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Roadmap

Inductive Definitions

I inductive types and its elimination mechanisms;
I proof by induction; case analysis; general recursion;
I relations as inductive types; logical connectives as inductive types.

More about Coq

I the Coq library; searching the environment;
I useful tactics and commands; combinnig tactics; automatic tactics.

Programming and Proving in Coq

I some datatypes of programming;
I functional correctness; partiality; specification types;
I program extraction;
I non-structural recursion.
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Inductive Definitions
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Induction

Induction is a basic notion in logic and set theory.

When a set is defined inductively we understand it as being “built up
from the bottom” by a set of basic constructors.

Elements of such a set can be decomposed in “smaller elements” in a
well-founded manner.

This gives us principles of
I

“proof by induction” and
I

“function definition by recursion”.
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Inductive types

We can define a new type I inductively by giving its constructors together with
their types which must be of the form

⌧1! . . .!⌧n!I , with n � 0

Constructors (which are the introduction rules of the type I) give the
canonical ways of constructing one element of the new type I.

The type I defined is the smallest set (of objects) closed under its
introduction rules.

The inhabitants of type I are the objects that can be obtained by a finite
number of applications of the type constructors.

Type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in ⌧i must be in positive positions in order to assure the
well-foundedness of the datatype.

For instance, assuming that I does not occur in types A and B: I!B!I,
A!(B!I)!I or ((I!A)!B)!A!I are valid types for a constructor of I, but
(I!A)!I or ((A!I)!B)!A!I are not.
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Induction types - examples

The inductive type N : Set of natural numbers has two constructors

0 : N
S : N ! N

A well-known example of a higher-order datatype is the type O : Set of ordinal
notations which has three constructors

Zero : O
Succ : O ! O
Lim : (N ! O) ! O

To program and reason about an inductive type we must have means to analyze
its inhabitants.

The elimination rules for the inductive types express ways to use the objects of
the inductive type in order to define objects of other types, and are associated to
new computational rules.
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Recursors

When an inductive type is defined in a type theory the theory should automatically
generate a scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equipped with a recursor that can be used to
define functions and prove properties on that type.

The recursor is a constant RI that represents the structural induction
principle for the elements of the inductive type I, and the computation rule
associated to it defines a safe recursive scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

� ` P : N!Type � ` a : P 0 � ` a0 : ⇧x :N. P x!P (Sx)
� ` RN P aa0 : ⇧n :N. P n

and its computation rules are

RN P aa0 0 ! a
RN P aa0 (Sx) ! a0 x (RN P aa0 x)
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Proof-by-induction scheme

The proof-by-induction scheme can be recovered by setting P to be of type
N!Prop.

Let indN := � P :N!Prop.RN P we obtain the following rule

� ` P : N!Prop � ` a : P 0 � ` a0 : ⇧x :N. P x!P (Sx)
� ` indN P aa0 : ⇧n :N. P n

This is the well known structural induction principle over natural numbers. It
allows to prove some universal property of natural numbers (8n :N. Pn) by
induction on n.
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Primitive recursion scheme

The primitive recursion scheme (allowing dependent types) can be recovered by
setting P : N!Set.

Let recN := � P :N!Set.RN P we obtain the following rule

� ` T : N!Set � ` a : T 0 � ` a0 : ⇧ x :N. T x!T (Sx)
� ` recN T a a0 : ⇧n :N. T n

We can define functions using the recursors.

For instance, a function that doubles a natural number can be defined as follows:

double := recN (�n :N. N) 0 (�x :N. �y :N.S (S y))

This approach gives safe way to express recursion without introducing
non-normalizable objects.

However, codifying recursive functions in terms of elimination constants is quite
far from the way we are used to program. Instead we usually use general recursion
and case analysis.
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Case analysis

Case analyses gives an elimination rule for inductive types.

For instance, n : N means that n was introduced using either 0 or S, so we may
define an object match n with {0 ) b1 | (Sx) ) b2} in another type � depending
on which constructor was used to introduce n.

A typing rule for this construction is

� ` n : N � ` b1 : � �, x : N ` b2 : �

� ` match n with {0 ) b1 | (Sx) ) b2} : �

and the associated computation rules are

match 0 with {0 ) b1 | S ) b2} ! b1

match (S e) with {0 ) b1 | (Sx) ) b2} ! b2 [e/x]

The case analysis rule is very useful but it does not give a mechanism to define
recursive functions.
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General recursion

Functional programming languages feature general recursion, allowing recursive
functions to be defined by means of pattern-matching and a general fixpoint
operator to encode recursive calls.

The typing rule for N fixpoint expressions is

� ` N!✓ : s �, f : N!✓ ` e : N!✓

� ` (fix f = e) : N!✓

and the associated computation rules are

(fix f = e) 0 ! e[(fix f = e)/f ] 0
(fix f = e) (Sx) ! e[(fix f = e)/f ] (Sx)

Of course, this approach opens the door to the introduction of non-normalizable
objects.

Using this, the function that doubles a natural number can be defined by

(fix double = �n : N.match n with {0 ) 0 | (Sx) ) S (S (double x))})
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About termination

Checking convertibility between types may require computing with recursive
functions. So, the combination of non-normalization with dependent types
leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require
recursive functions to be encoded in terms of recursors or allow restricted
forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose
syntactical restrictions constraining all recursive calls to be applied to terms
structurally smaller than the formal argument of the function.

Another way to ensure termination is to accept a measure function that
specifies how the argument “decreases” between recursive function calls.
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Computation

Recall that typing judgments in Coq are of the form E |� ` M : A, where E is
the global environment and � is the local context.

Computations are performed as series of reductions.

�-reduction for compute the value of a function for an argument:

(�x :A. M) N !� M [N/x]

�-reduction for unfolding definitions:

M ! � N if (M := N) 2 E |�

◆-reduction for primitive recursion rules, general recursion and case analysis

⇣-reduction for local definitions: let x := N in M ! ⇣ M [N/x]

Note that the conversion rule is

E |� ` M : A E |� ` B : s

E |� ` M : B
if A =�◆�⇣ B and s 2 {Prop,Set,Type}
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Natural numbers

Inductive nat :Set := O : nat
| S : nat -> nat.

The declaration of this inductive type introduces in the global environment not only the
constructors O and S but also the recursors: nat rect, nat ind and nat rec

Check nat rect.

nat_rect
: forall P : nat -> Type,
P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Print nat ind.

nat_ind = fun P : nat -> Prop => nat_rect P
: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Print nat rec.

nat_rec = fun P : nat -> Set => nat_rect P
: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n
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Vectors of length n over A.

Inductive vector (A : Type) : nat -> Type :=
| Vnil : vector A 0
| Vcons : A -> forall n : nat, vector A n -> vector A (S n).

Remark the di↵erence between the two parameters A and n:
– A is a general parameter, global to all the introduction rules,
– n is an index, which is instantiated di↵erently in the introduction rules.

The type of constructor Vcons is a dependent function.

Variables b1 b2 : B.
Check (Vcons b1 (Vcons b2 (Vnil ))).

Vcons B b1 1 (Vcons B b2 0 (Vnil B)) : vector B 2

Check vector rect.

vector_rect
: forall (A : Type) (P : forall n : nat, vector A n -> Type),

P 0 (Vnil A) ->
(forall (a : A) (n : nat) (v : vector A n),
P n v -> P (S n) (Vcons A a n v)) ->
forall (n : nat) (v : vector A n), P n v
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Equality

In Coq, the propositional equality between two inhabitants a and b of the same
type A, noted a = b, is introduced as a family of recursive predicates “to be equal
to a”, parameterized by both a and its type A. This family of types has only one
introduction rule, which corresponds to reflexivity.

Inductive eq (A : Type) (x : A) : A -> Prop :=
| refl_equal : (eq A x x).

The induction principle of eq is very close to the Leibniz’s equality but not exactly
the same.

Check eq ind.

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Notice that the syntax “a = b” is an abbreviation for “eq a b”, and that the
parameter A is implicit, as it can be inferred from a.

Inductive eq (A : Type) (x : A) : A -> Prop :=
| refl_equal : x = x.
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Relations as inductive types

Some relations can also be introduced as an inductive family of propositions. For
instance, the order n  m on natural numbers is defined as follows in the
standard library:

Inductive le (n:nat) : nat -> Prop :=
| le_n : (le n n)
| le_S : forall m : nat, (le n m) -> (le n (S m)).

Notice that in this definition n is a general parameter, while the second
argument of le is an index. This definition introduces the binary relation
n  m as the family of unary predicates “to be greater or equal than a given
n”, parameterized by n.

The Coq system provides a syntactic convention, so that “le x y” can be
written “x <= y”.

The introduction rules of this type can be seen as rules for proving that a
given integer n is less or equal than another one. In fact, an object of type
n  m is nothing but a proof built up using the constructors le n and le S.
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Logical connectives in Coq

In the Coq system, most logical connectives are represented as inductive types,
except for ) and 8 which are directly represented by! and ⇧-types, negation
which is defined as the implication of the absurd and equivalence which is defined
as the conjunction of two implications.

Definition not := fun A : Prop => A -> False.

Notation "~ A" := (not A) (at level 75, right associativity).

Inductive True : Prop := I : True.

Inductive False : Prop := .

Inductive and (A : Prop) (B : Prop) : Prop :=
| conj : A -> B -> (and A B).

Notation "A /\ B" := (and A B) (at level 80, right associativity).
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Logical connectives in Coq

Inductive or (A : Prop) (B : Prop) : Prop :=
| or_introl : A -> (or A B)
| or_intror : B -> (or A B).

Notation "A \/ B" := (or A B) (at level 85, right associativity).

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
| ex_intro : forall x : A, P x -> ex P.

exists x:A, P is an abbreviation of ex A (fun x:A => P).

Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).

Notation "P <-> Q" := (iff P Q) (at level 95, no associativity).

The constructors are the introduction rules.
The induction principle gives the elimination rules.

All the (constructive) logical rules are now derivable.
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More About Coq
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The Coq library

Proof development often take advantage from the large base of definitions and
facts found in the Coq library.

The initial library: it contains elementary logical notions and datatypes. It
constitutes the basic state of the system directly available when running
Coq.

The standard library: general-purpose libraries containing various
developments of Coq axiomatizations about sets, lists, sorting, arithmetic,
etc. This library comes with the system and its modules are directly
accessible through the Require command.

Users’ contributions: user-provided libraries or developments are provided by
Coq users’ community. These libraries and developments are available for
download.
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Coq standard library

In the Coq system most usual datatypes are represented as inductive types and
packages provide a variety of properties, functions, and theorems around these
datatypes.

Some often used packages:

Logic Classical logic and dependent equality
Arith Basic Peano arithmetic
ZArith Basic relative integer arithmetic
Bool Booleans (basic functions and results)
Lists Polymorphic lists and Streams
Sets Sets (classical, constructive, finite, infinite, power set, etc.)
FSets Specification and implementations of finite sets and finite maps
QArith Axiomatization of rational numbers
Reals Formalization of real numbers
Relations Relations (definitions and basic results)
...
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Searching the environment

Some useful commands to find already existing proofs of facts in the environment.

Search ident - displays the name and type of all theorems of the current
context whose statement’s conclusion has the form (ident t1 .. tn)

SearchAbout ident - displays the name and type of all objects (theorems,
axioms, etc) of the current context whose statement contains ident.

SearchPattern pattern - displays the name and type of all theorems of the
current context which matches the expression pattern.

SearchRewrite pattern - displays the name and type of all theorems of the
current context whose statement’s conclusion is an equality of which one
side matches the expression pattern.

Check the following commands:
Search le.
SearchAbout le.
SearchPattern (le (_ + _) (_ + _)).
SearchPattern (_ + _ <= _ + _).
SearchRewrite (_ + (_ - _)).
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Basic tactics

intro, intros – introduction rule for ⇧ (several times)

apply – elimination rule for ⇧
assumption – match conclusion with an hypothesis

exact – gives directly the exact proof term of the goal
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Tactics for first-order reasoning

Proposition (P ) Introduction Elimination (H of type P )
? elim H, contradiction
¬A intro apply H
A ^B split elim H, destruct H as [H1 H2]
A ) B intro apply H
A _B left, right elim H, destruct H as [H1|H2]
8x :A. Q intro apply H
9x :A. Q exists witness elim H, destruct H as [x H1]
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Tactics for equational reasoning

rewrite – rewrites a goal using an equality.

rewrite <- – rewrites a goal using an equality in the reverse
direction.

reflexivity – reflexivity property for equality.

symmetry – symmetry property for equality.

transitivity – transitivity property for equality.

replace a with b – replaces a by b while generating the subgoal
a=b.

...
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Convertibility tactics

simpl, red, cbv, lazy, compute – performs evaluation.

unfold – applies the � rule for a transparent constant.

pattern – performs a beta-expansion on the goal.

change – replaces the goal by a convertible one.

...
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Tactics for inductive reasoning

elim – to apply the corresponding induction principle.

induction – performs induction on an identifier.

case, destruct – performs case analysis.

constructor – applies to a goal such that the head of its conclusion
is an inductive constant.

discriminate – discriminates objects built from di↵erent
constructors.

injection – applies the fact that constructors of inductive types are
injections.

inversion – given an inductive type instance, find all the necessary
condition that must hold on the arguments of its constructors

...
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Other useful tactics and commands

clear – removes an hypothesis from the environment.

generalize – reintroduces an hypothesis into the goal.

cut, assert – proves the goal through an intermediate result.

absurd – applies False elimination.

contradict – allows to manipulate negated hypothesis and goals.

refine – allows to give an exact proof but still with some holes (“ ”).

...

Admitted – aborts the current proof and replaces the statement by
an axiom that can be used in later proofs.

Abort – aborts the current proof without saving anything.
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Combining tactics

The basic tactics can be combined into more powerful tactics using tactics
combinators, also called tacticals.

t1 ; t2 – applies tactic t1 to the current goal and then t2 to each
generated subgoal.

t1 || t2 – applies tactic t1; if it fails then applies t2.

t ; [ t1 | ...| tn] – applies t and then ti to the i-th generated
subgoals; there must be exactly n subgoals generated by t.

idtac – does nothing

try t – applies t if it does not fail; otherwise does nothing.

repeat t – repeats t as long as it does not fail.

solve t – applies t only if it solves the current goal.

...
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Automatic tactics

trivial – tries those tactics that can solve the goal in one step.

auto – tries a combination of tactics intro, apply and assumption using
the theorems stored in a database as hints for this tactic.

eauto – like auto but more powerful but also more time-consuming.

autorewrite – repeats rewriting with a collection of theorems, using these
theorems always in the same direction.

tauto – useful to prove facts that are tautologies in intuitionistic PL.

intuition – useful to prove facts that are tautologies in intuitionistic PL.

firstorder – useful to prove facts that are tautologies in intuitionistic FOL.

ring – does proves of equality for expressions containing addition and
multiplication.

omega – proves systems of linear inequations (sums of n ⇤ x terms).

field – like ring but for a field structure (it also considers division).

fourier – like omega but for real numbers.

subst – replaces all the occurrences of a variable defined in the hypotheses.
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Controlling automation

Several hint databases are defined in the Coq standard library. The actual content
of a database is the collection of the hints declared to belong to this database in
each of the various modules currently loaded.

Hint Resolve – add theorems to the database of hints to be used by auto
using apply.

Hint Rewrite – add theorems to the database of hints to be used by
autorewrite

...

Defined databases: core, arith, zarith, bool, datatypes, sets,
typeclass instances, v62.

One can optionally declare a hint database using the command Create HintDb.
If a hint is added to an unknown database, it will be automatically created.
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Exercises

Load the file lessonCoq2.v in the Coq proof assistant. Analyse the
examples and solve the exercises proposed.
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Programming and Proving in Coq
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Some datatypes of programming

Inductive unit : Set := tt : unit.

Inductive bool : Set := true : bool | false : bool.

Inductive nat : Set := O : nat | S : nat -> nat.

Inductive option (A : Type) : Type := Some : A -> option A
| None : option A.

Inductive identity (A : Type) (a : A) : A -> Type :=
refl_identity : identity A a a.

Some operations on bool are also provided: andb (with infix notation &&), orb
(with infix notation ||), xorb, implb and negb.
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Some datatypes of programming

Inductive sum (A B : Type) : Type := inl : A -> A + B
| inr : B -> A + B.

Inductive prod (A B : Type) : Type := pair : A -> B -> A * B.

Definition fst (A B : Type) (p : A * B) := let (x, _) := p in x.

Definition snd (A B : Type) (p : A * B) := let (_, y) := p in y.

The constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B : Prop) : Set :=
| left : A -> {A} + {B}
| right : B -> {A} + {B}.
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If-then-else

The sumbool type can be used to define an “if-then-else” construct in Coq.

Coq accepts the syntax if test then ... else ... when test has either of
type bool or {A}+{B}, with propositions A and B.

Its meaning is the pattern-matching match test with
| left H => ...
| right H => ...

end.

We can identify {P}+{~P} as the type of decidable predicates:

The standard library defines many useful predicates, e.g.
le_lt_dec : forall n m : nat, {n <= m} + {m < n}
Z_eq_dec : forall x y : Z, {x = y} + {x <> y}
Z_lt_ge_dec : forall x y : Z, {x < y} + {x >= y}
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If-then-else

A function that checks if an element is in a list.
Fixpoint elem (a:Z) (l:list Z) {struct l} : bool :=

match l with
| nil => false
| cons x xs => if Z_eq_dec x a then true else (elem a xs)

end.

Exercise:
Prove that

Theorem elem_corr : forall (a:Z) (l1 l2:list Z),
elem a (app l1 l2) = orb (elem a l1) (elem a l2).
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The “subset” type

Coq’s type system allows to combine a datatype and a predicate over this
type, creating “the type of data that satisfies the predicate”. Intuitively, the
type one obtains represents a subset of the initial type.

Inductive sig (A : Type) (P : A -> Prop) : Type :=
exist : forall x : A, P x -> sig A P.

Given A:Type and P:A->Prop, the syntactical convention for (Sig A P) is
the construct {x:A | P x}. (Predicate P is the caracteristic function of this
set).

We may build elements of this set as (exist x p) whenever we have a
witness x:A with its justification p:(P x).

From such a (exist x p) we may in turn extract its witness x:A .

In technical terms, one says that sig is a “dependent sum” or a ⌃-type.
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The “subset” type

A value of type {x:A | P x} should contain a computation component

that says how to obtain a value v and a certificate, a proof that v satisfies
predicate P.

A variant sig2 with two predicates is also provided.

Inductive sig2 (A : Type) (P Q : A -> Prop) : Type :=
exist2 : forall x : A, P x -> Q x -> sig2 A P Q

The notation for (sig2 A P Q) is {x:A | P x & Q x}.
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Functional correctness

There are two approaches to defining functions and providing proofs that
they satisfy a given specification:

To define these functions with a weak specification and then add
companion lemmas.
For instance, we define a function f : A!B and we prove a
statement of the form 8x :A, R x (fx), where R is a relation coding
the intended input/output behaviour of the function.

To give a strong specification of the function: the type of this
function directly states that the input is a value x of type A and that
the output is the combination of a value v of type B and a proof that
v satisfies R xv.
This kind of specification usually relies on dependent types.
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Partiality

The Coq system does not allow the definition of partial functions (i.e.
functions that give a run-time error on certain inputs). However we can
enrich the function domain with a precondition that assures that invalid
inputs are excluded.

A partial function from type A to type B can be described with a
type of the form 8x :A, P x!B, where P is a predicate that
describes the function’s domain.

Applying a function of this type requires two arguments: a term t of
type A and a proof of the precondition P t.
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Example: the function head

An attempt to define the head function as follows will fail!
Definition head (A:Type) (l:list A) : A :=
match l with
| cons x xs => x
end.

Error: Non exhaustive pattern-matching: no clause found
for pattern nil

To overcome the above di�culty, we need to:

consider a precondition that excludes all the erroneous argument values;

pass to the function an additional argument: a proof that the precondition
holds;

the match constructor return type is lifted to a function from a proof of the
precondition to the result type.

any invalid branch in the match constructor leads to a logical contradiction
(it violates the precondition).
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Example: the function head

Definition head (A:Type) (l:list A) : l<>nil -> A.
refine (
match l as l’ return l’<>nil -> A with
| nil => fun H => _
| cons x xs => fun H => x
end ).

elimtype False; apply H; reflexivity.
Defined.

Print Implicit head.

head : forall (A : Type) (l : list A), l <> nil -> A

Arguments A, l are implicit
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Example: the function head

The specification of head is:

Definition headPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive headRel (A:Type) (x:A) : list A -> Prop :=
headIntro : forall l, headRel x (cons x l).

The correctness of function head is thus given by the following theorem:

Lemma head_correct : forall (A:Type) (l:list A) (p:headPre l),
headRel (head p) l.

Proof.
induction l.
intro H; elim H; reflexivity.
intros; destruct l; [simpl; constructor | simpl; constructor].
Qed.
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Extraction

Conventional programing languages do not provide dependent types and
well-typed functions in Coq do not always correspond to well-typed functions
in the target programing language.

In CIC functions may contain subterms corresponding to proofs that have
practically no interest with respect to the final value.

The computations done in the proofs correspond to verifications that should
be done once and for all at compile-time, while the computation on the
actual data needs to be done for each value presented to functions at
run-time.

Coq implements this mechanism of filtering the computational content from
the objects - the so called extraction mechanism.

The distinction between the sorts Prop and Set is used to mark the logical
aspects that should be discharged during extraction or the computational
aspects that should be kept.
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Extraction

Coq supports di↵erent target languages: Ocaml, Haskell, Scheme.

Check head.

head : forall (A : Type) (l : list A), l <> nil -> A

Extraction Language Haskell.
Extraction Inline False_rect.
Extraction head.

head :: (List a1) -> a1
head l =

case l of
Nil -> Prelude.error "absurd case"
Cons x xs -> x
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Specification types

Using ⌃-types we can express specification constrains in the type of a function -
we simply restrict the codomain type to those values satisfying the specification.

Consider the following definition of the inductive relation “x is the last
element of list l”, and the theorem specifing the function that gives the last
element of a list.

Inductive Last (A:Type) (x:A) : list A -> Prop :=
| last_base : Last x (x :: nil)
| last_step : forall l y, Last x l -> Last x (y :: l).

Theorem last_correct : forall (A:Type) (l:list A),
l<>nil -> { x:A | Last x l }.

By proving this theorem we build an inhabitant of this type, and then we
can extract the computational content of this proof, and obtain a function
that satisfies the specification.

The Coq system thus provides a certified software production tool, since the
extracted programs satisfy the specifications described in the formal
developments.
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Specification types

Let us build an inhabitant of that type

Theorem last_correct : forall (A:Type) (l:list A),
l<>nil -> { x:A | Last x l }.

Proof.
induction l.
intro H; elim H; reflexivity.
intros. destruct l.
exists a; auto.
constructor.
elim IHl.
intros; exists x.
constructor. assumption.
discriminate.
Qed.
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Program extraction

We can extract the computational content of the proof of the last theorem.

Extraction Language Haskell.

Extraction Inline False_rect.
Extraction Inline sig_rect.
Extraction Inline list_rect.

Extraction last_correct.

last_correct :: (List a1) -> a1
last_correct l =
case l of
Nil -> Prelude.error "absurd case"
Cons a l0 -> (case l0 of

Nil -> a
Cons a0 l1 -> last_correct l0)

Maria João Frade (HASLab, DI-UM) Programming and Proving in Coq MFES 2012/13 50 / 62

Case study: sorting a list

A simple characterisation of sorted lists consists in requiring that two consecutive
elements be compatible with the  relation.

We can codify this with the following predicate:

Open Scope Z_scope.

Inductive Sorted : list Z -> Prop :=
| sorted0 : Sorted nil
| sorted1 : forall z:Z, Sorted (z :: nil)
| sorted2 : forall (z1 z2:Z) (l:list Z),

z1 <= z2 -> Sorted (z2 :: l) -> Sorted (z1 :: z2 :: l).
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Case study: sorting a list

To capture permutations, instead of an inductive definition we will define the
relation using an auxiliary function that count the number of occurrences of
elements:

Fixpoint count (z:Z) (l:list Z) {struct l} : nat :=
match l with
| nil => 0%nat
| (z’ :: l’) =>

match Z_eq_dec z z’ with
| left _ => S (count z l’)
| right _ => count z l’
end

end.

A list is a permutation of another when contains exactly the same number of
occurrences (for each possible element):

Definition Perm (l1 l2:list Z) : Prop :=
forall z, count z l1 = count z l2.
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Case study: sorting a list

Exercise:
Prove that Perm is an equivalence relation:

Lemma Perm_reflex : forall l:list Z, Perm l l.
Lemma Perm_sym : forall l1 l2, Perm l1 l2 -> Perm l2 l1.
Lemma Perm_trans : forall l1 l2 l3,

Perm l1 l2 -> Perm l2 l3 -> Perm l1 l3.

Exercise:
Prove the following lemmas:

Lemma Perm_cons : forall a l1 l2,
Perm l1 l2 -> Perm (a::l1) (a::l2).

Lemma Perm_cons_cons : forall x y l, Perm (x::y::l) (y::x::l).
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Case study: sorting a list

A simple strategy to sort a list consist in iterate an “insert” function that inserts
an element in a sorted list.

Fixpoint insert (x:Z) (l:list Z) {struct l} : list Z :=
match l with
nil => cons x nil

| cons h t =>
match Z_lt_ge_dec x h with
left _ => cons x (cons h t)

| right _ => cons h (insert x t)
end

end.

Fixpoint isort (l:list Z) : list Z :=
match l with
nil => nil

| cons h t => insert h (isort t)
end.
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Case study: sorting a list

The theorem we want to prove is:

Theorem isort_correct : forall (l l’:list Z),
l’=isort l -> Perm l l’ /\ Sorted l’.

We will certainly need auxiliary lemmas... Let us make a prospective proof attempt:

Theorem isort_correct : forall (l l’:list Z),
l’=isort l -> Perm l l’ /\ Sorted l’.

induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl. constructor. simpl in H.
rewrite H. (* ??????????? *)

a : Z
l : list Z
IHl : forall l’ : list Z, l’ = isort l -> Perm l l’ /\ Sorted l’
l’ : list Z
H : l’ = insert a (isort l)
============================
Perm (a :: l) (insert a (isort l)) /\ Sorted (insert a (isort l))
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Case study: sorting a list

It is now clear what are the needed lemmas:

Lemma insert Perm : forall x l, Perm (x::l) (insert x l).

unfold Perm; induction l.
simpl. reflexivity.
simpl insert. elim (Z_lt_ge_dec x a). reflexivity.
intros. rewrite Perm_cons_cons.
pattern (x::l). simpl count. elim (Z_eq_dec z a).
intros. rewrite IHl; reflexivity.
intros. apply IHl.
Qed.

Lemma insert Sorted : forall x l, Sorted l -> Sorted (insert x l).

intros x l H; elim H; simpl.
constructor.
intro z; elim (Z_lt_ge_dec x z); intros.
constructor.
auto with zarith.
...
Qed.
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Case study: sorting a list

Now we can conclude the proof of correctness...

Theorem isort_correct : forall (l l’:list Z),
l’=isort l -> Perm l l’ /\ Sorted l’.

Proof.
induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl. constructor. simpl in H.
rewrite H. (* ??????????? *)
elim (IHl (isort l)); intros; split.
apply Perm_trans with (a::isort l).
unfold Perm. intro z. simpl. elim (Z_eq_dec z a). intros.
elim H0; reflexivity.
intros. elim H0. reflexivity.
apply insert_Perm.
apply insert_Sorted.
assumption.
Qed.

Maria João Frade (HASLab, DI-UM) Programming and Proving in Coq MFES 2012/13 57 / 62

Case study: sorting a list

Exercise:
Complete the following proof and extract its computational content to an Haskell
function.

Definition inssort : forall (l:list Z),
{ l’ | Perm l l’ & Sorted l’ }.

induction l.
...

Defined.
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Non-structural recursion

When the recursion pattern of a function is not structural in the arguments, we
are no longer able to directly use the derived recursors to define it.

Consider the Euclidean division algorithm written in Haskell
div :: Int -> Int -> (Int,Int)
div n d | n < d = (0,n)

| otherwise = let (q,r) = div (n-d) d
in (q+1,r)

In recent versions of Coq (after v8.1), a new command Function allows to
directly encode general recursive functions.

The Function command accepts a measure function that specifies how the
argument “decreases” between recursive function calls.

It generates proof-obligations that must be checked to guaranty the
termination.
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Non-structural recursion

Close Scope Z_scope.

Function div (p:nat*nat) {measure fst} : nat*nat :=
match p with
| (_,0) => (0,0)
| (a,b) => if le_lt_dec b a

then let (x,y) := div (a-b,b) in (1+x,y)
else (0,a)

end.
Proof.
intros.
simpl.
omega.
Qed.

The Function command generates a lot of auxiliary results related to the defined
function. Some of them are powerful tools to reason about it.
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Non-structural recursion

The Function command is also useful to provide “natural encodings” of
functions that otherwise would need to be expressed in a contrived manner.

Exercise:
Complete the definition of the function merge, presenting a proof of its
termination.

Function merge (p:list Z*list Z)
{measure (fun p=>(length (fst p))+(length (snd p)))} : list Z :=
match p with
| (nil,l) => l
| (l,nil) => l
| (x::xs,y::ys) => if Z_lt_ge_dec x y

then x::(merge (xs,y::ys))
else y::(merge (x::xs,ys))

end.
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Another example of correctness

A specification of the Euclidean division algorithm:
Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=

let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

A proof of correctness:
Theorem div_correct : forall (p:nat*nat), divPre p -> divRel p (div p).

Proof.

unfold divPre, divRel.

intro p.

(* we make use of the specialised induction principle to conduct the proof... *)

functional induction (div p); simpl.

intro H; elim H; reflexivity.

(* a first trick: we expand (div (a-b,b)) in order to get rid of the let (q,r)=... *)

replace (div (a-b,b)) with (fst (div (a-b,b)),snd (div (a-b,b))) in IHp0.

simpl in *.

intro H; elim (IHp0 H); intros.

split.

(* again a similar trick: we expand "x" and "y0" in order to use an hypothesis *)

change (b + (fst (x,y0)) * b + (snd (x,y0)) = a).

rewrite <- e1.

omega.

(* and again... *)

change (snd (x,y0)<b); rewrite <- e1; assumption.

symmetry; apply surjective_pairing.

auto.

Qed.
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