PF-transform: using Galois connections to structure relational algebra

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

DI/UM, 2008 (updated: Dec. 2009, Nov. 2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why Galois connections?

We motivate this subject by placing some very general questions:

- Why is **programming**, or **systems design** "difficult"?
- Is there a generic skill, or competence, that one such acquire to become a "good programmer"?

What makes programming difficult?

- **Technology** (mess) don't fall in the trap: simply **abstract** from it!
- **Requirements** again abstract from these as much as possible write formal models or specs

Specifications:

• What is it that makes the specification of a problem hard to fulfill?

$\mathsf{Problems} = \mathsf{Easy} + \mathsf{Hard}$

Superlatives in problem statements, eg.

- "... the smallest such number"
- "... the longest such list"
- "... the best approximation"

suggest two layers in specifications:

- the easy layer broad class of solutions (eg. a prefix of a list)
- the **difficult** layer requires one **particular** such solution regarded as **optimal** in some sense (eg. "shortest with maximal density").

Example

Requirements for whole division $x \div y$:

- Write a program which computes number z which, multiplied by y, approximates x.
- Check your program with the following test data:
 x, y, z = 7, 2, 1
 x, y, z = 7, 2, 2
- Ups! Forgot to tell that I want the largest such number (sorry!):
 x, y, z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of $x \div y$?

Example

Requirements for whole division $x \div y$:

- Write a program which computes number z which, multiplied by y, approximates x.
- Check your program with the following test data: x, y, z = 7, 2, 1 x, y, z = 7, 2, 2
- Ups! Forgot to tell that I want the largest such number (sorry!):
 x, y, z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of $x \div y$?

Appendix II

Appendix III

Example — writing a spec

First version (literal):

$$x \div y = \langle \bigvee z :: z \times y \le x \rangle \tag{1}$$

Second version (involved):

 $z = x \div y \equiv \langle \exists r : 0 \le r < y : x = z \times y + r \rangle$ (2)

Third version (clever!):

 $z \times y \le x \equiv z \le x \div y$ (y > 0) (3)

- a Galois connection.

Why (3) is better than (1,2)

It captures the requirements:

• It is a solution: $x \div y$ multiplied by y approximates x

 $(x \div y) \times y \leq x$

(let $z := x \div y$ in (3) and simplify)

 It is <u>the best</u> solution because it provides the largest such number:

 $z \times y \le x \Rightarrow z \le x \div y$ (y > 0)(the \Rightarrow part of \equiv).

Main advantage:

Highly calculational! See the next example.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proving $(n \div m) \div d = n \div (d \times m)$

 $q < (n \div m) \div d$ \equiv { "al-djabr" (3) } $q \times d < n \div m$ \equiv { "al-djabr" (3) } $(q \times d) \times m \leq n$ \equiv { \times is associative } $q \times (d \times m) < n$ \equiv { "al-djabr" (3) } $q < n \div (d \times m)$ { indirection } :: $(n \div m) \div d = n \div (d \times m)$ Appendix II

Appendix III

(Generic) indirect equality

Note the use of indirect equality rule

 $(q \le x \equiv q \le y) \equiv (x = y)$

valid for \leq **any** partial order.

Exercise 1: Derive from (3) the two *cancellation* laws

$$q \leq (q \times d) \div d \tag{4}$$

$$(n \div d) \times d \leq n \tag{5}$$

and reflexion law:

П

$$n \div d \ge 1 \equiv d \le n \tag{6}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix II

Galois connections

 $n \div d$ is an example of operation involved in a **Galois** connection:

$$\underbrace{q \times d}_{f q} \leq n \equiv q \leq \underbrace{n \div d}_{g n}$$

In general, for **preorders** (A, \leq) and (B, \sqsubseteq) and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(f, g) are Galois connected iff...

Galois adjoints

that is

$$f^{\circ} \cdot \leq = \Box \cdot g$$

Remarks:

- Galois (connected) adjoints enjoy a number of interesting **generic** properties
- Very elegant calculational way of performing equational reasoning (including *logical* deduction)

Basic properties

Cancellation:

$$(f \cdot g)a \leq a$$
 and $b \sqsubseteq (g \cdot f)b$

Distribution (in case of lattice structures):

$$f(a \sqcup a') = (f a) \lor (f a')$$

$$g(b \land b') = (g b) \sqcap (g b')$$

Conversely,

- If f distributes over \sqcup then it has an upper adjoint $g(f^{\#})$
- If g distributes over \wedge then it has a lower adjoint $f(g^{\flat})$

Other properties

If (f, g) are Galois connected,

- f(g) uniquely determines g(f) thus the $\frac{1}{2}$, $\frac{1}{2}$ notations
- f and g are monotonic
- (g, f) are also Galois connected just reverse the orderings
- $f = f \cdot g \cdot f$ and $g = g \cdot f \cdot g$

etc

(ロ)、(型)、(E)、(E)、 E) の(の)

Summary

$(f \ b) \leq a \equiv b \sqsubseteq (g \ a)$			
Description	$f=g^{\flat}$	$g=f^{\sharp}$	
Definition	$f \ b = \bigwedge \{a : b \sqsubseteq g \ a\}$	$g a = \bigsqcup \{b : f b \le a\}$	
Cancellation	$f(g a) \leq a$	$b \sqsubseteq g(f \ b)$	
Distribution	$f(b \sqcup b') = (f \ b) \lor (f \ b')$	$g(a' \sqcap a) = (g \ a') \sqcap (g \ a)$	
Monotonicity	$b \sqsubseteq b' \Rightarrow f \ b \leq f \ b'$	$a \leq a' \Rightarrow g \ a \sqsubseteq g \ a'$	

In the sequel we will re-interpret the relational operators we've seen so far as Galois adjoints.

Examples

Not only

but also the two shunting rules,

as well as converse,

$$\underbrace{X^{\circ}}_{f X} \subseteq Y \equiv X \subseteq \underbrace{Y^{\circ}}_{g Y}$$

and so and so forth — see the next two slides.

Converse

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f = g^{\flat}$	$g=f^{\sharp}$	Obs.
converse	(_)°	(_)°	$bR^{\circ}a\equiv aRb$

Thus:

Cancellation $(R^{\circ})^{\circ} = R$ Monotonicity $R \subseteq S \equiv R^{\circ} \subseteq S^{\circ}$ Distributions $(R \cap S)^{\circ} = R^{\circ} \cap S^{\circ}, (R \cup S)^{\circ} = R^{\circ} \cup S^{\circ}$

Example of calculation from the GC

Converse involution:

$$(R^{\circ})^{\circ} = R \tag{8}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Indirect proof of (8):

 $(R^{\circ})^{\circ} \subseteq Y$ $\equiv \{ \circ \text{-universal } X^{\circ} \subseteq Y \equiv X \subseteq Y^{\circ} \text{ for } X := R^{\circ} \}$ $R^{\circ} \subseteq Y^{\circ}$ $\equiv \{ \circ \text{-monotonicity} \}$ $R \subseteq Y$ $\vdots \{ \text{ indirection} \}$ $(R^{\circ})^{\circ} = R$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Functions

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f = g^{\flat}$	$g=f^{\sharp}$	Obs.
shunting rule	$(h \cdot)$	$(h^{\circ}\cdot)$	NB: <i>h</i> is a function
"converse" shunting rule	$(\cdot h^\circ)$	(·h)	NB: <i>h</i> is a function

Consequences:

Functional equality: $h \subseteq g \equiv h = k \equiv h \supseteq k$ Functional division: $h^{\circ} \cdot R = h \setminus R$

Question: what does $h \setminus R$ mean?

Relational division

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f = g^{\flat}$	$g=f^{\sharp}$	Obs.
left-division	$(R\cdot)$	$(R \setminus)$	left-factor
right-division	$(\cdot R)$	(/ R)	right-factor

that is,

$R \cdot X \subseteq Y \equiv X \subseteq R \setminus Y$	(9)
$X \cdot R \subseteq Y \equiv X \subseteq Y / R$	(10)

Immediate: $(R \cdot)$ and $(\cdot R)$ distribute over union:

 $R \cdot (S \cup T) = (R \cdot S) \cup (R \cdot T)$ (S \cup T) \cdot R = (S \cdot R) \cup (T \cdot R)

Some intuition about relational division operators follows.

Relational (left) division

Left division abstracts a (pointwise) universal quantification

$$A \stackrel{R \setminus S}{\underset{R}{\swarrow} \subseteq s} C \qquad a(R \setminus S)c \equiv \langle \forall \ b \ : \ b \ R \ a \ : \ b \ S \ c \rangle \quad (11)$$

Example:

b R a = flight *b* carries passenger *a b S c* = flight *b* belongs to air-company *c a* $(R \setminus S)$ *c* = passenger *a* is faithful to company *c*, that is, (s)he only flies company *c*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Relational (right) division

By taking converses we arrive at $S / R = (R^{\circ} \setminus S^{\circ})^{\circ}$:

 $X \subseteq S / R$ { Galois connection $((\cdot R), (/R))$ } \equiv $X \cdot R \subseteq S$ \equiv { converses } $R^{\circ} \cdot X^{\circ} \subset S^{\circ}$ { Galois connection $((R \cdot), (R \setminus))$ } \equiv $X^\circ \subset R^\circ \setminus S^\circ$ { converses } \equiv $X \subseteq (R^{\circ} \setminus S^{\circ})^{\circ}$ { indirection } :: $S / R = (R^{\circ} \setminus S^{\circ})^{\circ}$

Appendix III

Relational (right) division

Therefore:

c(S / R)a \equiv { above } $a(R^{\circ} \setminus S^{\circ})c$ { (11) } ≡ $\langle \forall b : b R^{\circ}a : b S^{\circ}c \rangle$ \equiv { converses } $\langle \forall b : a R b : c S b \rangle$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix II

Appendix III

Domain and range

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f = g^{\flat}$	$g=f^{\sharp}$	Obs.
domain	δ	$(\top \cdot)$	lower \subseteq restricted to coreflexives
range	ρ	$(\cdot \top)$	lower \subseteq restricted to coreflexives

Thus

$\delta R \subseteq \Phi$	≡	$R \subseteq \top \cdot \Phi$	(12)
$\rho R \subseteq \Phi$	≡	$R\subseteq \Phi\cdot op$	(13)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

etc.

Domain and split

The following fact holds:

 $\langle R, S \rangle^{\circ} \cdot \langle X, Y \rangle = (R^{\circ} \cdot X) \cap (S^{\circ} \cdot Y)$

Corollary:

 $\delta R = \ker \langle id, R \rangle$

Another consequence of the fact above:

 $\ker R \subseteq \ker (S \cdot R) \iff S \text{ entire}$

Corollary:

 $\ker R \subseteq \ker (f \cdot R)$

Appendix I

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Appendix I

Handling Hoare triples in relation algebra

We finally show to handle Hoare triples such as

$$\{p\}P\{q\} \tag{14}$$

in pointfree, relation algebra. First we spell out the meaning of (14):

$$\langle \forall s : p s : \langle \forall s' : s \xrightarrow{P} s' : q s' \rangle \rangle$$
 (15)

Then (recording the meaning of program P as relation $[\![P]\!]$ on program states) we PF-transform (15) into

$$\Phi_{\rho} \subseteq \llbracket P \rrbracket \setminus (\Phi_{q} \cdot \top) \tag{16}$$

thanks to (11) and then to...

Relationship with Hoare Logic

$$\llbracket P \rrbracket \cdot \Phi_p \subseteq \Phi_q \cdot \top \tag{17}$$

thanks to (9). By putting (17) and the meaning of $\Phi_q \leftarrow \frac{f}{\Phi_p}$,

$$f \cdot \Phi_p \subseteq \Phi_p \cdot \top \tag{18}$$

we realize both share the same scheme,

$$\mathsf{R} \cdot \mathsf{\Phi} \subseteq \Psi \cdot \top \tag{19}$$

which is equivalent to

 $R \cdot \Phi \subseteq \Psi \cdot R \tag{20}$

(tell why) and which one can condense into notation

Relationship with Hoare Logic

All in all

- Notation (21) can be regarded as the type assertion that, if fed with values (or starting on states) "of type Φ" computation *P* yields results (changes to states) "of type Ψ" (if it terminates).
- We see that functional *predicative types* and Hoare Logic are one and the same device: a way to **type** computations, be them specified as (allways terminating, deterministic) functions or encoded into (possibly non-terminating, non-deterministic) programs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Appendix II

"Al-djabr" calculation of algorithms

The next slides show how the well-known algorithm implementing whole division,

 $n \div d$ = if n < d then 0 else $(n - d) \div d + 1$

can be inferred from "al-djabr" rule (3) via indirect equality, in two parts:

1. case $n \ge d$ 2. case n < d

.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Calculation of $n \div d$ case $n \ge d$

 $q \leq n \div d$ \equiv { rule (3) assuming d > 0 } $q \times d < n$ \equiv { cancellation } $a \times d - d \leq n - d$ \equiv { distribution law } $(a-1) \times d \leq n-d$ $\{$ (3) again, assuming $n \ge d$ $\}$ ≡ $q-1 \leq (n-d) \div d$ \equiv { trading -1 to the right } $q \leq (n-d) \div d+1$

Calculation of $n \div d$ case n < d

That is, every natural number q which is at most $n \div d$ (for $n \ge d$) is also at most $(n - d) \div d + 1$ and vice versa. We conclude that the two expressions are the same

$$n \div d = (n-d) \div d + 1 \tag{22}$$

for $n \ge d$. For n < d, we reason in the same style:

$$q \le n \div d$$

$$\equiv \{ (3) \text{ and transitivity, since } n < d \}$$

$$q \times d \le n \land q \times d < d$$

$$\equiv \{ \text{ since } d \neq 0 \}$$

$$q \times d \le n \land q \le 0$$

$$\equiv \{ q \le 0 \text{ entails } q \times d \le n, \text{ since } 0 \le n \}$$

$$q \le 0$$

If-then-else's — eventually!

So, in case n < d, we have

```
q \leq n \div d \equiv q \leq 0
```

By indirect equality, we get, for this case

 $n \div d \equiv 0$

In other words, we have calculated the **then** and **else**-parts of the algorithm:

 $n \div d$ = if n < d then 0 else $(n-d) \div d + 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Appendix III

Modular law

Dedekind's rule, also known as the modular law:

$$R \cdot S \cap T \subseteq R \cdot (S \cap R^{\circ} \cdot T)$$
(23)

cf. analogy with $ab + c \leq a(b + a^{-1}c)$. Dually (apply converses and rename):

$$(R \cdot S) \cap T \subseteq (R \cap (T \cdot S^{\circ})) \cdot S$$
(24)

Symmetrical equivalent statement:

 $(R \cdot S) \cap T \subseteq (R \cap (T \cdot S^{\circ})) \cdot (S \cap (R^{\circ} \cdot T))$ (25)

= "weak right-distribution of meet over composition".