PF-transform: using Galois connections to
structure relational algebra

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

DI/UM, 2008 (updated: Dec. 2009, Nov. 2010)

Why Galois connections?

We motivate this subject by placing some very general questions:
e Why is programming, or systems design “difficult”?

e Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

What makes programming difficult?

e Technology (mess) — don't fall in the trap: simply abstract
from it!

¢ Requirements — again abstract from these as much as
possible — write formal models or specs

Specifications:

e What is it that makes the specification of a problem hard to
fulfill?

Problems = Easy + Hard

Superlatives in problem statements, eg.

e "... the smallest such number”
e ... the longest such list"
e "... the best approximation”

suggest two layers in specifications:

e the easy layer — broad class of solutions (eg. a prefix of a
list)
o the difficult layer — requires one particular such solution

regarded as optimal in some sense (eg. “shortest with
maximal density”).

Example

Requirements for whole division x + y:
e Write a program which computes number z which, multiplied
by y, approximates x.
e Check your program with the following test data:
X, v, z=1,2,1
X7 _y7 zZ = 77 27 2

Deriving the algorithm... from what?

Example

Requirements for whole division x + y:

e Write a program which computes number z which, multiplied
by y, approximates x.

e Check your program with the following test data:
X’ .y’ zZ = 77 2’ 1
X7 _y7 zZ = 77 27 2
e Ups! Forgot to tell that | want the largest such number

(sorry!):
X, y,z=1,2,3

Deriving the algorithm... from what?

. where is the formal specification of x + y?

Appendix | Appendix |l

Example — writing a spec

First version (literal):
x+y:<\/ z nzxy<x)
Second version (involved):
z=x+y = (3r : 0<r<y: x=zxy+r)
Third version (clever!):
zXxy<x = z<x=+y (y >0)

— a Galois connection.

Appendix |1

Why (3) is better than (1,2)

It captures the requirements:

e It is a solution: x + y multiplied by y approximates x
(x+y)xy<x

(let z := x + y in (3) and simplify)
e It is the best solution because it provides the largest such
number:

zXy<x = z<x=xy (y >0)

(the = part of =).

Main advantage:

Highly calculational! See the next example.

Appendix | Appendix |l Appendix |1

Proving (n+m) +~d =n-+(d x m)

g<(n+m)=d

{ “al-djabr” (3) }
gxd<n+m

{ *“al-djabr” (3) }

(gxd)xm<n

{ X is associative }
gx(dxm)<n
{ “al-djabr’ (3) }

g<n-+(dxm)

{ indirection }
(n+=m)=d=n-=(dxm)

Appendix | Appendix Il Appendix |l
(Generic) indirect equality
Note the use of indirect equality rule

(a<x=qg<y)=(x=y)

valid for < any partial order.

Exercise 1: Derive from (3) the two cancellation laws

g < (gxd)+d (4)
(n=d)yxd < n (5)

and reflexion law:
n+-d>1 = d<n (6)

Appendix | Appendix Il Appendix |l

Galois connections

n - d is an example of operation involved in a Galois connection:

gxd<n = qg<n=d
~—~— ~—
fq gn

In general, for preorders (A, <) and (B,C) and

(f, g) are Galois connected iff. . .

Appendix | Appendix Il Appendix |l

Galois adjoints

f b<a = bLC g a
v- . ~—
lower adjoint upper adjoint
that is
Remarks:

e Galois (connected) adjoints enjoy a number of interesting generic
properties

e Very elegant — calculational — way of performing equational
reasoning (including logical deduction)

Appendix | Appendix Il Appendix |1

Basic properties

Cancellation:
(f-gla<a and bLC (g-f)b
Distribution (in case of lattice structures):
flauad) = (fa)Vv(fd)
glbnb) = (gb)r(gb)
Conversely,

e If f distributes over LI then it has an upper adjoint g (f7)

e If g distributes over A then it has a lower adjoint f (g”)

Other properties

If (f,g) are Galois connected,
o f (g) uniquely determines g (f) — thus the _°, _ notations
e f and g are monotonic
e (g, f) are also Galois connected — just reverse the orderings
e f=f.-g-fandg=g-f-g

etc

Summary

’ (Fb)<a=bLC(ga)

’ Description ‘ f=g" ‘ g=f"h
Definition fb=Na:bCg a} ga=||{b:f b<a}
Cancellation flga)<a bC g(f b)
Distribution | f(bUb)= (f b)V(f b') | g(a’Ma)= (g a)M(g a)
Monotonicity bCH=Fb<fVP a<d=galgad

In the sequel we will re-interpret the relational operators we've seen so far
as Galois adjoints.

Appendix | Appendix Il Appendix |1

Examples
Not only
(dx)g<n = q<n(=d)
S~—— S——
fq gn

but also the two shunting rules,

(MXCY = XC(h)Y

SN~ ~——
f X g Y
X(-h°)CY = XCY(h)
S~—— S~——
f X g Y
as well as converse,
X°CY = XCY°
N~ ~—~
f X g Y

and so and so forth — see the next two slides.

Converse

] (FX)CY
’ Description \ f=

=f| Obs. }
|

’ converse ‘ (-

~—

Thus:

Cancellation (R°)°=R
Monotonicity RCS=R°CS°
Distributions (RNS)°=R°NS°,(RUS)°=R°US°

Appendix | Appendix |l Appendix |1

Example of calculation from the GC
Converse involution:
(R°)° = R (8)
Indirect proof of (8):

(R) C ¥
{ °-universal X°CY = XCYVY° forX:=R°}

R°CY®
= { °-monotonicity }
RCY
{ indirection }

(R =R

Functions

fFX)CY=XC(gV) \
f |

] Description | f=g"|g="Ff"] Obs. ‘
shunting rule (h) (h°) | NB: his a function
“converse” shunting rule | (-h°) (-h) | NB: his a function
Consequences:
Functional equality: hCg= h=k =h2Dk
Functional division: h°-R=h\R

Question: what does h\ R mean?

Relational division

! (FX)CY=XC(gY) |
g |z \

Description | f Obs.
| | |

= i
left-division (R) | (R\)| left-factor
right-division | (-R) | (/ R) | right-factor
that is,
R-XCY=XCR\Y (9)
X-RCY=XCY/R (10)

Immediate: (R-) and (-R) distribute over union:

R-(SUT) = (R-S)U(R-T)
(SUT)-R = (S-R)U(T-R)

Some intuition about relational division operators follows.

Relational (left) division

Left division abstracts a (pointwise) universal quantification

A
&Q /s
B

Example:

a(R\S)c = (Vb : bRa: bSc) (11)

b R a = flight b carries passenger a
b S ¢ = flight b belongs to air-company ¢

a (R\ S) ¢ = passenger a is faithful to company c, that is,
(s)he only flies company c.

Appendix | Appendix |l Appendix |1

Relational (right) division
By taking converses we arrive at S / R = (R°\ 5°)°:

XCS/R

= { Galois connection ((-R),(/R)) }
X-RCS

= { converses }
R°.X° C S°

= { Galois connection ((R-),(R\)) }
X° C R\ S°

{ converses }
X C(R°\S°)°

{ indirection }
S/R=(R°\S°)°

Appendix | Appendix |l Appendix |1
Relational (right) division

Therefore:
c(S/R)a
{ above }
a(R°\ S°)c
{ (11) }
(Vb : bR°a: bS°)

= { converses }

(Vb :aRb: cSbh)

(9}

Domain and range

’ (FX)CY=Xc(gV) ‘
| Description | f =g" | g = fF | Obs. ‘
domain 0 (T-) | lower C restricted to coreflexives
range p (-T) | lower C restricted to coreflexives
Thus
JRC® = RCT-® (12)
pRCO = RCO.T (13)

etc.

Appendix | Appendix I Appendix 11
Domain and split
The following fact holds:
(R,S)°-(X,Y) = (R°-X)N(S°-Y)
Corollary:
SR = ker(id,R)
Another consequence of the fact above:
ker R C ker(S-R) <« S entire
Corollary:

ker R C ker(f-R)

Appendix |

Appendix |

Appendix | Appendix Il Appendix Il

Handling Hoare triples in relation algebra

We finally show to handle Hoare triples such as

{p}P{a} (14)

in pointfree, relation algebra. First we spell out the meaning of
(14):

Ws:ps: (Vs : s—F=s : qs)) (15)

Then (recording the meaning of program P as relation [P] on
program states) we PF-transform (15) into

¢, C [['D]]\((Dq'—l—) (16)

thanks to (11) and then to...

Appendix | Appendix Il Appendix Il

Relationship with Hoare Logic

[P]-®p C &y T (17)
thanks to (9). By putting (17) and the meaning of @, - >, ,
f-o,C®, T (18)
we realize both share the same scheme,
R-oCWw.T (19)
which is equivalent to
R-&CWV.R (20)

(tell why) and which one can condense into notation

LR (21)

Appendix |

Relationship with Hoare Logic

All in all

e Notation (21) can be regarded as the type assertion that, if
fed with values (or starting on states) “of type ®”
computation P yields results (changes to states) “of type V"
(if it terminates).

e We see that functional predicative types and Hoare Logic are
one and the same device: a way to type computations, be
them specified as (allways terminating, deterministic)
functions or encoded into (possibly non-terminating,
non-deterministic) programs.

Appendix |l

Appendix |l

Appendix | Appendix |l Appendix |1

“Al-djabr” calculation of algorithms

The next slides show how the well-known algorithm implementing
whole division,

n+-d = if n<d then 0 else (n—d)+d+1

can be inferred from “al-djabr” rule (3) via indirect equality, in two
parts:

1. casen>d
2. case n<d

Appendix |

Appendix |l Appendix |1

Calculation of n =+ d case n > d

g<n-+d

{ rule (3) assuming d >0 }
gxd<n

{ cancellation }
gxd—d<n—d

{ distribution law }
(g—1)xd<n-d

{ (3) again, assuming n > d }
g-1<(n—-d)=d

{ trading —1 to the right }
g<(n—-d)+d+1

Appendix | Appendix |l Appendix |l

Calculation of n = d case n < d

That is, every natural number g which is at most n+ d (for
n > d) is also at most (n — d) = d + 1 and vice versa. We
conclude that the two expressions are the same

n+-d=(n—d)+-d+1 (22)
for n > d. For n < d, we reason in the same style:
g<n-+d
= { (3) and transitivity, since n < d }

gxd<nAgxd<d

{ sinced#0 }
gxd<nAng<Q0

{ g<O0entailsgxd<n,since0<n }

g<0

Appendix | Appendix |l Appendix |1

If-then-else’'s — eventually!

So, in case n < d, we have
g<n+d = ¢g<0
By indirect equality, we get, for this case
n-d = 0

In other words, we have calculated the then and else-parts of the
algorithm:

n+d = if n<d then 0 else (n—d)+d+1

Appendix |

Appendix | Appendix Il Appendix Il

Modular law

Dedekind’s rule, also known as the modular law:
R-SNT C R-(SNR°-T) (23)

cf. analogy with ab+c < a(b+a 'c) . Dually (apply converses
and rename):

(R-S)NT C (RN(T-S°)-S (24)
Symmetrical equivalent statement:
(R-S)NT C (RN(T-S°))-(SN(R°-T)) (25)

= “weak right-distribution of meet over composition”.

	Appendix I
	Appendix II
	Appendix III

