# Process-oriented architectural design (A crash course on interactive processes) 

Luís S. Barbosa

HASLab - INESC TEC
Universidade do Minho
Braga, Portugal

9 May, 2013

## Software architecture for reactive systems

Recalling the course aims:

- Study architectural disciplines for reactive systems (often complex, time critical, mobile, etc ...)
- in which continued interaction, in different forms, emerges as a first-class citizen and the main form of composition


## Syllabus

- Introduction to software architecture
- Component-oriented architectural design
- Paradigm: Software components as monadic Mealy machines
- Foundations: Coalgebra theory as a semantic framework for state-based systems a component calculus
- Method: The mMm calculus; prototyping in Haskell
- Process-oriented architectural design
- Paradigm: Overview of process-oriented ADLs
- Foundations: Interactive Markov chains
- Method: Specification and analysis of architectures with stochastic constrains
- Coordination-oriented architectural design
- Paradigm: The Reo exogenous coordination model
- Foundations: Constraint automata and variants
- Method: Compositional specification of the glue layer


## Process-oriented architectural design

- ... the oldest paradigm in SA
- several methodologies/languages/platforms available: Wright, Drawin, Acme, AADL, ...
- one under development at HASLab: Archery (Alejandro Sanchez PhD thesis, 2013)


## Process-oriented architectural design

Ex: a client-server configuration in ACME

```
System CS = {
component client = { port call }
component server = { port request }
    property max-clients-supported = 10;
    connector rpc = { role plug-cl; role plug-sv}
    }
    attachments = {
    { call to plug-cl ; server to plug-sv }
}
```


## Labelled Transition Space

Definition
A labelled transition space over a set $N$ of names is a tuple $\langle S, N, \longrightarrow\rangle$ where

- $S=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$ is a set of states
- $\longrightarrow \subseteq S \times N \times S$ is the transition relation, often given as an $N$-indexed family of binary relations

$$
s \xrightarrow{a} s^{\prime} \Leftrightarrow\left\langle s^{\prime}, a, s\right\rangle \in \longrightarrow
$$

## Labelled Transition Space

## Morphism

A morphism relating two labelled transition spaces over $N,\langle S, N, \longrightarrow\rangle$ and $\left\langle S^{\prime}, N, \longrightarrow{ }^{\prime}\right\rangle$, is a function $h: S \longrightarrow S^{\prime}$ st

$$
s \xrightarrow{a} s^{\prime} \Rightarrow h s \xrightarrow{a}^{\prime} h s^{\prime}
$$

## morphisms preserve transitions

## Reachability

Definition
The reachability relation, $\longrightarrow^{*} \subseteq S \times N \times S$, is defined inductively

- $s \xrightarrow{\epsilon}{ }^{*} s^{\prime}$ for each $s \in S$, where $\epsilon \in N^{*}$ denotes the empty word;
- if $s \xrightarrow{\sigma}{ }^{*} s^{\prime \prime}$ and $s^{\prime \prime} \xrightarrow{a} s^{\prime}$ then $s \xrightarrow{\sigma a *} s^{\prime}$, for $a \in N, \sigma \in N^{*}$

Reachable state $t \in S$ is reachable from $s \in S$ iff there is a word $\sigma \in N^{*}$ st $s \xrightarrow{\sigma}{ }^{*} t$

## Labelled Transition System

Labelled Transition System
Given a labelled transition space $\langle S, N, \downarrow, \longrightarrow\rangle$, each state $s \in S$ determines a labelled transition system (LTS) over all states reachable from $s$ and the corresponding restrictions of $\longrightarrow$.

LTS classification

- deterministic
- non deterministic
- finite
- image finite
- ...


## New LTS from old

## Product

$$
\begin{gathered}
\frac{p \stackrel{a}{\longrightarrow} p^{\prime}}{\left.\left.p\right|_{K} q \xrightarrow{a} p^{\prime}\right|_{K} q} a \notin K \quad \frac{q \stackrel{a}{\longrightarrow} q^{\prime}}{\left.\left.p\right|_{K} q \xrightarrow{a} p\right|_{K} q^{\prime}} a \notin K \\
\frac{p \xrightarrow{\left.\left.p\right|_{K} q \xrightarrow{a} p^{\prime} p^{\prime}\right|_{K} q^{\prime}}}{} a \in K
\end{gathered}
$$

- synchronous, multiparty interaction
- ... other interaction disciplines are possible


## New LTS from old

Abstraction


- $\tau$ represents the unobservable, internal action
- product + abstraction $=$ composition


## Trace equivalence

Trace (from language theory) A word $\sigma \in N^{*}$ is a trace of a state $s \in S$ iff there is another state $t \in S$ such that $s \xrightarrow{\sigma} t$

Trace equivalence

- Two states are trace equivalent if they have the same set of traces
- Two systems are trace equivalent if their initial states are.


## Automata

Back to old friends?

```
automaton behaviour \Leftrightarrow}\mathrm{ accepted language
```

Recall that finite automata recognize regular languages, i.e. generated by

- $L_{1}+L_{2} \triangleq L_{1} \cup L_{2} \quad$ (union)
- $L_{1} \cdot L_{2} \triangleq\left\{s t \mid s \in L_{1}, t \in L_{2}\right\} \quad$ (concatenation)
- $L^{*} \triangleq\{\epsilon\} \cup L \cup(L \cdot L) \cup(L \cdot L \cdot L) \cup \ldots$ (iteration)


## Automata

There is a syntax to specify such languages:

$$
E::=\epsilon|a| E+E|E E| E^{*}
$$

where $a \in \Sigma$.

- which regular expression specifies $\{a, b c\}$ ?
- and $\{c a, c b\}$ ?
and an algebra of regular expressions:

$$
\begin{aligned}
\left(E_{1}+E_{2}\right)+E_{3} & =E_{1}+\left(E_{2}+E_{3}\right) \\
\left(E_{1}+E_{2}\right) E_{3} & =E_{1} E_{3}+E_{2} E_{3} \\
E_{1}\left(E_{2} E_{1}\right)^{*} & =\left(E_{1} E_{2}\right)^{*} E_{1}
\end{aligned}
$$

## After thoughts

... need more general models and theories
(but maybe along similar lines):

- Several interaction points ( $\neq$ functions)
- Non determinisim should be taken seriously: the notion of equivalence based on accepted language is blind wrt non determinism
- Moreover: the reactive character of systems entail that not only the generated language is important, but also the states traversed during an execution of the automata.


## Simulation

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

## Simulation

A state $q$ simulates another state $p$ if every transition from $q$ is corresponded by a transition from $p$ and this capacity is kept along the whole life of the system to which state space $q$ belongs to.

## Simulation

## Definition

Given $\left\langle S_{1}, N, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \longrightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a simulation iff, for all $\langle p, q\rangle \in R$ and $a \in N$,

$$
p \xrightarrow{a} 1 p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} 2 q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
$$



## Example



## Similarity

## Definition

$$
p \lesssim q \Leftrightarrow\langle\exists R:: R \text { is a simulation and }\langle p, q\rangle \in R\rangle
$$

Lemma
The similarity relation is a preorder (ie, reflexive and transitive)

## Bisimulation

Definition
Given $\left\langle S_{1}, N, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \longrightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a bisimulation iff both $R$ and its converse $R^{\circ}$ are simulations.
l.e., whenever $\langle p, q\rangle \in R$ and $a \in N$,
(1) $p \xrightarrow{a} 1 p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} 2 q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle$
(2) $q \xrightarrow{a} 2 q^{\prime} \Rightarrow\left\langle\exists p^{\prime}: p^{\prime} \in S_{1}: p \xrightarrow{a} 1 p^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle$

## Examples



## Bisimilarity

## Definition

$$
p \sim q \Leftrightarrow\langle\exists R:: R \text { is a bisimulation and }\langle p, q\rangle \in R\rangle
$$

## Lemma

1. The identity relation id is a bisimulation
2. The empty relation $\perp$ is a bisimulation
3. The converse $R^{\circ}$ of a bisimulation is a bisimulation
4. The composition $S \cdot R$ of two bisimulations $S$ and $R$ is a bisimulation
5. The $\bigcup_{i \in I} R_{i}$ of a family of bisimulations $\left\{R_{i} \mid i \in I\right\}$ is a bisimulation

## Bisimilarity

## Lemma

The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation $\sim$.

## Bisimulation

Definition (alternative)
Given $\left\langle S_{1}, N, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \longrightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a bisimulation iff

$$
\langle p, q\rangle \in R \Leftrightarrow\left\langle\forall a, C: a \in N, C \in\left(S_{1} \cup S_{2}\right) / R: p \xrightarrow{a}_{1} C \Leftrightarrow q \xrightarrow{a}_{2} C\right\rangle
$$

where, for an equivalence class $C$,

$$
p \xrightarrow{a} C \Leftrightarrow\left\langle\exists p^{\prime}: p^{\prime} \in C: p \xrightarrow{a} p^{\prime}\right\rangle
$$

## Bisimilarity

Warning
The bisimilarity relation $\sim$ is not the symmetric closure of $\lesssim$

## Example

$$
q_{0} \lesssim p_{0}, p_{0} \lesssim q_{0} \text { but } p_{0} \nsim q_{0}
$$



$$
p_{0} \xrightarrow{a} p_{1} \xrightarrow{b} p_{3}
$$

## Notes

Similarity as the greatest simulation

$$
\lesssim \triangleq \bigcup\{S \mid S \text { is a simulation }\}
$$

Bisimilarity as the greatest bisimulation

$$
\sim \triangleq \bigcup\{S \mid S \text { is a bisimulation }\}
$$

cf relational translation of definitions
$\lesssim$ and $\sim$ as greatest fix points (Tarski's theorem)

## Notes

The Van Glabbeek linear - branching time spectrum


Complexity

- Virtually all forms of bisimulation can be determined in polynomial time on finite state transition systems
- ... whereas trace, or language equivalence are in general difficult (P-space hard)


## Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

- R. Milner's weak bisimulation [Mil80]
- Van Glabbeek and Weijland's branching bisimulation [GW96]


## Abstraction

- Intuition similar to that of strong bisimulation: But now, instead of letting a single action be simulated by a single action, within an envelope of internal transitions
- An internal action $\tau$ can be simulated by any number of internal transitions (even by none).


## Weak bisimulation

Definition [Milner,80]
Given $\left\langle S_{1}, N, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \longrightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a weak bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p \xrightarrow{a} 1 p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence $q \xrightarrow{\tau} 2 \cdots \xrightarrow{\tau} t \xrightarrow{a} 2 t^{\prime} \xrightarrow{\tau} 2 \cdots \xrightarrow{\tau} q^{\prime}$ involving zero or more $\tau$-transitions, such that $p^{\prime} R q^{\prime}$.

2. symmetrically ...

Note
it corresponds to a strong bisimulation over $\xlongequal{s}$ for $s \in N^{*}$

## Weak bisimilarity

## Definition

$$
p \approx_{w} q \Leftrightarrow\langle\exists R:: R \text { is a branching bisimulation and }\langle p, q\rangle \in R\rangle
$$



## Example

abstracts over intern action but branching is not preserved


## Branching bisimulation

## Definition

Given $\left\langle S_{1}, N, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \longrightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a branching bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p \xrightarrow{a} 1 p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence $q \xrightarrow{\tau}{ }_{2} \cdots \xrightarrow{\tau} q^{\prime} q^{\prime}$ of (zero or more) $\tau$-transitions such that $p R q^{\prime}$ and $q^{\prime} \xrightarrow{a} q^{\prime \prime}$ with $p^{\prime} R q^{\prime \prime}$. $p R q^{\prime}$ and $q^{\prime} \downarrow_{2}$.

2. symmetrically ...

## Exercise

Give an alternative definition in terms of equivalence classes

## Branching bisimilarity

## Definition

$$
p \approx_{b} q \Leftrightarrow\langle\exists R:: R \text { is a branching bisimulation and }\langle p, q\rangle \in R\rangle
$$

... preserves the branching structure


## Divergence

Branching and weak bisimilarity do not preserve $\tau$-loops

satisfying a notion of fairness: if a $\tau$-loop exists, then no infinite execution sequence will remain in it forever if there is a possibility to leave

## Exercise

Modify the corresponding definitions to enforce preserving divergence

## The rootedness condition

## Problem

If an alternative is added to the initial state then transition systems that were branching bisimilar may cease to be so.

Example: add a $b$-labelled branch to the initial states of


## Rooted branching bisimilarity

## Startegy

Impose a rootedness condition [R. Milner, 80]:
Initial $\tau$-transitions can never be inert, i.e., two states are equivalent if they can simulate each other's initial transitions, such that the resulting states are branching bisimilar.

## Rooted branching bisimulation

## Definition

Given $\left\langle S_{1}, N, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \longrightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a rooted branching bisimulation iff

1. it is a branching bisimulation
2. for all $\langle p, q\rangle \in R$ and $a \in N$,

- If $p \xrightarrow{a} 1 p^{\prime}$, then there is a $q^{\prime} \in S_{2}$ such that $q \xrightarrow{a} 2 q^{\prime}$ and $p^{\prime} \approx_{b} q^{\prime}$
- If $q \xrightarrow{a}{ }_{2} q^{\prime}$, then there is a $p^{\prime} \in S_{1}$ such that $p \xrightarrow{a} p_{1} p^{\prime}$ and $p^{\prime} \approx_{b} q^{\prime}$


## Rooted branching bisimilarity

## Definition

$p \approx_{r b} q \Leftrightarrow\langle\exists R:: R$ is a rooted branching bisimulation and $\langle p, q\rangle \in R\rangle$

Lemma

$$
\sim \subseteq \approx_{r b} \subseteq \approx_{b}
$$

Of course, in the absence of $\tau$ actions, $\sim$ and $\approx_{b}$ coincide.

## Example

branching but not rooted


## Example

rooted branching bisimilar


## Rooted weak bisimilarity

The same recipe applies to weak bisimilarity:
Definition
$p \approx_{r w} q \Leftrightarrow\langle\exists R:: R$ is a rooted weak bisimulation and $\langle p, q\rangle \in R\rangle$

Lemma

(ordered by $\subseteq$ )

## The questions to follow...

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?
$\rightsquigarrow$ process languages and calculi cf. Ccs (Milner, 80), Csp (Hoare, 85), Acp (Bergstra \& Klop, 82), $\pi$-calculus (Milner, 89), among many others
$\rightsquigarrow$ modal (temporal, hybrid) logics


## Process algebra

mCRL2 as a prototypical (source of) process algebras

## Modal logics

The Hennessy-Milner logic and modal equivalence

## Process-oriented architectural design

Module project

- Explore AADL (namely its BA - behavioural annex) providing a hands-on comparison with coordination-oriented approaches (e.g. REO)

The lectures

- ... going a step ahead towards capturing probabilistic behaviour and composition: interactive Markov chains

