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Software architecture for reactive systems

Recalling the course aims:

• Study architectural disciplines for reactive systems
(often complex, time critical, mobile, etc ...)

• in which continued interaction, in different forms, emerges as
a first-class citizen and the main form of composition
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Syllabus

• Introduction to software architecture

• Component-oriented architectural design
• Paradigm: Software components as monadic Mealy machines
• Foundations: Coalgebra theory as a semantic framework for

state-based systems a component calculus
• Method: The mMm calculus; prototyping in Haskell

• Process-oriented architectural design

• Paradigm: Overview of process-oriented ADLs
• Foundations: Interactive Markov chains
• Method: Specification and analysis of architectures with

stochastic constrains

• Coordination-oriented architectural design
• Paradigm: The Reo exogenous coordination model
• Foundations: Constraint automata and variants
• Method: Compositional specification of the glue layer



Motivation Interactive systems Strong equivalences Observational equivalences Calculi and Logics

Process-oriented architectural design

• ... the oldest paradigm in SA

• several methodologies/languages/platforms available: Wright,
Drawin, Acme, AADL, ...

• one under development at HASLab: Archery
(Alejandro Sanchez PhD thesis, 2013)
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Process-oriented architectural design

Ex: a client-server configuration in Acme

System CS = {
component client = { port call }
component server = { port request }

property max-clients-supported = 10;

connector rpc = { role plug-cl; role plug-sv}
}
attachments = {
{ call to plug-cl ; server to plug-sv }

}
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Labelled Transition Space

Definition
A labelled transition space over a set N of names is a tuple 〈S ,N,−→〉
where

• S = {s0, s1, s2, ...} is a set of states

• −→⊆ S × N × S is the transition relation, often given as an
N-indexed family of binary relations

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈−→
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Labelled Transition Space

Morphism
A morphism relating two labelled transition spaces over N, 〈S ,N,−→〉
and 〈S ′,N,−→′〉, is a function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→′ h s ′

morphisms preserve transitions
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Reachability

Definition
The reachability relation, −→∗⊆ S × N × S , is defined inductively

• s
ε−→
∗
s ′ for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
σ−→
∗
s ′′ and s ′′

a−→ s ′ then s
σa−→
∗
s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→
∗
t
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Labelled Transition System

Labelled Transition System
Given a labelled transition space 〈S ,N, ↓,−→〉, each state s ∈ S
determines a labelled transition system (LTS) over all states reachable
from s and the corresponding restrictions of −→.

LTS classification

• deterministic

• non deterministic

• finite

• image finite

• ...



Motivation Interactive systems Strong equivalences Observational equivalences Calculi and Logics

New LTS from old

Product

p
a−→ p′

a /∈ K
p |K q

a−→ p′ |K q

q
a−→ q′

a /∈ K
p |K q

a−→ p |K q′

p
a−→ p′ q

a−→ q′

a ∈ K
p |K q

a−→ p′ |K q′

• synchronous, multiparty interaction

• ... other interaction disciplines are possible
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New LTS from old

Abstraction

p
a−→ p′

a /∈ K
hideK p

a−→ hideK p

p
a−→ p′

a ∈ K
hideK p

τ−→ hideK p

• τ represents the unobservable, internal action

• product + abstraction = composition
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Trace equivalence

Trace (from language theory)
A word σ ∈ N∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→
∗
t

Trace equivalence

• Two states are trace equivalent if they have the same set of traces

• Two systems are trace equivalent if their initial states are.
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Automata

Back to old friends?

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)
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Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1
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After thoughts

... need more general models and theories
(but maybe along similar lines):

• Several interaction points (6= functions)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.
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Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic

form of observation

Simulation

A state q simulates another state p if every transition from q is
corresponded by a transition from p and this capacity is kept along
the whole life of the system to which state space q belongs to.
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Simulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
simulation iff, for all 〈p, q〉 ∈ R and a ∈ N,

p
a−→1 p

′ ⇒ 〈∃ q′ : q′ ∈ S2 : q
a−→2 q

′ ∧ 〈p′, q′〉 ∈ R〉

p

a

��

R q ⇒ q

a

��
p′ p′ R q′
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Example

q1
d // q2 p2

q0

a
>>

a
  

p0
a // p1

d
>>

e
  

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}
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Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)
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Bisimulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N,

(1) p
a−→1 p

′ ⇒ 〈∃ q′ : q′ ∈ S2 : q
a−→2 q

′ ∧ 〈p′, q′〉 ∈ R〉

(2) q
a−→2 q

′ ⇒ 〈∃ p′ : p′ ∈ S1 : p
a−→1 p

′ ∧ 〈p′, q′〉 ∈ R〉
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Examples

q1
a

~~

a

  

m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add
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Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation
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Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.
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Bisimulation

Definition (alternative)
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
bisimulation iff

〈p, q〉 ∈ R ⇔ 〈∀ a,C : a ∈ N,C ∈ (S1∪S2)/R : p
a−→1 C⇔ q

a−→2 C 〉

where, for an equivalence class C ,

p
a−→ C ⇔ 〈∃ p′ : p′ ∈ C : p

a−→ p′〉
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Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a
>>

a

  

p0
a // p1

b // p3

q2
b // q3
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Notes

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)
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Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

$$zz
· · ·

$$

· · ·

zz
Trace Eqzz

Complexity

• Virtually all forms of bisimulation can be determined in polynomial
time on finite state transition systems

• ... whereas trace, or language equivalence are in general difficult
(P-space hard)



Motivation Interactive systems Strong equivalences Observational equivalences Calculi and Logics

Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

• R. Milner’s weak bisimulation [Mil80]

• Van Glabbeek and Weijland’s branching bisimulation [GW96]
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Abstraction

• Intuition similar to that of strong bisimulation: But now, instead of
letting a single action be simulated by a single action, within an
envelope of internal transitions

• An internal action τ can be simulated by any number of internal
transitions (even by none).
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Weak bisimulation

Definition [Milner,80]
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
weak bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

1. If p
a−→1 p

′, then

• either a = τ and p′Rq
• or, there is a sequence

q
τ−→2 · · ·

τ−→2 t
a−→2 t

′ τ−→2 · · ·
τ−→2 q

′ involving
zero or more τ -transitions, such that p′Rq′.

2. symmetrically ...

Note
it corresponds to a strong bisimulation over

s
=⇒ for s ∈ N∗



Motivation Interactive systems Strong equivalences Observational equivalences Calculi and Logics

Weak bisimilarity

Definition

p ≈w q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉

τ

��

τ∗

��

a

��
a

��

τ∗

��
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Example

abstracts over intern action but branching is not preserved

p

a

��

c

  

τ

~~

q

a

��a

��

c

  

τ

~~
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Branching bisimulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

1. If p
a−→1 p

′, then

• either a = τ and p′Rq
• or, there is a sequence q

τ−→2 · · ·
τ−→2 q

′ of (zero or

more) τ -transitions such that pRq′ and q′
a−→2 q

′′

with p′Rq′′.

pRq′ and q′ ↓2.

2. symmetrically ...

Exercise
Give an alternative definition in terms of equivalence classes
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Branching bisimilarity

Definition

p ≈b q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉

... preserves the branching structure

τ

��

τ∗

��
a

��

a

��
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Divergence

Branching and weak bisimilarity do not preserve τ -loops

a

��

τ <<

a

��

satisfying a notion of fairness: if a τ -loop exists, then no infinite
execution sequence will remain in it forever if there is a possibility to leave

Exercise
Modify the corresponding definitions to enforce preserving divergence
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The rootedness condition

Problem
If an alternative is added to the initial state then transition systems that
were branching bisimilar may cease to be so.

Example: add a b-labelled branch to the initial states of

τ

��
a

��

a

��
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Rooted branching bisimilarity

Startegy
Impose a rootedness condition [R. Milner, 80]:

Initial τ -transitions can never be inert, i.e., two states are equivalent if
they can simulate each other’s initial transitions, such that the resulting
states are branching bisimilar.
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Rooted branching bisimulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
rooted branching bisimulation iff

1. it is a branching bisimulation

2. for all 〈p, q〉 ∈ R and a ∈ N,

• If p
a−→1 p

′, then there is a q′ ∈ S2 such that
q

a−→2 q
′ and p′ ≈b q′

• If q
a−→2 q

′, then there is a p′ ∈ S1 such that
p

a−→1 p
′ and p′ ≈b q′
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Rooted branching bisimilarity

Definition

p ≈rb q ⇔ 〈∃ R :: R is a rooted branching bisimulation and 〈p, q〉 ∈ R〉

Lemma

∼ ⊆ ≈rb ⊆ ≈b

Of course, in the absence of τ actions, ∼ and ≈b coincide.



Motivation Interactive systems Strong equivalences Observational equivalences Calculi and Logics

Example

branching but not rooted

s
a

��

τ

��

a

��

b

��

t

τ

��

b

��

a

��
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Example

rooted branching bisimilar

s

d

��

a

��

τ

��

a

��

b

��

t

d

��

b

��

a

��
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Rooted weak bisimilarity

The same recipe applies to weak bisimilarity:

Definition

p ≈rw q ⇔ 〈∃ R :: R is a rooted weak bisimulation and 〈p, q〉 ∈ R〉

Lemma

≈w

≈b ≈rw

≈rb

∼ (ordered by ⊆)
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The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others

 modal (temporal, hybrid) logics
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Process algebra

mCRL2 as a prototypical (source of) process algebras
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Modal logics

The Hennessy-Milner logic and modal equivalence
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Process-oriented architectural design

Module project

• Explore AADL (namely its BA - behavioural annex) providing
a hands-on comparison with coordination-oriented approaches
(e.g. Reo)

The lectures

• ... going a step ahead towards capturing probabilistic
behaviour and composition: interactive Markov chains
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