
Software architecture for reactive systems
(introduction)

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

27 February, 2013

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Shaw, 1993]

the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]

SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]

deals with the design and implementation of the high-level
structure of software

[Britton, 2000]

a discipline of generic design

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Perry, 1995]

the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time

[ANSI/IEEE Std 1471-2000]

the fundamental organisation of a system, embodied in its
components, their relationships to each other and the environment,
and the principles governing its design and evolution.

[Garlan, 2003]

a bridge between requirements and code (...) a blueprint for
implementation.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

The architecture of a system describes its gross structure which
illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?

• where are the pathways of interaction?

• which are the key properties of the parts the architecture rely
and/or enforce?

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Properties

• functional vs non functional
(e.g. performance, reliability, dependability, portability,
scalability, interoperability ...)

• structural vs behavioural

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Which structure? Architectural views

• code-based structures: such as modules, classes, packages and
relationships like uses, inherits from or depends on.

• run-time structures: such as object instances, clients, servers,
databases, browsers, channels, broadcasters, software buses, ...

• allocation structures: intended to map code-based and
run-time structures to external items, such as network
locations, physical devices, managerial structures ...

This course

• focus on run-time structures

• and entails a particular view: components & glue

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Components:

Loci of computation and data stores, encapsulating
subsets of the system’s functionality and/or data;
Equipped with run-time interfaces defining their in-
teraction points and restricting access to those sub-
sets;
May explicitly define dependencies on their required
execution contexts;
Typically provide application-specific services

Connectors:

Pathways of interaction between components;
Ensure the flow of data and regulates interaction;
Typically provide application-independent interac-
tion facilities;
Examples: procedure calls, pipes, wrappers, shared
data structures, synchronisation barriers, etc.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Configurations:

Specifications of how components and connectors
are associated;
Examples: relations associating component ports
to connector roles, mapping diagrams, etc.

Properties:

Set of non functional properties associated to any
architectural element;
Examples (for components): availability, location,
priority, CPU usage, ...
Examples (for connectors): reliability, latency,
throughput, ...

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Constraints:

Represent claims about an architectural design that
should remain true even as it evolves over time.
Typical constraints include restrictions on allowable
values of properties, topology, and design vocabu-
lary. For example, the number of clients of a par-
ticular server is less than some maximum value.

Styles:

Styles represent families of related systems.A style
defines a vocabulary of design element types and
rules for composing them. Examples include
dataflow architectures based on pipes and filters,
blackboard architectures based on shared data
space and a set of knowledge sources, and layered
systems.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Two examples

from the micro level (a Unix shell script)

cat invoices | grep january | sort

• Application architecture can be understood based on very few
rules

• Applications can be composed by non-programmers

• ... a simple architectural concept that can be comprehended
and applied by a broad audience

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Two examples

to the macro level (the WWW architecture)

• Architecture is totally separated from the code

• There is no single piece of code that implements the
architecture

• There are multiple pieces of code that implement the various
components of the architecture (e.g., different browsers)

• One of the most successful applications is only understood
adequately from an architectural point of view

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Architectural styles (or patterns)

• classify families of software architectures

• act as types for configurations

• provide
• domain-specific design vocabulary (eg, set of connector and

component types admissible)
• a set of constraints to single out which configurations are

well-formed. Eg, a pipeline architecture might constraint valid
configurations to be linear sequences of pipes and filters.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Examples

• Layers

• Client & Server

• Master & Slave

• Publish & Subscribe

• Peer2Peer

• Pipes and Filters

• Event-bus

• Repositories
• triggering by transactions: databases
• triggering by current state: blackboard

• Table-driven (virtual machines)

• ...

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Layers

• helps to structure applications that can be decomposed into
groups of subtasks at different levels of abstraction

• Layer n provides services to layer n + 1 implementing them
through services of the lyer n + 1

• Typically, service requests resort to synchronous procedure
calls

Examples:

virtual machines (eg, JVM)
APIs (eg, C standard library on top of Unix system calls)
operating systems (eg, Windows NT microkernel)
networking protocols (eg, ISO OSI 7-layer model; TCP/IP)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Client-Server

• permanently active servers supporting multiple clients

• requests typically handled in separate threads

• stateless (session state maintained by the client) vs stateful
servers

• interaction by some inter-process communication mechanism

Examples:

remote DB access
web-based applications
interactive shells

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Peer-2-Peer

• symmetric Client-Service pattern

• peers may change roles dynamically

• services can be implicit (eg, through the use of a data stream)

Examples:

multi-user applications
P2P file sharing

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Publish-Subscribe

• used to structure distributed systems whose components
interact through remote service invocations

• servers publish their capabilities (services + characteristics) to
a broker component, which accepts client requests and
coordinate communication

• allows dynamic reconfiguration

• requires standardisation of service descriptions through IDL
(eg CORBA IDL, .Net, WSDL) or a binary standard (eg,
Microsoft OLE — methods are called indirectly using pointers)

Examples:

web services
CORBA (for cooperation among heterogeneous OO systems)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Master-Slave

• a master component distributes work load to similar slave
components and computes a final result from the results these
slaves return

• isolated slaves; no sharing of data

• supports fault-tolerance and parallel computation

Examples:

dependable systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Event-Bus

• event sources publish messages to particular channels on an
event bus

• event listeners subscribe to particular channels and are
notified of message availability

• asynchronous interaction

• channels can be implicit (eg, using event patterns)

• allows dynamic reconfiguration

• variant of so-called event-driven architectures

Examples:

process monitoring
trading systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Pipe & Filter

• suitable for data stream processing

• each processing step is encapsulated into a filter component

• uniform data format

• no shared state

• concurrent processing is natural

Examples:

compilers
Unix shell commands

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Blackboard

• suitable for problems with non deterministic solution strategy
known

• all components have access to a shared data store

• components feed the blackboard and inspect it for new partial
data

• extending the data space is easy, but changing its structure
may be hard

Examples:

complex IA problems (eg, planning, machine learning)
complex applications in computing science (eg, speech recognition;
computational chemistry)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Origins

• Until the 90’s, SA was largely an ad hoc affair (but see
[Dijkstra,69], [Parnas79], ...)

• Descriptions relied on informal box-and-line diagrams, rarely
maintained once the system was built

Challenges

• recognition of a shared repertoire of methods, techniques and
patterns for structuring complex systems

• quest for reusable frameworks for the development of product
families

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

The last 15 years

• Formal notations for representing and analysing SA: ADL

• Examples: Wright, Rapide, SADL, Darwin, C2, Aesop, Piccola

ADLs provide:

• conceptual framework + concrete syntax

• tools for parsing, displaying, analysing or
simulating architectural descriptions

• Acme [Garlan et al, 97] as an architectural interchange
language (a sort of XML for architectural description)

• Use of model-based prototyping tools (eg Z, VDM) or
model-checkers (eg Alloy) to analyse architectural descriptions

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

The last 15 years

• Classification of architectural styles characterising families of
SA and acting as types for configurations

• Standardisation efforts: ANSI/IEEE Std 1471-2000, but also
’local’ standards (eg, Sun’s Enterprise JavaBeans architecture)

• Impact of the emergence of a general purpose
(object-oriented) design notation — UML — closer to
practitioners and with a direct link to OO implementations

• SA becomes a mature discipline in Software Engineering; new
fields include documentation and architectural recovery from
legacy code

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

Not only the world of software development, but also the
contexts in which software is being used are changing quickly
and in significant ways ...
... whose impact on Software Engineering, in general, is still
emerging

• Software sub-contracting: many companies look at themselves
more as system integrators than as software developers:

the code they write is glue code ...
which entails the need for common frameworks to
reduce architectural mismatchs

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

• Software as a service

• From object-oriented to component-based development:

• In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction

• Objects are wired at a very low level and the description of
the wiring patterns is distributed among them

• CBD retains the basic encapsulation of data and code
principle to increase modularity but shifts the emphasis from
class inheritance to object composition

• ... to avoid interference between inheritance and
encapsulation and pave the way to a development
methodology based on third-party assembly of components

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

• From programming-in-the-large to programming-in-the-world:

’not only the complexity of building a large application
that one needs to deliver, in time and budget, to a client,
but of managing an open-ended structure of autonomous
components, possibly distributed and highly heteroge-
neous.
This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.’
(Fiadeiro, 05)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Challenges

Such trends entails a number of challenges to the way we think
about SA

• new target: need for an architectural discipline for reactive
systems
(often complex, time critical, mobile, etc ...)

• from composition to coordination (orchestration)

• relevance of wrappers and component adapters: integration vs
incompatible assumptions about component interaction

• continued interaction as a first-class citizen and the main form
of software composition

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Our approach

There is no general-purpose, universally tailored, approach to
architectural design ...

Therefore, the course

• introduces 3 different approaches

• addressed from both a foundational and methodological
perspective

• with (reasonable) tool support for modelling and analysis

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Syllabus

• Introduction to software architecture

• Component-oriented architectural design
• Paradigm: Software components as monadic Mealy machines
• Foundations: Coalgebra theory as a semantic framework for

state-based systems a component calculus
• Method: The mMm calculus; prototyping in Haskell

• Process-oriented architectural design
• Paradigm: Overview of process-oriented ADLs
• Foundations: Interactive Markov chains
• Method: Specification and analysis of architectures with

stochastic constrains

• Coordination-oriented architectural design
• Paradigm: The Reo exogenous coordination model
• Foundations: Constraint automata and variants
• Method: Compositional specification of the glue layer

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Component-oriented architectural design

new components from old in mMm

•

2n

Cell � Cell � · · · � Cell

24
n

•

Bus

24
n

GameLife = ((Cell � Cell � · · · � Cell) ; Bus) �

where

Bus = pwq

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Process-oriented architectural design

a configuration (client-server in Acme)

System CS = {
component client = { port call }
component server = { port request }

property max-clients-supported = 10;

connector rpc = { role plug-cl; role plug-sv}
}
attachments = {
{ call to plug-cl ; server to plug-sv }

}

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Coordination-oriented architectural design

a connector (synchronization barrier) in Reo

• // c

a •

22

,, •_
_
•

b •

22

++ • // d

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pragmatics ...

• References: (tba)

• Assessment: (tba, but essentially continous)

• Research context: Projects
• Mondrian — 2011-13

on foundations for architectural design
• Qais — 2012-14

on coalgebraic quantitative reasoning
• Nasoni — 2012-15

on heterogenous software coordination
(continuous vs discrete systems)

GRANTS available!

(with U. Nijmegen, U. Aveiro, CWI, INESC TEC)

	Software Architecture
	Architectural Styles
	Evolution & Challenges
	Architecture for Reactive Systems

