
Observation, state and behaviour
(an introduction to coalgebra)

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

27 February, 2013

Introduction Motivation: Automata Coalgebra Application: Transducers

The questions

How to specify and reason about dynamic, reactive, state-based
systems?

• persistence, i.e., internal state and state transitions

• continued interaction along the whole
computational process

• potential infinite behaviour

• observability through well-defined interfaces to
ensure flow of data

How to do it in a generic way?

Introduction Motivation: Automata Coalgebra Application: Transducers

Behaviour & Interaction

[R. Milner, 1997]
Thus software, from being a prescription for how to do something
— in Turing’s terms a ”list of instructions” — becomes much
more akin to a description of behaviour, not only programmed on a
computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]
The subject of Computer Science is not information processing or
symbol manipulation, but generated behaviour.

Introduction Motivation: Automata Coalgebra Application: Transducers

Behaviour & Interaction

Behavioural abstractions aims at

• representing state-based systems

• dealing with objects, processes, services whose semantics is
inherently observational

• handling infinite types

• specifying finitely otherwise infinitely axiomatizable abstract
data types

• ...

Introduction Motivation: Automata Coalgebra Application: Transducers

Antecipating

B∗ – finite sequences

[nil, cons] : 1 + B × L −→ L

In general:

a tool box:
eee

an assembly process:
eee

artifact
a−→ artifact

• abstract data structures as (initial) algebras

• emphasis is on construction

Introduction Motivation: Automata Coalgebra Application: Transducers

Antecipating

Bω – streams

〈at,m〉 : U −→ B × U

In general:

a lens: ©_©

an observation structure: universe
c−→ ©_© universe

• abstract behavioural structures as (final) coalgebras

• emphasis is on observation

Introduction Motivation: Automata Coalgebra Application: Transducers

Antecipating

• The lens describes the shape (or signature) of legal
observations, whose collection corresponds to the system’s
generated behaviour.

• The observation structure describes the system’s one-step
dynamics; It’s a sort of behaviour generating machine.

Introduction Motivation: Automata Coalgebra Application: Transducers

Antecipating

Coalgebra as the mathematics of computational dynamics

Basic References:

• Universal coalgebra: A theory of systems, J. Rutten, Theor.
Comp. Sci., 249(1), 2000 (previous CWI Rep, 1996).

• A tutorial on (co)algebras and (co)induction, B. Jacobs and J.
Rutten, EATCS Bulletin, 62, 1997.

• Lectures on semantics : The initial algebra and final coalgebra
perspectives, P. Aczel, Lect. for 1995 Marktoberdorf School,
Springer, 1997.

• An introduction to coalgebra, J. Adamek, Theory and
Applications of Categories, 14(8), 2005.

• Elements of the general theory of coalgebras, H. P- Gumm,
Lutacs’99 Lect. Notes, 1999.

Introduction Motivation: Automata Coalgebra Application: Transducers

A parenthesis for the functional programmer

(...

Introduction Motivation: Automata Coalgebra Application: Transducers

A parenthesis for the functional programmer

There are several ways of glueing functions
... each one leading to a different way of aggregating information:

Pipelining: leading to function space BA (dependency)

A
f // B

g // C

Conjunction: leading to product A× B (spatial aggregation)

C
〈f ,g〉 // A× B

where 〈f , g〉 (c) = (f c, g c)

Introduction Motivation: Automata Coalgebra Application: Transducers

A parenthesis for the functional programmer

Disjunction: leading to coproduct (or disjoint union) A + B
(choice)

A + B = {1} × A ∪ {2} × B
[f ,g] // C

where [f , g] (x) = (x = (1, a))→ f a

(x = (2, b))→ g b

Constants & points:

empty () : ∅ −→ A

collapse ! : A −→ 1

points a : 1 −→ A

Introduction Motivation: Automata Coalgebra Application: Transducers

A parenthesis for the functional programmer

The underlying ‘semantic universe’ assumes an elementary

• space of types and typed arrows ...

• with the structure of a (partial) monoid

• ... taken in the sequel as sets and set-theoretical functions

upon which combinators are defined by universal arrows

• associated to the product, sum and exponential constructions

• which behave ... as they should (formally, form a ccc)

Introduction Motivation: Automata Coalgebra Application: Transducers

End of parenthesis

...)

Introduction Motivation: Automata Coalgebra Application: Transducers

• Introduction

• Motivating example: Automata

• Going generic: Coalgebras

• Application example: Transducers

Introduction Motivation: Automata Coalgebra Application: Transducers

Automata

state space U
transition function m : U −→ U
attribute (or label) at : U −→ B

i.e.,
p = 〈at,m〉 : U −→ B × U

Notation:

u −→p u′ ⇔ m u = u′

u ↓p b ⇔ at u = b

Introduction Motivation: Automata Coalgebra Application: Transducers

Automata

The behaviour of p at (from) a state u ∈ U is revealed by
successive observations (experiments):

[(p)] u = [at u, at (m u), at (m (m u)), ...]

[(p)] = cons · 〈at, [(p)] ·m〉

which means that

Automata behaviours are elements of Bω (i.e., streams)

Introduction Motivation: Automata Coalgebra Application: Transducers

Automata

Example: A twist automata

state space U = N× N
transition function m (n, n′) = (n′, n)
attribute at (n, n′) = n

i.e.,
twist = 〈π1, s〉

Introduction Motivation: Automata Coalgebra Application: Transducers

Automata

Example: A stream automata

state space U = Bω

transition function m s = tl s
attribute at s = hd s

i.e.,
ω = 〈hd, tl〉

Automata behaviours form themselves an automata

Introduction Motivation: Automata Coalgebra Application: Transducers

Automata morphisms
A morphism

h : p −→ q

where

p = 〈at,m〉 : U −→ B × U

q = 〈at′,m′〉 : V −→ B × V

is a function h : U −→ V such that

U
p //

h
��

B × U

id×h
��

V
q // B × V

i.e.,
at = at′ · h and h ·m = m′ · h

Introduction Motivation: Automata Coalgebra Application: Transducers

Behaviour as a morphism

Th: Behaviour [(p)] is an automata morphism from p to ω

because

at = hd · cons · 〈at, [(p)] ·m〉

= { hd · cons = π1 }

at = π1 · 〈at, [(p)] ·m〉

= { × cancellation }

at = at

and

[(p)] ·m = tl · cons · 〈at, [(p)] ·m〉

= { tl · cons = π2 }

[(p)] ·m = π2 · 〈at, [(p)] ·m〉

= { × cancellation }

[(p)] ·m = [(p)] ·m

Introduction Motivation: Automata Coalgebra Application: Transducers

Question

How to reason about automata behaviours?

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction

Reasoning about B∗

len(map f l) = len l

where functions are defined inductively by their effect on B∗

constructors

len [] = 0

len(h : t) = 1 + len t

map f [] = []

map f (h : t) = f (h) : map f t

These equations can be regarded as Haskell definitions

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction
Proof (by structural induction).

Base case is trivial. Then,

len(map f (h : t))

= { map f definition }

len(f (h) : map f t)

= { len definition }

1 + len(map f t)

= { induction hypothesis }

1 + len t

= { len definition }

len(h : t)

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction

Inductive reasoning requires that, by repeatedly unfolding the
definition, arguments become smaller, i.e., closer to the elementary
constructors

... but what happens if this unfolding process does not
terminate?

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction
Consider

map f (h : t) = (f h) : map f t

gen f x = x : gen f (f x)

• definition unfolding does not terminate but ...

• ... reveals longer and longer prefixes of the result: every
element in the result gets uniquely determined along this
process

Strategy
To reason about circular definitions over infinite structures,
our attention shifts from argument’s structural shrinking to
the progressive construction of the result which becomes
richer in informational contents.

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction

Reasoning about Bω: the global view

Stream equality

〈∀ n : n ≥ 0 : s n = t n〉

can be established by induction over n
However, it

• requires a (workable) formula for arguments s n, t n, often not
available

• does not scale easily to other behaviour types

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction

Reasoning about Bω: the local view

Two streams s and r are observationally the same if

• they have identical head observations: hd s = hd r ,

• and their tails — tl s and tl r — support a similar verification.

Relation R : Bω −→ Bω is a (stream) bisimulation iff

〈x , y〉 ∈ R ⇒ hd x = hd y ∧ 〈tl x , tl y〉 ∈ R

(i.e., R is closed under the computational dynamics)

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction

Coinduction as a proof principle:

• a systematic way of strengthening the statement to prove:
from equality s = r to a larger set R which contains pair 〈s, r〉

• ensuring that such a set is a bisimulation, i.e., the closure of
the original set under taking derivatives

• moreover, as a proof principle, it generalises from streams to a
large class of behaviour types

Introduction Motivation: Automata Coalgebra Application: Transducers

Induction & Coinduction

mapf · genf · f

Check that R below is a bisimulation

R = {〈map f (gen f x) , gen f (f x)〉| x ∈ ..., f ∈ ...}

• hd (map f (gen f x)) = f x = hd (gen f (f x))

• tl (map f (gen f x)) = map f tl (gen f x) and
tl (gen f (f x)) = gen f (f f x). Thus,

〈tl (map f (gen f x)), tl (gen f (f x))〉 ∈ R

Remark:
In general, however, much larger relations have to be considered
and the construction of bisimulations is not trivial

Introduction Motivation: Automata Coalgebra Application: Transducers

Coinduction calculationally

Existence and uniqueness of [(p)] can be captured by the following
universal property:

k = [(p)] ⇔ ω · k = (id× k) · p

• Existence ⇔ definition principle (co-recursion)

• Uniqueness ⇔ proof principle (co-induction)

From which:

cancellation ω · [(p)] = (id× [(p)]) · p
reflection [(ω)] = idω

fusion [(p)] · h = [(q)] if p · h = (id× h) · q

Introduction Motivation: Automata Coalgebra Application: Transducers

An universal property

Example: fusion law

[(p)] · h = [(q)]

⇔ { universal law }

ω · [(p)] · h = (id× ([(p)] · h)) · q

⇔ { cancellation law and functoriality }

(id× [(p)]) · p · h = (id× [(p)]) · (id× h) · q

⇐ { function equality }

p · h = (id× h) · q

Introduction Motivation: Automata Coalgebra Application: Transducers

An universal property

... from which the following (main) result is a direct corollary:

Th: morphisms preserve behaviour: [(p)] = [(q)] · h

Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

• by a specification genetic inheritance

• by an explicit specification of behaviour under all observers

• by a recursive expression

depending on context and purpose

Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

by genetic inheritance

Bω
〈hd,tl〉 // B × Bω

B

gen

OO

M // B × B

id×gen

OO

gen = [(M)]

M carries the ‘genetic inheritance’ of the generating process

Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

by specification of behaviour under observers

... equations come by diagram unfolding:

(id× gen)· M = 〈hd, tl〉 · gen

= { M definition }

(id× gen) · 〈id, id〉 = 〈hd, tl〉 · gen

= { × absorption and fusion }

〈id, gen〉 = 〈hd · gen, tl · gen〉

= { structural equality }

hd · gen = id ∧ tl · gen = gen

= { going pointwise }

hd (gen a) = a ∧ tl (gen a) = gen a

coinductive definition = behaviour under all the observers

Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

Merge

Bω
〈hd,tl〉 // B × Bω

Bω × Bω

merge

OO

g // B × (Bω × Bω)

id×merge

OO

g = 〈hd · π1, s · (tl× id)〉

Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

Unfolding the diagram and going pointwise, we get an explicit
definition of stream merge:

hd merge (s, t) = hd s

tl merge (s, t) = merge (t, tl s)

by recursive expressions

merge (x : s, t) = x : merge (t, s)

Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

Twist

Bω
〈hd,tl〉 // B × Bω

B × B

twist=[(g)]

OO

g // B × (B × B)

id×twist

OO

g = 〈π1, s〉

Introduction Motivation: Automata Coalgebra Application: Transducers

Proof by coinduction

Lemma: merge (aω, bω) = (ab)ω

i.e.

merge · (gen× gen) = twist

Introduction Motivation: Automata Coalgebra Application: Transducers

Proof by coinduction

merge · (gen× gen) = twist

= { merge definition }

[(〈hd · π1, s · (tl× id)〉)] · (gen× gen) = [(〈π1, s〉)]

⇐ { coinduction fusion }

〈hd · π1, s · (tl× id)〉 · (gen× gen) = id× (gen× gen) · 〈π1, s〉

= { × absorption and reflection }

〈hd · gen · π1, s · ((tl · gen)× gen)〉 = id× (gen× gen) · 〈π1, s〉

= { tl · gen = gen and hd · gen = id }

〈π1, s · (gen× gen)〉 = id× (gen× gen) · 〈π1, s〉

Introduction Motivation: Automata Coalgebra Application: Transducers

Proof by coinduction

〈π1, s · (gen× gen)〉 = id× (gen× gen) · 〈π1, s〉

= { × absorption }

〈π1, s · (gen× gen)〉 = 〈π1, (gen× gen) · s〉

= { s is natural, i.e., (f × g) · s = s · (g × f) }

〈π1, s · (gen× gen)〉 = 〈π1, s · (gen× gen)〉

Introduction Motivation: Automata Coalgebra Application: Transducers

• Introduction

• Motivating example: Automata

• Going generic: Coalgebras

• Application example: Transducers

Introduction Motivation: Automata Coalgebra Application: Transducers

Algebras

a tool box:
eee

an assembly process:
eee

artifact
a−→ artifact

• algebras describe assembly processes

• and abstract data types as (initial) algebras (term algebras)

• emphasis is on construction

Introduction Motivation: Automata Coalgebra Application: Transducers

Coalgebras

a lens: ©_©

an observation structure: universe
c−→ ©_© universe

• coalgebras describe observation structures (i.e., transition
systems)

• and abstract behaviour types as (final) coalgebras

• emphasis is on observation

Introduction Motivation: Automata Coalgebra Application: Transducers

Typical lens

• ‘opaque’
©_© U = 1

• black & white

©_© U = 2

• colouring
©_© U = O

... in each case the colour set acts as a space classifier

Introduction Motivation: Automata Coalgebra Application: Transducers

Typical lens

• partiality
©_© U = U + 1

• visible attributes

©_© U = O × U

• external stimulus

©_© U = U I

• non determinism

©_© U = PU

Introduction Motivation: Automata Coalgebra Application: Transducers

Question

Which lens shall we seek?

• The main criteria is to choose functors for which the final
coalgebra does exist

• Such is the case of the all polynomial functors as well as finite
powerset functor

Introduction Motivation: Automata Coalgebra Application: Transducers

Coalgebras

A coalgebra for a functor T is any function from a set U (its
carrier) to TU:

α : U −→ TU

For any functor T, if its space of behaviours can be made a
T-coalgebra itself

ωT : νT −→ TνT

this is the final coalgebra: from any other T-coalgebra p there is a
unique morphism [(p)] making the following diagram to commute:

νT
ωT // TνT

U
p //

[(p)]

OO

TU

T[(p)]

OO

Introduction Motivation: Automata Coalgebra Application: Transducers

Coalgebras

This universal property is equivalently captured by the following
law:

k = [(p)] ⇔ ωT · k = T k · p

• Existence ⇔ definition principle (co-recursion)

• Uniqueness ⇔ proof principle (co-induction)

From which:

cancellation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q

Introduction Motivation: Automata Coalgebra Application: Transducers

Coalgebras

Example: fusion law

νT
ωT // TνT

U
p //

[(p)]

OO

TU

T[(p)]

OO

V

[(q)]

44

q //

h

OO

TV

Th

OO

Introduction Motivation: Automata Coalgebra Application: Transducers

Coalgebras

Example: fusion law

[(p)] · h = [(q)]

⇔ { universal law }

ω · [(p)] · h = T([(p)] · h) · q

⇔ { cancellation law and T functor }

T[(p)] · p · h = T[(p)] · Th · q

⇐ { function equality }

p · h = Th · q

Introduction Motivation: Automata Coalgebra Application: Transducers

Coalgebras

From which one may generalise the fundamental result
(proved previously for automata)

Th: morphisms preserve behaviour: [(q)] = [(p)] · h

Introduction Motivation: Automata Coalgebra Application: Transducers

Lambek’s Lemma

The dynamics of the final coalgebra is an isomorphism

proof idea:

• Assume the existence of an inverse αT to ωT : νT −→ TνT.
Then, αT · ωT = idνT

and ωT · αT = idTνT

• Take one of this requirements and use it to conjecture a
definition for αT (or an implementation ...)
Note the use of the reflection law to introduce an
anamorphism in the calculation, instead of eliminating one

• Then check the validity of this conjecture by verifying with it
the other requirement

Introduction Motivation: Automata Coalgebra Application: Transducers

Proof by coinduction

αT · ωT = idνT

⇔ { reflection law }

αT · ωT = [(ωT)]

⇔ { universal law }

ωT · αT · ωT = T(αT · ωT) · ωT

⇔ { as a functor T preserves composition }

ωT · αT · ωT = TαT · TωT · ωT

⇔ { cancel ωT from both sides & universal law }

αT = [(TωT)]

Introduction Motivation: Automata Coalgebra Application: Transducers

Proof by coinduction

ωT · αT

= { replace αT by the derived conjecture }

ωT · [(TωT)]

= { [(TωT)] is a morphism }

T[(TωT)] · TωT

= { as a functor T preserves composition }

T([(TωT)] · ωT)

= { just proved }

T idνT

= { as a functor T preserves identities }

id(TidνT
)

Introduction Motivation: Automata Coalgebra Application: Transducers

• Introduction

• Motivating example: Automata

• Going generic: Coalgebras

• Application example: Transducers

Introduction Motivation: Automata Coalgebra Application: Transducers

Moore transducers

state space U
transition function nx : U −→ UA

attribute (or label) at : U −→ B

i.e.,
p = 〈nx, at〉 : U −→ UA × B

Notation:

u
a−→p u′ ⇔ nx u a = u′

u ↓p b ⇔ at u = b

Introduction Motivation: Automata Coalgebra Application: Transducers

Moore transducers

The behaviour of p at (from) a state u ∈ U is revealed by
successive observations (experiments) triggered on input of
different values a ∈ A:

[(p)] u = [at u, at (nx u a0), at (nx (nx u a0) a1), ...]

[(p)]u nil = at u

[(p)]u (a : t) = [(p)] (nx u a) t

which means that

Moore behaviours are elements of BA∗

(depicted as rooted trees whose branches are labelled by se-
quences of inputs and leaves by B values)

Introduction Motivation: Automata Coalgebra Application: Transducers

Moore morphisms

A morphism
h : p −→ q

where

p = 〈nx, at〉 : U −→ UA × B

q = 〈nx′, at′〉 : V −→ V A × B

is a function h : U −→ V such that

U
p //

h

��

UA × B

hA×id
��

V
q // V A × B

To avoid the explicit use of exponentials, the diagram can be
decomposed into:

Introduction Motivation: Automata Coalgebra Application: Transducers

Moore morphisms

U
at //

h
��

B

id
��

V
at′ // B

and
U × A

nx //

h×id
��

U

h
��

V × A
nx′ // V

corresponding to

at′ · h = at

nx′ · (h × id) = h · nx

Introduction Motivation: Automata Coalgebra Application: Transducers

Moore morphisms

Clearly, morphisms preserve attributes and transitions

u
a−→p u′ and u ↓p b

⇔ { definition }

nx(u, a) = u′ and at u = b

⇒ { Liebniz }

h nx(u, a) = h u′ and at u = b

⇔ { h is a morphism }

nx′(h u, a) = h u′ and at′ h u = b

⇔ { definition }

h u
a−→q h u′ and h u ↓q b

Introduction Motivation: Automata Coalgebra Application: Transducers

The final Moore transducer

Moore behaviours organise themselves into a final Moore
machine over BA∗

ω = 〈nxω, atω〉 : BA∗ −→ (BA∗)A × B

where

atω f = f nil ie, the value before any input

nxω f a = λ s . f (a : s) every input determines its evolution

Introduction Motivation: Automata Coalgebra Application: Transducers

The final Moore transducer

Th: Coalgebra ω is the final coalgebra for TX = XA × B

because

1. For any p = 〈nx, at〉, [(p)] is a Moore morphism [(p)] : p −→ ω

atω · [(p)] = at

⇔ { introduction of variables }

atω([(p)] u) = at u

⇔ { definition of atω }

([(p)] u) nil = at u

⇔ { definition of [(p)] }

True

Introduction Motivation: Automata Coalgebra Application: Transducers

The final Moore transducer

nxω · ([(p)]× id) = [(p)] · nx

⇔ { introduction of variables and application }

nxω([(p)] u, a) = [(p)] nx (u, a)

⇔ { definition of nxω }

λ s . ([(p)] u) (a : s) = [(p)] nx (u, a)

⇔ { introduction of variables and application }

([(p)] u) (a : t) = ([(p)] nx (u, a)) t

⇔ { definition of [(p)] }

True

Introduction Motivation: Automata Coalgebra Application: Transducers

The final Moore transducer

2. ... and is unique

Exercise. Prove uniqueness (by induction on A∗)

Introduction Motivation: Automata Coalgebra Application: Transducers

Instances of Moore transducers

Queue = 〈nx, at〉 : E ∗ −→ (E ∗)E+1 × ((E + 1)× 2)

with

at = 〈top, isempty?〉
where top s = (s = nil → ι2 ∗, ι1(last s))

isempty? s = s = nil

nx = [enq, deq] · dl

where enq (s, e) = e : s

deq (s, ∗) = (s = nil → s, (blast s))

Introduction Motivation: Automata Coalgebra Application: Transducers

Instances of Moore transducers

Make B = 2 in TX = XA × B.
The carrier (or state space) of the corresponding final coalgebra is

2A
∗ ∼= PA∗

and its dynamics is 〈nxω, atω〉 : PA∗ −→ (PA∗)A × 2
where

atω L = nil ∈ L

nxω L = λ a . {(a : s)| s ∈ L}

Exercise. ... what are we talking about?
Exercise. Make A = 1 in TX = XA × B. What comes up?

Introduction Motivation: Automata Coalgebra Application: Transducers

Mealy transducers

state space U
reactive transition function ac : U −→ (U × B)A

Notation:

u
a/b−→p u′ ⇔ ac u a = (u′, b)

Introduction Motivation: Automata Coalgebra Application: Transducers

Mealy transducers

The behaviour of p at a state u ∈ U is revealed by successive
observations (experiments) triggered on input of different values
a ∈ A:

[(p)] u = [π2(ac u a0), π2(ac (π1(ac u a0)) a1, ...]

[(p)]u [a] = π2(ac u a)

[(p)]u (a : t) = [(p)] (π1(ac u a)) t

which means that

Mealy behaviours are elements of BA+

Introduction Motivation: Automata Coalgebra Application: Transducers

Mealy transducers

Mealy behaviours can alternatively be regarded as

causal functions from Aω to Bω

A causal function f over streams is such that, for all s, t ∈ Aω and
n ∈ N,

〈∀ k : k ≤ n : s k = t k〉 ⇒ (f s n = f t n)

i.e, the n-th element of f s depends only on the first n elements of
input stream s

... upon which the final Mealy automata can be defined:

Introduction Motivation: Automata Coalgebra Application: Transducers

The final Mealy transducer

Mealy behaviours organise themselves into a final Mealy
automata over Γ = {f : Aω −→ Bω| f is causal}

ω : Γ −→ (Γ× B)A

where

ω f a = 〈λ s . tl f (a : s), hd f (a : r)〉

which means that

• the next state acts as f after a has been seen

• the output hd f (a : r) depends only on f and a; therefore, the
tail r of the input stream is irrelevant.

Introduction Motivation: Automata Coalgebra Application: Transducers

Non-determinism

Further behavioural effects can be introduced in the basic
machines discussed so far by ’sophisticating’ the corresponding
signature functor. For example,

• non-determinism is captured by the powerset functor P

Automata TX = B × X TX = P(B × X)

Moore transducer TX = XA × B TX = P(X)A × B

Mealy transducer TX = (X × B)A TX = P(X × B)A

	Introduction
	Motivation: Automata
	Coalgebra
	Application: Transducers

