PF-transform: using Galois connections to structure relational algebra

J.N. Oliveira
Dept. Informática,
Universidade do Minho
Braga, Portugal

DI/UM, 2008 (updated: Dec. 2009, Nov. 2010)

Why Galois connections?

We motivate this subject by placing some very general questions:

- Why is programming, or systems design "difficult"?
- Is there a generic skill, or competence, that one such acquire to become a "good programmer"?

What makes programming difficult?

- Technology (mess) - don't fall in the trap: simply abstract from it!
- Requirements - again abstract from these as much as possible - write formal models or specs

Specifications:

- What is it that makes the specification of a problem hard to fulfill?

Problems $=$ Easy + Hard

Superlatives in problem statements, eg.

- "... the smallest such number"
- "... the longest such list"
- "... the best approximation"
suggest two layers in specifications:
- the easy layer - broad class of solutions (eg. a prefix of a list)
- the difficult layer - requires one particular such solution regarded as optimal in some sense (eg. "shortest with maximal density").

Example

Requirements for whole division $x \div y$:

- Write a program which computes number z which, multiplied by y, approximates x.
- Check your program with the following test data:
$x, y, z=7,2,1$
$x, y, z=7,2,2$
- Ups! Forgot to tell that I want the largest such number (sorry!):

Deriving the algorithm... from what?

Example

Requirements for whole division $x \div y$:

- Write a program which computes number z which, multiplied by y, approximates x.
- Check your program with the following test data:
$x, y, z=7,2,1$
$x, y, z=7,2,2$
- Ups! Forgot to tell that I want the largest such number (sorry!):
$x, y, z=7,2,3$

Deriving the algorithm... from what?
... where is the formal specification of $x \div y$?

Example - writing a spec

First version (literal):

$$
\begin{equation*}
x \div y=\langle\bigvee z:: z \times y \leq x\rangle \tag{1}
\end{equation*}
$$

Second version (involved):

$$
\begin{equation*}
z=x \div y \equiv\langle\exists r: 0 \leq r<y: x=z \times y+r\rangle \tag{2}
\end{equation*}
$$

Third version (clever!):

$$
\begin{equation*}
z \times y \leq x \equiv z \leq x \div y \quad(y>0) \tag{3}
\end{equation*}
$$

- a Galois connection.

Why (3) is better than (1,2)

It captures the requirements:

- It is a solution: $x \div y$ multiplied by y approximates x

$$
(x \div y) \times y \leq x
$$

$$
\text { (let } z:=x \div y \text { in (3) and simplify) }
$$

- It is the best solution because it provides the largest such number:

$$
z \times y \leq x \Rightarrow z \leq x \div y \quad(y>0)
$$

(the \Rightarrow part of \equiv).

Main advantage:
Highly calculational! See the next example.

Proving $(n \div m) \div d=n \div(d \times m)$

$$
\begin{aligned}
& q \leq(n \div m) \div d \\
& \equiv \quad\{\text { "al-djabr" (3) \} } \\
& q \times d \leq n \div m \\
& \equiv \quad\{\text { "al-djabr" (3) \} } \\
& (q \times d) \times m \leq n \\
& \equiv \quad\{\times \text { is associative }\} \\
& q \times(d \times m) \leq n \\
& \equiv \quad\{\text { "al-djabr" (3) \} } \\
& q \leq n \div(d \times m) \\
& :: \quad\{\text { indirection }\} \\
& (n \div m) \div d=n \div(d \times m)
\end{aligned}
$$

(Generic) indirect equality

Note the use of indirect equality rule

$$
(q \leq x \equiv q \leq y) \equiv(x=y)
$$

valid for \leq any partial order.
Exercise 1: Derive from (3) the two cancellation laws

$$
\begin{align*}
q & \leq(q \times d) \div d \tag{4}\\
(n \div d) \times d & \leq n \tag{5}
\end{align*}
$$

and reflexion law:

$$
\begin{equation*}
n \div d \geq 1 \equiv d \leq n \tag{6}
\end{equation*}
$$

Galois connections

$n \div d$ is an example of operation involved in a Galois connection:

$$
\underbrace{q \times d}_{f q} \leq n \equiv q \leq \underbrace{n \div d}_{g n}
$$

In general, for preorders (A, \leq) and (B, \sqsubseteq) and

(f, g) are Galois connected iff...

Galois adjoints

$$
\underbrace{f}_{\text {ver adjoint }} b \leq a \equiv b \sqsubseteq \underbrace{g}_{\text {upper adjoint }} a
$$

that is

$$
f^{\circ} \cdot \leq=\sqsubseteq \cdot g
$$

Remarks:

- Galois (connected) adjoints enjoy a number of interesting generic properties
- Very elegant - calculational - way of performing equational reasoning (including logical deduction)

Basic properties

Cancellation:

$$
(f \cdot g) a \leq a \quad \text { and } \quad b \sqsubseteq(g \cdot f) b
$$

Distribution (in case of lattice structures):

$$
\begin{aligned}
f\left(a \sqcup a^{\prime}\right) & =(f a) \vee\left(f a^{\prime}\right) \\
g\left(b \wedge b^{\prime}\right) & =(g b) \sqcap\left(g b^{\prime}\right)
\end{aligned}
$$

Conversely,

- If f distributes over \sqcup then it has an upper adjoint $g\left(f^{\#}\right)$
- If g distributes over \wedge then it has a lower adjoint $f\left(g^{b}\right)$

Other properties

If (f, g) are Galois connected,

- $f(g)$ uniquely determines $g(f)$ - thus the ${ }_{-}^{b}, __{-}^{\sharp}$ notations
- f and g are monotonic
- (g, f) are also Galois connected - just reverse the orderings
- $f=f \cdot g \cdot f$ and $g=g \cdot f \cdot g$
etc

Summary

$(f \quad b) \leq a \equiv b \sqsubseteq\left(\begin{array}{l}\text { g a }\end{array}\right)$		
Description	$f=g^{\text {b }}$	$g=f^{\sharp}$
Definition	$f b=\bigwedge\{a: b \sqsubseteq g a\}$	$g a=\bigsqcup\{b: f b \leq a\}$
Cancellation	$f(\mathrm{ga}) \leq \mathrm{a}$	$b \sqsubseteq g(f b)$
Distribution	$f\left(b \sqcup b^{\prime}\right)=(f b) \vee\left(f b^{\prime}\right)$	$g\left(a^{\prime} \sqcap a\right)=\left(\begin{array}{l}\text { a }\end{array} a^{\prime}\right) \sqcap(\mathrm{g} a)$
Monotonicity	$b \sqsubseteq b^{\prime} \Rightarrow f b \leq f b^{\prime}$	$a \leq a^{\prime} \Rightarrow g a \sqsubseteq g a^{\prime}$

In the sequel we will re-interpret the relational operators we've seen so far as Galois adjoints.

Examples

Not only

$$
\underbrace{(d \times) q}_{f q} \leq n \equiv q \leq \underbrace{n(\div d)}_{g n}
$$

but also the two shunting rules,

$$
\begin{aligned}
& \underbrace{(h \cdot) X}_{f X} \subseteq Y \equiv X \subseteq \underbrace{\left(h^{\circ} \cdot\right) Y}_{g Y} \\
& \underbrace{X\left(\cdot h^{\circ}\right)}_{f X} \subseteq Y \equiv X \subseteq \underbrace{Y(\cdot h)}_{g Y}
\end{aligned}
$$

as well as converse,

$$
\underbrace{X^{\circ}}_{f X} \subseteq Y \equiv X \subseteq \underbrace{Y^{\circ}}_{g Y}
$$

and so and so forth - see the next two slides.

Converse

$(f X) \subseteq Y \equiv X \subseteq(g)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
converse	$(-)^{\circ}$	$(-)^{\circ}$	$b R^{\circ} a \equiv a R b$

Thus:
Cancellation $\quad\left(R^{\circ}\right)^{\circ}=R$
Monotonicity $\quad R \subseteq S \equiv R^{\circ} \subseteq S^{\circ}$
Distributions $\quad(R \cap S)^{\circ}=R^{\circ} \cap S^{\circ},(R \cup S)^{\circ}=R^{\circ} \cup S^{\circ}$

Example of calculation from the GC

Converse involution:

$$
\begin{equation*}
\left(R^{\circ}\right)^{\circ}=R \tag{8}
\end{equation*}
$$

Indirect proof of (8):

$$
\begin{aligned}
& \left(R^{\circ}\right)^{\circ} \subseteq Y \\
\equiv & \quad\left\{{ }^{\circ} \text {-universal } X^{\circ} \subseteq Y \equiv X \subseteq Y^{\circ} \text { for } X:=R^{\circ}\right\} \\
& R^{\circ} \subseteq Y^{\circ} \\
\equiv & \quad\left\{{ }^{\circ} \text {-monotonicity }\right\} \\
& R \subseteq Y \\
:: & \{\text { indirection }\} \\
& \left(R^{\circ}\right)^{\circ}=R
\end{aligned}
$$

Functions

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
shunting rule	$(h \cdot)$	$\left(h^{\circ}\right)$	NB: h is a function
"converse" shunting rule	$\left(\cdot h^{\circ}\right)$	$(\cdot h)$	NB: h is a function

Consequences:
Functional equality:

$$
h \subseteq g \equiv h=k \quad \equiv h \supseteq k
$$

Functional division: $\quad h^{\circ} \cdot R=h \backslash R$
Question: what does $h \backslash R$ mean?

Relational division

$(f X) \subseteq Y \equiv X \subseteq(g \quad Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
left-division	$(R \cdot)$	$(R \backslash)$	left-factor
right-division	$(\cdot R)$	$(/ R)$	right-factor

that is,

$$
\begin{align*}
& R \cdot X \subseteq Y \equiv X \subseteq R \backslash Y \tag{9}\\
& X \cdot R \subseteq Y \equiv X \subseteq Y / R \tag{10}
\end{align*}
$$

Immediate: $(R \cdot)$ and $(\cdot R)$ distribute over union:

$$
\begin{aligned}
& R \cdot(S \cup T)=(R \cdot S) \cup(R \cdot T) \\
& (S \cup T) \cdot R=(S \cdot R) \cup(T \cdot R)
\end{aligned}
$$

Some intuition about relational division operators follows.

Relational (left) division

Left division abstracts a (pointwise) universal quantification

Example:
$b R a=$ flight b carries passenger a
$b S c=$ flight b belongs to air-company c
$a(R \backslash S) c=$ passenger a is faithful to company c, that is,
(s)he only flies company c.

Relational (right) division

By taking converses we arrive at $S / R=\left(R^{\circ} \backslash S^{\circ}\right)^{\circ}$:

$$
\begin{array}{cc}
& X \subseteq S / R \\
\equiv & \{\text { Galois connection }((\cdot R),(/ R))\} \\
\equiv & X \cdot R \subseteq S \\
& \{\text { converses }\} \\
& R^{\circ} \cdot X^{\circ} \subseteq S^{\circ} \\
\equiv & \{\text { Galois connection }((R \cdot),(R \backslash))\} \\
& X^{\circ} \subseteq R^{\circ} \backslash S^{\circ} \\
\equiv & \{\text { converses }\} \\
& X \subseteq\left(R^{\circ} \backslash S^{\circ}\right)^{\circ} \\
: & \{\text { indirection }\} \\
& S / R=\left(R^{\circ} \backslash S^{\circ}\right)^{\circ}
\end{array}
$$

Relational (right) division

Therefore:

$$
\begin{array}{ll}
& \begin{array}{c}
c(S / R) a \\
\{\text { above }\}
\end{array} \\
\equiv & \begin{array}{c}
a\left(R^{\circ} \backslash S^{\circ}\right) c
\end{array} \\
\{(11)\} \\
\equiv & \left\langle\forall b: b R^{\circ} a: b S^{\circ} c\right\rangle
\end{array} \quad\{\text { converses }\}
$$

Domain and range

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
domain	δ	$(T \cdot)$	lower \subseteq restricted to coreflexives
range	ρ	$(\cdot T)$	lower \subseteq restricted to coreflexives

Thus

$$
\begin{align*}
\delta R \subseteq \Phi & \equiv R \subseteq T \cdot \phi \tag{12}\\
\rho R \subseteq \Phi & \equiv R \subseteq \Phi \cdot T \tag{13}
\end{align*}
$$

etc.

Domain and split

The following fact holds:

$$
\langle R, S\rangle^{\circ} \cdot\langle X, Y\rangle=\left(R^{\circ} \cdot X\right) \cap\left(S^{\circ} \cdot Y\right)
$$

Corollary:

$$
\delta R=\operatorname{ker}\langle i d, R\rangle
$$

Another consequence of the fact above:

$$
\operatorname{ker} R \subseteq \operatorname{ker}(S \cdot R) \Leftarrow S \text { entire }
$$

Corollary:

$$
\operatorname{ker} R \subseteq \operatorname{ker}(f \cdot R)
$$

Appendix I

Handling Hoare triples in relation algebra

We finally show to handle Hoare triples such as

$$
\begin{equation*}
\{p\} P\{q\} \tag{14}
\end{equation*}
$$

in pointfree, relation algebra. First we spell out the meaning of (14):

$$
\begin{equation*}
\left\langle\forall s: p s:\left\langle\forall s^{\prime}: s \xrightarrow{P} s^{\prime}: q s^{\prime}\right\rangle\right\rangle \tag{15}
\end{equation*}
$$

Then (recording the meaning of program P as relation $\llbracket P \rrbracket$ on program states) we PF-transform (15) into

$$
\begin{equation*}
\Phi_{p} \subseteq \llbracket P \rrbracket \backslash\left(\Phi_{q} \cdot \top\right) \tag{16}
\end{equation*}
$$

thanks to (11) and then to...

Relationship with Hoare Logic

$$
\begin{equation*}
\llbracket P \rrbracket \cdot \Phi_{p} \subseteq \Phi_{q} \cdot T \tag{17}
\end{equation*}
$$

thanks to (9). By putting (17) and the meaning of $\Phi_{q}{ }^{f}{ }^{f} \Phi_{p}$,

$$
\begin{equation*}
f \cdot \Phi_{p} \subseteq \Phi_{p} \cdot \top \tag{18}
\end{equation*}
$$

we realize both share the same scheme,

$$
\begin{equation*}
R \cdot \Phi \subseteq \Psi \cdot \top \tag{19}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
R \cdot \Phi \subseteq \psi \cdot R \tag{20}
\end{equation*}
$$

(tell why) and which one can condense into notation

$$
\begin{equation*}
\Phi \xrightarrow{R} \psi \tag{21}
\end{equation*}
$$

Relationship with Hoare Logic

All in all

- Notation (21) can be regarded as the type assertion that, if fed with values (or starting on states) "of type Φ " computation P yields results (changes to states) "of type $\Psi "$ (if it terminates).
- We see that functional predicative types and Hoare Logic are one and the same device: a way to type computations, be them specified as (allways terminating, deterministic) functions or encoded into (possibly non-terminating, non-deterministic) programs.

Appendix II

"Al-djabr" calculation of algorithms

The next slides show how the well-known algorithm implementing whole division,

$$
n \div d=\text { if } n<d \text { then } 0 \text { else }(n-d) \div d+1
$$

can be inferred from "al-djabr" rule (3) via indirect equality, in two parts:

1. case $n \geq d$
2. case $n<d$

Calculation of $n \div d$ case $n \geq d$

$$
\begin{aligned}
& q \leq n \div d \\
& \equiv \quad\{\text { rule (3) assuming } d>0\} \\
& q \times d \leq n \\
& \equiv \quad\{\text { cancellation }\} \\
& q \times d-d \leq n-d \\
& \equiv \quad\{\text { distribution law }\} \\
& (q-1) \times d \leq n-d \\
& \equiv \quad\{\text { (3) again, assuming } n \geq d\} \\
& q-1 \leq(n-d) \div d \\
& \equiv \quad\{\text { trading }-1 \text { to the right }\} \\
& q \leq(n-d) \div d+1
\end{aligned}
$$

Calculation of $n \div d$ case $n<d$

That is, every natural number q which is at most $n \div d$ (for $n \geq d)$ is also at most $(n-d) \div d+1$ and vice versa. We conclude that the two expressions are the same

$$
\begin{equation*}
n \div d=(n-d) \div d+1 \tag{22}
\end{equation*}
$$

for $n \geq d$. For $n<d$, we reason in the same style:

$$
\begin{aligned}
& q \leq n \div d \\
& \equiv \quad\{(3) \text { and transitivity, since } n<d\} \\
& q \times d \leq n \wedge q \times d<d \\
& \equiv \quad\{\text { since } d \neq 0\} \\
& q \times d \leq n \wedge q \leq 0 \\
& \equiv \quad\{q \leq 0 \text { entails } q \times d \leq n \text {, since } 0 \leq n\} \\
& q \leq 0
\end{aligned}
$$

If-then-else's - eventually!

So, in case $n<d$, we have

$$
q \leq n \div d \equiv q \leq 0
$$

By indirect equality, we get, for this case

$$
n \div d \equiv 0
$$

In other words, we have calculated the then and else-parts of the algorithm:

$$
n \div d=\text { if } n<d \text { then } 0 \text { else }(n-d) \div d+1
$$

Appendix III

Modular law

Dedekind's rule, also known as the modular law:

$$
\begin{equation*}
R \cdot S \cap T \subseteq R \cdot\left(S \cap R^{\circ} \cdot T\right) \tag{23}
\end{equation*}
$$

cf. analogy with $a b+c \leq a\left(b+a^{-1} c\right)$. Dually (apply converses and rename):

$$
\begin{equation*}
(R \cdot S) \cap T \subseteq\left(R \cap\left(T \cdot S^{\circ}\right)\right) \cdot S \tag{24}
\end{equation*}
$$

Symmetrical equivalent statement:

$$
\begin{equation*}
(R \cdot S) \cap T \subseteq\left(R \cap\left(T \cdot S^{\circ}\right)\right) \cdot\left(S \cap\left(R^{\circ} \cdot T\right)\right) \tag{25}
\end{equation*}
$$

$=$ "weak right-distribution of meet over composition".

