
PF-transform: using Galois connections to
structure relational algebra

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2008 (updated: Dec. 2009, Nov. 2010)

Appendix I Appendix II Appendix III

Why Galois connections?

We motivate this subject by placing some very general questions:

• Why is programming, or systems design “difficult”?

• Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

What makes programming difficult?

• Technology (mess) — don’t fall in the trap: simply abstract
from it!

• Requirements — again abstract from these as much as
possible — write formal models or specs

Specifications:

• What is it that makes the specification of a problem hard to
fulfill?

Appendix I Appendix II Appendix III

Problems = Easy + Hard

Superlatives in problem statements, eg.

• ”... the smallest such number”

• ”... the longest such list”

• ”... the best approximation”

suggest two layers in specifications:

• the easy layer — broad class of solutions (eg. a prefix of a
list)

• the difficult layer — requires one particular such solution
regarded as optimal in some sense (eg. “shortest with
maximal density”).

Appendix I Appendix II Appendix III

Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?

Appendix I Appendix II Appendix III

Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?

Appendix I Appendix II Appendix III

Example — writing a spec

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (1)

Second version (involved):

z = x ÷ y ≡ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (2)

Third version (clever!):

z × y ≤ x ≡ z ≤ x ÷ y (y > 0) (3)

— a Galois connection.

Appendix I Appendix II Appendix III

Why (3) is better than (1,2)

It captures the requirements:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

(let z := x ÷ y in (3) and simplify)

• It is the best solution because it provides the largest such
number:

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

(the ⇒ part of ≡).

Main advantage:

Highly calculational! See the next example.

Appendix I Appendix II Appendix III

Proving (n ÷m)÷ d = n ÷ (d ×m)

q ≤ (n ÷m)÷ d

≡ { “al-djabr” (3) }

q × d ≤ n ÷m

≡ { “al-djabr” (3) }

(q × d)×m ≤ n

≡ { × is associative }

q × (d ×m) ≤ n

≡ { “al-djabr” (3) }

q ≤ n ÷ (d ×m)

:: { indirection }

(n ÷m)÷ d = n ÷ (d ×m)

Appendix I Appendix II Appendix III

(Generic) indirect equality

Note the use of indirect equality rule

(q ≤ x ≡ q ≤ y) ≡ (x = y)

valid for ≤ any partial order.

Exercise 1: Derive from (3) the two cancellation laws

q ≤ (q × d)÷ d (4)

(n ÷ d)× d ≤ n (5)

and reflexion law:

n ÷ d ≥ 1 ≡ d ≤ n (6)

�

Appendix I Appendix II Appendix III

Galois connections

n ÷ d is an example of operation involved in a Galois connection:

q×d︸︷︷︸
f q

≤ n ≡ q ≤ n÷d︸︷︷︸
g n

In general, for preorders (A,≤) and (B,v) and

(A,≤)

g
**
(B,v)

f

jj (7)

(f , g) are Galois connected iff. . .

Appendix I Appendix II Appendix III

Galois adjoints

f︸︷︷︸
lower adjoint

b ≤ a ≡ b v g︸︷︷︸
upper adjoint

a

that is

f ◦· ≤ = v ·g

Remarks:

• Galois (connected) adjoints enjoy a number of interesting generic
properties

• Very elegant — calculational — way of performing equational
reasoning (including logical deduction)

Appendix I Appendix II Appendix III

Basic properties

Cancellation:

(f · g)a ≤ a and b v (g · f)b

Distribution (in case of lattice structures):

f (a t a′) = (f a) ∨ (f a′)

g(b ∧ b′) = (g b) u (g b′)

Conversely,

• If f distributes over t then it has an upper adjoint g (f #)

• If g distributes over ∧ then it has a lower adjoint f (g [)

Appendix I Appendix II Appendix III

Other properties

If (f , g) are Galois connected,

• f (g) uniquely determines g (f) — thus the [,] notations

• f and g are monotonic

• (g , f) are also Galois connected — just reverse the orderings

• f = f · g · f and g = g · f · g
etc

Appendix I Appendix II Appendix III

Summary

(f b) ≤ a ≡ b v (g a)

Description f = g [g = f]

Definition f b =
∧
{a : b v g a} g a =

⊔
{b : f b ≤ a}

Cancellation f (g a) ≤ a b v g(f b)
Distribution f (b t b′) = (f b) ∨ (f b′) g(a′ u a) = (g a′) u (g a)

Monotonicity b v b′⇒ f b ≤ f b′ a ≤ a′⇒ g a v g a′

In the sequel we will re-interpret the relational operators we’ve seen so far

as Galois adjoints.

Appendix I Appendix II Appendix III

Examples
Not only

(d×)q︸ ︷︷ ︸
f q

≤ n ≡ q ≤ n(÷d)︸ ︷︷ ︸
g n

but also the two shunting rules,

(h·)X︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ (h◦·)Y︸ ︷︷ ︸
g Y

X (·h◦)︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ Y (·h)︸ ︷︷ ︸
g Y

as well as converse,

X ◦︸︷︷︸
f X

⊆ Y ≡ X ⊆ Y ◦︸︷︷︸
g Y

and so and so forth — see the next two slides.

Appendix I Appendix II Appendix III

Converse

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

converse ()◦ ()◦ bR◦a ≡ aRb

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Appendix I Appendix II Appendix III

Example of calculation from the GC

Converse involution:

(R◦)◦ = R (8)

Indirect proof of (8):

(R◦)◦ ⊆ Y

≡ { ◦-universal X ◦ ⊆ Y ≡ X ⊆ Y ◦ for X := R◦ }

R◦ ⊆ Y ◦

≡ { ◦-monotonicity }

R ⊆ Y

:: { indirection }

(R◦)◦ = R

Appendix I Appendix II Appendix III

Functions

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

shunting rule (h·) (h◦·) NB: h is a function
“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: h◦ · R = h \ R

Question: what does h \ R mean?

Appendix I Appendix II Appendix III

Relational division

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

left-division (R·) (R \) left-factor
right-division (·R) (/ R) right-factor

that is,

R · X ⊆ Y ≡ X ⊆ R \ Y (9)

X · R ⊆ Y ≡ X ⊆ Y / R (10)

Immediate: (R·) and (·R) distribute over union:

R · (S ∪ T) = (R · S) ∪ (R · T)

(S ∪ T) · R = (S · R) ∪ (T · R)

Some intuition about relational division operators follows.

Appendix I Appendix II Appendix III

Relational (left) division

Left division abstracts a (pointwise) universal quantification

A

R
��

C

S
��

R\Soo

⊆

B

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (11)

Example:

b R a = flight b carries passenger a

b S c = flight b belongs to air-company c

a (R \ S) c = passenger a is faithful to company c, that is,
(s)he only flies company c .

Appendix I Appendix II Appendix III

Relational (right) division

By taking converses we arrive at S / R = (R◦ \ S◦)◦:

X ⊆ S / R

≡ { Galois connection ((·R), (/R)) }

X · R ⊆ S

≡ { converses }

R◦ · X ◦ ⊆ S◦

≡ { Galois connection ((R·), (R\)) }

X ◦ ⊆ R◦ \ S◦

≡ { converses }

X ⊆ (R◦ \ S◦)◦

:: { indirection }

S / R = (R◦ \ S◦)◦

Appendix I Appendix II Appendix III

Relational (right) division

Therefore:

c(S / R)a

≡ { above }

a(R◦ \ S◦)c

≡ { (11) }

〈∀ b : b R◦a : b S◦c〉

≡ { converses }

〈∀ b : a R b : c S b〉 a?
S/R

��
c b

_
R

OO

�
S
oo

Appendix I Appendix II Appendix III

Domain and range

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

domain δ (>·) lower ⊆ restricted to coreflexives
range ρ (·>) lower ⊆ restricted to coreflexives

Thus

δ R ⊆ Φ ≡ R ⊆ > · Φ (12)

ρR ⊆ Φ ≡ R ⊆ Φ · > (13)

etc.

Appendix I Appendix II Appendix III

Domain and split

The following fact holds:

〈R, S〉◦ · 〈X ,Y 〉 = (R◦ · X) ∩ (S◦ · Y)

Corollary:

δ R = ker 〈id ,R〉

Another consequence of the fact above:

ker R ⊆ ker (S · R) ⇐ S entire

Corollary:

ker R ⊆ ker (f · R)

Appendix I Appendix II Appendix III

Appendix I

Appendix I Appendix II Appendix III

Handling Hoare triples in relation algebra

We finally show to handle Hoare triples such as

{p}P{q} (14)

in pointfree, relation algebra. First we spell out the meaning of
(14):

〈∀ s : p s : 〈∀ s ′ : s
P // s ′ : q s ′〉〉 (15)

Then (recording the meaning of program P as relation [[P]] on
program states) we PF-transform (15) into

Φp ⊆ [[P]] \ (Φq · >) (16)

thanks to (11) and then to...

Appendix I Appendix II Appendix III

Relationship with Hoare Logic

[[P]] · Φp ⊆ Φq · > (17)

thanks to (9). By putting (17) and the meaning of Φq Φp
foo ,

f · Φp ⊆ Φp · > (18)

we realize both share the same scheme,

R · Φ ⊆ Ψ · > (19)

which is equivalent to

R · Φ ⊆ Ψ · R (20)

(tell why) and which one can condense into notation

Φ
R // Ψ (21)

Appendix I Appendix II Appendix III

Relationship with Hoare Logic

All in all

• Notation (21) can be regarded as the type assertion that, if
fed with values (or starting on states) “of type Φ”
computation P yields results (changes to states) “of type Ψ”
(if it terminates).

• We see that functional predicative types and Hoare Logic are
one and the same device: a way to type computations, be
them specified as (allways terminating, deterministic)
functions or encoded into (possibly non-terminating,
non-deterministic) programs.

Appendix I Appendix II Appendix III

Appendix II

Appendix I Appendix II Appendix III

“Al-djabr” calculation of algorithms

The next slides show how the well-known algorithm implementing
whole division,

n ÷ d = if n < d then 0 else (n − d)÷ d + 1

can be inferred from “al-djabr” rule (3) via indirect equality, in two
parts:

1. case n ≥ d

2. case n < d

.

Appendix I Appendix II Appendix III

Calculation of n ÷ d case n ≥ d

q ≤ n ÷ d

≡ { rule (3) assuming d > 0 }

q × d ≤ n

≡ { cancellation }

q × d − d ≤ n − d

≡ { distribution law }

(q − 1)× d ≤ n − d

≡ { (3) again, assuming n ≥ d }

q − 1 ≤ (n − d)÷ d

≡ { trading −1 to the right }

q ≤ (n − d)÷ d + 1

Appendix I Appendix II Appendix III

Calculation of n ÷ d case n < d
That is, every natural number q which is at most n ÷ d (for
n ≥ d) is also at most (n − d)÷ d + 1 and vice versa. We
conclude that the two expressions are the same

n ÷ d = (n − d)÷ d + 1 (22)

for n ≥ d . For n < d , we reason in the same style:

q ≤ n ÷ d

≡ { (3) and transitivity, since n < d }

q × d ≤ n ∧ q × d < d

≡ { since d 6= 0 }

q × d ≤ n ∧ q ≤ 0

≡ { q ≤ 0 entails q × d ≤ n, since 0 ≤ n }

q ≤ 0

Appendix I Appendix II Appendix III

If-then-else’s — eventually!

So, in case n < d , we have

q ≤ n ÷ d ≡ q ≤ 0

By indirect equality, we get, for this case

n ÷ d ≡ 0

In other words, we have calculated the then and else-parts of the
algorithm:

n ÷ d = if n < d then 0 else (n − d)÷ d + 1

Appendix I Appendix II Appendix III

Appendix III

Appendix I Appendix II Appendix III

Modular law

Dedekind’s rule, also known as the modular law:

R · S ∩ T ⊆ R · (S ∩ R◦ · T) (23)

cf. analogy with ab + c ≤ a(b + a−1c) . Dually (apply converses
and rename):

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · S (24)

Symmetrical equivalent statement:

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · (S ∩ (R◦ · T)) (25)

= “weak right-distribution of meet over composition”.

	Appendix I
	Appendix II
	Appendix III

