
A calculus of software components

L. S. Barbosa

Department of Informatics
Minho University

lsb@di.uminho.pt

1 Introducing state-based components

By the end of last century component-based software development [36, 37] emerged as
a promising paradigm to deal with the ever increasing need for mastering complexity in
software design, evolution and reuse. From object-orientation it retains the basic prin-
ciple of encapsulation of data and code, but shifts the emphasis from (class) inheritance
to (object) composition to avoid interference between the former and encapsulation
and, thus, paves the way to a development methodology based on third-party assembly
of components. The paradigm is often illustrated by the visual metaphor of a palette
of computational units, treated as black boxes, and a canvas into which they can be
dropped. Connections are established by drawing wires, corresponding to some sort of
interfacing code.

The expression software component, however, is so semantically overloaded that
its use is often a risk. As put by P. Wadler in a 1999 Seminar suggestively entitled
‘Component-based Programming under different paradigms’, just as Eskimos need fifty
words for ice, perhaps we need many words for components. Moreover, as it happened
before with object-orientation, and software engineering in the broad sense, component-
orientation has grown up to a collection of popular technologies, methods and tools,
before consensual definitions and principles (let alone formal foundations) have been
put forward.

This report is concerned with a formalization of component-based development, in-
troducing a coalgebraic semantic model for components and a corresponding calculus.
Attention is restricted to state-based, typically represented by their specifications.

A typical example of such a state-based component is the ubiquitous stack. Denot-
ing by U its internal state, a stack of values of type P is handled through the usual

top : U −→ P

pop : U −→ P × U

push : U × P −→ U

operations. An alternative, ‘black box’ view hides U from the stack environment and
regards each operation as a pair of input/output ports. Such a ‘port’ signature of, e.g.,
the top operation is then given by

top : 1 −→ P

2 L. S. Barbosa

where 1 stands for the nullary (or unit) datatype. The intuition is that top is activated
with the simple pushing of a ‘button’ (its argument being the stack private state space)
whose effect is the production of a P value in the corresponding output port. Similarly
typing push as

push : P −→ 1

means that an external argument is required on activation but no visible output is pro-
duced, but for a trivial indication of successful termination. Such ‘port’ signatures are
grouped together in the diagram below. Note how input (respectively, output) ‘ports’
are represented by the sum of their parameters. Such sums label the stack input (respec-
tively, output) point represented by an empty (respectively, full) circle in the diagram.
Combined input type 1 + 1 + P models the choice of three functionalities (top, pop
and push in this order), of which only one takes input of type P .


pop : 1 −→ P

top : 1 −→ P

push : P −→ 1 •

��	�

��
Stack

P + P + 1

1 + 1 + P

Component Stack encapsulates a number of services through a public interface
providing limited access to its internal state space. Furthermore, it persists and evolves
in time, in a way which can only be traced through observations at the interface level.
One might capture these intuitions by providing an explicit semantic definition in terms
of a function

[[Stack]] : U × I −→ (U ×O + 1)

where I,O abbreviate 1 + 1 + P and P + P + 1, respectively. The presence of 1
in its result type indicates that the overall behaviour of this component is partial: in a
number of state configurations the execution of some operations may fail. This function
— which should describe how Stack reacts to input stimuli, produces output data (if
any) and changes state — can also be written in a curried form 1 as

[[Stack]] : U −→ (U ×O + 1)I (1)

that is, as a coalgebra U −→ T U for functor TX = ((X ×O) + 1)I .
The Stack example illustrates the basic elements of a semantic model for state-based

components:

– the presence of an internal state space which evolves and persists in time,

1 In order to emphasize the dependency of the possible observations X from the input, we resort
to the standard mathematical notation XI for functional dependency, instead of the equivalent
I → X more familiar in computing.

A calculus of software components 3

– and the possibility of interaction with other components through well-defined in-
terfaces and during the overall computation.

This favours adoption of a behavioural semantics: components are inherently dy-
namic, possess an observable behaviour, but their internal configurations remain hid-
den and should be identified if not distinguishable by observation. The qualificative
‘state-based’ is used in the sense the word ‘state’ has in automata theory — the internal
memory of the automaton which both constrains and is constrained by the execution
of component operations. Such operations are encoded in the specification of a functor
which constitutes the (syntax of the)component interface.

But why coalgebras? Our starting point is the conjunction of two key ideas. First,
the ‘black-box’ characterisation of software components favours an observational se-
mantics: the essence of the stack specification above lies in the collection of possible
observations and any two internal configurations should be identified wherever indis-
tinguishable by observation. This is nicely captured by coalgebra theory [33].

Secondly, we aim at generic constructions, i.e., independent of any particular notion
of component behaviour. Therefore, the other key idea is the application of the so-called
functorial approach to datatypes, originated in the work of the ADJ group in the early
seventies [15], to the area of state-based systems modelling. This approach provides a
basis for generic programming [3] which raises the level of abstraction of the program-
ming discourse in a way such that seemingly disparate techniques and algorithms are
unified into idealised, kernel programming schemata. Moreover, we would like to for-
malize component calculi in an essentially equational, pointfree way, as one gets used
to in functional programming.

References. This report is basically a summary of chapter 5 of [4], to which the reader
is referred for all proofs omitted here. Main results appeared in [6, 5] and an alternative
model, based in generalised Moore machines, in [13]. A refinement theory for this sort
of component models was developed later in [23, 24, 7].

2 Going generic

2.1 Generic components

Software components were characterised in the previous section as dynamic systems
with a public interface and a private, encapsulated state. The relevance of state informa-
tion precludes a ‘process-like’ (purely behavioural) view of components as inhabitants
of a final coalgebra. Components are themselves concrete coalgebras. For a given value
of the state space — referred to as a seed in the sequel — a corresponding ‘process’, or
behaviour, arises by computing its coinductive extension.

We have remarked when introducing component Stack in Section 1, that partial-
ity is a characteristic of its behaviour. This was captured there by resorting to functor
Id×O+1, i.e., an instance of the popular maybe monad. Other components may exhibit
different behaviour models. For example, one can easily think of components behav-
ing within a certain degree of non determinism or following a probability distribution.

4 L. S. Barbosa

Genericity is achieved by replacing a given behaviour model by an arbitrary strong
monad2 B, leading to coalgebras for

TB = B(Id×O)I (2)

as a possible general model for state based software components. Therefore compu-
tation of an action will not simply produce an output and a continuation state, but a
B-structure of such pairs. The monadic structure provides tools to handle such compu-
tations. Unit (η) and multiplication (µ), provide, respectively, a value embedding and a
‘flatten’ operation to reduce nested behavioural effects. Strength, either in its right (τr)
or left (τl) version, cater for context information. Finally, monad commutativity 3 turn
up as a welcome (although not crucial) property.

Functor (2) may be regarded as an instance of an even more general shape

TB = O′I′ × B(Id×O)I

which specializes to a variety of interfaces for state-based component strutuctues, namely

– ‘Functional’ components, as given by (2), which, for B = Id, correspond to stan-
dard Mealy machines.

– ‘Action’ components, with no independent attributes: TB = B(Id×O)
– ‘Silent’ components, which evolve invisibly without any sort of external control:

TB = OI × B
– ‘Object’ components, characterized by an attribute-method pair

TB = O × BI

which , for B = Id, corresponds to Moore machines.

In the sequel we assume a collection of sets I , O, ..., acting as component interfaces
and the following definition of a component specification:

Definition 1. A software component is specified by a pointed coalgebra

〈up ∈ Up, ap : Up −→ B(Up ×O)I〉 (3)

where up is the initial state, often referred to as the seed of the component computation,
and the coalgebra dynamics is captured by currying a state-transition function ap :
Up × I −→ B (Up ×O).

2 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and µ are strong
natural transformations [21]. B being strong means there exist natural transformations τT

r :
T × − =⇒ T(Id × −) and τT

l : − × T =⇒ T(− × Id), called the right and left strength,
respectively, subject to certain conditions. Their effect is to distribute the free variable values
in the context “−” along functor B. Strength τr , followed by τl maps BI ×BJ to BB(I × J),
which can, then, be flattened to B(I×J) via µ. In most cases, however, the order of application
is relevant for the outcome. The Kleisli composition of the right with the left strength, gives
rise to a natural transformation whose component on objects I and J is given by δr = τrI,J •
τlBI,J Dually, δl = τlI,J •τrI,BJ . Such transformations specify how the monad distributes over
product and, therefore, represent a sort of sequential composition of B-computations.

3 A strong monad is said to be commutative whenever δr and δl coincide.

A calculus of software components 5

2.2 Behaviour models

Several possibilities can be considered for B. The simplest case is, obviously, the iden-
tity monad, Id, whereby components behave in a totally deterministic way. Other possi-
bilities, capturing more complex behavioural features, include:

– Partiality, i.e., the possibility of deadlock or failure, captured by the maybe monad,
B = Id + 1, as in the Stack example above.

– Non determinism, introduced by the (finite) powerset monad, B = P .
– Ordered non determinism, based on the (finite) sequence monad, B = Id∗.
– Monoidal labelling, with B = Id×M . Note that, for B to form a monad, parameter

M should support a monoidal structure.
– ‘Metric’ non determinism capturing situations in which, among the possible future

evolutions of a component, some are stipulated to be more likely (cheaper, more
secure, etc) than others.

All cases correspond to strong monads in Set, which can be composed with each other.
The first two and the last one are commutative; the third is not. Commutativity of ‘mo-
noidal labelling’ depends, of course, on commutativity of the underlying monoid. ‘Met-
ric’ non determinism is based on a general notion of a bag monad defined over a struc-
ture 〈M,⊕,⊗〉, where both ⊕ and ⊗ are Abelian monoids and the latter distributes over
the former. This gives rise to, e.g.,

– Cost components: based on BagM for M = 〈N,+,×〉, which is just the usual
notion of a bag or multiset. Components with such a behaviour model assign a cost
to each alternative, which may be interpreted as, e.g., a performance measure. Such
‘costs’ are added when components get composed. This corresponds to the non
deterministic generalisation of monoidal labelling above.

– Probabilistic components: based on M = 〈[0, 1],min,×〉 with the additional re-
quirement that, for each m ∈ BagM ,

∑
(Pπ2)m = 1. This assigns probabilities to

each possible evolution of a component, introducing a (elementary) form of proba-
bilistic non determinism.

3 The semantic framework

3.1 A universe of generic components.

Having defined generic components as (pointed) coalgebras, one may wonder how do
they get composed and what kind of calculus emerges from this framework. In our
framework, interfaces are sets representing the input and output range of a component.
Consequently, components are arrows between interfaces and so arrows between com-
ponents are arrows between arrows. Thus, three notions have to be taken into account:
interfaces, components and component morphisms. Formally, this leads to the notion of
a bicategory 4 to structure our reasoning universe. In brief, we take interfaces (i.e., sets

4 Basically a bicategory [9] is a category in which a notion of arrows between arrows is addi-
tionally considered. This means that the the space of morphisms between any given pair of

6 L. S. Barbosa

modelling components’ observation universes) as objects of a bicategory Cp, whose
arrows are pointed TB-coalgebras (as defined in (2)) and 2-cells, the arrows between
arrows, the corresponding morphisms. Formally,

Definition 2. Assume arbitrary sets as Cp objects. For each pair 〈I,O〉 of objects,
define a category Cp(I,O), whose arrows

h : 〈up, ap〉 −→ 〈uq, aq〉 Up
ap //

h

��

TB Up

TB h

��
Uq

aq

// TB Uq

satisfy the following morphism and seed preservation conditions:

aq · h = TB h · ap (4)
h up = uq (5)

Composition is inherited from Set and the identity 1p : p −→ p, on component p, is
defined as the identity idUp

on the carrier of p. Next, for each triple of objects 〈I,K,O〉,
a composition law is given by a functor

;I,K,O : Cp(I,K)× Cp(K, O) −→ Cp(I,O)

whose action on objects p and q is given by

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as follows 5

ap;q = Up × Uq × I
xr−−−−→ Up × I × Uq

ap×id−−−−→ B(Up ×K)× Uq

τr−−−−→ B(Up ×K × Uq)
B(a·xr)−−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−−→ B(Up × B(Uq ×O)) Bτl−−−−→ BB(Up × (Uq ×O))
BBa◦−−−−→ BB(Up × Uq ×O)

µ−−−−→ B(Up × Uq ×O)

objects, usually referred to as a (hom-)set, acquires itself the structure of a category. Therefore
the standard arrow composition and unit laws become functorial, since they transform both
objects and arrows of each hom-set in a uniform way. A typical example is Cat itself: the cat-
egory whose objects are small categories, arrows are functors and arrows between arrows, or
2-cells as they are often called, correspond to natural transformations.

5 As one would expect, reasoning about generic components entails a number of laws relating
monads with common ‘housekeeping’ morphisms such as product and sum associativity, (a,
a+), commutativity (s, s+), left and right units (l, l+ and r, r+), left and right distributivity (dl,
dr) and isomorphisms xl : A×(B×C) −→ B×(A×C), xr : A×B×C −→ A×C×B
and m : (A × B) × (C ×D) −→ (A × C) × (B ×D). Such laws are thoroughly dealt
with in [4]. By convention, binary morphisms always associate to the left.

A calculus of software components 7

The action of ; on 2-cells reduces to h ; k = h × k. Finally, for each object K, an
identity law is given by a functor

copyK : 1 −→ Cp(K, K)

whose action on objects is the constant component 〈∗ ∈ 1, acopyK
〉, where acopyK

=
η1×K . Slightly abusing notation, this will be also referred to as copyK . Similarly, the
action on morphisms is the constant morphism id1.

The fact that, for each strong monad B, components form a bicategory amounts not
only to a standard definition of the two basic combinators ; and copyK of a component
calculus, but also to setting up its basic laws. Recall (from e.g. [32]) that the graph of
a morphism is a bisimulation. Therefore, the existence of a seed preserving morphism
between two components makes them TB-bisimilar, leading to the following laws, for
appropriately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO (6)
(p ; q) ; r ∼ p ; (q ; r) (7)

3.2 Computing behaviour.

The dynamics of a component specification is essentially ‘one step’: it describes imme-
diate reactions to possible state/input configurations. Its temporal extension becomes
the component’s behaviour. Formally, behaviour [(p)] of a component p is computed by
coinductive extension, taking the seed-value of p as the starting state. I.e.,

[(p)] = [(ap)]up

Behaviours organise themselves in a category Bh, whose objects are sets and ar-
rows b : I −→ O elements of νI,O, the carrier of the final coalgebra ωI,O for functor
B(Id×O)I . To define composition in Bh, first note that the definition of ap;q above ac-
tually introduces an operator — ; — between coalgebras: ap;q could actually have been
written as ap ; aq. Thus, composition in Bh can be defined by a family of combinators,
for each I , K and O, ;I,K,O

Bh : Bh(I,K)× Bh(K, O) −→ Bh(I,O), such that

;I,K,O
Bh = [(ωI,K ; ωK,O)]

On the other hand, identities are given by

copyK
Bh : 1 −→ Bh(K, K) and copyK

Bh = [(acopyK
)] ∗

i.e., the behaviour of component copyK , for each K.
It should be observed that the structure of Bh mirrors whatever structure Cp pos-

sesses. In fact, the former is isomorphic to a sub-(bi)category of the latter whose arrows
are components defined over the corresponding final coalgebra. Alternatively, we may
think of Bh as constructed by quotienting Cp by the greatest TB-bisimulation. How-
ever, as final coalgebras are fully abstract with respect to bisimulation, the bicategorical

8 L. S. Barbosa

structure collapses. Moreover, as discussed below, some tensors in CpB become uni-
versal constructions in Bh, for some particular instances of B. This also explains why
properties holding in Cp up to bisimulation, do hold ‘on the nose’ in the behaviour cat-
egory. For example, we may rephrase laws (6) and (7), for suitably typed behaviours b,
c and d, in Bh, as

copyI ; b = b = b ; copyO and (b ; c) ; d = b ; (c ; d)

First, however, we have to check that

Lemma 1. Bh is a category and [()] is a 2-functor from Cp to Bh

Proof. Let b : I −→ O be a behaviour. Then,

b ; copyO = [(ωI,O ; copyO)]〈b, ∗〉 = [(ωI,O)]b = b

A similar calculation establishes copyI ; b = b. On the other hand, for suitably typed behaviours
b, c and d,

(b ; c) ; d = [((ωI,K ; ωK,L) ; ωL,O)]〈〈b, c〉, d〉 = [(ωI,K ; (ωK,L ; ωL,O))]〈b, 〈c, d〉〉
= b ; (c ; d)

For the second part consider

– [(copyK
Cp)] = copyK

Bh , which is trivial to check, and
–

[((p ;Cp q))] = [(ap;q)]〈up, uq〉
= [(ωI,K ; ωK,O)] · ([(ap)]× [(aq)])〈up, uq〉

= ;Bh ·([(ap)]× [(aq)])〈up, uq〉

= ;Bh 〈[(ap)]up, [(aq)]uq〉

= [(p)] ;Bh [(q)]

�

4 A component calculus

We shall now look at the structure of Cp by introducing an algebra of TB-components
parametric on a behaviour model B. This structure lifts naturally to Bh defining a par-
ticular (typed) ‘process’ algebra.

A calculus of software components 9

4.1 Functions as components.

Let us start from the simple observation that functions can be regarded as particular
instances of components, whose interfaces are given by their domain and codomain
types. Formally,

Definition 3. A function f : A −→ B is represented in Cp by

pfq = 〈∗ ∈ 1, apfq〉

i.e., a coalgebra over 1 whose action is given by the currying of

apfq = 1×A
id×f // 1×B

η(1×B) // B(1×B)

Note that, up to bisimulation, function lifting is functorial, that is, for g : I −→ K and
f : K −→ O functions, one has

pf · gq ∼ pgq ; pfq (8)
pidIq ∼ copyI (9)

Moreover, isomorphisms, split monos and split epis lift to Cp as, respectively, isomor-
phisms, split monos and split epis. Actually, lifting canonical Set arrows to Cp is a
simple way to explore the structure of Cp itself. For instance, consider the lifting of
?I : ∅ −→ I . Clearly, ?I keeps its naturality as, for any p : I −→ O, the following
diagram commutes up to bisimulation,

I
p // O

∅

p?Iq

OO

p?Oq

??��������

because both p?Iq and p?Oq are the inert components: the absence of input makes
reaction impossible. Formally,

p?Iq ; p ∼ p?Oq (10)

Equation (10) lifts to an equality in Bh, as does any other bisimulation equation in Cp.
Therefore, ∅ is the initial object in Bh.

Naturality is lost, however, in the lifting of !I : I −→ 1, as the following diagram
fails to commute for non trivial B

I
p //

p!Iq

��

O

p!Oq���������

1

To check this, take B as the finite powerset monad. Clearly, p;p!Oq deadlocks whenever
p does. By ‘deadlocking’ we mean the empty set of responses is produced. On the other

10 L. S. Barbosa

hand, p!Iq never deadlocks as this is prevented by the definition of function lifting
above. Therefore, the two components are not bisimilar and 1 fails to become the final
object in BhB, for non trivial monads. It is, however, the final object in the behaviours
category of deterministic components (i.e., for B = Id).

Clearly, isomorphisms, split monos and split epis lift to Cp as, respectively, isomor-
phisms, split monos and split epis.

Proof. Let f : A −→ B be a Set-isomorphism. Then

pfq ; pf◦q ∼ pf◦ · fq ∼ pidAq ∼ copyA

Conversely,
pf◦q ; pfq ∼ pf · f◦q ∼ pidBq ∼ copyB

For f a split epi (respectively, a split mono) consider the first (respectively, second) part of the
proof above, taking f◦ as a section (respectively, a retraction) of f . (recalling that every epi and
every mono with non empty source split in Set)

�

Wires are components over 1 defined from identities and structural properties of the
underlying category. Typical examples, include the liftings of canonical isomorphisms
— a, s, l or r — which leads to bisimilarity up to an isomorphic rearranging of the
interface, as well as liftings of embeddings, projections, codiagonals and diagonals,
the latter used to merge input and replicate output types, as in

pOq ; p ; pMq : I + I −→ O ×O

4.2 Wrapping.

The pre- and post-composition of a component with Cp-lifted functions can be encapsu-
lated into a unique combinator, called wrapping, which is reminiscent of the renaming
connective found in process calculi (e.g., [25]). Let p : I −→ O be a component and
consider functions f : I ′ −→ I and g : O −→ O′. Component p wrapped by f and g,
denoted by p[f, g] and typed as I ′ −→ O′, is defined by input pre-composition with f
and output post-composition with g. Formally,

Definition 4. The wrapping combinator is a functor

−[f, g] : Cp(I, O) −→ Cp(I ′, O′)

which is the identity on morphisms and maps component 〈up, ap〉 into 〈up, ap[f,g]〉,
where

ap[f,g] = Up × I ′
id×f−−−−→ Up × I

ap−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

As expected, the following properties hold:

p[f, g] ∼ pfq ; p ; pgq (11)
(p[f, g])[f ′, g′] ∼ p[f · f ′, g′ · g] (12)

A calculus of software components 11

Some simple components arise by lifting elementary functions to Cp. We have already
remarked that the lifting of the canonical arrow associated to the initial Set object plays
the role of an inert component, unable to react to the outside world. Let us give this
component a name:

inertA = p?Aq (13)

In particular, we define the nil component, nil = inert∅ = p?∅q = pid∅q typed as
nil : ∅ −→ ∅. Note that any component p : I −→ O can be made inert by wrapping.
For example, p[?I , !O] ∼ inert1. A somewhat dual role is played by component idle =
pid1q. Note that idle : 1 −→ 1 will propagate an unstructured stimulus (e.g., pushing a
button) leading to an (similarly) unstructured reaction (e.g., switching on a led).

4.3 Choice.

Components can be aggregated in a number of different ways, besides the ‘pipeline’
composition discussed above. Next, we introduce three other generic combinators, cor-
responding to choice, parallel and concurrent composition.

Let p : I −→ O and q : J −→ R be two components defined by 〈up, ap〉 and
〈uq, aq〉, respectively. The first composition pattern to be considered is external choice,
as depicted bellow:

•
I

��	�

��
O

p

•
J

��	�

��
R

q −→
•

I + J

��	�

��
O + R

p � q

When interacting with p�q, the environment is allowed to choose either to input a value
of type I or one of type J , triggering the corresponding component (p or q, respectively)
and producing output. Formally,

Definition 5. The choice combinator is defined as a lax functor � : Cp× Cp −→ Cp,
which consists of an action on objects given by I �J = I +J and a family of functors

�I,O,J,R : Cp(I, O)× Cp(J,R) −→ Cp(I + J,O + R)

yielding
p � q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

ap�q = Up × Uq × (I + J)
(xr+a)·dr // Up × I × Uq + Up × (Uq × J)

ap×id+id×aq // B (Up ×O)× Uq + Up × B (Uq ×R)
τr+τl // B (Up ×O × Uq) + B (Up × (Uq ×R))

Bxr+Ba◦ // B (Up × Uq ×O) + B (Up × Uq ×R)
[B (id×ι1),B (id×ι2)] // B (Up × Uq × (O + R))

and mapping pairs of arrows 〈h1, h2〉 into h1 × h2.

12 L. S. Barbosa

The following laws arise from the fact that � is a lax functor in Cp:

(p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (14)
copyK�K′ ∼ copyK � copyK′ (15)
pfq � pgq ∼ pf + gq (16)

Moreover, up to isomorphic wiring, � is a symmetric tensor product in each hom-
category, with nil as unit, i.e.,

(p � q) � r ∼ (p � (q � r))[a+, a+
◦] (17)

nil � p ∼ p[r+, r+
◦] and p � nil ∼ p[l+, l+

◦] (18)
p � q ∼ (q � p)[s+, s+] (19)

Laws (17) to (19) can be alternatively stated as providing evidence that the canonical
Set isomorphisms a+, r+, l+ and s+, once lifted to Cp, keep their naturality up to
bisimulation.

4.4 An either construction.

The definition of a choice combinator raises the question whether there is a counterpart
in Cp to the either construction in Set. The answer is partly positive. Let p : I −→ O
and q : J −→ O be two components sharing a common output type O, and define

[p, q] = (p � q) ; pOq

where O = [id, id]. It can be shown that the following diagram commutes up to bisim-
ulation,

I

p
""EEEEEEEEE

pι1q // I � J

[p,q]

��

J

q
||yyyyyyyyy

pι2qoo

O

pι1q ; [p, q] ∼ p
pι2q ; [p, q] ∼ q

(20)

even though [p, q] is not the unique arrow making the diagram commute. This is formal-
ized in the following lemma whose proof is included to give a flavour of the calculation
style adopted here.

Lemma 2. The choice combinator � lifts to a weak coproduct in Bh.

Proof. A weak coproduct is defined like a coproduct but for the uniqueness of the mediating arrow
(the either construction). Existence, i.e., the validity of (20), is proved considering the equivalent
formulation

[p, q][ι1, O] ∼ p and [p, q][ι2, O] ∼ q

A calculus of software components 13

replacing composition with lifted functions by wrapping. We show that both the first and the
second projection are morphisms from the left to the right. Therefore,

B(π1 × O) · [B(id× ι1), B(id× ι2)] · (Bxr + Ba◦) · (τr + τl) · (ap × id + id× aq)

·(xr + a) · dr · (id× ι1)

= { law: ι1 = dr · (id× ι1) (cf., [4]) }

B(π1 × O) · [B(id× ι1), B(id× ι2)] · (Bxr + Ba◦) · (τr + τl) · (ap × id + id× aq)

·(xr + a) · ι1

= { + absorption and cancellation }

B(π1 × O) · B(id× ι1) · Bxr · τr · ap × id · xr

= { routine: O · ι1 = id }

B(π1 × id) · Bxr · τr · ap × id · xr

= { routine: (π1 × id) · xr = π1 }

Bπ1 · τr · ap × id · xr

= { law: Bπ1 · τr = π1 (cf., [4]) }

Bπ1 · ap × id · xr

= { × definition and cancellation }
ap · π1 · xr

= { routine: (π1 × id) · xr = π1 and xr = xr◦ }

ap · (π1 × id)

which establishes the first clause of (20). A similar calculation will prove the second one. Note
that in both cases seeds are trivially preserved. It is impossible to turn either into a universal con-
struction in Bh. The basic observation is that the codiagonal O does not keep its naturality when
lifted to Cp. In fact, a counterexample can be found even in the simple setting of deterministic
components (i.e., with B = Id). Let p = 〈0 ∈ N, ap〉 : N −→ N be such that, upon receiving an
input i, i is added to the current state value and the result sent to the output. Consider the follow-
ing sequence of inputs (of type N+N): s = 〈ι15, ι23, ι14, ...〉. The reaction to s of (p�p) ;pOq
is 〈5, 3, 9, . . .〉 while pOq ; p, resorting only to one copy of p, produces 〈5, 8, 12, . . .〉.

�

Failing universality means there is not a fusion law for �, even in the determinis-
tic case. However, cancellation, reflection and absorption laws do hold strictly in Bh
and, up to bisimulation, in Cp. Cancellation has just been dealt with. The other two —
reflection

[pι1q, pι2q] ∼ copyI+J (21)

and absorption

(p � q) ; [p′, q′] ∼ [p ; p′, q ; q′] (22)

14 L. S. Barbosa

are easy to prove. For example,

(p � q) ; [p′, q′]

∼ { definition of either in Cp }

(p � q) ; ((p′ � q′) ; pOq)

∼ { ; associative (7) }

((p � q) ; (p′ � q′)) ; pOq

∼ { � functor (14) }

((p ; p′) � (q ; q′)) ; pOq

∼ { definition of either in Cp }

[p ; p′, q ; q′]

As expected, the � combinator can be written in terms of an either construction on
components. In fact, for p : I −→ O and q : J −→ R, we obtain

p � q ∼ [p ; pι1q, p ; pι2q] (23)

That is to say, Set coproduct embeddings — once lifted to Cp, — keep their naturality:

pι1q ; (p � q) ∼ p ; pι1q and pι2q ; (p � q) ∼ q ; pι2q (24)

A direct corollary of this fact is the following ‘idempotency’ result:

p ; pι1q ∼ pι1q ; (p � p) (25)

4.5 Parallel.

Parallel composition, denoted by p � q, corresponds to a synchronous product: both
components are executed simultaneously when triggered by a pair of legal input values.
Note, however, that the behaviour effect, captured by monad B, propagates. For exam-
ple, if B can express component failure and one of the arguments fails, product fails as
well. Formally,

Definition 6. The parallel combinator � is defined by an action I � J = I × J on
objects and a family of functors

�IOJR : Cp(I, O)× Cp(J,R) −→ Cp(I × J,O ×R)

which yields
p � q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where

ap�q = Up × Uq × (I × J) m // Up × I × (Uq × J)
ap×aq // B (Up ×O)× B (Uq ×R)

δl // B (Up ×O × (Uq ×R))
B m // B (Up × Uq × (O ×R))

A calculus of software components 15

and maps every pair of arrows 〈h1, h2〉 into h1 × h2.

The following laws hold for �:

lax (p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (26)
copyK�K′ ∼ copyK � copyK′ (27)

functions pfq � pgq ∼ pf × gq (28)
assoc (p � q) � r ∼ (p � (q � r))[a, a◦] (29)

id idle � p ∼ p[r, r◦] (30)
zero nil � p ∼ nil[zl, zl◦] (31)

comm p � q ∼ (q � p)[s, s] if B is commutative (32)

Again one may ask whether � lifts to a universal product construction at the be-
havioural level. Dually to the either combinator, we start by definning the split of two
components as

〈p, q〉 = pMq ; (p � q) where M= 〈id, id〉
This definition, however, does not guarantee, in general, the commutativity of

I
p

{{xxxxxxxxx
q

##FFFFFFFFF

〈p,q〉
��

O O � R
pπ1q

oo
pπ2q

// R

It does, however, and a cancellation law

〈p, q〉 ; pπ1q ∼ p (33)

holds, for commutative monads B which exclude the possibility of failure (e.g., the non-
empty powerset).

Proof. To establish (33) it is enough to check whether π1 : Up × Uq −→ Up is a morphism. In
fact,

B(π1 × id) · a〈p,q〉;pπ1q

= { definitions }

B(π1 × π1) · Bm · δl · (ap × aq) · m · (id× M)

= { routine: π1 × π1 = π1 · m, m◦ = m }

Bπ1 · δl · (ap × aq) · m · (id× M)

= { ? }

π1 · (ap × aq) · m · (id× M)

= { × cancellation }

ap · π1 · m · (id× M)

= { routine: π1 × π1 = π1 · m and π1· M= id}

ap · (π1 × id)

16 L. S. Barbosa

�

On the other hand, diagonal M keeps its naturality when lifted to Cp, for B express-
ing derministic behaviour (e.g., the identity or the maybe monad), entailing a fusion
law:r ; 〈p, q〉 ∼ 〈r ; p, r ; q〉.

Proof.

a(p�p) · (M × M)

= { � definition, m · (M × M) =M }

Bm · δl · (ap × ap)· M

= { M natural }

Bm · δl· M ·ap

= { ? }

Bm · B M ·ap

= { m· M=M × M and definition }

B(M ×id) · ap;pMq

However, δl · M= B M does not hold for any monad involving the notion of a collection. As a
counterexample consider

(δl · M){5, 2} = {{5, 5}, {5, 2}, {2, 5}, {2, 2}}
(PM){5, 2} = {{5, 5}, {2, 2}}

On the other hand, the fusion law follows from

r ; 〈p, q〉

∼ { definition }

r ; (pMq ; (p � q))

∼ { assumption and assoc }

pMq ; ((r � r) ; (p � q))

∼ { ; lax functor}

pMq ; ((r ; p) � (r ; q))

∼ { definition }

〈r ; p, r ; q〉

�

Combining these two results, one concludes that � is a product in Bh, but only for
behaviour models excluding both failure and non determinism, which narrows the ap-
plicability scope of this fact to the category of total deterministic components. However,

A calculus of software components 17

reflection, absorption and definition laws hold for any B:

reflection 〈pπ1q, pπ2q〉 ∼ copyO×R (34)
absorption 〈p, q〉 ; (p′ � q′) ∼ 〈p ; p′, q ; q′〉 for B commutative (35)

definition p � q ∼ 〈pπ1q ; p, pπ2q ; q〉 (36)

Product projections, on the other hand, keep naturality only when cancellation holds.
Always, however, one has

(pfq � q) ; pπ2q ∼ pπ2q ; q (37)
(p � pfq) ; pπ1q ∼ pπ1q ; p (38)

4.6 Concurrent.

Finally, concurrent composition, denoted by �, combines choice and parallel, in the
sense that p and q can be executed independently or jointly, depending on the input
supplied. Formally,

Definition 7. The concurrent combinator is defined by an action I�J = I+J+I×J
on objects and a family of functors

�IOJR : Cp(I,O)× Cp(J,R) −→ Cp(I + J + I × J,O + R + O ×R)

yielding
p � q = 〈〈u0, v0〉 ∈ Up × Uq, ap�q〉

where
ap�q = Up × Uq × (I � J)

[B(id×ι1),B(id×ι2)]·(ap�q+ap�q)·dr

��
B (Up × Uq × (O � R))

and maps pairs of arrows 〈h1, h2〉 into h1 × h2.

The laws of concurrent composition combine corresponding results about � and �.
In particular we get again permutation with sequential composition and the structure of
a tensor product, which is symmetric for commutative behaviour monads. Moreover,
the following reduction laws relate � to the other two tensors:

pι1q ; (p � q) ∼ (p � q) ; pι1q (39)
pι2q ; (p � q) ∼ (p � q) ; pι2q (40)

18 L. S. Barbosa

Proof.

a(p�q)[ι1,id]

= { � and wrapping definitions }

[B(id× ι1), B(id× ι2)] · (a(p�q) + a(p�q)) · dr · (id× ι1)

= { routine }

[B(id× ι1), B(id× ι2)] · (a(p�q) + a(p�q)) · ι1

= { + absorption }

[B(id× ι1) · a(p�q), B(id× ι1) · a(p�q)] · ι1

= { + cancellation, � and wrapping definition }

B(id× ι1) · a(p�q) = a(p�q)[id, ι1]

�

4.7 Interaction.

So far component interaction was centred upon sequential composition, which is the
Cp counterpart to functional composition in Set. This can be generalised to a new com-
binator, called hook, which forces part of the output of a component to be fed back as
input. Formally,

Definition 8. The hook combinator −�Z is defined, for each tuple of objects 〈I,O, Z〉,
as a functor between the (categories underlying) hom-sets Cp(I+Z,O+Z) and Cp(I+
Z,O + Z) which is is the identity on arrows and maps each component p : I + Z −→
O + Z to p�Z : I + Z −→ O + Z given by

p�Z = 〈up ∈ Up, ap�Z
〉

where

ap�Z
= Up × (I + Z)

ap // B(Up × (O + Z))
B((id×ι1+id×ι2)·dr)// B(Up × (O + Z) + Up × (I + Z))

B(η+ap) // B(B(Up × (O + Z)) + B(Up × (O + Z)))
µ·BO // B(Up × (O + Z))

i.e., ap�Z
= (O · (η + ap) · (id× ι1 + id× ι2) · dr) • ap.

For components with the same input/output type, the hook combinator has a parti-
cularly simple definition as the Kleisli composition of the original dynamics. It is then
called a feedback and denoted by

p �: Z −→ Z = 〈up ∈ Up, ap�〉

A calculus of software components 19

where

ap� = Up × Z
ap // B(Up × Z)

Bap // BB(Up × Z)
µ // B(Up × Z)

i.e., ap� = ap • ap,
Both hook and feedback specialise to components representing functions according

to the following laws,

pfq � ∼ pf · fq (41)
pgq�Z ∼ p[ι1, g · ι2] · gq (42)

for f : Z −→ Z and g : I + Z −→ O + Z.
Moreover, for components p : Z −→ Z and q : I −→ O, one has

p � ∼ p[r+, r+
◦]�Z [r+◦, r+] (43)

q � p � ∼ (q � p)�Z (44)
p � � q ∼ (q � p)�Z [s+, s+] (45)

All laws above, with the exception of (45) are actually strict Cp arrow equalities,
and not just bisimulations. Also notice that equation (44) generalises to

(q � p)[a+, a+
◦]�Z ∼ (q � p�Z)[a+, a+

◦] (46)

for p : J + Z −→ R + Z.
The last set of laws relate hook and feedback with the other combinators in the

calculus. Let p : Z −→ Z and q : R −→ R be components and i : W −→ Z be a Set
isomorphism. Then

p � [i, i◦] ∼ p[i, i◦] � (47)
(p�q) � ∼ p � � q � (48)

for � = �,� or �. Finally, let p : I +K −→ O +K and q : J −→ R be components,
f : I ′ −→ I , g : O −→ O′ functions and i : W −→ K a Set isomorphism. Then

p�K [f + i, g + i◦] ∼ p[f + i, g + i◦]�W (49)
(p � q)[xr+, xr+]�K ∼ (p�K � q)[xr+, xr+] (50)

Note that all equations are strict Cp arrow equalities. However, validity of (48), for
� = �,�, depends on the commutativity of the behaviour monad B. The reader is
refered to [4] for proofs of all laws mentioned in this section.

5 Example: A folder from two stacks

The purpose of this section is to illustrate how new components can be built from old
ones, relying solely on the functionality available. The example is the construction of
a folder out of two stacks. Although these components are parametric on the type of

20 L. S. Barbosa

stacked objects, we will refer to these as ‘pages’, by analogy with a folder in which new
‘pages’ are inserted on and retrieved (‘read’) from the righthandside pile.

A static, VDM-like specification of the component we have in mind can be found in
[29]. According to this specification, the Folder component should provide operations
to read, insert a new page, turn a page right and turn a page left. Reading returns the
page which is immediately accessible once the folder is open at some position. Insertion
takes as argument the page to be inserted. The other two operations are simply state
updates. Let P be the type of a page. The Folder ‘port’ signature may be represented
as follows, where input and output types are decorated with the corresponding action
names:

•

��	�

��
Folder

tr : 1 + tl : 1 + rd : 1 + in : P

rd : P + {tr, tl, in} : 1

Our exercise consists in building Folder assuming that two stacks are used to model the
left and right piles of pages, respectively. The intuition is that the push action of the
right stack will be used to model page insertion into the folder, i.e., action in. On the
other hand, it should also be connected to the pop of the left one to model tr, the ‘turn
page right’ action. A symmetric connection will be used to model tl. The rd operation
observes the ‘front’ page — the one which can be accessed by top on the right stack.

According to this plan, the assembly of Folder starts by defining RightS as a Stack
component suitably wrapped to meet the above mentioned constraints. At the input level
we need to replicate the input to push by wrapping p with the codiagonal OP function.
On the other hand, access to the top button on the left stack is removed by ι2. At the
output level, because of the additive interface structure, we cannot get rid of the top
result. It is possible, however, to associate it to the push output and collapse both into
1, via !P+1. So we define:

RightS = Stack[id + O, id] : 1 + 1 + (P + P) −→ P + P + 1

LeftS = Stack[ι2 + id, (id+!P+1) · a+] : 1 + P −→ P + 1

Then, we form the � composition of both components:

LeftS � RightS : 1 + P + (1 + 1 + (P + P)) −→ P + 1 + (P + P + 1)

The next step builds the desirable connections using hook over this composite, which
requires a previous wrapping by a pair of suitable isomorphisms:

AlmostFolder = ((LeftS � RightS)[wi,wo])�P+P

where, denoting by ιij the composite ιi · ιj ,

wi =
[[

[[ι11, ι211], ι212], ι222
]
, [ι221, ι12]

]
wo =

[
[ι21, ι111],

[
[ι22, ι112], ι12

]]

A calculus of software components 21

In a diagram:

•

��	�

��
P + P

(LeftS � RightS)[wi,wo]

(1 + 1 + 1 + P) + (P + P)

(1 + P + 1) + (P + P)

Finally, to conform AlmostFolder to the Folder interface, we restrict the feed back input
— by pre-composing with fi = ι1 — and collapse both the trivial output and the feed
back one to 1, by post-composing with fo =

[
[[ι2, ι1], ι2], ι2·!P+P

]
. Therefore, we

complete the exercise by defining

Folder = AlmostFolder[fi, fo]

which respects the intended interface. Note this design retains the architecture of the
‘folder’ component without any commitment to a particular behaviour model.

6 Example: The game of life

The following example illustrates the use of some component combinators to connect
elementary state-based specifications. The component to be built is known as the game
of life, a simple model of cellular behaviour which has been popularised as a common
screen locker for computers.

The game is based on a grid of cells each of which sends and receives elementary
stimulus to and from its four adjacent neighbours. A stimulus is a Boolean value indi-
cating whether the cell is either ‘alive’ or ‘dead’. The following few rules govern the
survival, death and birth of cell generations:

– Each living cell with less than two or more than three living neighbours dies in the
next generation.

– Each dead cell with exactly three living neighbours becomes alive.
– Each living cell with less than two or three living neighbours survives until the next

generation.

Each cell will be specified as a component Cell whose input is a tuple of four Boolean
values, each one to be supplied by one of the four adjacent cells. The cell reacts to such
a stimulus by computing its new state — ‘dead’ or ‘alive’ — and by making it available
as an output to its neighbours, used to compute the next cell generation. Formally, we
define

Cell : 2× 2× 2× 2 −→ 2 = 〈true ∈ 2, aCell〉

22 L. S. Barbosa

where

aCell 〈u, t〉 = let n = living t

in


〈false, false〉 if u = true ∧ (n < 1 ∨ n > 3)
〈true, true〉 if u = false ∧ n = 3)
〈u, u〉 otherwise

Function living above, counts the number of living stimuli (i.e., the number of true
values) in a four Boolean tuple. So, UCell = 2 and B = Id. The game’s behaviour is,
of course, deterministic and all cells in the grid react simultaneously to produce the
new generation. To form a grid of n cells we simply connect them using the parallel
combinator �. The crucial point is to devise a wiring scheme to guarantee that the
joint output of the n connected cells is appropriately fed back. The composed system is
pictured below, where component

Bus : 2n −→ 24n

concentrates and correctly distributes the output.
The n cells are organised as a fully connected matrix of k rows and l columns

(n = k × l), so that the neighbours of cell 〈i, j〉 are 〈i− 1, j〉, 〈i + 1, j〉, 〈i, j − 1〉 and
〈i, j + 1〉 (in the ‘west’, ‘east’, ‘north’ and ‘south’ directions, respectively) computed
in the k and l rings (i.e., 1− 1 = k, k + 1 = 1 and 1− 1 = l, l + 1 = 1).

•

��	�

��
2n

Cell � Cell � · · ·� Cell

24n

•

��	�

��
Bus

24n

To specify Bus we adopt the following convention: the first cell in the �-expression has
coordinates 〈1, 1〉, second is 〈1, 2〉 and so on until column n is reached; the next cell is
then 〈2, 1〉. Under this convention the output produced by cell 〈i, j〉 is selected from the

A calculus of software components 23

global output tuple as the j + (n× (i− 1))-projection, i.e.

out〈i,j〉 : 2n −→ 2

out〈i,j〉 = πj+(n×(i−1))

Now, the input to cell 〈i, j〉 is simply the split of the outputs of its neighbours, i.e.,

in〈i,j〉 : 2n −→ 24

in〈i,j〉 = 〈out〈i,decnj〉, out〈decni,j〉, out〈i,incnj〉, out〈incni,j〉〉

where decnx = (x = 1 → n, x− 1) and incnx = (x = n → 1, x + 1). Finally, Bus
is defined as the lifting of the split

w = 〈in〈i,j〉 | i, j ∈ 1..n〉

The game of life component is then written as

GameLife = ((Cell � Cell � · · ·� Cell) ; Bus) �

where

Bus = pwq

Note how the hook combinator is responsible for extending the game’s behaviour to the
infinite, once the component has been stimulated with an initial input.

7 Discussion

This section introduced a semantic model for software components, regarded as con-
crete pointed coalgebras for some Set endofunctors, and a calculus to reason about (and
transform) component-based designs. Both the model and the calculus are paramet-
ric on a strong monad capturing the intended behaviour model. The approach focuses
on state-based components with a form of synchronous interaction. Such assumptions,
which underly popular technologies like, e.g., CORBA [35], DCOM [16] or JAVABEANS
[22], reflects what could be called the object orientation legacy. A component, in this
sense, is essentially a collection of objects and, therefore, component interaction is
achieved by mechanisms implementing the usual method call semantics.

The bicategorical setting adopted in this section seems appropriate to capture a
‘two-level structure’ in the component models. This is clearly in debt to previous work
by R. Walters and his collaborators on models for deterministic input-driven systems
[19, 18, 20]. Two other influences should be acknowledged. The first is the recent area
of coalgebraic specification of object-oriented systems (see e.g., [31, 17]), which has
been developed with a similar motivation, although in a property-oriented, or axiomatic,
framework. The other is the ‘dataflow paradigm’ [28] to which some of the aggregation
patterns and the general idea of structured wiring can eventually be traced back.

An alternative approach to componentware is inspired by research on coordination
languages [14, 30] and favors strict component decoupling in order to support a looser

24 L. S. Barbosa

inter-component dependency. Here computation and coordination are clearly separated,
communication becomes anonymous and component interconnection is externally con-
trolled. This model is (partially) implemented in JAVASPACES on top of JINI [27] and
fundamental to a number of approaches to componentware which identify communi-
cation by generic channels as the basic interaction mechanism — see, e.g., REO [1],
PICCOLA [34, 26], [12, 10] or [8].

Finally a pointfree, essentially equational calculational proof style, has been used.
In particular, equational proofs replace the more traditional use of coinduction (in terms
of explicit construction of bisimulations). Generic proofs performed in this style are of-
ten long, even if easy to follow. In most cases their length results from the systematic
recording of almost all elementary steps. On the other hand, this style has become fa-
miliar to the functional programming community, where it has been popularised under
the ‘Bird-Meertens formalism’ heading (see e.g., [2, 11] or [3]).

References

1. F. Arbab. Abstract behaviour types: a foundation model for components and their composi-
tion. In F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Proc. First In-
ternational Symposium on Formal Methods for Components and Objects (FMCO’02), pages
33–70. Springer Lect. Notes Comp. Sci. (2852), 2003.

2. R. Backhouse. An exploration of the Bird-Meertens formalism. CS 8810, Groningen Uni-
versity, 1988.

3. R. C. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An intro-
duction. In S. D. Swierstra, P. R. Henriques, and J. N. Oliveira, editors, Third International
Summer School on Advanced Functional Programming, Braga, pages 28–115. Springer Lect.
Notes Comp. Sci. (1608), September 1998.

4. L. S. Barbosa. Components as Coalgebras. PhD thesis, DI, Universidade do Minho, 2001.
5. L. S. Barbosa. Towards a Calculus of State-based Software Components. Journal of Univer-

sal Computer Science, 9(8):891–909, August 2003.
6. L. S. Barbosa and J. N. Oliveira. State-based components made generic. In H. Peter Gumm,

editor, CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1. Elsevier, 2003.
7. L. S. Barbosa and J. N. Oliveira. Transposing partial components: an exercise on coalgebraic

refinement. Theor. Comp. Sci., 365(1-2):2–22, 2006.
8. M. A. Barbosa and L. S. Barbosa. Specifying software connectors. In K. Araki and Z. Liu,

editors, 1st International Colloquium on Theorectical Aspects of Computing (ICTAC’04),
pages 53–68, Guiyang, China, September 2004. Springer Lect. Notes Comp. Sci. (3407).

9. J. Benabou. Introduction to bicategories. Springer Lect. Notes Maths. (47), pages 1–77,
1967.

10. K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A Formal Model for Component-
ware. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based
Systems, pages 189–210. Cambridge University Press, 2000.

11. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997.

12. M. Broy. Semantics of finite and infinite networks of communicating agents. Distributed
Computing, (2), 1987.

13. A. Cruz, L. Barbosa, and J. Oliveira. From algebras to objects: Generation and composition.
Journal of Universal Computer Science, 11(10):1580–1612, 2005.

A calculus of software components 25

14. D. Gelernter and N. Carrier. Coordination languages and their significance. Communication
of the ACM, 2(35):97–107, February 1992.

15. J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra semantics and continuous
algebras. Jour. of the ACM, 24(1):68–95, January 1977.

16. R. Grimes. Profissional DCOM Programming. Wrox Press, 1997.
17. B. Jacobs. Objects and classes, co-algebraically. In C. Lengauer B. Freitag, C.B. Jones and

H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83–103.
Kluwer Academic Publishers, 1996.

18. P. Katis. Categories and Bicategories of Processes. PhD thesis, University of Sydney, 1996.
19. P. Katis, N. Sabadini, and R. F. C. Walters. Bicategories of processes. Journal of Pure and

Applied Algebra, 115(2):141–178, 1997.
20. P. Katis, N. Sabadini, and R. F. C. Walters. On the algebra of systems with feedback and

boundary. Rendiconti del Circolo Matematico di Palermo, II(63):123–156, 2000.
21. A. Kock. Strong functors and monoidal monads. Archiv für Mathematik, 23:113–120, 1972.
22. V. Matena and B Stearns. Applying Entreprise JavaBeans: Component-Based Development

for the J2EE Platform. Addison-Wesley, 2000.
23. Sun Meng and L. S. Barbosa. On refinement of generic software components. In C. Rettray,

S. Maharaj, and C. Shankland, editors, 10th Int. Conf. Algebraic Methods and Software Tech-
nology (AMAST), pages 506–520, Stirling, 2004. Springer Lect. Notes Comp. Sci. (3116).
Best Student Co-authored Paper Award.

24. Sun Meng and L. S. Barbosa. Components as coalgebras: The refinement dimension. Theor.
Comp. Sci., 351:276–294, 2005.

25. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall
International, 1989.

26. O. Nierstrasz and F. Achermann. A calculus for modeling software components. In F. S.
de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Proc. First International
Symposium on Formal Methods for Components and Objects (FMCO’02), pages 339–360.
Springer Lect. Notes Comp. Sci. (2852), 2003.

27. S. Oaks and H. Wong. Jini in a Nutshell. O’Reilly and Associates, 2000.
28. J. N. Oliveira. The Formal Semantics of Deterministic Dataflow Programs. PhD thesis,

Department of Computer Science, University of Manchester, February 1984.
29. J. N. Oliveira. Formal Software Development. Lecture Notes for the MSc in Computer

Science, Minho University, 1992.
30. G. Papadopoulos and F. Arbab. Coordination models and languages. In Advances in Com-

puters — The Engineering of Large Systems, volume 46, pages 329–400. 1998.
31. H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct. in

Comp. Sci., 5:129–152, 1995.
32. J. Rutten. Universal coalgebra: A theory of systems. Technical report, CWI, Amsterdam,

1996.
33. J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249(1):3–80, 2000.

(Revised version of CWI Techn. Rep. CS-R9652, 1996).
34. J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In L. Barroca, J. Hall, and

P. Hall, editors, Software Architectures - Advances and Applications, pages 13–25. Springer-
Verlag, 1999.

35. R. Siegel. CORBA: Fundamentals and Programming. John Wiley & Sons Inc, 1997.
36. C. Szyperski. Component Software, Beyond Object-Oriented Programming. Addison-

Wesley, 1998.
37. P. Wadler and K. Weihe. Component-based programming under different paradigms. Tech-

nical report, Dagstuhl Seminar 99081, February 1999.

