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Introduction Motivation: Automata Coalgebra Application: Transducers

The questions

How to specify and reason about dynamic, reactive, state-based
systems?

• persistence, i.e., internal state and state transitions

• continued interaction along the whole
computational process

• potential infinite behaviour

• observability through well-defined interfaces to
ensure flow of data

How to do it in a generic way?
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Behaviour & Interaction

[R. Milner, 1997]
Thus software, from being a prescription for how to do something
— in Turing’s terms a ”list of instructions” — becomes much
more akin to a description of behaviour, not only programmed on a
computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]
The subject of Computer Science is not information processing or
symbol manipulation, but generated behaviour.
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Behaviour & Interaction

Behavioural abstractions aims at

• representing state-based systems

• dealing with objects, processes, services whose semantics is
inherently observational

• handling infinite types

• specifying finitely otherwise infinitely axiomatizable abstract
data types

• ...
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Antecipating

B∗ – finite sequences

[nil, cons] : 1 + B × L −→ L

In general:

a tool box:
eee

an assembly process:
eee

artifact
a−→ artifact

• abstract data structures as (initial) algebras

• emphasis is on construction
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Antecipating

Bω – streams

〈at,m〉 : U −→ B × U

In general:

a lens: ©_©

an observation structure: universe
c−→ ©_© universe

• abstract behavioural structures as (final) coalgebras

• emphasis is on observation
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Antecipating

• The lens describes the shape (or signature) of legal
observations, whose collection corresponds to the system’s
generated behaviour.

• The observation structure describes the system’s one-step
dynamics; It’s a sort of behaviour generating machine.
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Antecipating

Coalgebra as the mathematics of computational dynamics

Basic References:

• Universal coalgebra: A theory of systems, J. Rutten, Theor.
Comp. Sci., 249(1), 2000 (previous CWI Rep, 1996).

• A tutorial on (co)algebras and (co)induction, B. Jacobs and J.
Rutten, EATCS Bulletin, 62, 1997.

• Lectures on semantics : The initial algebra and final coalgebra
perspectives, P. Aczel, Lect. for 1995 Marktoberdorf School,
Springer, 1997.

• An introduction to coalgebra, J. Adamek, Theory and
Applications of Categories, 14(8), 2005.

• Elements of the general theory of coalgebras, H. P- Gumm,
Lutacs’99 Lect. Notes, 1999.
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A parenthesis for the functional programmer

( ...
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A parenthesis for the functional programmer

There are several ways of glueing functions
... each one leading to a different way of aggregating information:

Pipelining: leading to function space BA (dependency)

A
f // B

g // C

Conjunction: leading to product A× B (spatial aggregation)

C
〈f ,g〉 // A× B

where 〈f , g〉 (c) = (f c, g c)
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A parenthesis for the functional programmer

Disjunction: leading to coproduct (or disjoint union) A + B
(choice)

A + B = {1} × A ∪ {2} × B
[f ,g ] // C

where [f , g ] (x) = (x = (1, a))→ f a

(x = (2, b))→ g b

Constants & points:

empty () : ∅ −→ A

collapse ! : A −→ 1

points a : 1 −→ A
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A parenthesis for the functional programmer

The underlying ‘semantic universe’ assumes an elementary

• space of types and typed arrows ...

• with the structure of a (partial) monoid

• ... taken in the sequel as sets and set-theoretical functions

upon which combinators are defined by universal arrows

• associated to the product, sum and exponential constructions

• which behave ... as they should (formally, form a ccc)
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End of parenthesis

... )
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• Introduction

• Motivating example: Automata

• Going generic: Coalgebras

• Application example: Transducers
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Automata

state space U
transition function m : U −→ U
attribute (or label) at : U −→ B

i.e.,
p = 〈at,m〉 : U −→ B × U

Notation:

u −→p u′ ⇔ m u = u′

u ↓p b ⇔ at u = b
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Automata

The behaviour of p at (from) a state u ∈ U is revealed by
successive observations (experiments):

[(p)] u = [at u, at (m u), at (m (m u)), ...]

[(p)] = cons · 〈at, [(p)] ·m〉

which means that

Automata behaviours are elements of Bω (i.e., streams)
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Automata

Example: A twist automata

state space U = N× N
transition function m (n, n′) = (n′, n)
attribute at (n, n′) = n

i.e.,
twist = 〈π1, s〉
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Automata

Example: A stream automata

state space U = Bω

transition function m s = tl s
attribute at s = hd s

i.e.,
ω = 〈hd, tl〉

Automata behaviours form themselves an automata
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Automata morphisms
A morphism

h : p −→ q

where

p = 〈at,m〉 : U −→ B × U

q = 〈at′,m′〉 : V −→ B × V

is a function h : U −→ V such that

U
p //

h
��

B × U

id×h
��

V
q // B × V

i.e.,
at = at′ · h and h ·m = m′ · h
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Behaviour as a morphism

Th: Behaviour [(p)] is an automata morphism from p to ω

because

at = hd · cons · 〈at, [(p)] ·m〉

= { hd · cons = π1 }

at = π1 · 〈at, [(p)] ·m〉

= { × cancellation }

at = at

and

[(p)] ·m = tl · cons · 〈at, [(p)] ·m〉

= { tl · cons = π2 }

[(p)] ·m = π2 · 〈at, [(p)] ·m〉

= { × cancellation }

[(p)] ·m = [(p)] ·m
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Question

How to reason about automata behaviours?
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Induction & Coinduction

Reasoning about B∗

len(map f l) = len l

where functions are defined inductively by their effect on B∗

constructors

len [] = 0

len(h : t) = 1 + len t

map f [] = []

map f (h : t) = f (h) : map f t

These equations can be regarded as Haskell definitions
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Induction & Coinduction
Proof (by structural induction).

Base case is trivial. Then,

len(map f (h : t))

= { map f definition }

len(f (h) : map f t)

= { len definition }

1 + len(map f t)

= { induction hypothesis }

1 + len t

= { len definition }

len(h : t)
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Induction & Coinduction

Inductive reasoning requires that, by repeatedly unfolding the
definition, arguments become smaller, i.e., closer to the elementary
constructors

... but what happens if this unfolding process does not
terminate?
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Induction & Coinduction
Consider

map f (h : t) = (f h) : map f t

gen f x = x : gen f (f x)

• definition unfolding does not terminate but ...

• ... reveals longer and longer prefixes of the result: every
element in the result gets uniquely determined along this
process

Strategy
To reason about circular definitions over infinite structures,
our attention shifts from argument’s structural shrinking to
the progressive construction of the result which becomes
richer in informational contents.
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Induction & Coinduction

Reasoning about Bω: the global view

Stream equality

〈∀ n : n ≥ 0 : s n = t n〉

can be established by induction over n
However, it

• requires a (workable) formula for arguments s n, t n, often not
available

• does not scale easily to other behaviour types
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Induction & Coinduction

Reasoning about Bω: the local view

Two streams s and r are observationally the same if

• they have identical head observations: hd s = hd r ,

• and their tails — tl s and tl r — support a similar verification.

Relation R : Bω −→ Bω is a (stream) bisimulation iff

〈x , y〉 ∈ R ⇒ hd x = hd y ∧ 〈tl x , tl y〉 ∈ R

(i.e., R is closed under the computational dynamics )
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Induction & Coinduction

Coinduction as a proof principle:

• a systematic way of strengthening the statement to prove:
from equality s = r to a larger set R which contains pair 〈s, r〉

• ensuring that such a set is a bisimulation, i.e., the closure of
the original set under taking derivatives

• moreover, as a proof principle, it generalises from streams to a
large class of behaviour types
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Induction & Coinduction

mapf · genf · f

Check that R below is a bisimulation

R = {〈map f (gen f x) , gen f (f x)〉| x ∈ ..., f ∈ ...}

• hd (map f (gen f x)) = f x = hd (gen f (f x))

• tl (map f (gen f x)) = map f tl (gen f x) and
tl (gen f (f x)) = gen f (f f x). Thus,

〈tl (map f (gen f x)), tl (gen f (f x))〉 ∈ R

Remark:
In general, however, much larger relations have to be considered
and the construction of bisimulations is not trivial
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Coinduction calculationally

Existence and uniqueness of [(p)] can be captured by the following
universal property:

k = [(p)] ⇔ ω · k = (id× k) · p

• Existence ⇔ definition principle (co-recursion)

• Uniqueness ⇔ proof principle (co-induction)

From which:

cancellation ω · [(p)] = (id× [(p)]) · p
reflection [(ω)] = idω

fusion [(p)] · h = [(q)] if p · h = (id× h) · q



Introduction Motivation: Automata Coalgebra Application: Transducers

An universal property

Example: fusion law

[(p)] · h = [(q)]

⇔ { universal law }

ω · [(p)] · h = (id× ([(p)] · h)) · q

⇔ { cancellation law and functoriality }

(id× [(p)]) · p · h = (id× [(p)]) · (id× h) · q

⇐ { function equality }

p · h = (id× h) · q
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An universal property

... from which the following (main) result is a direct corollary:

Th: morphisms preserve behaviour: [(p)] = [(q)] · h
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Definition by coinduction

• by a specification genetic inheritance

• by an explicit specification of behaviour under all observers

• by a recursive expression

depending on context and purpose
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Definition by coinduction

by genetic inheritance

Bω
〈hd,tl〉 // B × Bω

B

gen

OO

M // B × B

id×gen

OO

gen = [(M)]

M carries the ‘genetic inheritance’ of the generating process



Introduction Motivation: Automata Coalgebra Application: Transducers

Definition by coinduction

by specification of behaviour under observers

... equations come by diagram unfolding:

(id× gen)· M = 〈hd, tl〉 · gen

= { M definition }

(id× gen) · 〈id, id〉 = 〈hd, tl〉 · gen

= { × absorption and fusion }

〈id, gen〉 = 〈hd · gen, tl · gen〉

= { structural equality }

hd · gen = id ∧ tl · gen = gen

= { going pointwise }

hd (gen a) = a ∧ tl (gen a) = gen a

coinductive definition = behaviour under all the observers
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Definition by coinduction

Merge

Bω
〈hd,tl〉 // B × Bω

Bω × Bω

merge

OO

g // B × (Bω × Bω)

id×merge

OO

g = 〈hd · π1, s · (tl× id)〉
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Definition by coinduction

Unfolding the diagram and going pointwise, we get an explicit
definition of stream merge:

hd merge (s, t) = hd s

tl merge (s, t) = merge (t, tl s)

by recursive expressions

merge (x : s, t) = x : merge (t, s)
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Definition by coinduction

Twist

Bω
〈hd,tl〉 // B × Bω

B × B

twist=[(g)]

OO

g // B × (B × B)

id×twist

OO

g = 〈π1, s〉
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Proof by coinduction

Lemma: merge (aω, bω) = (ab)ω

i.e.

merge · (gen× gen) = twist
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Proof by coinduction

merge · (gen× gen) = twist

= { merge definition }

[(〈hd · π1, s · (tl× id)〉)] · (gen× gen) = [(〈π1, s〉)]

⇐ { coinduction fusion }

〈hd · π1, s · (tl× id)〉 · (gen× gen) = id× (gen× gen) · 〈π1, s〉

= { × absorption and reflection }

〈hd · gen · π1, s · ((tl · gen)× gen)〉 = id× (gen× gen) · 〈π1, s〉

= { tl · gen = gen and hd · gen = id }

〈π1, s · (gen× gen)〉 = id× (gen× gen) · 〈π1, s〉
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Proof by coinduction

〈π1, s · (gen× gen)〉 = id× (gen× gen) · 〈π1, s〉

= { × absorption }

〈π1, s · (gen× gen)〉 = 〈π1, (gen× gen) · s〉

= { s is natural, i.e., (f × g) · s = s · (g × f ) }

〈π1, s · (gen× gen)〉 = 〈π1, s · (gen× gen)〉
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• Introduction

• Motivating example: Automata

• Going generic: Coalgebras

• Application example: Transducers
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Algebras

a tool box:
eee

an assembly process:
eee

artifact
a−→ artifact

• algebras describe assembly processes

• and abstract data types as (initial) algebras (term algebras)

• emphasis is on construction
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Coalgebras

a lens: ©_©

an observation structure: universe
c−→ ©_© universe

• coalgebras describe observation structures (i.e., transition
systems)

• and abstract behaviour types as (final) coalgebras

• emphasis is on observation
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Typical lens

• ‘opaque’
©_© U = 1

• black & white

©_© U = 2

• colouring
©_© U = O

... in each case the colour set acts as a space classifier
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Typical lens

• partiality
©_© U = U + 1

• visible attributes

©_© U = O × U

• external stimulus

©_© U = U I

• non determinism

©_© U = PU
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Question

Which lens shall we seek?

• The main criteria is to choose functors for which the final
coalgebra does exist

• Such is the case of the all polynomial functors as well as finite
powerset functor
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Coalgebras

A coalgebra for a functor T is any function from a set U (its
carrier) to TU:

α : U −→ TU

For any functor T, if its space of behaviours can be made a
T-coalgebra itself

ωT : νT −→ TνT

this is the final coalgebra: from any other T-coalgebra p there is a
unique morphism [(p)] making the following diagram to commute:

νT
ωT // TνT

U
p //

[(p)]

OO

TU

T[(p)]

OO
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Coalgebras

This universal property is equivalently captured by the following
law:

k = [(p)] ⇔ ωT · k = T k · p

• Existence ⇔ definition principle (co-recursion)

• Uniqueness ⇔ proof principle (co-induction)

From which:

cancellation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q
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Coalgebras

Example: fusion law

νT
ωT // TνT

U
p //

[(p)]

OO

TU

T[(p)]

OO

V

[(q)]

44

q //

h

OO

TV

Th

OO
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Coalgebras

Example: fusion law

[(p)] · h = [(q)]

⇔ { universal law }

ω · [(p)] · h = T([(p)] · h) · q

⇔ { cancellation law and T functor }

T[(p)] · p · h = T[(p)] · Th · q

⇐ { function equality }

p · h = Th · q
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Coalgebras

From which one may generalise the fundamental result
(proved previously for automata)

Th: morphisms preserve behaviour: [(q)] = [(p)] · h
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Lambek’s Lemma

The dynamics of the final coalgebra is an isomorphism

proof idea:

• Assume the existence of an inverse αT to ωT : νT −→ TνT.
Then, αT · ωT = idνT

and ωT · αT = idTνT

• Take one of this requirements and use it to conjecture a
definition for αT (or an implementation ...)
Note the use of the reflection law to introduce an
anamorphism in the calculation, instead of eliminating one

• Then check the validity of this conjecture by verifying with it
the other requirement
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Proof by coinduction

αT · ωT = idνT

⇔ { reflection law }

αT · ωT = [(ωT)]

⇔ { universal law }

ωT · αT · ωT = T(αT · ωT) · ωT

⇔ { as a functor T preserves composition }

ωT · αT · ωT = TαT · TωT · ωT

⇔ { cancel ωT from both sides & universal law }

αT = [(TωT)]



Introduction Motivation: Automata Coalgebra Application: Transducers

Proof by coinduction

ωT · αT

= { replace αT by the derived conjecture }

ωT · [(TωT)]

= { [(TωT)] is a morphism }

T[(TωT)] · TωT

= { as a functor T preserves composition }

T([(TωT)] · ωT)

= { just proved }

T idνT

= { as a functor T preserves identities }

id(TidνT
)
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• Introduction

• Motivating example: Automata

• Going generic: Coalgebras

• Application example: Transducers
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Moore transducers

state space U
transition function nx : U −→ UA

attribute (or label) at : U −→ B

i.e.,
p = 〈nx, at〉 : U −→ UA × B

Notation:

u
a−→p u′ ⇔ nx u a = u′

u ↓p b ⇔ at u = b
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Moore transducers

The behaviour of p at (from) a state u ∈ U is revealed by
successive observations (experiments) triggered on input of
different values a ∈ A:

[(p)] u = [at u, at (nx u a0), at (nx (nx u a0) a1), ...]

[(p)]u nil = at u

[(p)]u (a : t) = [(p)] (nx u a) t

which means that

Moore behaviours are elements of BA∗

(depicted as rooted trees whose branches are labelled by se-
quences of inputs and leaves by B values)
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Moore morphisms

A morphism
h : p −→ q

where

p = 〈nx, at〉 : U −→ UA × B

q = 〈nx′, at′〉 : V −→ V A × B

is a function h : U −→ V such that

U
p //

h

��

UA × B

hA×id
��

V
q // V A × B

To avoid the explicit use of exponentials, the diagram can be
decomposed into:
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Moore morphisms

U
at //

h
��

B

id
��

V
at′ // B

and
U × A

nx //

h×id
��

U

h
��

V × A
nx′ // V

corresponding to

at′ · h = at

nx′ · (h × id) = h · nx
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Moore morphisms

Clearly, morphisms preserve attributes and transitions

u
a−→p u′ and u ↓p b

⇔ { definition }

nx(u, a) = u′ and at u = b

⇒ { Liebniz }

h nx(u, a) = h u′ and at u = b

⇔ { h is a morphism }

nx′(h u, a) = h u′ and at′ h u = b

⇔ { definition }

h u
a−→q h u′ and h u ↓q b
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The final Moore transducer

Moore behaviours organise themselves into a final Moore
machine over BA∗

ω = 〈nxω, atω〉 : BA∗ −→ (BA∗)A × B

where

atω f = f nil ie, the value before any input

nxω f a = λ s . f (a : s) every input determines its evolution
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The final Moore transducer

Th: Coalgebra ω is the final coalgebra for TX = XA × B

because

1. For any p = 〈nx, at〉, [(p)] is a Moore morphism [(p)] : p −→ ω

atω · [(p)] = at

⇔ { introduction of variables }

atω([(p)] u) = at u

⇔ { definition of atω }

([(p)] u) nil = at u

⇔ { definition of [(p)] }

True
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The final Moore transducer

nxω · ([(p)]× id) = [(p)] · nx

⇔ { introduction of variables and application }

nxω([(p)] u, a) = [(p)] nx (u, a)

⇔ { definition of nxω }

λ s . ([(p)] u) (a : s) = [(p)] nx (u, a)

⇔ { introduction of variables and application }

([(p)] u) (a : t) = ([(p)] nx (u, a)) t

⇔ { definition of [(p)] }

True
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The final Moore transducer

2. ... and is unique

Exercise. Prove uniqueness (by induction on A∗)
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Instances of Moore transducers

Queue = 〈nx, at〉 : E ∗ −→ (E ∗)E+1 × ((E + 1)× 2)

with

at = 〈top, isempty?〉
where top s = (s = nil → ι2 ∗, ι1(last s) )

isempty? s = s = nil

nx = [enq, deq] · dl

where enq (s, e) = e : s

deq (s, ∗) = (s = nil → s, (blast s))
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Instances of Moore transducers

Make B = 2 in TX = XA × B.
The carrier (or state space) of the corresponding final coalgebra is

2A
∗ ∼= PA∗

and its dynamics is 〈nxω, atω〉 : PA∗ −→ (PA∗)A × 2
where

atω L = nil ∈ L

nxω L = λ a . {(a : s)| s ∈ L}

Exercise. ... what are we talking about?
Exercise. Make A = 1 in TX = XA × B. What comes up?
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Mealy transducers

state space U
reactive transition function ac : U −→ (U × B)A

Notation:

u
a/b−→p u′ ⇔ ac u a = (u′, b)
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Mealy transducers

The behaviour of p at a state u ∈ U is revealed by successive
observations (experiments) triggered on input of different values
a ∈ A:

[(p)] u = [π2(ac u a0), π2(ac (π1(ac u a0)) a1, ...]

[(p)]u [a] = π2(ac u a)

[(p)]u (a : t) = [(p)] (π1(ac u a)) t

which means that

Mealy behaviours are elements of BA+
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Mealy transducers

Mealy behaviours can alternatively be regarded as

causal functions from Aω to Bω

A causal function f over streams is such that, for all s, t ∈ Aω and
n ∈ N,

〈∀ k : k ≤ n : s k = t k〉 ⇒ (f s n = f t n)

i.e, the n-th element of f s depends only on the first n elements of
input stream s

... upon which the final Mealy automata can be defined:
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The final Mealy transducer

Mealy behaviours organise themselves into a final Mealy
automata over Γ = {f : Aω −→ Bω| f is causal}

ω : Γ −→ (Γ× B)A

where

ω f a = 〈λ s . tl f (a : s), hd f (a : r)〉

which means that

• the next state acts as f after a has been seen

• the output hd f (a : r) depends only on f and a; therefore, the
tail r of the input stream is irrelevant.



Introduction Motivation: Automata Coalgebra Application: Transducers

Non-determinism

Further behavioural effects can be introduced in the basic
machines discussed so far by ’sophisticating’ the corresponding
signature functor. For example,

• non-determinism is captured by the powerset functor P

Automata TX = B × X TX = P(B × X )

Moore transducer TX = XA × B TX = P(X )A × B

Mealy transducer TX = (X × B)A TX = P(X × B)A
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