserving reconfiguration of open Petri nets are
studied in [5]. A categorical approach to automata-based
semantics for Petri nets is discussed in [32]. However, this
approach is more restrictive than our automata model,
since concurrent actions imply interleaved semantics.
Dynamic changes in workflow nets are treated in [33].
The so-called dynamic change bug refers to the problem of
ensuring a consistent system state after a reconfiguration
by calculating a safe change region and allowing a
reconfiguration to take place only in these states. Related
to the dynamic change bug, [34] introduces inheritance-
preserving transformation rules for workflows which
guarantee well-behaved reconfigurations.

9.3. Behavior-preserving model transformation

A comparison of two proof techniques for behavior-
preserving model transformation, respectively based on
explicit bisimulation construction and borrowed contexts,
are discussed in [35]. The authors show behavior-
preservation of a model transformation between two
artificial languages with graph transformation based
operational semantics. Behavior-preservation for refactor-
ings modeled using graph transformations with borrowed
contexts is considered in [36], where the authors present
a technique to ensure behavior-preservation for complex
refactorings consisting of multiple refactoring steps. Cor-
rectness of a model-to-code transformation from auto-
mata models to an executable, textual language is
considered in [37]. The correctness of the transforma-
tion is shown by an automated proof for the semantic

equivalence of the source and target models using the
theorem prover Isageiie/HoL. Both in [35] and [37], the
transformations are defined using Triple Graph Grammars
(TGGs). Behavior-preservation of a model transformation
between graph transformation based simulation and
animation models is discussed in [38]. Their main result
consists of a condition which ensures behavior-preservation
of this class of model transformations. Structure and
behavior-preserving refinements of abstract architectural
models into platform-specific representations are consid-
ered in [39]. In this work, both the operational semantics
and the reconfiguration are model using graph transforma-
tion rules, and model checking is employed to verify that
abstract scenarios can be realized in a platform-specific
architecture.

10. Conclusions and future work

We have presented a model for component connectors
for the channel-based coordination language Reo, which
integrates (i) an automata-based model for the specifica-
tion of primitives, e.g. channels and components, and (ii) a
graph-based model to describe the structure of the
system in terms of a connector or network. Our combined
structural and semantical model of distributed constraint
automata with state memory is based on the categorical
theory of distributed graph transformation. We defined
the semantics of our model using a flattening functor for
distributed objects and showed that it is compositional
with respect to gluing operations of - in our case -
connector graphs. We defined reconfigurations of compo-
nent connectors in Reo using graph transformations of the
underlying connector graphs. Due to the compositionality
of our model, we were able to lift the structural transfor-
mations of connector graphs to the semantical level, i.e.,
to the automata semantics of Reo. Thereby, our model
allows us to reason about the impact of reconfigurations
on the semantics of connectors. As a specific example, we
defined a notion of behavior-preserving reconfiguration
and presented a sufficient condition to ensure behavior-
preservation statically for a given reconfiguration rule.

The intricacy of the problem area, i.e., reasoning about
behavioral properties for structural reconfiguration, led us
to use a variety of modeling techniques and formal
methods in this paper. One of our core observations is
that channel-based component connectors in Reo have a
graph-based structure and that reconfiguration can be
formally modeled using graph transformation. Therefore,
we base our approach on the categorical framework of
algebraic graph transformation [9]. Our second observa-
tion is that the semantics of channels and connectors in
Reo can be phrased in terms of an automata model. Thus,
as the second formal foundation of our approach, we rely
on the semantic model of constraint automata [2,8]. As
the first step of integrating these two views on Reo, i.e.,
the structure and the semantics of connectors, we have
developed the categorical constraint automata model
CASM. We then used categorical notions for describing
distributed objects and their transformation, i.e., the
framework of distributed graph transformation [21,22]
for integrating the structural and the semantical views of
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connectors. Specifically, we defined the category DCASM
which adds the topology information of connectors to the
automata semantics. In this category, graph transforma-
tion can be applied to model reconfiguration of connec-
tors. Moreover, using a general result from distributed
graph transformation [10], we were able to show that the
automata semantics in this model is compositional. This
key property of our model allows us to formally describe
the change in the semantics of a connector when it is
being reconfigured and to define a notion of behavior-
preserving reconfiguration.

To apply our approach in practice, typically the follow-
ing steps are taken. First, component connectors and their
reconfigurations are formally described as graphs and
graph transformations, respectively. Second, based on the
structure of the modeled connectors and the automata
semantics of the used channels, a formal DCASM-model of
the involved connectors and their reconfigurations is
derived. Third, the induced semantics of connectors and
their reconfigurations is obtained automatically by apply-
ing the semantics functor. Finally, behavior-preservation
can be checked by statically analyzing the induced seman-
tical reconfiguration rules.

As future work, we plan to extend our approach to
exploit the full theory of algebraic graph transformation.
Since our model is based on distributed graph transfor-
mation, we expect to be able to apply existing results for
this purpose. In the context of behavior-preserving recon-
figuration, an open question is whether the sufficient
condition for ensuring behavior-preservation can be
strengthened also to a necessary condition. Furthermore,
we plan to investigate stricter notions of simulations,
which can be used to ensure the preservation of safety
properties, such as freedom of deadlock.

Finally, we plan to extend the implementation of Reo in
the Extensible Coordination Tools (ECTs) [15,14,16,17] to
support the modeling and execution of reconfigurable
connectors based on the formal framework developed in
this paper. Furthermore, we plan to evaluate the applic-
ability of our approach in practice by means of case studies.
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