An introduction to (co)algebra and (co)induction

1.1 Introduction

Algebra is a well-established part of mathematics, dealing with sets with oper-
ations satisfying certain properties, like groups, rings , vector spaces, etcetera.
Its results are essential throughout mathematics and other sciences. Universal
algebra is a part of algebra in which algebraic structures are studied at a high
level of abstraction and in which general notions like homomorphism, subalge-
bra, congruence are studied in themselves, see e.g. [Coh81, MT92, Wec92]. A
further step up the abstraction ladder is taken when one studies algebra with
the notions and tools from category theory. This approach leads to a particu-
larly concise notion of what is an algebra (for a functor or for a monad), see for
example [Man74]. The conceptual world that we are about to enter owes much
to this categorical view, but it also takes inspiration from universal algebra, see
e.g. [Rut00].

In general terms, a program in some programming language manipulates data.
During the development of computer science over the past few decades it became
clear that an abstract description of these data is desirable, for example to ensure
that one’s program does not depend on the particular representation of the data
on which it operates. Also, such abstractness facilitates correctness proofs. This
desire led to the use of algebraic methods in computer science, in a branch
called algebraic specification or abstract data type theory. The object of study
are data types in themselves, using notions and techniques which are familiar
from algebra. The data types used by computer scientists are often generated
from a given collection of (constructor) operations. The same applies in fact
to programs, which themselves can be viewed as data too. It is for this reason
that “initiality” of algebras plays such an important role in computer science (as
first clearly emphasised in [GTWT78]). See for example [EM85, Wir90, Wec92]
for more information.



2 1 An introduction to (co)algebra and (co)induction

Standard algebraic techniques have proved useful in capturing various essen-
tial aspects of data structures used in computer science. But it turned out to be
difficult to algebraically describe some of the inherently dynamical structures
occuring in computing. Such structures usually involve a notion of state, which
can be transformed in various ways. Formal approaches to such state-based
dynamical systems generally make use of automata or transition systems, see
e.g. [Plo81, Par81, Mil89] as classical early references. During the last decade
the insight gradually grew that such state-based systems should not be described
as algebras, but as so-called coalgebras. These are the formal duals of algebras,
in a way which will be made precise in this tutorial. The dual property of ini-
tiality for algebras, namely finality, turned out to be crucial for such coalgebras.
And the logical reasoning principle that is needed for such final coalgebras is
not induction but coinduction.

These notions of coalgebra and coinduction are still relatively unfamiliar, and
it is our aim in this tutorial to explain them in elementary terms. Most of the
literature already assumes some form of familiarity either with category theory,
or with the (dual) coalgebraic way of thinking (or both).

Before we start, we should emphasise that there is no new (research) material
in this tutorial. Everything that we present is either known in the literature,
or in the folklore, so we do not have any claims to originality. Also, our main
concern is with conveying ideas, and not with giving a correct representation of
the historical developments of these ideas. References are given mainly in order
to provide sources for more (background) information.

Also, we should emphasise that we do not assume any knowledge of category
theory on the part of the reader. We shall often use the diagrammatic notation
which is typical of category theory, but only in order to express equality of two
composites of functions, as often used also in other contexts. This is simply
the most efficient and most informative way of presenting such information.
But in order to fully appreciate the underlying duality between algebra and
induction on the one hand, and coalgebra and coinduction on the other, some
elementary notions from category theory are needed, especially the notions of
functor (homomorphism of categories), and of initial and final (also called ter-
minal) object in a category. Here we shall explain these notions in the concrete
set-theoretic setting in which we are working, but we definitely encourage the
interested reader who wishes to further pursue the topic of this tutorial to study
category theory in greater detail. Among the many available texts on category
theory, [Pie91, Wal91, AM75, Awo06] are recommended as easy-going starting
points, [BW90, Cro93, LS86] as more substantial texts, and [Lan71, Bor94] as
advanced reference texts.



1.1 Introduction

3

This tutorial starts with some introductory expositions in Sections 1.2 — 1.4.

The technical material in the subsequent sections is organised as follows.

(1) The starting point is ordinary induction, both as a definition principle

and as a proof principle. We shall assume that the reader is familiar

with induction, over natural numbers, but also over other data types,
say of lists, trees or (in general) of terms. The first real step is to refor-
mulate ordinary induction in a more abstract way, using initiality (see
Section 1.5). More precisely, using initiality for “algebras of a functor”.
This is something which we do not assume to be familiar. We therefore
explain how signatures of operations give rise to certain functors, and

how algebras of these functors correspond to algebras (or models) of the

signatures (consisting of a set equipped with certain functions interpret-

ing the operations). This description of induction in terms of algebras

(of functors) has the advantage that it is highly generic, in the sense that
it applies in the same way to all kinds of (algebraic) data types. Further,

it can be dualised easily, thus giving rise to the theory of coalgebras.

(2) The dual notion of an algebra (of a functor) is a coalgebra (of a functor).

It can also be understood as a model consisting of a set with certain
operations, but the direction of these operations is not as in algebra. The
dual notion of initiality is finality, and this finality gives us coinduction,

both as a definition principle and as a reasoning principle. This pattern

is as in the previous point, and is explained in Section 1.6.

(3) In Section 1.7 we give an alternative formulation of the coinductive rea-

soning principle (introduced in terms of finality) which makes use of

bisimulations. These are relations on coalgebras which are suitably closed

under the (coalgebraic) operations; they may be understood as duals of

congruences, which are relations which are closed under algebraic oper-

ations. Bisimulation arguments are used to prove the equality of two

elements of a final coalgebra, and require that these elements are in a

bisimulation relation.

(4) In Section 1.8 we present a coalgebraic account of transition systems and a

simple calculus of processes. The latter will be defined as the elements of a

final coalgebra. An elementary language for the construction of processes

will be introduced and its semantics will be defined coinductively. As we
shall see, this will involve the mixed occurrence of both algebraic and
coalgebraic structures. The combination of algebra and coalgebra will
also play a central role in Section 1.9, where a coalgebraic description is

given of trace semantics.

In a first approximation, the duality between induction and coinduction that



4 1 An introduction to (co)algebra and (co)induction

we intend to describe can be understood as the duality between least and great-
est fixed points (of a monotone function), see Exercise 1.10.3. These notions
generalise to least and greatest fixed points of a functor, which are suitably
described as initial algebras and final coalgebras. The point of view mentioned
in (1) and (2) above can be made more explicit as follows—without going into
technicalities yet. The abstract reformulation of induction that we will describe
is:

|induction = use of initiality for algebras|

An algebra (of a certain kind) is nitial if for an arbitrary algebra (of the same
kind) there is a unique homomorphism (structure-preserving mapping) of alge-

bras:

initial unique arbitrary (1.1)

________ > )
algebra homomorphism algebra,

This principle is extremely useful. Once we know that a certain algebra is
initial, by this principle we can define functions acting on this algebra. Initiality
involves unique existence, which has two aspects:

Existence. This corresponds to (ordinary) definition by induction.

Uniqueness. This corresponds to proof by induction. In such uniqueness
proofs, one shows that two functions acting on an initial algebra are the same
by showing that they are both homomorphisms (to the same algebra).

The details of this abstract reformulation will be elaborated as we proceed.
Dually, coinduction may be described as:

|coinduction = use of finality for coalgebras|

A coalgebra (of some kind) is final if for an arbitrary coalgebra (of the same
kind), there is a unique homomorphism of coalgebras as shown:

< arbitrary > _ _ _unique < final ) (1.2)

coalgebra homomorphism coalgebra

Again we have the same two aspects: existence and uniqueness, corresponding
this time to definition and proof by coinduction.

The initial algebras and final coalgebras which play such a prominent role
in this theory can be described in a canonical way: an initial algebra can be
obtained from the closed terms (i.e. from those terms which are generated by
iteratively applying the algebra’s constructor operations), and the final coalge-
bra can be obtained from the pure observations. The latter is probably not very
familiar, and will be illustrated in several examples in Section 1.2.



1.2 Algebraic and coalgebraic phenomena 5

History of this chapter: An earlier version of this chapter was published
as “A Tutorial on (Co)(Algebras and (Co)Induction”, in: EATCS Bulletin 62
(1997), p.222-259. More then ten years later, the present version has been
updated. Notably, two sections have been added that are particularly relevant
for the context of the present book: Processes coalgebraically (Section 1.8), and:
Trace semantics coalgebraically (Section 1.9). In both these sections both initial
algebras and final coalgebras arise in a natural combination. In addition, the
references to related work have been brought up-to-date.

Coalgebra has by now become a well-established part of the foundations of
computer science and (modal) logic. In the last decade, much new coalge-
braic theory has been developed, such as so-called universal coalgebra [Rut00,
Gum99], in analogy to universal algebra, and coalgebraic logic, generalising in
various ways classical modal logic, see for instance [Kur01, Kur06, CP07, K1i07]
for an overview. But there is much more, none of which is addressed in any
detail here. Much relevant recent work and many references can be found in the
proceedings of the workshop series CMCS: Coalgebraic Methods in Computer
Science (published in the ENTCS series) and CALCO: Conference on Algebra
and Coalgebra in Computer Science (published in the LNCS series). The aim
of this tutorial is in essence still the same as it was ten years ago: to provide a
brief introduction to the field of coalgebra.

1.2 Algebraic and coalgebraic phenomena

The distinction between algebra and coalgebra pervades computer science and
has been recognised by many people in many situations, usually in terms of
data versus machines. A modern, mathematically precise way to express the
difference is in terms of algebras and coalgebras. The basic dichotomy may
be described as construction versus observation. It may be found in process
theory [Mil89], data type theory [GGM76, GM82, AM82, Kam83| (including
the theory of classes and objects in object-oriented programming [Rei95, HP95,
Jac96b, Jac96al), semantics of programming languages [MA86] (denotational
versus operational [RT94, Tur96, BV96]) and of lambda-calculi [Pit94, Pit96,
Fio96, HL95], automata theory [Par81], system theory [Rut00], natural language
theory [BM96, Rou96] and many other fields.

We assume that the reader is familiar with definitions and proofs by (ordinary)
induction. As a typical example, consider for a fixed data set A, the set A* =
list(A) of finite sequences (lists) of elements of A. One can inductively define a
length function len: A* — N by the two clauses:

len(()) =0 and len(a-0) =1+len(o)



6 1 An introduction to (co)algebra and (co)induction

for all @ € A and 0 € A*. Here we have used the notation () € A* for the
empty list (sometimes called nil), and a - o (sometimes written as cons(a, o)) for
the list obtained from o € A* by prefixing a € A. As we shall see later, the
definition of this length function len: A* — N can be seen as an instance of the
above initiality diagram (1.1).

A typical induction proof that a predicate P C A* holds for all lists requires
us to prove the induction assumptions

P(()) and P(o) = P(a-0)

foralla € A and o € A*. For example, in this way one can prove that len(c-a) =
1+len(o) by taking P = {oc € A* | Va € A. len(c-a) = 1+len(0)}. Essentially,
this induction proof method says that A* has no proper subalgebras. In this
(algebraic) setting we make use of the fact that all finite lists of elements of A
can be constructed from the two operations nil € A* and cons: A x A* — A*.
As above, we also write () for nil and a - o for cons(a, o).

Next we describe some typically coalgebraic phenomena, by sketching some
relevant examples. Many of the issues that come up during the description of
these examples will be explained in further detail in later sections.

(i) Consider a black-box machine (or process) with one (external) button
and one light. The machine performs a certain action only if the button is
pressed. And the light goes on only if the machine stops operating (i.e. has
reached a final state); in that case, pressing the button has no effect any more.
A client on the outside of such a machine cannot directly observe the internal
state of the machine, but (s)he can only observe its behaviour via the button and
the light. In this simple (but paradigmatic) situation, all that can be observed
directly about a particular state of the machine is whether the light is on or
not. But a user may iterate this experiment, and record the observations after
a change of state caused by pressing the button'. In this situation, a user can
observe how many times (s)he has to press the button to make the light go on.
This may be zero times (if the light is already on), n € N times, or infinitely
many times (if the machine keeps on operating and the light never goes on).

Mathematically, we can describe such a machine in terms of a set X, which
we understand as the unknown state space of the machine, on which we have a
function

button: X — {*} U X

where * is a new symbol not occurring in X. In a particular state s € X, apply-

L Tt is assumed that such actions of pressing a button happen instantaneously, so that there is always

an order in the occurrence of such actions.



1.2 Algebraic and coalgebraic phenomena 7

ing the function button—which corresponds to pressing the button—has two pos-
sible outcomes: either button(s) = %, meaning that the machine stops operating
and that the light goes on, or button(s) € X. In the latter case the machine has
moved to a next state as a result of the button being pressed. (And in this next
state, the button can be pressed again) The above pair (X, button: X — {x}UX)
is an example of a coalgebra.

The observable behaviour resulting from iterated observations as described
above yields an element of the set N = N U {oo}, describing the number of
times the button has to be pressed to make the light go on. Actually, we can
describe this behaviour as a function beh: X — N. As we shall see later, it can
be obtained as instance of the finality diagram (1.2).

(ii) Let us consider a slightly different machine with two buttons: value and
next. Pressing the value button results in some visible indication (or attribute)
of the internal state (e.g. on a display), taking values in a dataset A, without
affecting the internal state. Hence pressing value twice consecutively yields the
same result. By pressing the next button the machine moves to another state
(the value of which can be inspected again). Abstractly, this new machine can
be described as a coalgebra

(value,next): X —— A x X

on a state space X. The behaviour that we can observe of such machines is
the following: for all n € N, read the value after pressing the next button n
times. This results in an infinite sequence (ag, a1,as,...) € AN of elements of
the dataset A, with element a; describing the value after pressing next ¢ times.
Observing this behaviour for every state s € X gives us a function beh: X — A~N.

The set AN of infinite sequences, in computer science also known as streams,
carries itself a coalgebra structure

(head, tail) : AN — A x A"
given, for all a = (ag,a1,as,...) € AN by
head(a) = ag tail(a) = (a1, ag, as, . . .)
This coalgebra is final and the behaviour function beh: X — AN can thus be

seen as an instance of (1.2).

(iii) The previous example is leading us in the direction of a coalgebraic
description of classes in object-oriented languages. Suppose we wish to capture
the essential aspects of the class of points in a (real) plane that can be moved
around by a client. In this situation we certainly want two attribute buttons
first: X — R and second: X — R which tell us, when pushed, the first and second



8 1 An introduction to (co)algebra and (co)induction

coordinate of a point belonging to this class. As before, the X plays the role
of a hidden state space, and elements of X are seen as objects of the class (so
that an object is identified with a state). Further we want a button (or method,
in object-oriented terminology) move: X x (R x R) — X which requires two
parameters (corresponding to the change in first and second coordinate). This
move operation allows us to change a state in a certain way, depending on the
values of the parameters. The move method can equivalently be described as a
function move: X — X ®*R) taking the state as single argument, and yielding a
function (R x R) — X from parameters to states.

As a client of such a class we are not interested in the actual details of the
implementation (what the state space X exactly looks like) as long as the be-
haviour is determined by the following two equations:

first(move(s, (d1,d2))) = first(s) + d1
second(move(s, (d1,d2))) = second(s) + d2

These describe the first and second coordinates after a move in terms of the
original coordinates and the parameters of the move. Such equations can be
seen as constraints on the observable behaviour.

An important aspect of the object-oriented approach is that classes are built
around a hidden state space, which can only be observed and modified via
certain specified operations. A user is not interested in the details of the actual
implementation, but only in the behaviour that is realised. This is why our
black-box description of classes with an unknown state space X is appropriate.

The three buttons of such a class (as abstract machine) can be combined into
a single function

(first, second, move): X — =R x R x X (RXR)

which forms a coalgebra on the state space X. The observable behaviour is very
simple in this case. It consists of the values of the first and second coordinates,
since if we know these values, then we know the future observable behaviour: the
only change of state that we can bring about is through the move button; but its
observable effect is determined by the above two equations. Thus what we can
observe about a state is obtained by direct observation, and repeated observa-
tions do not produce new information. Hence our behaviour function takes the
form beh: X — R x R, and is again an instance of (1.2)!. In automata-theoretic
terms one can call the space R x R the minimal realisation (or implementation)
of the specified behaviour.

In the above series of examples of coalgebras we see each time a state space X

1 To be precise, for coalgebras of a comonad.



1.2 Algebraic and coalgebraic phenomena 9

about which we make no assumptions. On this state space a function is defined

Fox—[xX]

where the box on the right is some expression involving X again. Later this will

of the form

be identified as a functor. The function f often consists of different components,
which allow us either to observe some aspect of the state space directly, or to
move on to next states. We have limited access to this state space in the sense
that we can only observe or modify it via these specified operations. In such
a situation all that we can describe about a particular state is its behaviour,
which arises by making successive observations. This will lead to the notion of
bisimilarity of states: it expresses of two states that we cannot distinguish them
via the operations that are at our disposal, i.e. that they are “equal as far as we
can see”. But this does not mean that these states are also identical as elements
of X. Bisimilarity is an important, and typically coalgebraic, concept.

The above examples are meant to suggest the difference between construc-
tion in algebra, and observation in coalgebra. This difference will be described
more formally below. In practice it is not always completely straightforward
to distinguish between algebraic and coalgebraic aspects, for the following two
reasons.

(1) Certain abstract operations, like X x A — X, can be seen as both alge-
braic and coalgebraic. Algebraically, such an operation allows us to build
new elements in X starting from given elements in X and parameters in
A. Coalgebraically, this operation is often presented in the equivalent
from X — X# using function types. It is then seen as acting on the
state space X, and yielding for each state a function from A to X which
produces for each parameter element in A a next state. The context
should make clear which view is prevalent. But operations of the form
A — X are definitely algebraic (because they gives us information about
how to put elements in X), and operations of the form X — A are
coalgebraic (because they give us observable attribute values holding for
elements of X). A further complication at this point is that on an initial
algebra X one may have operations of the form X — A, obtained by
initiality. An example is the length function on lists. Such operations are
derived, and are not an integral part of the (definition of the) algebra.
Dually, one may have derived operations A — X on a final coalgebra X.

(2) Algebraic and coalgebraic structures may be found in different hierarchic
layers. For example, one can start with certain algebras describing one’s
application domain. On top of these one can have certain dynamical sys-



10 1 An introduction to (co)algebra and (co)induction

tems (processes) as coalgebras, involving such algebras (e.g. as codomains
of attributes). And such coalgebraic systems may exist in an algebra of
processes.

A concrete example of such layering of coalgebra on top of algebra is given
by Plotkin’s so-called structural operational semantics [Plo81]. It involves a
transition system (a coalgebra) describing the operational semantics of some
language, by giving the transition rules by induction on the structure of the
terms of the language. The latter means that the set of terms of the language
is used as (initial) algebra. See Section 1.8 and [RT94, Tur96] for a further
investigation of this perspective. Hidden sorted algebras, see [GM94, GD94,
BD94, GM96, Mal96| can be seen as other examples: they involve “algebras”
with “invisible” sorts, playing a (coalgebraic) role of a state space. Coinduction
is used to reason about such hidden state spaces, see [GM96].

1.3 Inductive and coinductive definitions

In the previous section we have seen that “constructor” and “destructor/observer”
operations play an important role for algebras and coalgebras, respectively. Con-
structors tell us how to generate our (algebraic) data elements: the empty list
constructor nil and the prefix operation cons generate all finite lists. And de-
structors (or observers, or transition functions) tell us what we can observe
about our data elements: the head and tail operations tell us all about infinite
lists: head gives a direct observation, and tail returns a next state.

Once we are aware of this duality between constructing and observing, it is
easy to see the difference between inductive and coinductive definitions (relative
to given collections of constructors and destructors):

In an inductive definition of a function f,
one defines the value of f on all constructors.

And:

In a coinductive definition of a function f,
one defines the values of all destructors on each outcome f(z).

Such a coinductive definition determines the observable behaviour of each f(x).

We shall illustrate inductive and coinductive definitions in some examples
involving finite lists (with constructors nil and cons) and infinite lists (with
destructors head and tail) over a fixed dataset A, as in the previous section.
We assume that inductive definitions are well-known, so we only mention two
trivial examples: the (earlier mentioned) function len from finite lists to natural



1.8 Inductive and coinductive definitions 11

numbers giving the length, and the function empty? from finite lists to booleans
{true, false} telling whether a list is empty or not:

len(nil) = 0 empty?(nil) = true
{ len(cons(a, o)) =1+ len(o). { empty?(cons(a, o)) = false.

Typically in such inductive definitions, the constructors on the left hand side
appear “inside” the function that we are defining. The example of empty? above,
where this does not happen, is a degenerate case.

We turn to examples of coinductive definitions (on infinite lists, say of type A).
If we have a function f: A — A, then we would like to define an extension ext(f)
of f mapping an infinite list to an infinite list by applying f componentwise.
According to the above coinductive definition scheme we have to give the values
of the destructors head and tail for a sequence ext(f)(o). They should be:

head(ext(f)(0)) = f(head(0))
{ tail(ext(f)(o)) = ext(f)(tail(o))
Here we clearly see that on the left hand side, the function that we are defining
occurs “inside” the destructors. At this stage it is not yet clear if ext(f) is
well-defined, but this is not our concern at the moment.
Alternatively, using the transition relation notation from Example (iv) in the
previous section, we can write the definition of ext(f) as:

a /
g — O

ext(f)(0) 1Y ext(f)(o")

Suppose next, that we wish to define an operation even which takes an infinite

list, and produces a new infinite list which contains (in order) all the elements
occurring in evenly numbered places of the original list. That is, we would like
the operation even to satisfy

even(c(0),0(1),0(2),...) = (c(0),0(2),0(4),...) (1.3)
A little thought leads to the following definition clauses.

{ head(even(c)) = head(o)

tail(even(c)) = even(tail(tail(0))) 4

Or, in the transition relation notation:

a ; a 7
g — 0 — O

even(o) —% even(o”)

Let us convince ourselves that this definition gives us what we want. The first
clause in (1.4) says that the first element of the list even(o) is the first element



12 1 An introduction to (co)algebra and (co)induction

of 0. The next element in even(o) is head(tail(even(c))), and can be computed
as

head(tail(even(o))) = head(even(tail(tail(¢)))) = head(tail(tail(o))).

Hence the second element in even(o) is the third element in o. It is not hard to
show for n € N that head(tail™ (even(c))) is the same as head(tail®™ ().

In a similar way one can coinductively define a function odd which keeps all
the oddly listed elements. But it is much easier to define odd as: odd = evenotail.

As another example, we consider the merge of two infinite lists o, 7 into a
single list, by taking elements from ¢ and 7 in turn, starting with o, say. A
coinductive definition of such a function merge requires the outcomes of the
destructors head and tail on merge(o, 7). They are given as:

{ head(merge(o, 7)) = head(o)
tail(merge(o, 7)) = merge(r, tail(o))

In transition system notation, this definition looks as follows.

a /
g — O

merge(o,7) — merge(T, o)

Now one can show that the n-th element of o occurs as 2n-th element in
merge(o, 7), and that the n-th element of 7 occurs as (2n + 1)-th element of
merge(o, T):

head(tail® (merge(o, 7))) = head(tail™ (o))
head(tail®" ™V (merge(o,7))) = head(tail™(7)).

Onme can also define a function merge, ; (o, 7) which takes two elements of o for
every element of 7 (see Exercise 1.10.6).

An obvious result that we would like to prove is: merging the lists of evenly
and oddly occuring elements in a list o returns the original list ¢. That is:
merge(even(o),odd(c)) = o. From what we have seen above we can easily
compute that the n-th elements on both sides are equal:

head (tail™ (merge(even(c), odd(0))))
head(tail( )(even( ) ifn=2m
head(tail™ (odd(c))) if n=2m +1
head (tail®™) (5)) if n=2m
head(tail®™ V) (¢)) ifn=2m+1

= head(tail™ (o).

There is however a more elegant coinductive proof-technique, which will be



1.4 Functoriality of products, coproducts and powersets 13

presented later: in Example 1.6.3 using uniqueness—based on the finality dia-
gram (1.2)—and in the beginning of Section 1.7 using bisimulations.

1.4 Functoriality of products, coproducts and powersets

In the remainder of this paper we shall put the things we have discussed so
far in a general framework. Doing so properly requires a certain amount of
category theory. We do not intend to describe the relevant matters at the
highest level of abstraction, making full use of category theory. Instead, we
shall work mainly with ordinary sets. That is, we shall work in the universe
given by the category of sets and functions. What we do need is that many
operations on sets are “functorial”. This means that they do not act only on
sets, but also on functions between sets, in an appropriate manner. This is
familiar in the computer science literature, not in categorical terminology, but
using a “map” terminology. For example, if list(A) = A* describes the set of
finite lists of elements of a set A, then for a function f: A — B one can define
a function list(A) — list(B) between the corresponding sets of lists, which is
usually called! map_list(f). It sends a finite list (a1,...,a,) of elements of A
to the list (f(a1),..., f(an)) of elements of B, by applying f elementwise. It
is not hard to show that this map_list operation preserves identity functions
and composite functions, i.e. that map_list(ida) = idjis(4) and map_list(go f) =
map_list(g) o map_list(f). This preservation of identities and compositions is
the appropriateness that we mentioned above. In this section we concentrate
on such functoriality of several basic operations, such as products, coproducts
(disjoint unions) and powersets. It will be used in later sections.

We recall that for two sets X,Y the Cartesian product X x Y is the set of
pairs

XxY={(z,y) | re X and y € Y}.

There are then obvious projection functions m: X xY — X and 7: X xY — Y
by 7(z,y) = x and 7n'(x,y) = y. Also, for functions f:Z — X and ¢: Z — Y
there is a unique “pair function” (f,¢):Z — X x Y with wo (f,g) = f and
' o (f,g9) = g, namely (f,9)(z) = (f(2),9(2)) € X xY for z € Z. Notice that
(m,7’y =id: X xY — X x Y and that (f,g)oh = (foh,goh):W — X xY,
for functions h: W — Z.

Interestingly, the product operation (X,Y) +— X x Y does not only apply
to sets, but also to functions: for functions f: X — X’ and ¢:Y — Y’ we can
define a function X x X’ — Y x Y’ by (x,y) — (f(x),9(y)). One writes this

L In the category theory literature one uses the same name for the actions of a functor on objects and
on morphisms; this leads to the notation list(f) or f* for this function map_list(f).



14 1 An introduction to (co)algebra and (co)induction

function as f x ¢: X x Y — X’ x Y’, whereby the symbol x is overloaded: it
is used both on sets and on functions. We note that f x g can be described in
terms of projections and pairing as f x g = (f om,gon’). It is easily verified
that the operation x on functions satisfies

idXxidy:idXXY and (foh)x(gok:)z(fxg)O(th).

This expresses that the product x is functorial: it does not only apply to sets,
but also to functions; and it does so in such a way that identity maps and
composites are preserved.

Many more operations are functorial. Also the coproduct (or disjoint union,
or sum) + is. For sets X,Y we write their disjoint union as X + Y. Explicitly:

X+Y={02) |ze X}U{(Ly) | ye Y}

The first components 0 and 1 serve to force this union to be disjoint. These
“tags” enables us to recognise the elements of X and of Y inside X +Y. Instead
of projections as above we now have “coprojections” k: X — X+Y and x: Y —
X +Y going in the other direction. One puts k(z) = (0,z) and '(y) = (1,y).
And instead of tupleing we now have “cotupleing” (sometimes called “source
tupleing”): for functions f: X — Z and ¢:Y — Z there is a unique function
[f,9]: X +Y — Z with [f,g]ox = f and [f,g] o & = g. One defines [f, g] by
case distinction:
f(z) ifw=1(0,z)
1:](x) { 9(y) ifw=(1y).
Notice that [k, k'] =id and ho [f,g] = [ho f,hog].
This is the coproduct X + Y on sets. We can extend it to functions in the
following way. For f: X — X’ and g:Y — Y” there is a function f+¢: X +Y —
X' +Y' by
_ <O7 f(:L')> if w= <07x>
TR N

Equivalently, we could have defined: f+ g = [k o f, ' o g]. This operation + on
functions preserves identities and composition:

idx +idy =idxyy  and  (foh)+(gok)=(f+g)o(h+k).

We should emphasise that this coproduct + is very different from ordinary
union U. For example, U is idempotent: X U X = X, but there is not odd an
isomorphism between X + X and X (if X # 0).

For a fixed set A, the assignment X +— X4 = {f | f is a function A — X} is
functorial: a function g: X — Y yields a function g%: X4 — Y4 sending f € X4
to (go f) € YA. Clearly, id* = id and (h o g)4 = h* o g4.



1.4 Functoriality of products, coproducts and powersets 15

Another example of a functorial operation is powerset: X — P(X). For a
function f: X — X' one defines P(f): P(X) — P(X’) by

U—{f(z) | z €U}

Then P(idx) = idp(x) and P(f o h) = P(f) o P(h). We shall write Pg,(—) for
the (functorial) operation which maps X to the set of its finite subsets.

Here are some trivial examples of functors. The identity operation X +— X is
functorial: it acts on functions as f — f. And for a constant set C' we have a
constant functorial operation X +— C; a function f: X — X’ is mapped to the
identity function idg: C' — C.

Once we know these actions on functions, we can define functorial operations
(or: functors, for short) merely by giving their actions on sets. We will often
say things like: consider the functor

T(X) =X + (C x X).

The action on sets is then X — X 4 (C' x X). And for a function f: X — X' we
have an action T'(f) of the functor T' on f as a function T'(f):T(X) — T(X’).
Explicitly, T'(f) is the function

f+Gde x f): X+ (CxX)— X'+ (CxX')

given by:

wH{®J@» if w = (0, )
(1, (c, f(z))) if w=(1,(c,2)).

The only functors that we shall use in the sequel are such “polynomial” functors
T, which are built up with constants, identity functors, products, coproducts and
also (finite) powersets. We describe these functors by only giving their actions
on sets. Mostly, the functors in this chapter will be of the sort Set — Set, acting
on sets and functions between them, with the exception of Section 1.9 on trace
semantics where we shall use functors Rel — Rel, acting on sets with relations
between them as morphisms.

There is a more general notion of functor C — D as mapping from one “cat-
egory” C to another D, see e.g. [Awo06]. Here we are only interested in these
polynomial functors, going from the category Set of sets and functions to itself
(or from Rel to Rel). But much of the theory applies to more general situations.

We shall write 1 = {x} for a singleton set, with typical inhabitant *. Notice
that for every set X there is precisely one function X — 1. This says that
1 is final (or terminal) in the category of sets and functions. And functions
1 — X correspond to elements of X. Usually we shall identify the two. Thus,



16 1 An introduction to (co)algebra and (co)induction

for example, we sometimes write the empty list as nil : 1 — A* so that it can be
cotupled with the function cons: A x A* — A* into the algebra

[nil, cons]: 1+ (A x A*) — A*

that will be studied more deeply in Example 1.5.6.

We write 0 for the empty set. For every set X there is precisely one function
0 — X, namely the empty function. This property is the initiality of 0. These
sets 1 and 0 can be seen as the empty product and coproduct.

We list some useful isomorphisms.

XxY = YxX X+Y = Y+ X
IxX = X 0+X = X

Xx(YxZ) =2 XxY)xZ X+ Y+2) =2 (X+Y)+Z
Xx0 = 0 XxY+272) =2 (XxY)+(XxZ).

The last two isomorphisms describe the distribution of products over finite co-
products. We shall often work “up-to” the above isomorphisms, so that we
can simply write an n-ary product as X; x --- x X,, without bothering about
bracketing.

1.5 Algebras and induction

In this section we start by showing how polynomial functors—as introduced in
the previous section—can be used to describe signatures of operations. Algebras
of such functors correspond to models of such signatures. They consist of a
carrier set with certain functions interpreting the operations. A general notion
of homomorphism is defined between such algebras of a functor. This allows
us to define initial algebras by the following property: for an arbitrary algebra
there is precisely one homomorphism from the initial algebra to this algebra.
This turns out to be a powerful notion. It captures algebraic structures which
are generated by constructor operations, as will be shown in several examples.
Also, it gives rise to the familiar principles of definition by induction and proof
by induction.

We start with an example. Let T' be the polynomial functor T'(X) = 1 +
X + (X x X), and consider for a set U a function a:T(U) — U. Such a map
a may be identified with a 3-cotuple [a1, a2, as] of maps a;:1 — U, a:U —
U and a3:U x U — U giving us three separate functions going into the set
U. They form an example of an algebra (of the functor T): a set together
with a (cotupled) number of functions going into that set. For example, if one
has a group G, with unit element e:1 — G, inverse function i:G — G and



1.5 Algebras and induction 17

multiplication function m: G x G — G, then one can organise these three maps
as an algebra [e,i,m]: T(G) — G via cotupling!. The shape of the functor T
determines a certain signature of operations. Had we taken a different functor
S(X) =1+ (X x X), then maps (algebras of S) S(U) — U would capture pairs
of functions 1 — U, U x U — U (e.g. of a monoid).

Definition 1.5.1 Let T be a functor. An algebra of T' (or, a T-algebra) is a
pair consisting of a set U and a function a: T(U) — U.

We shall call the set U the carrier of the algebra, and the function a the
algebra structure, or also the operation of the algebra.

For example, the zero and successor functions 0:1 — N, S:N — N on the
natural numbers form an algebra [0, S]: 1+ N — N of the functor T'(X) = 1+ X.
And the set of A-labeled finite binary trees Tree(A) comes with functions nil: 1 —
Tree(A) for the empty tree, and node: Tree(A) x A x Tree(A) — Tree(A) for
constructing a tree out of two (sub)trees and a (node) label. Together, nil and
node form an algebra 1 + (Tree(A) x A x Tree(A)) — Tree(A) of the functor
S(X)=14+(X x AxX).

We illustrate the link between signatures (of operations) and functors with
further details. Let 3 be a (single-sorted, or single-typed) signature, given by
a finite collection X of operations o, each with an arity ar(c) € N. Each 0 € &
will be understood as an operation

o Xx -+ xX—X
NS —

ar(o) times

taking ar(o) inputs of some type X, and producing an output of type X. With
this signature X, say with set of operations {01, ...,0,} we associate a functor

Tz;(X) — xar(o1) IS Xar(an)7

where for m € N the set X" is the m-fold product X x --- x X. An al-
gebra a:Tx(U) — U of this functor 7% can be identified with an n-cotuple
a = [ay,...ap): par(on) 4 ... 4 gaon) — U of functions a;: U@ — U inter-
preting the operations o; in 3 as functions on U. Hence algebras of the functor
Ty, correspond to models of the signature ¥. One sees how the arities in the
signature ¥ determine the shape of the associated functor Tx. Notice that as
special case when an arity of an operation is zero we have a constant in 2. In
a Tx-algebra Ts(U) — U we get an associated map U’ = 1 — U giving us an
element of the carrier set U as interpretation of the constant. The assumption
that the signature X is finite is not essential for the correspondence between

L Only the group’s operations, and not its equations, are captured in this map T'(G) — G.



18 1 An introduction to (co)algebra and (co)induction

models of ¥ and algebras of Tx;; if X is infinite, one can define T, via an infinite
coproduct, commonly written as Tx(X) = [[ 5 X ar()

Polynomial functors T" built up from the identity functor, products and co-
products (without constants) have algebras which are models of the kind of sig-
natures X described above. This is because by the distribution of products over
coproducts one can always write such a functor in “disjunctive normal form” as
T(X)=X"™ +...4+ X™ for certain natural numbers n and my,...,m,. The
essential role of the coproducts is to combine multiple operations into a single
operation.

The polynomial functors that we use are not only of this form 7'(X) = X™1 +
--+4+ X™n but may also involve constant sets. This is quite useful, for example,
to describe for an arbitrary set A a signature for lists of A’s, with function
symbols nil: 1 — X for the empty list, and cons: A x X — X for prefixing an
element of type A to a list. A model (interpretation) for such a signature is
an algebra T'(U) — U of the functor T'(X) = 1+ (A x X) associated with this
signature.

We turn to “homomorphisms of algebras”, to be understood as structure
preserving functions between algebras (of the same signature, or functor). Such
a homomorphism is a function between the carrier sets of the algebras which
commutes with the operations. For example, suppose we have two algebras
l1:1 - Uy, c1:Ax Up — Uy and l9:1 — U,y, co: A x Us — U, of the above list
signature. A homomorphism of algebras from the first to the second consists of a
function f:U; — Us between the carriers with fol; = 5 and focy = cao(idx f).
In two diagrams:

- id
l=———1 Ax U idx f A x Uy
Ell l@ and CI\L l@

Thus, writing n; = ¢1(x) and ny = f2(*), these diagrams express that f(n;) = ng
and f(ci(a,x)) = ca(a, f(x)), for a € A and x € Uy.
These two diagrams can be combined into a single diagram:

L+ (Ax oy 0D )
[ﬁlacl]l l[ﬁmcﬂ
U1 U2




1.5 Algebras and induction 19

i.e., for the list-functor T'(X) = 1+ (A x X),

) — I
[flacﬂl l[fz,@]
U1 f U2

The latter formulation is entirely in terms of the functor involved. This moti-
vates the following definition.

Definition 1.5.2 Let T be a functor with algebras a: T'(U) — U and b: T(V) —
V. A homomorphism of algebras (also called a map of algebras, or an algebra
map) from (U, a) to (V,b) is a function f:U — V between the carrier sets which
commutes with the operations: foa=boT(f) in

70y —D )
a b
U 7 1%

As a triviality we notice that for an algebra a: T'(U) — U the identity function
U — U is an algebra map (U,a) — (U,a). And we can compose algebra maps
as functions: given two algebra maps

(T(U) ., U) . (T(V) b, V> 9, (T(W) <, W)

then the composite function g o f:U — W is an algebra map from (U, a) to
(W, ¢). This is because go foa=goboT(f) =coT(g)oT(f) =coT(go f),
see the following diagram.

T(gof)
Z(U) 0 I;T) () T(?
U \f\;/,j/ W
gof

Thus: algebras and their homomorphisms form a category.
Now that we have a notion of homomorphism of algebras we can formulate
the important concept of “initiality” for algebras.



20 1 An introduction to (co)algebra and (co)induction

Definition 1.5.3 An algebra a:T(U) — U of a functor T is initial if for each
algebra b: T (V) — V there is a unique homomorphism of algebras from (U, a)

to (V,b). Diagrammatically we express this uniqueness by a dashed arrow, call
it f,in

rw)- ")
al b
U---—f-==V

We shall sometimes call this f the “unique mediating algebra map”.

We emphasise that unique existence has two aspects, namely existence of an
algebra map out of the initial algebra to another algebra, and uniqueness, in the
form of equality of any two algebra maps going out of the initial algebra to some
other algebra. Existence will be used as an (inductive) definition principle, and
uniqueness as an (inductive) proof principle.

As a first example, we shall describe the set N of natural numbers as initial
algebra.

Example 1.5.4 Consider the set N of natural number with its zero and suc-
cessor function 0:1 — N and S:N — N. These functions can be combined into a
single function [0, S]: 14+N — N, forming an algebra of the functor T'(X) = 1+X.
We will show that this map [0, S]: 1+ N — N is the initial algebra of this functor
T. And this characterises the set of natural numbers (up-to-isomorphism), by
Lemma 1.5.5 (ii) below.

To prove initiality, assume we have an arbitrary set U carrying a T-algebra
structure [u, h]: 1+ U — U. We have to define a “mediating” homomorphism
f:N — U. We try iteration:

f(n) = h(u)

where we simply write u instead of u(x). That is,

f(0)=wu and fn+1)=h(f(n)).

These two equations express that we have a commuting diagram

1+N d+f 1+U
Wi i[u,m
N U




1.5 Algebras and induction 21

making f a homomorphism of algebras. This can be verified easily by distin-
guishing for an arbitrary element x € 1 4+ N in the upper-left corner the two
cases ¢ = (0,%) = k(*) and z = (1,n) = k'(n), for n € N. In the first case
x = K(*) we get

F([0, S1(k(x))) = f(0) = u = [u, h](k(*)) = [u, B]((id + f)(K(*))).

In the second case x = £/(n) we similarly check:

£([0,S](k'(n))) = f(S(n)) = h(f(n)) = [u, k](x'(f(n))) = [u, h]((id+ f)(x(n))).

Hence we may conclude that f(]0,5](x)) = [u, h|((id + f)(x)), for all x € 1 + N,
i.e. that fo[0,S5] = [u,h] o (id + f).

This looks promising, but we still have to show that f is the only map making
the diagram commute. If g: N — U also satisfies go [0, S| = [u, h] o (id+ g), then
9(0) =u and g(n+ 1) = h(g(n)), by the same line of reasoning followed above.
Hence g(n) = f(n) by induction on n, so that g = f:N — U.

We shall give a simple example showing how to use this initiality for inductive
definitions. Suppose we wish to define by induction the function f(n) = 27"
from the natural numbers N to the rational numbers Q. Its defining equations
are:

f(0)=1 and f(n+1) =35f(n).

In order to define this function f:N — Q by initiality, we have to put an algebra
structure 1 + Q — Q on the set of rational numbers Q, see the above defini-
tion. This algebra on Q corresponds to the right hand side of the two defining
equations of f, given as two functions

1 —1-¢ Q——Q
* —1 >

(where we use ‘1’ both for the singleton set 1 = {*} and for the number 1 € Q)
which combine into a single function

Lo
s [1,5(=)] o

forming an algebra on Q. The function f(n) = 27" is then determined by



22 1 An introduction to (co)algebra and (co)induction

initiality as the unique function making the following diagram commute.

T LT NP
[O’S]l (BT
N 7 Q

This shows how initiality can be used to define functions by induction. It requires
that one puts an appropriate algebra structure on the codomain (i.e. the range)
of the intended function, corresponding to the induction clauses that determine
the function.

We emphasise that the functor T is a parameter in Definitions 1.5.2 and 1.5.3
of “homomorphism” and “initiality” for algebras, yielding uniform notions for
all functors T (representing certain signatures). It turns out that initial algebras
have certain properties, which can be shown for all functors T at once. Dia-
grams are convenient in expressing and proving these properties, because they
display information in a succinct way. And they are useful both in existence
and uniqueness arguments.

Lemma 1.5.5 Let T be a functor.
(i) Initial T-algebras, if they exist, are unique, up-to-isomorphism of algebras.
That is, if we have two initial algebras a: T(U) — U and o": T(U') — U’ of T,

then there is a unique isomorphism f:U S U of algebras:

r()—L )
"
U S v’

(ii) The operation of an initial algebras is an isomorphism: if a:T'(U) — U is
initial algebra, then a has an inverse a=*: U — T(U).

The first point tells us that a functor can have (essentially) at most one initial
algebra'. Therefore, we often speak of the initial algebra of a functor 7. And the
second point—which is due to Lambek—says that an initial algebra T(U) — U
is a fixed point T(U) = U of the functor T. Initial algebras may be seen as
generalizations of least fixed points of monotone functions, since they have a
(unique) map into an arbitrary algebra, see Exercise 1.10.3.

L This is a more general property of initial objects in a category.



1.5 Algebras and induction 23

Proof (i) Suppose both a:T(U) — U and a':T(U’') — U’ are initial algebras
of the functor 7. By initiality of a there is a unique algebra map f:U — U’.
Similarly, by initiality of a’ there is a unique algebra map f:U’ — U in the
other direction:

rw)- - - )
U---—fp=U Vs

Here we use the existence parts of initiality. The uniqueness part gives us that
the two resulting algebra maps (U,a) — (U, a), namely f o f’ and id in:

r@) Iy T 1) r@) 29D, o
a a/l a and a a
u f v 1 u U id v

must be equal, i.e. that f' o f = id. Uniqueness of algebra maps (U’ ,da’) —
(U’',a’) similarly yields f o f’ = id. Hence f is an isomorphism of algebras.

(ii) Let a: T'(U) — U be initial T-algebra. In order to show that the function a
is an isomorphism, we have to produce an inverse function U — T'(U). Initiality
of (U, a) can be used to define functions out of U to arbitrary algebras. Since we
seek a function U — T'(U), we have to put an algebra structure on the set 7'(U).
A moment’s thought yields a candidate, namely the result 7'(a): T(T(U)) —
T(U) of applying the functor T to the function a. This function T'(a) gives by
initiality of a: T(U) — U rise to a function a’: U — T'(U) with T'(a)oT'(a’) = a’oa
in:

T(a)
TWU)----"- ~T(T(U))
al T(a)
U-———— - ~T(U)



24 1 An introduction to (co)algebra and (co)induction

The function a o a’: U — U is an algebra map (U,a) — (U, a):

T(a") T(a)
T(U) T(T(U)) ()
al T(a)l ia
U 1) —— U

so that a o @’ = id by uniqueness of algebra maps (U,a) — (U, a). But then

a’oa = T(a)oT(a) by definition of a’
= T(aod) since T' preserves composition
= T(id) as we have just seen
= id since T preserves identities.
Hence a: T(U) — U is an isomorphism with o’ as its inverse. O
From now on we shall often write an initial T-algebra as a map a: T'(U) =,

making this isomorphism explicit.

Example 1.5.6 Let A be fixed set and consider the functor 7'(X) = 1+ (Ax X)
that we used earlier to capture models of the list signature 1 — X, Ax X — X.
We claim that the initial algebra of this functor 7" is the set A* = list(4) =
Unen A" of finite sequences of elements of A, together with the function (or
element) 1 — A* given by the empty list nil = (), and the function A x A* — A*
which maps an element a € A and a list &« = (ay,...,a,) € A* to the list
cons(a,a) = (a,a1,...,a,) € A*, obtained by prefixing a to «. These two
functions can be combined into a single function [nil,cons]: 1 4+ (A x A*) — A*,
which, as one easily checks, is an isomorphism. But this does not yet mean that
it is the initial algebra. We will check this explicitly.

For an arbitrary algebra [u, h]: 1+ (A x U) — U of the list-functor T" we have
a unique homomorphism f: A* — U of algebras:

1+ (A x A*) id + (id x /) 1+ (AxU)
[nil,cons]l i[u, h]
A* 7 U

namely

U if o = nil

J= { ha, f(8)) if a = cons(a, ).



1.5 Algebras and induction 25

We leave it to the reader to verify that f is indeed the unique function A* — U
making the diagram commute.

Again we can use this initiality of A* to define functions by induction (for
lists). As example we take the length function len: A* — N, described already in
the beginning of Section 1.2. In order to define it by initiality, it has to arise from
a list-algebra structure 1 + A X N — N on the natural numbers N. This algebra
structure is the cotuple of the two functions 0:1 — N and So7n’: A Xx N — N.
Hence len is determined as the unique function in the following initiality diagram.

id + (id x len)

1+ (A x A*Y) 1+ (A xN)
[nil,cons]i% J/[O,SOW’]
A len N

The algebra structure that we use on N corresponds to the defining clauses
len(nil) = 0 and len(cons(a,a)) = S(len(a)) = S(len(7'(a,))) = S(7'(id x
len)(a, a)).

We proceed with an example showing how proof by induction involves using
the uniqueness of a map out of an initial algebra. Consider therefore the “dou-
bling” function d: A* — A* which replaces each element « in a list o by two
consecutive occurrences a,a in d(«). This function is defined as the unique one
making the following diagram commute.

id + (id x d)
1+ (A x A*) 1+ (A x A%)
[nil, cons] l% l[nil, Aa, a). cons(a, cons(a, a))]
A* d A*

That is, d is defined by the induction clauses d(nil) = nil and d(cons(a,a)) =
cons(a, cons(a, d(a)). We wish to show that the length of the list d(«a) is twice
the length of «, i.e. that

len(d(a)) =2 - len(a).
The ordinary induction proof consists of two steps:

len(d(nil)) = len(nil) =0=2-0 =2 len(nil)



26 1 An introduction to (co)algebra and (co)induction

And
len(d(cons(a,))) = len(cons(a,cons(a,d(x))))
= 14+ 1+len(d(e))
L +2-len(a)
= 2-(1+len(e))

= 2-len(cons(a, a)).

The “initiality” induction proof of the fact lenod = 2-(—) olen uses uniqueness
in the following manner. Both lenod and 2-(—)olen are homomorphism from the
(initial) algebra (A*, [nil, cons]) to the algebra (N, [0, S o So7’']), so they must be
equal by initiality. First we check that len o d is an appropriate homomorphism
by inspection of the following diagram.

id 4 (id < d id + (id X |
| (A x Any T ey G A
| |
=~ | [nil, cons] [nil, A(a, ). cons(a, cons(a, a))] [0,S 0 S on]
* *
A d A len N

The rectangle on the left commutes by definition of d. And commutation of the
rectangle on the right follows easily from the definition of len. Next we check
that 2 - (—) olen is also a homomorphism of algebras:

1+ (A x A*) id + (id x len) 1+(AxNgd—l—(idXQ'(_)%—i—(AxN)
id+7r’i . z‘d+7r’l
e id+2-(—)
= | [nil, cons] 1+N 1+N
[0, S]lg [O,SoS]l [0, SoSor]
A len N 2-(—) N

The square on the left commutes by definition of len. Commutation of the upper
square on the right follows from an easy computation. And the lower square on
the right may be seen as defining the function 2 - (—):N — N by the clauses:
2-0=0and 2-(S(n)) =S5(5(2-n))—which we took for granted in the earlier
“ordinary” proof.

We conclude our brief discussion of algebras and induction with a few remarks.

(1) Given a number of constructors one can form the carrier set of the asso-
ciated initial algebra as the set of ‘closed’ terms (or ‘ground’ terms, not



1.5 Algebras and induction 27

containing variables) that can be formed with these constructors. For
example, the zero and successor constructors 0:1 — X and S: X — X
give rise to the set of closed terms,

{0,5(0),5(5(0))), ...}

which is (isomorphic to) the set N of natural numbers. Similarly, the set
of closed terms arising from the A-list constructors nil: 1 — X, cons: A X
X — X is the set A* of finite sequences (of elements of A).

Although it is pleasant to know what an initial algebra looks like, in us-
ing initiality we do not need this knowledge. All we need to know is that
there exists an initial algebra. Its defining property is sufficient to use it.
There are abstract results, guaranteeing the existence of initial algebras
for certain (continuous) functors, see e.g. [LS81, SP82], where initial al-
gebras are constructed as suitable colimits, generalizing the construction
of least fixed points of continuous functions.

(2) The initiality format of induction has the important advantage that it
generalises smoothly from natural numbers to other (algebraic) data
types, like lists or trees. Once we know the signature containing the
constructor operations of these data types, we know what the associ-
ated functor is and we can determine its initial algebra. This uniformity
provided by initiality was first stressed by the “ADT-group” [GTWT7§],
and forms the basis for inductively defined types in many programming
languages. For example, in the (functional) language ML, the user can
introduce a new inductive type X via the notation

datatype X = ¢y of 01(X) | --- | ¢, of op(X).

The idea is that X is the carrier of the initial algebra associated with

the constructors cj:01(X) — X, ..., ¢cp:on(X) — X. That is, with

the functor T(X) = 01(X) + -+ + 0n(X). The o; are existing types

which may contain X (positively)!. The uniformity provided by the ini-

tial algebra format (and dually also by the final coalgebra format) is

very useful if one wishes to automatically generate various rules associ-

ated with (co)inductively defined types (for example in programming

languages like CHARITY [CS95] or in proof tools like Pvs [ORR196],
HOL/ISABELLE [GM93, Mel89, Pau90, Pau97], or coq [PM93)).

Another advantage of the initial algebra format is that it is dual to the

I This definition scheme in ML contains various aspects which are not investigated here, e.g. it al-

lows (a) X = X (&) to contain type variables &, (b) mutual dependencies between such definitions,

(c) iteration of inductive definitions (so that, for example, the LIST operation which is obtained via
this scheme can be used in the o;.



28

1 An introduction to (co)algebra and (co)induction

final coalgebra format, as we shall see in the next section. This forms the
basis for the duality between induction and coinduction.

We have indicated only in one example that uniqueness of maps out
of an initial algebra corresponds to proof (as opposed to definition) by
induction. To substantiate this claim further we show how the usual
predicate formulation of induction for lists can be derived from the initial
algebra formulation. This predicate formulation says that a predicate (or
subset) P C A* is equal to A* in case nil € P and a € P = cons(a,a) € P,
for all @ € A and o € A*. Let us consider P as a set in its own right,
with an explicit inclusion function i: P — A* (given by i(z) = z). The
induction assumptions on P essentially say that P carries an algebra
structure nil: 1 — P, cons: A x P — P, in such a way that the inclusion
map i: P — A* is a map of algebras:

A+ (id x i
L (A p) 0D
[nil,cons]l ﬁl[nil,cons]
P . A*

7

In other words: P is a subalgebra of A*. By initiality we get a function
j: A* — P as on the left below. But then i o j = id, by uniqueness.

id + (id x id)
1+ (A x A¥)

= L (AX P)
id + (id x j) | id + (id x 1)

[nil, cons] | =~ [nil, cons] 2| [nil, cons]
J | i
A* w A*

id

1+ (A x A%

This means that P = A*, as we wished to derive.

The initiality property from Definition 1.5.3 allows us to define functions
f:U — V out of an initial algebra (with carrier) U. Often one wishes to
define functions U x D — V involving an additional parameter ranging
over a set D. A typical example is the addition function plus: N X N — N,
defined by induction on (say) its first argument, with the second argument
as parameter. One can handle such functions U x D — V via Currying:
they correspond to functions U — V. And the latter can be defined
via the initiality scheme. For example, we can define a Curryied addition
function plus:N — NY via initiality by putting an appropriate algebra



1.6 Coalgebras and coinduction 29

structure 1 + N¥ — N" on N (see Example 1.5.4):

) plus N

+ N 1+ N

[0, S]l% J/[)\x x, Af. Ax. S(f(x))]
plus N

This says that
plus(0) = \z. x and plus(n + 1) = Az. S(plus(n)(x)).

Alternatively, one may formulate initiality “with parameters”, see [Jac95],
so that one can handle such functions U x D — V directly.

1.6 Coalgebras and coinduction

In Section 1.4 we have seen that a “co”-product + behaves like a product x,
except that the arrows point in opposite direction: one has coprojections X —
X +Y « Y instead of projections X «— X xY — Y, and cotupleing instead of
tupleing. One says that the coproduct + is the dual of the product x, because
the associated arrows are reversed. Similarly, a “co”-algebra is the dual of an
algebra.

Definition 1.6.1 For a functor T', a coalgebra (or a T'-coalgebra) is a pair (U, c)
consisting of a set U and a function ¢:U — T'(U).

Like for algebras, we call the set U the carrier and the function c the structure
or operation of the coalgebra (U, c¢). Because coalgebras often describe dynamical
systems (of some sort), the carrier set U is also called the state space.

What, then, is the difference between an algebra T'(U) — U and a coalgebra
U — T'(U)? Essentially, it is the difference between construction and observa-
tion. An algebra consists of a carrier set U with a function T(U) — U going
into this carrier U. It tells us how to construct elements in U. And a coalgebra
consists of a carrier set U with a function U — T'(U) in the opposite direction,
going out of U. In this case we do not know how to form elements in U, but we
only have operations acting on U, which may give us some information about
U. In general, these coalgebraic operations do not tell us all there is to say
about elements of U, so that we only have limited access to U. Coalgebras—like
algebras—can be seen as models of a signature of operations—not of constructor
operations, but of destructor/observer operations.

Consider for example the functor T(X) = A x X, where A is a fixed set. A
coalgebra U — T'(U) consists of two functions U — A and U — U, which we



30 1 An introduction to (co)algebra and (co)induction

earlier called value:U — A and next: U — U. With these operations we can do
two things, given an element u € U:

(1) produce an element in A, namely value(u);
(2) produce a next element in U, namely next(u).

Now we can repeat (1) and (2) and form another element in A, namely value(next(u)).
By proceeding in this way we can get for each element v € U an infinite sequence
(a1,az,...) € AV of elements a,, = value(next(™ (u)) € A. This sequence of el-
ements that w gives rise to is what we can observe about u. Two elements
u1,us € U may well give rise to the same sequence of elements of A, with-
out actually being equal as elements of U. In such a case one calls u; and us
observationally indistinguishable, or bisimilar.

Here is another example. Let the functor T'(X) = 1+ A x X have a coalgebra
pn:U — 14+ A x U, where ‘pn’ stands for ‘possible next’. If we have an element
u € U, then we can see the following.

(1) Either pn(u) = k(*) € 1 + A x U is in the left component of +. If this
happens, then our experiment stops, since there is no state (element of
U) left with which to continue.

(2) Or pn(u) = k'(a,u) € 1+ A x U is in the right +-component. This gives
us an element a € A and a next element v’ € U of the carrier, with which
we can proceed.

Repeating this we can observe for an element u € U either a finite sequence
(a1,as,...,a,) € A* of, or an infinite sequence (a1, as, ...) € AY. The observable
outcomes are elements of the set A% = A* 4+ AN of finite and infinite lists of a’s.

These observations will turn out to be elements of the final coalgebra of the
functors involved, see Example 1.6.3 and 1.6.5 below. But in order to formulate
this notion of finality for coalgebras we first need to know what a “homomor-
phism of coalgebras” is. It is, like in algebra, a function between the underlying
sets which commutes with the operations. For example, let T(X) = A x X be
the “infinite list” functor as used above, with coalgebras (hy,t1): Uy — A x Uy
and (hg,t9): Us — A x Us. A homomorphism of coalgebras from the first to the
second consists of a function f:U; — Us between the carrier sets (state spaces)
with hoo f =h; and too f = foty in:

Uy Ui

f
hll i hy and tll \Ltz

A—— U0z




1.6 Coalgebras and coinduction 31

These two diagrams can be combined into a single one:

U1 f U2
<h1,t1)l l<h27t2)
A x U1 id % f A x U2
that is, into
U1 U2
(hl,h)l l<h2,t2>
T(Uy) T(Us)

Definition 1.6.2 Let T be a functor.

(i) A homomorphism of coalgebras (or, map of coalgebras, or coalgebra map)
from a T-coalgebra Uy ~ T(U;) to another T-coalgebra Us —=» T|(Us) consists
of a function f:U; — Us between the carrier sets which commutes with the
operations: cg o f = T(f) o ¢y as expressed by the following diagram.

Uy Us
cll lcz
T(Uy) T'(Us)

(ii) A final coalgebra d: Z — T(Z) is a coalgebra such that for every coalgebra
c:U — T(U) there is a unique map of coalgebras (U,c) — (Z,d).

Notice that where the initiality property for algebras allows us to define func-
tions going out of an initial algebra, the finality property for coalgebras gives
us means to define functions into a final coalgebra. Earlier we have emphasised
that what is typical in a coalgebraic setting is that there are no operations for
constructing elements of a state space (of a coalgebra), and that state spaces
should therefore be seen as black boxes. However, if we know that a certain
coalgebra is final, then we can actually form elements in its state space by
this finality principle. The next example contains some illustrations. Besides a
means for constructing elements, finality also allows us to define various oper-
ations on final coalgebras, as will be shown in a series of examples below. In
fact, in this way one can put certain algebraic structure on top of a coalgebra,
see [Tur96] for a systematic study in the context of process algebras.



32 1 An introduction to (co)algebra and (co)induction

Now that we have seen the definitions of initiality (for algebras, see Defini-
tion 1.5.3) and finality (for coalgebras) we are in a position to see their similar-
ities. At an informal level we can explain these similarities as follows. A typical
initiality diagram may be drawn as:

TU)— === === === ~T(V)

initial | ba;elj;ep

algebra next step
v----—————=-—— - =V

“and-so-forth”

The map “and-so-forth” that is defined in this diagram applies the “next step”
operations repeatedly to the “base step”. The pattern in a finality diagram is
similar:

“and-so-forth”

| Vi U
observe .
plus ~
next step coalgebra
T(V) *********** > T(U )

In this case the “and-so-forth” map captures the observations that arise by
repeatedly applying the “next step” operation. This captures the observable
behaviour.

The technique for defining a function f:V — U by finality is thus: describe
the direct observations together with the single next steps of f as a coalgebra
structure on V. The function f then arises by repetition. Hence a coinductive
definition of f does not determine f “at once”, but “step-by-step”. In the
next section we shall describe proof techniques using bisimulations, which fully
exploit this step-by-step character of coinductive definitions.

But first we identify a simply coalgebra concretely, and show how we can use
finality.

Example 1.6.3 For a fixed set A, consider the functor T(X) = A x X. We
claim that the final coalgebra of this functor is the set AN of infinite lists of
elements from A, with coalgebra structure

(head, tail): AN —— A x AN
given by
head(a) = «(0) and tail(a) = A\z. a(z +1).

Hence head takes the first element of an infinite sequence (a(0), a(1), a(2),...)



1.6 Coalgebras and coinduction 33

of elements of A, and tail takes the remaining list. We notice that the pair of
functions (head, tail): AN — A x AN is an isomorphism.
We claim that for an arbitrary coalgebra (value, next): U — A x U there is a

unique homomorphism of coalgebras f: U — AY; it is given for u € U and n € N
by

f(u)(n) = value (next(") (u)) .

Then indeed, head o f = value and tail o f = f o next, making f a map of
coalgebras. And f is unique in satisfying these two equations, as can be checked
easily.

FEarlier in this section we saw that what we can observe about an element
u € U is an infinite list of elements of A arising as value(u), value(next(u)),
value(next(next(u))), ... Now we see that this observable behaviour of u is pre-
cisely the outcome f(u) € AN at u of the unique map f to the final coalgebra.
Hence the elements of the final coalgebra give the observable behaviour. This
is typical for final coalgebras.

Once we know that A" is a final coalgebra—or, more precisely, carries a final
coalgebra structure—we can use this finality to define functions into AY. Let
us start with a simple example, which involves defining the constant sequence
const(a) = (a,a,a,...) € AN by coinduction (for some element a € A). We shall
define this constant as a function const(a): 1 — AN where 1 = {*} is a singleton
set. Following the above explanation, we have to produce a coalgebra structure
1—T(1) = Ax1onl,in such a way that const(a) arises by repetition. In this
case the only thing we want to observe is the element a € A itself, and so we
simply define as coalgebra structure 1 — A x 1 the function * — (a, *). Indeed,
const(a) arises in the following finality diagram.

const(a
1 @) AN
* (a,*)l %J{(head,taib
Ax1 A x AN

id x const(a)

It expresses that head(const(a)) = a and tail(const(a)) = const(a).

We consider another example, for the special case where A = N. We now
wish to define (coinductively) the function from: N — N¥ which maps a natural
number n € N to the sequence (n,n + 1,n+ 2,n + 3,...) € NY. This involves
defining a coalgebra structure N — N X N on the domain N of the function from
that we are trying to define. The direct observation that we can make about
a “state” n € N is n itself, and the next state is then n 4+ 1 (in which we can



34 1 An introduction to (co)algebra and (co)induction

directly observe n + 1). Repetition then leads to from(n). Thus we define the
function from in the following diagram.

from

N NN
An. (n,n + 1)l %l(head,taib
N x N N
% id X from Nx N

It is then determined by the equations head(from(n)) = n and tail(from(n)) =
from(n +1).

We are now in a position to provide the formal background for the examples
of coinductive definitions and proofs in Section 1.3. For instance, the function
merge: AN x AN — AN which merges two infinite lists into a single one arises as
unique function to the final coalgebra AY in:

AN x AN meres AN
Ma, B). (head(«), (ﬁ,tail(a)))l %J{(head,taib
A x (AN x AV) — A x AN
id X merge

Notice that the coalgebra structure on the left that we put on the domain AN x AN
of merge corresponds to the defining “coinduction” clauses for merge, as used in
Section 1.3. It expresses the direct observation after a merge, together with the
next state (about which we make a next direct observation).

It follows from the commutativity of the above diagram that

head(merge(a, 3)) = head(cr) and tail(merge(a, 3)) = merge(S, tail(a)).

The function even : AN — AN can similarly be defined coinductively, that is,
by finality of AN, as follows:

even

AN AN
Ao (head(a),tail(tail(a)))l gl(head,tail)
A x AN — A x AV
id X even

The coalgebra structure on AY on the left gives by finality rise to a unique
coalgebra homomorphism, called even. By the commutatitivity of the diagram,
it satisfies:

head(even(a)) = head(«) and tail(even(a)) = even(tail(tail(«))).



1.6 Coalgebras and coinduction 35

As before, we define
odd(a) = even(tail(a)).

Next we prove for all  in AN: merge(even(a),odd(a)) = a, by showing that
merge o (even, odd) is a homomorphism of coalgebras from (A", (head, tail)) to
(AN, (head, tail)). The required equality then follows by uniqueness, because the
identity function id: AN — AN is (trivially) a homomorphism (AN, (head, tail)) —
(AN, (head, tail)) as well. Thus, all we have to prove is that we have a homomor-
phism, i.e. that

(head, tail) o (merge o (even,odd)) = (id x (merge o (even, odd))) o (head, tail).
This follows from the following two computations.
head(merge(even(a),odd(«r))) = head(even(a))
head(«).
And:
tail(merge(even(a),odd(«v))) = merge(odd(a), tail(even(c)))
= merge(odd(a), even(tail(tail(«))))
= merge(even(tail()), odd(tail(«)))
= (merge o (even, odd))(tail(c)).

In Section 1.7, an alternative method for proving facts such as the one above,
will be introduced, which is based on the notion of bisimulation.

Clearly, there are formal similarities between algebra maps and coalgebra
maps. We leave it to the reader to check that coalgebra maps can be composed
as functions, and that the identity function on the carrier of a coalgebra is a
map of coalgebras. There is also the following result, which is dual—including
its proof—to Lemma 1.5.5.

Lemma 1.6.4 (i) Final coalgebras, if they exist, are uniquely determined (up-
to-isomorphism).

(ii) A final coalgebra Z — T(Z) is a fixed point Z 5 T(Z) of the functor
T. O

Final coalgebras are generalizations of greatest fixed points of monotone func-
tions. As for initial algebras, the existence of final coalgebras is more important
than their actual (internal) structure. Their use is determined entirely by their
finality property, and not by their structure. Often, the existence of a final
coalgebra follows from general properties of the relevant functor (and of the
underlying category), see e.g. [LS81, SP82, Ad403].



36 1 An introduction to (co)algebra and (co)induction

The unique existence of a map of coalgebras into a final coalgebra has two
aspects: existence, which gives us a principle of definition by coinduction, and
uniqueness, which gives us a principle of proof by coinduction. This will be
further illustrated in a series of examples, which will occupy the remainder of
this section.

Example 1.6.5 It is not hard to show that the final coalgebra of the functor
T(X) =1+ (A x X) has as carrier the set A% = A* + AY of finite and infinite
lists of A’s. The associated “possible next” coalgebra structure

pn: A® ——=1+4 A x A is aH{K,(*) p %fa:(> /
K(a,d) ifa=a-«
is final: for an arbitrary coalgebra ¢:U — 1+ (A x U) of the functor T there
is a unique homomorphism of coalgebras f:U — A°. Earlier in this section
we identified such lists in A°° as the observable behaviour for machines whose
signature of operations is described by T.
We give some examples of coinductive definitions for such finite and infinite
lists. First an easy one, describing an empty list nil: 1 — A° as the unique
coalgebra homomorphisms in the following situation.

1 nil A

.| =or

1+ (Ax1) —— =1+ (A x A%
( >z'd—|—(id><nil) ( )

Lok. We define a prefix operation cons: A x A% — A>®

This determines nil as pn™
as pn—!
We can coinductively define a list inclusion function list_incl: A* — A via

the coalgebra structure A* — 1+ (A x A*) given by

K (%) if a = nil
ar k'(a, ) if a = cons(a, f)

oK.

We leave it to the reader to (coinductively) define an infinite list inclusion AN —
A,

A next, more serious example, involves the concatenation function conc: A% x
A® — A% which yields for two lists z,y € A* a new list cons(z,y) € A®
which contains the elements of x followed by the elements of y. Coinductively
one defines conc(z,y) by laying down what the possible observations are on
this new list conc(z,y). Concretely, this means that we should define what



1.6 Coalgebras and coinduction 37

pn(conc(z,y)) is. The intuition we have of concatenation tells us that the pos-
sible next pn(conc(x,y)) is the possible next pn(x) of z if = is not the empty list
(i.e. if pn(x) # k(%) € 1), and the possible next pn(y) of y otherwise. This is
captured in the coalgebra structure conc_struct: A% x A% — 14 (AX (A® x A®))
given by:

k() if pn(a) = pn(B) = K(*)
(o, 8) = ¢ K'(a,(c/,B)) if pn(a) = K'(a,a)
K'(b, (o, 3)) if pn(a) = k() and pn(B) = &/'(b, ).

The concatenation function conc: A*° x A — A% that we wished to define
arises as unique coalgebra map resulting from conc_struct.
The interested reader may wish to prove (by uniqueness!) that:

conc(z, nil) = x = conc(nil, z)

conc(conc(z,y), z) = conc(x, conc(y, z)).

This makes A*° a monoid. It is clearly not commutative. One can also prove
that conc(cons(a, z),y)) = cons(a,conc(x,y)). The easiest way is to show that
applying pn on both sides yields the same result. Then we are done, since pn is
an isomorphism.

Example 1.6.6 Consider the functor T'(X) = 1 + X from Example 1.5.4. Re-
member that its initial algebra is given by the set N = {0,1,2,...,} of natu-
ral numbers with cotuple of zero and successor functions as algebra structure
0,5):1+ N — N.

The final coalgebra N — 1 + N of T is the set

N={0,1,2,...,}U{cc}

of natural numbers augmented with an extra element co. The final coalgebra
structure N — 1 + N is best called a predecessor pred because it sends

0 — k(x), n+1— &'(n), 00 — K/ (00)

where we have written the coprojections k, s’ explicitly in order to emphasise
the +-component to which pred(z) € 14+ N belongs. This final coalgebra may
be obtained by taking as the constant set A a singleton set 1 for the functor
X +— 14 (A x X) in the previous example. And indeed, the set 1°° = 1* + 1V is
isomorphic to N. The “possible next” operations pn: 1°° — 1+ (1 x 1°°) is then
indeed the predecessor.

The defining property of this final coalgebra pred:N — 1 + N says that for



38 1 An introduction to (co)algebra and (co)induction

every set U with a function f:U — 1+ U there is a unique function g:U — N
in the following diagram.

U----—"—--- >N
fl glpred
1+U-——— - ~1+N
+U id+ g 14+N

This says that g is the unique function satisfying

k() if f(z) = r(*)
pred(g(x)) = { )
D= Wigl) i f(@) = w(a).
This function g gives us the behaviour that one can observe about systems
with one button X — 1+ X, as mentioned in the first (coalgebra) example in
Section 1.2.
Consider now the function f:N x N — 1+ (N x N) defined by

k() if pred(z) = pred(y) = K(*)
fla,y) = q w'((2,y)) if pred(z) = £'(2')
K ((z,y)) if pred(z) = k(x), pred(y) = £'(y').
This f puts a coalgebra structure on N x N, for the functor X — 1+ X that

we are considering. Hence it gives rise to a unique coalgebra homomorphism
®:N x N — N in the following situation.

Nx N N

~
<X
1%
o
=
[0
o

1+ (NxN)— > 1+N

Hence @ is the unique function N x N — N with

K (*) if pred(z) = k(x) = pred(y)
pred(z ©y) = § w'(xz@y') if pred(z) = k(x), pred(y) = x'(y/)
K (2 @y) if pred(z) = k().

It is not hard to see that n®m = n+m for n,m € Nand n oo = o0 =
o P n, so that @ behaves like addition on the “extended” natural numbers in
N. One easily verifies that this addition function ©:N x N — N is the special
case (for A = 1) of the concatenation function conc: A x A* — A that we
introduced in the previous example. This special case distinguishes itself in an
important aspect: it can be shown that concatenation (or addition) &: NxN — N
on the extended natural numbers is commutative—e.g. by uniqueness, or by



1.7 Proofs by coinduction and bisimulation 39

bisimulation (see [Rut00] for details)—whereas concatenation conc: A® x A* —
A% in general is not commutative. If A has more than two elements, then
conc(z,y) # conc(y, x), because they give rise to different observations, e.g. for
both z,y singleton sequence containing different elements.

There exist also coalgebraic treatments of the real numbers, see for instance
[PP02].

1.7 Proofs by coinduction and bisimulation

In this section, we shall give an alternative formulation for one of the earlier
proofs by coinduction. The new proof does not directly exploit (the uniqueness
aspect of) finality, but makes use of the notion of bisimulation. We also present
one new example and then formulate the general case, allowing us to prove
equalities on final coalgebras via bisimulations.

We recall from Example 1.6.3 that the final coalgebra of the functor 7'(X) =
A x X is the set of infinite lists AN of elements of A with coalgebra structure
(head, tail). A bisimulation on this carrier A" is a relation R C AN x AN satisfying

head(«) = head(), and
(. 8) €R = { (tail(a), tail(3)) € R

Sometimes we shall also write R(«, ) for (o, ) € R.
Now AN satisfies the following coinductive proof principle, or cpp for short: For
all o and 3 in AY,

if (o, B) € R, for some bisimulation R on AN, then a = 3. (cpp)

Before we give a proof of the principle, which will be based on the finality of
AN, we illustrate its use by proving, once again, for all o in AY,

merge(even(a),odd()) = .
To this end, define the following relation on AN:
R = {(merge(even(a),odd(a)), a) | e € AN},

In order to prove the above equality it is, by the coinductive proof princi-
ple (cpp), sufficient to show that R is a bisimulation. First, for each pair
(merge(even(c), odd(c)), &) € R we have equal head’s:
head(merge(even(a),odd(cr))) = head(even(«))
= head(a).

And secondly, if we have a pair (merge(even(a),odd(«)), @) in R, then applying



40 1 An introduction to (co)algebra and (co)induction

tail on both sides yields a new pair in R, since we can rewrite, using that
odd = even o tail,

tail(merge(even(«),odd(cv))) = merge(odd(a), tail(even(a)))
= merge(even(tail(«)), even(tail(tail())))
= merge(even(tail()), odd(tail(c)).

For a proof of the cpp, let R be any bisimulation on AY. If we consider R as
a set (of pairs), then it can be supplied with an A x (—)-coalgebra structure by
defining a function

vR—=AXR (a, B) — (head(), (tail(a), tail(3))).

Note that ~ is well-defined since (tail(«),tail(3)) is in R, because R is a bisim-
ulation. Now it is straightforward to show that the two projection functions

m: R —— AN and mo: R ——= AN

are homomorphisms of coalgebras from (R,~) to (AY, (head, tail)). Therefore it
follows from the finality (cf. Definition 1.6.2) of AN that m; = mo. That is, if
(o, B) € R then a = .

The above definition of a bisimulation is a special instance of the following
categorical definition of bisimulation, which was introduced by [AMS89], and
which applies to coalgebras of arbitrary functors 7.

Definition 1.7.1 Let T be a functor and let (X, ax: X — T'(X)) and (Y, ay: Y —
T(Y')) be two T-coalgebras. A T'-bisimulation between (X, ax) and (Y, ay) is a
relation R C X x Y for which there exists a T-coalgebra structure v: R — T'(R)
such that the two projection functions 71: R — X and m: R — Y are homo-
morphisms of T-coalgebras:

X o R i Y
AT
T(X) = T(R) — = 1Y)

We call a bisimulation between a coalgebra (X, ax) and itself a bisimulation
on X. And we use the following notation:

xr ~x <= there exists a T-bisimulation R on X with (z,2) € R

The general formulation of the coinduction proof principle is now as follows.



1.7 Proofs by coinduction and bisimulation 41

Theorem 1.7.2 Let ¢: Z — T(Z) be the final T-coalgebra. For all z and 2’
in Z,
if 2z~ 2 then z = 2/ (cpp)

As in the example above, the proof of this principle is immediate by finality:
both the projections 7 and e are homomorphisms from (R,7) to the final
coalgebra (Z,¢). By finality, 71 = o, which proves the theorem.

This general version of the coinduction proof principle is surprisingly powerful,
notwithstanding the fact that the proof of cpp is almost trivial. The reader is
referred to [Rut00] for further examples of definitions and proofs by coinduction.
In Section 1.8, we shall see how this coalgebraic notion of bisimulation coincides
with the classical notion of Park and Milner for the case of processes.

There exist other formalisations of the notion of bisimulation: in [HJ98] a
bisimulation is described as a coalgebra in a category of relations, for a suitably
lifted functor (associated with the original functor T'); in the context of (coal-
gebraic) modal logic the notion of behavioural equivalence if often used, see
e.g. [CP07, K1i07]; in [JNW96], bisimulations occur as spans of so-called open
maps; and in [Bar03, CHLO3], stronger versions of bisimulation (and coinduc-
tion) are given called A-bisimulations. But in a set-theoretic context, the above
definition seems to be most convenient. Simulations, or “bisimulations” in one
direction only, are described in [HJ04].

The above categorical definition of bisimulation can be seen to be the formal
(categorical) dual of the notion of congruence on algebras, which for T-algebras
(U, a) and (V,b) can be defined as a relation R C U xV for which there exists a T-
algebra structure ¢: T(R) — R such that the two projection functions m1: R — U
and my: R — V are homomorphisms of T-algebras:

7)< gy LT gy

I T

U R |4

T T

Using the above notions of congruence on algebras and bisimulation on coalge-
bras, the duality between induction and coinduction can be succinctly expressed
as follows. For initial algebras (A,a), we have:

for every congruence relation R C Ax A, A4 CR

where Ay = {(a,a) | a € A} is the diagonal on A. Dually, for final coalgebras
(Z, z) we have the following:

for every bisimulation relation R C Z x Z, R C Ay



42 1 An introduction to (co)algebra and (co)induction

One can show that the above property of initial algebras is precisely the fa-
miliar induction principle on algebras such as the natural numbers. (The above
property of final coalgebras is trivially equivalent to the formulation of Theorem
1.7.2).) We refer the reader to [Rut00, Section 13| for further details.

1.8 Processes coalgebraically

In this section, we shall present labelled transition systems as coalgebras of a
certain “behaviour” functor B. We shall see that the corresponding coalgebraic
notion of bisimulation coincides with the classical notion of Park and Milner.
Finally, we shall introduce the final coalgebra for the functor B, the elements of
which can be seen as (canonical representatives of) processes.

A (possibly nondeterministic) transition system (X, A, —x) consists of a
set X of states, a set A of transition labels, and a transition relation — xC
X x A x X. As usual, we write z —x 2’ for transitions (z,a,z') €—x.

Consider the functor B defined by

B(X)=PAxX)={V|VCAxX}

A labeled transition system (X, A, —x) can be identified with a B-coalgebra
(X, ax: X — B(X)), by putting

(a,2)) € ax(zr) <= x-Sxa

In other words, the class of all labeled transition systems coincides with the
class of all B-coalgebras. Let (X,A,—x) and (Y, A, —y) be two labeled
transition systems with the same set A of labels. An interesting question is what
a coalgebra homomorphism between these two transition systems (as coalgebras
(X, ax) and (Y, ay)) is, in terms of the transition structures — x and —y-.
Per definition, a B-homomorphism f: (X, ax) — (Y, ay) is a function f: X —
Y such that B(f) o ax = ay o f, where the function B(f), also denoted by
P(A x f), is defined by

B(f)(V) =PAx /)(V) = {{a, [(5)) | (a,8) € V}.

One can easily prove that the equality B(f) o ax = ay o f is equivalent to the
following two conditions, for all z € X:

(1) for all 2’ in X, if + % x 2’ then f(z) >y f(z');
(2) for all y in Y, if f(z) %y y then there is an 2/ in X with z -5 x 2/ and

f(@) =y.

Thus a homomorphism is a function that preserves and reflects transitions.



1.8 Processes coalgebraically 43

This notion is quite standard, but sometimes only preservation is required, see
e.g. [INW96].

There is the following well-known notion of bisimulation for transition sys-
tems [Mil89, Par81]: a bisimulation between between transition systems X and
Y (as above) is a relation R C X x Y satisfying, for all (x,y) € R,

(i) for all 2/ in X, if + 5x 2/ then there is 3 in YV with y —=y 3 and
(@',y) € Ry
(ii) for all ¢/ in Y, if y %y ¢/ then there is 2/ in X with z 5x 2/ and
(«',y") € R.
For the relation between this notion of bisimulation and the notion of zig-zag
relation from modal logic, see Chapter SANGIORGI.
The coalgebraic notion of B-bisimulation (Definition 1.7.1) coincides with the
above definition: If R is a B-bisimulation then conditions (i) and (ii) follow from
the fact that both m; and me are homomorphisms. Conversely, any relation R

satisfying (i) and (ii) above can be seen to be a B-bisimulation by defining a
coalgebra structure v : R — B(R) as follows:

Y(zy) = {<a,(@,y)>| 2 Sx2 and y Sy y and (2/,y) R}

One then readily proves that m; and 7o are homomorphisms.
A concrete example of a bisimulation relation between two transition systems
X and Y is the following. Consider two systems X and Y:

v b g b L

The relation

{ (wi,zj) | 4,5 >0} U {(af,2}) | i,5 > 0}
is then a bisimulation on X. And

R = {(zi,y) 1> 0} U {(z3,y) | i >0}

is a bisimulation between X and Y. The latter relation R is called a functional
bisimulation because it is the graph

{(z,f(z)) |z € X}

of a homomorphism f: X — Y defined by f(x;) =y and f(2}) = v/. Note that
there exists no homomorphism in the reverse direction from Y to X.



44 1 An introduction to (co)algebra and (co)induction

For cardinality reasons, a final B-coalgebra cannot exist: by Lemma 1.6.4 (ii),
any final coalgebra is a fixed point: X = P(A x X), and such a set does not
exist because the cardinality of P(A x X)) is strictly greater than that of X (for
non-empty sets of labels A). Therefore we restrict to so-called finitely branching
transition systems, satisfying, for all states s,

{{a,s) | s Lx &'} is finite.
Such systems can be identified with coalgebras of the functor
By(X)=Pi(Ax X)={V C Ax X |V is finite}.

For this functor, a final coalgebra does exist. The proof, which is a bit technical,
is due to Barr [Bar93] (see also [RT94, Rut00]), and is omitted here (cf. the
discussion in Section 1.2).

In what follows, let (II, ) be the final Bf-coalgebra, which is unique up to
isomorphism. Borrowing the terminology of concurrency theory, we call the
elements of II processes and denote them by P, @, R. As before, we shall denote
transitions by

PLQ < (a,Q) € 7(P)
Being a final coalgebra, (I, 7) satisfies the coinduction proof principle (Theorem
1.7.2): for all P,Q € 1II,
if P~ (@ then P= Q.

The following theorem shows that we can view the elements of II as canonical,
minimal representatives of (finitely branching) labeled transition systems.

Theorem 1.8.1 Let (X,ax) be a Bj-coalgebra, that is, a finitely branching
labeled transition system. By finality, there is a unique homomorphism f :
(X,ax) — (I, 7). It satisfies, for all z,2" € X:

z~1 = f(z)=f(a')

Proof The implication from left to right follows from the fact that homomor-
phisms are (functional) bisimulations and the coinduction proof principle. For
the implication from right to left, note that

R={(z,2") e X x X | f(z) = f(a) }
is a bisimulation relation on X. (]
In conclusion of the present section, we define a number of operators on pro-

cesses by coinduction, and then prove various of their properties by the coin-
duction proof principle.



1.8 Processes coalgebraically 45

As a first example, we define a non-deterministic merge operation on pro-
cesses. To this end, we supply II x II with a Bj-coalgebra structure

po: I x IT — By (I x II)
defined by
WPQ) = {(a,(PLQ) | P PYU{(a,(P,Q)) | Q-5Q).  (15)
By finality of II, there exists a unique By-homomorphism
merge: II x IT — II.
We shall use the following standard notation:
P | Q = merge(P, Q)

It follows from the fact that merge is a homomorphism of transition systems,
i.e., from

By (merge) o 1 = 7 o merge
that it satisfies precisely the following rules:
P = p Q- Q
" and "
PlQ — P |Q PlQ — P|Q

(1.6)

The function | satisfies a number of familiar properties. Let 0 be the terminated
process: formally,

0=n"*(0)
for which no transitions exist. The following equalities
(1) 0| P=P;
(2) P1Q=Q|P;

@) (PIQ)|R=P|(Q]|R),
are a consequence of (cpp) and the fact that the following relations are bisimu-
lations on II:

(a) {(0| P, P)| P ell};

(b) {(PQ,Q|P)|PQell}

) {(PIQ)IR, P|(Q|R))|PQ Rell}.

For instance, the first relation (a) is a bisimulation because we have transitions,
for any P in II:

o|Pp%o|P if and only if P -5 P/,



46 1 An introduction to (co)algebra and (co)induction

and (0 | P’, P’) is again in the relation. For the second relation (b), consider a
pair of processes (P | @, @ | P), and suppose that we have a transition step

P|Q %R,

for some process R in II. (The other case, where a first step of @ | P is
considered, is proved in exactly the same way.) It follows from the definition
of merge that one of the following two situations applies: either there exists
a transition P % P’ and R = P’ | Q, or there exists a transition Q - Q'
and R = P | Q. Let us consider the first situation, the second being similar.
If P < P’ then it follows again from the rules above that there exists also a
transition

QIPLQ|P.

But then we have mimicked the transition step of P | Q by a transition step of
Q@ | P, in such a way that the resulting processes are again in the relation:

(P'1Q, QP

is again a pair in relation (b). This shows that also relation (b) is a bisimulation.
For (c), the same kind of argument can be given.

Let us return for a moment to the coinductive definition of the merge operator
above. There is a very close correspondence between the two transition rules
(1.6) and the definition (1.5) of the coalgebra structure p on II x II. In fact, we
could take the transition rules as a specification of the merge operator we were
after; then use these rules to define p as above; and finally define the merge
operator by the homomorphism into II, as we did above.

We illustrate this approach by the coinductive definition of a number of pro-
cess operators at the same time, which together constitute a simple CCS-like
process calculus. Let the set Exp of syntactic expressions (denoted by E, F' etc.)
be given by

o

E ==
(for every a € A)

Q>

|

| P (for every P e 1I)

| E|F

| E+F

| EGF

Here we use the symbol hat to indicate that we are dealing with syntactic en-

tities. For instance, for every process P € II, the set Exp contains a syntactic
expression P. Thus we have mappings A — Ezp and Il — Ezp.



1.8 Processes coalgebraically 47

Next we define a transition relation on Exp by the following axioms and rules:

PLQ < P-Q (< (a,Q) en(P)

E % FE F % F
E+F % B E4F & |

ES F FX F
E|lF % F'|F  E|F % E|F

E L F E+4 and F % F'
E‘F % E''F E‘F % F

Having such a transition structure on Exp, we can define a By-coalgebra struc-
ture vy : Exp — By(Exp) by

v(B) = {{a,F) | E = F}

Note that by construction * : II — Ezp is now a coalgebra homomorphism.

By finality of II, there exists a unique homomorphism h : (Ezp,vy) — (IL, 7)
which assigns to each syntactic expression F a corresponding process h(E) € II.
We can use it to define semantic operators on II corresponding to the syntactic
operators on Exp, as follows:

0 & h(0)
a £ h(a)
PlQ < wPlQ (1.7)
P+Q ¥ nPiQ
P,Q < nPiQ)

In this manner, we have obtained three operators on processes P and @Q: the
merge P | Q; the choice P + Q; and the sequential composition P;@Q. (It is
straightforward to check that the present definition of the merge coincides with
the one given earlier.) The constant 0 is defined as the process that cannot
make any transitions (since the transition relation on Exp does not specify any
transitions for O) As a consequence, 0 coincides with the terminated process



48 1 An introduction to (co)algebra and (co)induction

(also denoted by 0) introduced earlier. The constant a denotes a process that
can take a single a-step to 0 and then terminates. Furthermore it is worth
noticing that the homomorphism A acts as the identity on processes; that is,
h(ﬁ) = P, which can be easily proved by (ccp) or directly by finality of II.
Also note that it is possible to add recursive process definitions to the above,
see for instance [RT94]. This would allow us to use guarded equations such as

X = a* X +b, which would define a process P = h(X) with transitions P - P
and P % 0.

In the above, we have exploited the finality of the set II of all processes to
define constants and operators by coinduction. Essentially the same procedure
can be followed to define operators on various other structures such as, for
instance, formal languages and power series [Rut03] and binary trees [SRO7].

A question that naturally arises is under which conditions the above type of
definition scheme works, that is, when does it uniquely determine the operators
one wants to define. As it turns out, this very much depends on the syntactic
shape of the defining equations or, in terms of the transition relation defined on
Exp above, on the shape of the axioms and rules used to specify the transition
relation. There is in fact a close relationship between the various syntactic
transition system specification formats studied in the literature (such as GSOS,
tyft-tyxt, and the like), on the one hand, and well-formed coinductive definition
schemes, on the other hand.

In conclusion of this section, let us indicate how the above construction of
semantic operators out of operational specifications can be put into a general
categorical perspective. First of all, we observe that the set Exp of expressions
is the initial algebra of the functor

TX)=1+A+T+ (X x X))+ (X x X)+ (X x X)

where the constituents on the right correspond, respectively, to the constant
symbol 0; the elements @ with a € A; the elements P with P € IT; and the three
operations of merge, choice, and sequential composition. Above we had already
supplied the set Exp with a By-coalgebra structure (Exp,~). Therefore Exp is
a so-called bialgebra: a set which has both an algebra and a coalgebra structure.
Similarly, the definition of the semantic operators above (1.7) supplies II, which
was defined as the final By-coalgebra, with a T-algebra structure, turning it
thereby into a bialgebra as well. The relationship between the T-algebra and
Bj-coalgebra structures on Exp and II is provided by the fact that the mapping
h above is both a homomorphism of Bj-coalgebras and a homomorphism of



1.9 Trace Semantics, coalgebraically 49

T-algebras. All of which can be pleasantly expressed by the following diagram:

T(h)
T (Tp) T(11)
T
By(Ezp) B, () By (Y)

The interplay between algebra (syntactic operators) and coalgebra (their be-
haviour) has become an important topic of research within the coalgebra com-
munity. For further reading see for instance [RT94] and [TP97, Bar03, Jac06].
In these latter references, natural transformations called distributive laws are
used to relate the syntax functor and the behaviour functor. Compositionality
then comes for free. Other examples of the interplay between algebraic and coal-
gebraic structure include recent generalisations of Kleene’s theorem and Kleene
algebra to large families of coalgebras, including processes, Mealy machines, and
weighted and probabilistic systems [BRS09, BBRS09].

1.9 Trace Semantics, coalgebraically

Let —C X x A x X be a transition system as in the previous section. As
we have seen, it may be written as a coalgebra (X,a: X — P(A x X)). An
execution is a sequence of consecutive transition steps:

ag ai a2
rog ——>T1 ——> Xy — "

A trace of this transition system is then a sequence (ag, a1, as,...) of actions
occurring in such an execution.

This section describes a systematic way to capture such traces coalgebraically,
following [HJ05, HJS07], which is general and generic. Here we concentrate on
the powerset case. This involves both initial algebras and final coalgebras, in
different “universes”. The description involves a number of preparatory steps.

Finite executions and traces

Our description applies to finite traces. In order to capture them we introduce
an additional symbol X for succesful termination. We can do so by considering
coalgebras of a slightly different functor, namely P(1 + A x X) with additional



50 1 An introduction to (co)algebra and (co)induction

singleton set 1 = {X}. For a coalgebra a: X — P(1+ A x X) we then write
% 2 if (a,2") € a(x) and x — X if X € a(x).

We shall write F'(X) =1+ A x X for the functor inside the powerset. Hence
we concentrate on P F-coalgebras.

A finite execution is one that ends with X, as in zg —% 7 —2 -« Anl,
T, — X. A trace is called finite if it comes from such a finite execution. We
shall write tr(x) for the set of finite traces of executions that start in z € X.
This yields a function tr: X — P(A*) where A* is the set of finite sequences
of elements of A. Notice that A* is the initial algebra of the functor F', see
Example 1.5.6.

A category of relations

A map of the form X — P(Y) can be seen as a “non-deterministic” function
that yields a set of outcomes in Y for a single input element from X. It may be
identified with a relation between X and Y, i.e. with a subset of the product
X x Y. We can understand such a function/relation as an arrow in a category
Rel of sets and relations.

This category Rel has ordinary sets as objects. Morphism X — Y in Rel
are ordinary functions X — P(Y). They can be composed via “relational”
composition. For arrows f: X — Y and ¢:Y — Z in Rel we have to form
gof: X — Z. As ordinary functions we define go f: X — P(Z) for f: X — P(Y)
and ¢:Y — P(Z), by:

(gof)(x) = Ulgl) |y e fl)} (1.8)

Notice that our notation is now (deliberately) ambigous, depending on the cat-
egory (or universe) in which we work. An arrow X — Y in Set is an ordinary
function from X to Y, but an arrow X — Y in Rel is a “non-deterministic”
function X — P(Y).

It is not hard to see that the singleton map {—}: X — P(X) forms the identity
map X — X on the object X in the category Rel. Explicitly, {—} o f = f and
go{—} =g, for relational composition o.

There is an obvious functor J: Set — Rel that sends a set X to itself and a
function f: X — Y to its graph relation {(z, f(x)) | z € X}. This graph may

be identified with the composite X Sy PY).

Lifting the functor

For the main result of this section we need to consider a P F-coalgebra (X, a: X —
P(F(X))) as an F-coalgebra (X,a: X — F(X)), by moving to the category



1.9 Trace Semantics, coalgebraically 51

Rel. Indeed, a map X — P(F(X)) is an arrow X — F(X) in Rel. In or-
der to understand it as coalgebra we need to know that F' is—or lifts to—a
functor F: Rel — Rel. It is obvious how such lifting works on objects, namely
F(X) = F(X), but how it works on morphisms in Rel requires some care.

For an arrow X — Y in Rel we need to construct a new map FX — FY in
Rel. That is, a function f: X — P(Y) yields a function F(f): FX — P(F(Y)),
defined as follows.

1+AxX F{) P(l+AxY)
X X}
(a,2) ————>{(a,y) |y € f(2)}.

It is not hard to check that this “lifting” of F: Set — Set to F: Rel — Rel indeed
preserves identities and composition—from Rel. It yields a commuting diagram:

Rel Rel (1.9)
| E
Set L Set

The trace theorem

The following result (from [HJO05]) combines initial algebras and final coalgebras
for a description of trace semantics.

Theorem 1.9.1 The initial F-algebra in Set yields a final F-coalgebra in Rel.
O

There are several ways to prove this result. A particular snappy proof is
presented in [HJS07, Theorem 3.8]; it uses adjunctions and is therefore outside
the scope of this paper. Here we omit the proof and concentrate on the relevance
of this result for trace semantics.

So we first spell out what is actually stated in the theorem. Recall from
Example 1.5.6 that the initial algebra of the functor F' =1+ A x (—) is the set

A* of finite sequences of elements in A with operations [nil, cons]: 1+ A x A* —
A*. Since this initial algebra is an isomorphism, we can consider its inverse
A* S F (A*), formally as an isomorphism in the category Set. By applying
the functor J: Set — Rel from the diagram (1.9) this yields an isomorphism in
Rel

A* = J(A*) == J(F(A) = F(J(A%)) = F(A%).



52 1 An introduction to (co)algebra and (co)induction

which is an F-coalgebra (recall that F' is F' and J the identity on objects/sets).
The theorem claims that this map is the final F-coalgebra in Rel.

In order to clarify this switch of categories we go a bit deeper into the details.
Let’s write 3 = [nil, cons]~!: A* 1+ Ax A = F(A*) for the inverse of the
initial algebra (in Set). It yields J(B) = {—} o f: A* — P(F(A*)). We claim
that this 3 is an isomorphism A* — F(A*), an isomorphism in the category Rel!
This J() may not look like an isomorphism, but we have to keep in mind that
composition in Rel, as described in (1.8), is different from composition in Set.
In general, for an isomorphism f:Y — X in Set have in Rel:

(Jedr )@ = U{Inm) lye JU @) by (18)
= U{lfo} lye (@)}
= (@)}
= {x}
= idx(z)

where the latter identity map i¢dx is the identity in Rel, given by the singleton
map.

Assume now that we have a transition system a: X — P(1 4+ A x X) as in
the beginning of this section. We may now understand it as an F-coalgebra
X — F(X). We shall do so and continue to work in the category Rel. The
finality claimed in the theorem then yields a unique homomorphism in:

X t A*
al F(tr) _ i%
F(X) F(A*)

It is essential that this is a diagram in the category Rel. We shall unravel what
commutation means, using composition as in (1.8). The composite F(tr) o a is
the relation on X x (14 A x A*) consisting of:

{(z,X) | X € a(z)} U {(x,(a,0)) | I2'. (a,2') € a(z) Ao € tr(z))}.
The other composition, = o tr, yields the relation:
{(z,X) | nil € tr(z)} U {(x,(a,0)) | cons(a,o) € tr(z)}.
The equality of these sets yields the defining clauses for trace semantics, namely:

nil € tr(z) < z—X
cons(a,0) € tr(z) <= 'z -5 ' Ao € tr(a)).

where we have used the transition notation for the coalgebra a.



1.10 Ezxercises 53

What we thus see is that the abstract idea of finality (for coalgebras) makes
sense not only in the standard category/universe of sets and functions, but also
in the world of sets and relations. This genericity can only be formulated and
appreciated via the language of categories. It demonstrates clearly why the
theory of coalgebras relies so heavily on category theory.

Theorem 1.9.1 allows for considerable generalisation. The crucial aspect of
the powerset that is used is that it is a so-called monad, with the category Rel as
its “Kleisli” category. The result may be formulated more generally for suitable
monads and functors F', see [HJS07]. It can then also be applied to probabilistic
transition systems, and even to a combination of probabilistic and possibilistic
(non-deterministic) systems (see [Jac08]).

1.10 Exercises

Exercise 1.10.1 Use initiality to define a function sum : N* — N such that
sum(nil) = 0 and

sum(ay,...,an) =a1+ -+ ap

for all (ay,...,a,) € N*.

Exercise 1.10.2 Use initiality to define a function L : N — N* such that
L(n)=1(0,1,2,...,n)

for all n > 0. Same question, now for H : N — N* such that H(0) = () and
H(n)=(0,1,2,...,n—1)

for all n > 1.

Exercise 1.10.3 A preorder (P, <) can be viewed as a category. Objects are

the elements of P and we have an arrow p — ¢ iff p < ¢. An order-preserving

function f : P — P can then be seen as a functor from the category P to

itself. Show that least fixed points of f are precisely the initial algebras and
that greatest fixed points correspond to final coalgebras.

Exercise 1.10.4 The set of (finite) binary trees with (node) labels in a given
set A can be defined as the initial algebra BT4 of the functor
B(X)=1+ (X xAxX)

Use initiality to define a function size : BTy — N. Next use initiality to define
two tree traversal functions of type BT4 — A* that flatten a tree into a word
consisting of its labels: one depth-first and one breadth-first.



54 1 An introduction to (co)algebra and (co)induction

Exercise 1.10.5 Let us call a relation R C N x N a congruence if (0,0) € R
and

if (n,m) € R then (S(n),S(m)) € R
for all (n,m) € N x N.

(i) Show that any relation R C N x N is a congruence iff there exists an
algebra structure p : 1 + R — R such that the projections m : R — N
and me : R — N are algebra homomorphisms.

(ii) Let A = {(n,n) | n € N}. Use the initiality of N to show:

(%) if R is a congruence relation then A CR

(iii) Show that (x) is equivalent to the principle of mathematical induction,
which says, for any predicate P C N,

if P(0) and Vn e N: P(n) = P(n+ 1), then Vn € N: P(n)

(iv) Note that the characterisation of congruence in (i) above is, in a precise
sense, dual to the definition of T-bisimulation, for the functor T'(X) =
1+ X.

Exercise 1.10.6 Use finality to define a function merge3 : (4AY)3 — AN such
that

merge3(a, T, p) = (U(O)a T(O)7 :O(O)a U(l)a T(l)7 :0(1)1 .- )
Next use merge3 to define the function merge, ; at the end of Section 1.3.
Exercise 1.10.7 Show that the singleton set 1 = {x} is (the carrier of) a final

coalgebra for the functor T(X) = X. Show that it is also a final coalgebra for
the functor T(X) = X4, with A an arbitrary non-empty set.

Exercise 1.10.8 Is it possible to define the factorial function F': N — N given
by F(n) = n! by initiality? Hint: define by initiality a function G : N — N x N
such that m o G = S, the successor function, and 75 0 G = F.

Exercise 1.10.9 Let 2 = {0,1} and let A be an arbitrary non-empty set. We
consider T(X) = 2 x X4. We view a T-coalgebra (0,n) : X — 2 x X4 as a
deterministic automaton with transitions

r5y — n@)(a)=y
A state z is accepting (final) iff o(x) = 1. Consider the set
P(A%) = {L| LC A"}



1.10 Ezxercises 55

of languages over A. Define for L C A*

ol)=1 + (el

n(L)(a) = {we A* | cons(a,w) € L}

Now show that (P(A*), (o,n)) is a final T-coalgebra. Hint: show that there
is a unique homomorphism from any T-coalgebra (0,n) : X — 2 x X4 into
(P(A*), (0,n)) mapping any state x € X to the language that it accepts.

Exercise 1.10.10 Let T(X) = 2 x X4, as in Exercise 1.10.9, and consider a T-
coalgebra (0,n) : X — 2 x X4, Show that if 2 and 2/ in X are T-bisimilar then
they are mapped by the final homomorphism to the same language. Conclude
from this observation that T-bisimilarity is language equivalence.

Exercise 1.10.11 Let A be an arbitrary non-empty set. We view a (—)4-

coalgebra n : X — X4 as a deterministic automaton with transitions
-y <= nx)a)=y
For x € X we define z. = = and
Tya = 1(Ty)(a)
The set A* carries a (—)?-coalgebra structure v : A* — (A*)4 given by
Y(w)(a) = w-a

Show that for any (—)%-coalgebra n : X — X4 with initial state 2, : 1 — X

there exists a unique (—)“-coalgebra homomorphism 7 : (A*,v) — (X,n) s.t.
r(w) = (20)w

(The function r could be called the reachability map.)

Exercise 1.10.12 Use finality to define, for any function f : A — A, a function
iteratey : A — AV satisfying

iterates(a) = (a, f(a), fo f(a),...)
Exercise 1.10.13 Show by the coinduction proof principle (cpp) that

even o iteratey = iteratey.y

where even is defined in equation (1.3) of Section 1.3.



56 1 An introduction to (co)algebra and (co)induction
Exercise 1.10.14 Prove by the coinduction proof principle (cpp) that
odd(merge(o, 7)) =T

for all 0,7 € AN. (See Section 1.3 for the definitions of odd and merge.)

Exercise 1.10.15 For a stream o € AY we define
o(0) = head(o)

o' = tail(o)

and call these the initial value and the stream derivative of o. Let a € A and
consider the following stream differential equation:

c0)=a o =0

Compute the unique solution of this equation. For a,b € A, compute the solution

of the following system of equations:

Exercise 1.10.16 Which function f : AY — AN is the solution of the following
(functional) stream differential equation?:

f(@)(0) = o(0)
flo) = f(0")

Exercise 1.10.17 The following system of stream differential equations (uniquely)
defines two functions @, ® : NN x NNV — NN:

(c®7)(0)=0c(0)+7(0) (cdT) =0T
(c®7)(0)=0(0)x7(0) (c@7)=("®7) & (aT)

Show that for all n > 0:



1.10 Ezercises
Exercise 1.10.18 Prove by the coinduction proof principle (cpp) that
(P+Q);R= (P;R)+ (@ R)
for all processes P, @, R € II.

o7



Bibliography

[Ad403] J. Addmek. On final coalgebras of continuous functors. Theor. Comp. Sci.,
294:3-29, 2003.

[AM75] M.A. Arbib and E.G. Manes. Arrows, Structures and Functors. The Categorical
Imperative. Academic Press, New York, 1975.

[AM82] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly
constrained parameters. Inf. & Contr., 52:139-158, 1982.

[AMB89] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, A. Poigné,
and D.E. Rydeheard, editors, Category Theory and Computer Science, number 389
in Lect. Notes Comp. Sci., pages 357-365. Springer, Berlin, 1989.

[Awo06] S. Awodey. Category Theory. Oxford University Press, 2006.

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci.,
114(2):299-315, 1993. Corrigendum in Theor. Comp. Sci. 124:189-192, 1994.

[Bar03] F. Bartels. Generalised coinduction. Math. Struct. in Comp. Sci., 13(2):321-348,
2003.

[BBRS09] F. Bonchi, M.M. Bonsangue, J.J.M.M. Rutten, and A. Silva. Deriving syntax
and axioms for quantitative regular behaviours. In International Conference on
Concurrency Theory (CONCUR 2009), Lect. Notes Comp. Sci. Springer, Berlin,
2009.

[BD94] R. Burstall and R. Diaconescu. Hiding and behaviour: an institutional approach.
In A.W. Roscoe, editor, A Classical Mind. Essays in honour of C.A.R. Hoare, pages
75-92. Prentice Hall, 1994.

[BM96] J. Barwise and L.S. Moss. Vicious Clircles: On the Mathematics of Non-
wellfounded Phenomena. CSLI Lecture Notes 60, Stanford, 1996.

[Bor94] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclo-
pedia of Mathematics. Cambridge Univ. Press, 1994.

[BRS09] M.M. Bonsangue, J.J.M.M. Rutten, and A. Silva. Algebras for Kripke poly-
nomial coalgebras. In Logic in Computer Science. IEEE, Computer Science Press,
2009.

[BV96] J.W. de Bakker and E. Vink. Control Flow Semantics. MIT Press, Cambridge,
MA, 1996.

[BW90] M. Barr and Ch. Wells. Category Theory for Computing Science. Prentice Hall,
1990.

58



Bibliography 59

[CHLO3] D. Cancila, F. Honsell, and M. Lenisa. Generalized coiteration schemata. In
H.P. Gumm, editor, Coalgebraic Methods in Computer Science, number 82(1) in
Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2003. www.sciencedirect.
com/science/journal/15710661.

[Coh81] P.M. Cohn. Universal Algebra, volume 6 of Mathematics and its Applications.
D. Reidel Publ. Comp., 1981.

[CPO7] C. Cirstea and D. Pattinson. Modular proof systems for coalgebraic logics. Theor.
Comp. Sci., 388:83-108, 2007.

[Cro93] R.L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cam-
bridge Univ. Press, 1993.

[CS95] J.R.B. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for
categorical programming. Theor. Comp. Sci., 139:69-113, 1995.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and
Initial Semantics. Number 6 in EATCS Monographs. Springer, Berlin, 1985.

[Fi096] M.P. Fiore. A coinduction principle for recursive data types based on bisimula-
tion. Inf. & Comp., 127(2):186-198, 1996.

[GD94] J.A. Goguen and R. Diaconescu. Towards an algebraic semantics for the object
paradigm. In H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specifi-
cation, number 785 in Lect. Notes Comp. Sci., pages 1-29. Springer, Berlin, 1994.

[GGMT76] V. Giarrantana, F. Gimona, and U. Montanari. Observability concepts in
abstract data specifications. In A. Mazurkiewicz, editor, Mathematical Foundations
of Computer Science, number 45 in Lect. Notes Comp. Sci., pages 576-587. Springer,
Berlin, 1976.

[GM82] J.A Goguen and J. Meseguer. Universal realization, persistent interconnection
and implementation of abstract modules. In M. Nielsen and E.M. Schmidt, editors,
International Colloquium on Automata, Languages and Programming, number 140
in Lect. Notes Comp. Sci., pages 263-281. Springer, Berlin, 1982.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proing
environment for higher order logic. Cambridge Univ. Press, 1993.

[GM94] J.A. Goguen and G. Malcolm. Proof of correctness of object representations.
In A.W. Roscoe, editor, A Classical Mind. Essays in honour of C.A.R. Hoare, pages
119-142. Prentice Hall, 1994.

[GM96] J.A. Goguen and G. Malcolm. An extended abstract of a hidden agenda. In
J. Meystel, A. Meystel, and R. Quintero, editors, Proceedings of the Conference on
Intelligent Systems: A Semiotic Perspective, pages 159-167. Nat. Inst. Stand. &
Techn., 1996.

[GTW78] J.A. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. In R. Yeh,
editor, Current Trends in Programming Methodoloy, pages 80-149. Prentice Hall,
1978.

[Gum99] H.P. Gumm. Elements of the general theory of coalgebras. Notes of lectures
given at LUATCS’99: Logic, Universal Algebra, Theoretical Computer Science, Jo-
hannesburg. Available as
www.mathematik.uni-marburg.de/~gumm/Papers/Luatcs.ps, 1999.

[HJ98] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., 145:107-152, 1998.



60 Bibliography

[HJ04] J. Hughes and B. Jacobs. Simulations in coalgebra. Theor. Comp. Sci., 327(1-
2):71-108, 2004.

[HJ05] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics.
In J.L. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors, Algebra and
Coalgebra in Computer Science (CALCO’05), number 3629 in Lect. Notes Comp.
Sci., pages 213-231. Springer, Berlin, 2005.

[HJS07] 1. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. Logical Methods in
Comp. Sci., 3(4:11), 2007.

[HL95] F. Honsell and M. Lenisa. Final semantics for untyped A-calculus. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and Applications, number
902 in Lect. Notes Comp. Sci., pages 249-265. Springer, Berlin, 1995.

[HP95] M. Hofmann and B.C. Pierce. A unifying type-theoretic framework for objects.
Journ. Funct. Progr., 5(4):593-635, 1995.

[Jac95] B. Jacobs. Parameters and parametrization in specification using distributive
categories. Fund. Informaticae, 24(3):209-250, 1995.

[Jac96a] B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, Furopean
Conference on Object-Oriented Programming, number 1098 in Lect. Notes Comp.
Sci., pages 210-231. Springer, Berlin, 1996.

[Jac96b] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and Per-
sistence, pages 83-103. Kluwer Acad. Publ., 1996.

[Jac06] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions
and languages. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra,
Meaning and Computation: Essays dedicated to Joseph A. Goguen on the Occasion of
His 65th Birthday, number 4060 in Lect. Notes Comp. Sci., pages 375-404. Springer,
Berlin, 2006.

[Jac08] B. Jacobs. Coalgebraic trace semantics for combined possibilitistic and proba-
bilistic systems. In J. Addmek and C. Kupke, editors, Coalgebraic Methods in Com-
puter Science, volume 203(5) of Elect. Notes in Theor. Comp. Sci., pages 131-152.
Elsevier, Amsterdam, 2008.

[JNW96] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Inf. &
Comp., 127(2):164-185, 1996.

[Kam83] S. Kamin. Final data types and their specification. ACM Trans. on Progr.
Lang. and Systems, 5(1):97-123, 1983.

[K1i07] B. Klin. Coalgebraic modal logic beyond sets. In M. Fiore, editor, Mathematical
Foundations of Programming Semantics, number 173 in Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 2007.

[Kur01] A. Kurz. Specifying coalgebras with modal logic. Theor. Comp. Sci., 260(1-
2):119-138, 2001.

[Kur06] A.Kurz. Coalgebras and their logics. SIGACT News Logic Column, 37(2):57-77,
2006. Available from http://arxiv.org/abs/cs.L0/0605128.

[Lan71] S.Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.

[LS81] D.J.Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic
approach. Math. Systems Theory, 14:97-139, 1981.

[LS86] J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic. Num-
ber 7 in Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.



Bibliography 61

[MA86] E.G. Manes and M.A. Arbib. Algebraic Appoaches to Program Semantics. Texts
and Monogr. in Comp. Sci.,. Springer, Berlin, 1986.

[Mal96] G. Malcolm. Behavioural equivalence, bisimulation and minimal realisation. In
M. Haveraaen, O. Owe, and O.J. Dahl, editors, Recent Trends in Data Type Spec-
ification, number 1130 in Lect. Notes Comp. Sci., pages 359-378. Springer, Berlin,
1996.

[Man74] E.G. Manes. Algebraic Theories. Springer, Berlin, 1974.

[Mel89] T.F. Melham. Automating recursive type definitions in higher order logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Veri-
fication and Automated Theorem Proving, Lect. Notes Comp. Sci., pages 341-386.
Springer, Berlin, 1989.

[Mil89] R. Milner. A Calculus of Communicating Systems. Lect. Notes Comp. Sci.
Springer, Berlin, 1989.

[MT92] K. Meinke and J.V. Tucker. Universal algebra. In S. Abramsky, Dov M. Gabbai,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1,
pages 189—411. Oxford Univ. Press, 1992.

[ORRT96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Henzinger,
editors, Computer Aided Verification, number 1102 in Lect. Notes Comp. Sci., pages
411-414. Springer, Berlin, 1996.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference on Theoretical Computer Science, number 104
in Lect. Notes Comp. Sci., pages 15-32. Springer, Berlin, 1981.

[Pau90] L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and computer science, pages 361-386. Academic Press, London, 1990. The
APIC series, vol. 31.

[Pau97] L.C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.
Journ. of Logic and Computation, 7:175-204, 1997.

[Pie91] B.C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, Cam-
bridge, MA, 1991.

[Pit94] A.M. Pitts. A co-induction principle for recursively defined domains. Theor.
Comp. Sci., 124(2):195-219, 1994.

[Pit96] A.M. Pitts. Relational properties of domains. Inf. & Comp., 127(2):66-90, 1996.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus Univ., 1981.

[PM93] Ch. Paulin-Mohring. Inductive definitions in the system Coq. Rules and proper-
ties. In M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications,
number 664 in Lect. Notes Comp. Sci., pages 328-345. Springer, Berlin, 1993.

[PP02] D. Pavlovi¢ and V. Pratt. The continuum as a final coalgebra. Theor. Comp.
Sci., 280 (1-2):105-122, 2002.

[Rei95] H. Reichel. An approach to object semantics based on terminal co-algebras.
Math. Struct. in Comp. Sci., 5:129-152, 1995.

[Rou96] W.C. Rounds. Feature logics. In J. van Benthem and A. ter Meulen, editors,
Handbook of Logic and Language. Elsevier, 1996.

[RT94] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concur-
rency. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, A Decade



62 Bibliography

of Concurrency, number 803 in Lect. Notes Comp. Sci., pages 530-582. Springer,
Berlin, 1994.

[Rut00] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3—
80, 2000.

[Rut03] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theor. Comp. Sci., 308:1-53, 2003.

[SP82] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive do-
main equations. SIAM Journ. Comput., 11:761-783, 1982.

[SRO7] A. Silva and J. Rutten. Behavioural differential equations and coinduction for
binary trees. In D. Leivant and R. de Queiroz, editors, Logic, Language, Information
and Computation, 14th International Workshop, WoLLIC 2007, number 4576 in
Lect. Notes Comp. Sci., pages 322-336. Springer, Berlin, 2007.

[TP97] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Logic
in Computer Science, pages 280-291. IEEE, Computer Science Press, 1997.

[Tur96] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis,
Free Univ. Amsterdam, 1996.

[Wal91] R.F.C. Walters. Categories and Computer Science. Carslaw Publications, Syd-
ney, 1991. Also available as: Cambridge Computer Science Text 28, 1992.

[Wec92] W. Wechler. Universal Algebra for Computer Scientists. Number 25 in EATCS
Monographs. Springer, Berlin, 1992.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 673-788. Elsevier/MIT Press, 1990.



