
‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQSO - Teste e Qualidade de Software
(Software Testing and Quality)

Software Quality Concepts

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

It works!

� “When a developer says ‘it works’, he really means ‘it appears
to fulfill some requirement to some degree.’” (One or more
successes)

James Bach

� “When you hear someone say, ‘It works,’ immediately
translate that into, ‘We haven't tried very hard to make it fail,
and we haven't been running it very long or under very diverse
conditions, but so far we haven't seen any failures, though we
haven't been looking too closely, either.’ (Zero or more
successes)

Jerry Weinberg

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

What is software (product) quality?

� Quality

1. The degree to which a system, component, or process meets specified
requirements.

2. The degree to which a system, component, or process meets customer
or user needs or expectations.

[Source: IEEE Standard Glossary of Software Engineering Terminology (Std 610, 12-1990)]

3. the totality of characteristics of an entity that bear on its ability to
satisfy stated and implied needs

[Source: ISO 8402:1994, Quality management and quality assurance – Vocabulary]

� Quality = fitness for purpose

It is not enough to meet specifications, because they are imperfect

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Software quality attributes according to
the ISO/IEC 9126 standard

� Distinguishes three views of software product quality:
• Internal Quality

- is the totality of characteristics of the software product from an internal
view during its development or maintenance (e.g., code, architecture)

• External Quality
- is the totality of characteristics of the software product from an external

view during its execution

• Quality in Use
- is the user’s view of the quality of the software product when it is used in a

specific environment and a specific context of use. It measures the extent to
which users can achieve their goals in a particular environment, rather than
measuring the properties of the software itself (e.g., usability)

� Ideally, the internal quality determines the external quality and
external quality determines quality in use

� Standards:
• ISO/IEC 9126-1:2001 Software engineering -- Product quality -- Part 1: Quality model

• ISO/IEC TR 9126-2:2003 Software engineering -- Product quality -- Part 2: External metrics

• ISO/IEC TR 9126-3:2003 Software engineering -- Product quality -- Part 3: Internal metrics

• ISO/IEC TR 9126-4:2004 Software engineering -- Product quality -- Part 4: Quality in use metrics

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

ISO 9126-1:2001- Quality Model for
External and Internal Quality

subcharacteristics

characteristics

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

ISO 9126-1:2001- Quality model for
quality in use

The capability of
the software
product to enable
users to achieve
specified goals
with accuracy
and completeness
in a specified
context of use.

The capability of
the software
product to enable
users to expend
appropriate
amounts of
resources in
relation to the
effectiveness
achieved in a
specified context of
use.

The capability of
the software
product to achieve
acceptable levels
of risk of harm to
people, business,
software, property
or the
environment in a
specified context
of use.

The capability
of the software
product to
satisfy users in
a specified
context of use.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Quality attributes of critical systems

� Types of critical systems:
• Safety–critical system

- a system whose failure may result in injury, loss of life or major environment
damage, e.g., an insulin delivery system

• Mission-critical system
- a system whose failure may result in the failure of some goal-directed

activity, e.g., a navigational system for a space aircraft

• Business-critical system
- a system whose failure may result in the failure of the business using the

system, e.g., a customer account system in a bank, e.g., the web site of
Amazon

� Sometimes also called high-integrity systems

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Quality attributes of critical systems

� Main quality attributes required for critical systems are
usually grouped under the term “dependability”

� Dimensions of dependability:
• Reliability - The probability of failure-free system operation over a specified

time in a given environment for a given purpose

• Availability - The probability that a system, at a point in time, will be
operational and able to deliver the requested services

- It’s possibly to have high availability with low reliability if failures are repaired
quickly

• Safety - The system’s ability to operate, normally or abnormally, without danger
of causing human injury or death and without damage to the system’s
environment

• Security – The system’s ability to protect itself from accidental or deliberate
external attack

• Several authors also include maintainability

� RAMS = Reliability, Availability, Maintainability and Safety

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Type of defects
Orthogonal Defect Classification (ODC)

� Function - capability not implemented or implemented incorrectly

� Interface - problems in the way two separate pieces of logic
communicate

� Checking - validate data/values before use (incorrectly)

� Assignment - initialization

� Timing/serialization - management of shared/real-time resources

� Build/package/merge - problems with the use of libraries

� Documentation – problems (e.g., inconsistencies, incompleteness)
with documents

� Algorithm – such that does not imply changes in the architecture

[source: Metrics and Models in Software Quality Engineering]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Frequency of the main types of bugs?

Classificação
ODC (*)

Description Frequency

Algorithm
“execução incorrecta ou em falta que pode ser corrigida sem
ser necessário introduzir alterações arquitecturais no software”

43.4 %

Assignment “valores incorrectamente atribuídos ou não atribuídos” 22.0 %

Checking
“validação de dados incorrecta ou expressões condicionais
incorrectas”

17.5 %

Function
“falha que afecta uma quantidade considerável de código e
refere-se a uma capacidade do software que está em falta ou
construída incorrectamente”

8.7 %

Interface “interacção incorrecta entre módulos/componentes” 8.2 %

(*) Orthogonal Defect Classification (ODC)

[source:Henrique Madeira, Universidade de Coimbra]

IBM defect data:

Useful for review check-lists and
fault based testing!

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

What are the main sources of bugs?

[source: "Software Testing", Ron Patton]

Take more time to
get and understand
specifications!

What?

How?

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

The current status of software quality (1)

� Microsoft Windows XP End-User License Agreement:

11. LIMITED WARRANTY FOR PRODUCT ACQUIRED IN THE US AND
CANADA.

Microsoft warrants that the Product will perform substantially in
accordance with the accompanying materials for a period of
ninety days from the date of receipt.
(…)

YOUR EXCLUSIVE REMEDY. Microsoft's and its suppliers' entire
liability and your exclusive remedy shall be, at Microsoft's option
from time to time exercised subject to applicable law, (a) return of
the price paid (if any) for the Product, or (b) repair or
replacement of the Product, that does not meet this Limited
Warranty and that is returned to Microsoft with a copy of your
receipt.
(..)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

The current status of software quality (2)

[source: “Software Development Worldwide: The State of the Practice”, M. Cusumano (MIT), A. MacCormack
(Harvard Univ.), C. F. Kemerer (Pittsburgh Univ.), B. Crandall (HP), IEEE SOFTWARE, 2003]

1 (new?) LOC / programmer-month (considering the whole life cycle)
2 Number of defects/ KLOC reported by customers in the first year post delivery

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

The current status of software quality (3)

The Team Software
Process in Practice: A
Summary of Recent
Results, Noopur Davis,
Julia Mullaney, SEI,
September 2003

(~ 1 defect / 330 pages of
50 lines each)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

The importance of software quality (1)

[source: Watts Humphrey, “Winning with Software”, 2002]

We depend more and more on software …

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

The importance of software quality (2)

� Software size increases by a factor of 10 every 10 years …

• 50 KLOC - Word 3.0 for DOS

• 1 MLOC - Unix, System V, Release 4, 1990

• 10 MLOC – Linux, 2000

• 50 MLOC - Windows Vista, 2007

� 50 MLOC * 1 defect/KLOC = 50.000 defects in Windows Vista?

� Ideally: 1 defect / MLOC

KLOC = 1000 lines of code
MLOC = 1000000 lines of code

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Error, the brake system is not responding.

Please stop as soon as possible!

Abort Ignore Retry

Error ?

Tim Davis, Ford Motor Company, 27th International Conference on Software Engineering, 2005

The importance of software quality (3)

Impact on life and environment …

� According to the National Institute of Standards and Technology
(NIST), USA, direct costs of software error represent 0,6 % of GNP
(PIB) in the USA

[source: “The Economic Impacts of Inadequate Infrastructure for Software Testing”, NIST, May 2002]

Economic impact …

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Bad examples

� Intel gastou $475 m na correcção do erro da virgula flutuante do Pentium
em 1994 (Computer Science, Springer Verlag – 1995)

� PrimeCo Personal Communications cancelou contrato de $500M com
Motorola por causa de falhas (Wall Street Journal – 24/02/98)

� Time Warner Communications gastou $1B em sistema de informação para
tentar entrar no negócio residencial da rede telefónica (Computerworld –
05/05/97)

� National Bank of Australia perdeu $1,75B devido a erro não detectado
durante 2 anos (New York Times – Nov/01)

� Ariane 5 (10 anos de desenvolvimento no valor de $7B) com uma carga de
$500M, explodiu 40 segundos após lançamento. Módulo de software gerou
evento não tratado (ESA – 1996)

� Therac-25 ministrou doses incorrectas de Raios X em pacientes entre 1985 e
1987 – 6 mortes (IEEE Computer – 07/07/93)

� More and constant updates at http://www.risks.org

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Why quality pays

� Poor-quality software can be life-threatening

• Or mission/business/environment/economy-threatening …

� Quality work saves time and money

• E.g., with the PSP/TSP, defect density decreases by a factor of 10 while
productivity increases

� Quality work is more predictable

• The testing and repair effort of a bad quality product is unpredictable

• See TSP data

[Source: Watts Humphrey, “Winning with Software”, 2002]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Quality costs

� Costs of conformance
• All costs associated with planning and running tests (and

revisions) just one time

� Costs of nonconformance
• Costs due to internal failures (before release)

- Cost of isolating, reporting and regression testing bugs (found before
the product is released) to assure that they're fixed (left-hand side
of fig. 1.2)

• Costs due to external failures (after release)
- If bugs are missed and make it through to the customers, the result

will be costly product support calls, possibly fixing, retesting, and
releasing the software, and – in a worst case-scenario – a product
recall or lawsuits (right-hand side of fig. 1.2)

[source: "Software Testing", Ron Patton]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Quality costs
Costs of nonconformance (1)

[source: "Software Project Survival Guide", Steve McConnell]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Quality costs
Quality is free!?

� In his book "Quality is Free: The Art of Making Quality
Certain", Philip Crosby argues that the costs of conformance
plus the costs of nonconformance due to internal failures is
(usually) less than the costs of nonconformance due to
external failures

[source: Ron Patton, "Software testing“]

costs of conformance
costs of nonconformance
due to external failurescosts of nonconformance

due to internal failures

+ <

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Software tests

� Dynamic V&V technique, concerned with exercising the system
under test with defined test cases and observing its behaviour to
discover defects (discrepancies between observed and expected
behaviour)

• Since exhaustive testing is usually impossible, “program testing can be used to
show the presence of bugs, but never to show their absence” [Dijkstra, 1972]

• Defect testing – find defects, using test data/test cases that have higher
probability of finding defects

� A secondarily goal is to increase the confidence on the software
correctness and to evaluate product quality

• Statistical testing – estimate the value of a software quality metric (efficiency,
availability, reliability, …), using representative test cases / test data

� Advantages: automation, ultimate validation technique, evaluation
of external quality attributes, …

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Tests and reviews along the software life cycle (2)

Specify
Requirements

Design

Code

Requirements
review

Design
review

Unit
test plan & test cases

review/audit

Execute
unit tests

Execute
integration tests

Execute
acceptance tests

System/acceptance
test plan & test cases

review/audit

Specify/Design Code
Unit tests

Execute
system tests

Integration
test plan & test cases

review/audit

Specify/Design Code
System/acceptance tests

Specify/Design Code
Integration tests

Code
reviews

The extended V-model of software development [I.Burnstein]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQSO - Teste e Qualidade de Software
(Software Testing and Quality)

Unit Testing

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Unit testing – definition (1)

� Unit testing: Testing of individual hardware or software units or
groups of related units [IEEE 90].

� Unit testing is a development procedure where programmers create
tests as they develop software. The tests are simple short tests that
test functionality of a particular unit or module of their code, such
as a class or function.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Unit testing – definition (2)

� Unit testing is a software development process in which the smallest
testable parts of an application, called units, are individually and
independently scrutinized for proper operation. This testing mode is
a component of Extreme Programming (XP), a pragmatic method of
software development that takes a meticulous approach to building
a product by means of continual testing and revision.

� A unit test is a piece of a code (usually a method) that invokes
another piece of code and checks the correctness of some
assumptions afterward. If the assumptions turn out to be wrong, the
unit test has failed. A “unit” is a method or function.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Unit testing

Specify
Requirements

Design

Code

Requirements
review

Design
review

Unit
test plan & test cases

review/audit

Execute
unit tests

Execute
integration tests

Execute
acceptance tests

System/acceptance
test plan & test cases

review/audit

Specify/Design Code
Unit tests

Execute
system tests

Integration
test plan & test cases

review/audit

Specify/Design Code
System/acceptance tests

Specify/Design Code
Integration tests

Code
reviews

The extended V-model of software development [I.Burnstein]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Benefits of unit testing

� Facilitates change

• Allows refactor code at a later date and make sure the module still
works correctly

� Simplifies integration

• Helps to eliminate uncertainty in the units themselves and can be used
in a bottom-up testing style approach. By testing the parts of a program
first and then testing the sum of its parts, integration testing becomes
much easier

� Documentation

• Provides a sort of living documentation of the system. Developers
looking to learn what functionality is provided by a unit and how to use
it can look at the unit tests to gain a basic understanding of the unit API

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

“Good” unit tests (1)

� What properties a unit test should have?
• It is automated and repeatable

• It is easy to implement

• Once it is written, it stays on for the future

• Anyone can run it

• It runs at the push of a button

• It runs quickly

� Unit tests are code …
• Maintanability

• Readability

• Correctness

• Documentation

• …

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

“Good” unit tests (2)

� Runs fast, runs fast, runs fast. If the tests are slow, they will not be run often.

� Separates or simulates environmental dependencies such as databases, file
systems, networks, queues, and so on. Tests that exercise these will not run
fast, and a failure does not give meaningful feedback about what the problem
actually is.

� Is very limited in scope. If the test fails, it is obvious where to look for the
problem. Use few Assert calls so that the offending code is obvious. It is
important to only test one thing in a single test.

� Runs and passes in isolation. If the tests require special environmental setup or
fail unexpectedly, then they are not good unit tests. Change them for simplicity
and reliability. Tests should run and pass on any machine. The "works on my box"
excuse doesn't work.

� Often uses stubs and mock objects. If the code being tested typically calls out
to a database or file system, these dependencies must be simulated, or mocked.
These dependencies will ordinarily be abstracted away by using interfaces.

� Clearly reveals its intention. Another developer can look at the test and
understand what is expected of the production code.

[http://msdn.microsoft.com/en-us/library/aa730844.aspx#guidelinesfortdd_topic3]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Separation of interface from
implementation

� Because some classes may have references to other classes,
testing a class can frequently spill over into testing another
class.

• Ex.: classes that depend on a database: in order to test the class, the
tester often writes code that interacts with the database.

� This is a mistake

• unit test should never go outside of its own class boundary.

� Abstract an interface around database connection and
implement it with your own mock objects

• the independent unit can be more thoroughly tested

• this results in a higher quality unit that is also more maintainable.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mock objects

� Mock objects are simulated objects that mimic the behavior of real
objects in controlled ways.

� Useful when a real object is impractical or impossible to incorporate
into a unit test. If an object has any of the following characteristics, it
may be useful to use a mock object in its place:

• supplies non-deterministic results (e.g., the current time or the current
temperature);

• has states that are difficult to create or reproduce (e.g., a network error);

• is slow (e.g., a complete database, which would have to be initialized before the
test);

• does not yet exist or may change behavior;

• would have to include information and methods exclusively for testing purposes
(and not for its actual task).

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mock objects (example)

� An alarm clock program which causes a bell to ring at a certain
time might get the current time from the outside world. To test
this, the test must wait until the alarm time to know whether it
has rung the bell correctly. If a mock object is used in place of
the real object, it can be programmed to provide the bell-ringing
time (whether it is actually that time or not) so that the alarm
clock program can be tested in isolation.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Some definitions

� Test driver – A software module or application used to invoke a test
item and, often, provide test inputs (data), control and monitor
execution. A test driver automates the execution of test procedures.

� Test Harness – A system of test drivers and other tools to support
test execution (e.g., stubs, executable test cases and test drivers).
The tool that actually executes the tests.

� Test Stubs – stubs simulate collaboration (an implementation of an
interface that returns hard-coded values) while mocks test
collaboration (an object which, in addition to implementing the
interface and returning meaningful values, allows for verification
that the correct calls were made upon the object, perhaps in the
correct order; to verify the interaction between two classes).

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Six rules of unit testing

� Write the test first

� Never write a test that succeeds the first time

� Start with the null case, or something that doesn't work

� Don't be afraid of doing something trivial to make the test
work

� Loose coupling and testability go hand in hand

� Use mock objects

[http://radio.weblogs.com/0100190/stories/2002/07/25/sixRulesOfUnitTesting.html]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Limitations of unit testing (1)

� Testing, in general, cannot be expected to catch every error
in the program. Unit tests can only show the presence of
errors; it cannot show the absence of errors.

� It only tests the functionality of the units themselves.

� It may not catch integration errors, performance problems, or
other system-wide issues.

� Unit testing is more effective if it is used in conjunction with
other software testing activities.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Limitations of unit testing (2)

� Software testing is a combinatorial problem.

• For example, every boolean decision statement requires at least
two tests: one with an outcome of "true" and one with an
outcome of "false". As a result, for every line of code written,
programmers often need 3 to 5 lines of test code. Therefore, it
is unrealistic to test all possible input combinations for any non-
trivial piece of software without an automated characterization
test generation tool such as JUnit Factory used with Java code or
many of the tools listed in List of unit testing frameworks.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Limitations of unit testing (3)

� To obtain the intended benefits from unit testing use of a
version control system is essential

• If a later version of the unit fails a particular test that it had previously
passed, the version-control software can provide a list of the source
code changes (if any) that have been applied to the unit since that time.

� It is also essential to implement a sustainable process for
ensuring that test case failures are reviewed daily and
addressed immediately

• If such a process is not implemented and ingrained into the team's
workflow, the application will evolve out of sync with the unit test
suite—- increasing false positives and reducing the effectiveness of the
test suite.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Unit testing frameworks

� Help simplify the process of unit testing

• Log test cases that fail

• Automatically flag and report in a summary these failed test cases.

• Depending upon the severity of a failure, the framework may halt
subsequent testing.

� Examples

• JUnit

• JTest

• NUnit

• MbUnit

• …

[http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test fixture

� Test fixture refers to the fixed state used as a baseline for
running tests in software testing. The purpose of a test fixture
is to ensure that there is a well known and fixed environment
in which tests are run so that results are repeatable. Some
people call this the test context.

� Examples of fixtures:

• loading a database with a specific, known set of data

• erasing a hard disk and installing a known clean operating system
installation

• copying a specific known set of files

• preparation of input data and setup/creation of fake or mock objects

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Setup and teardown (1)

� You want to avoid duplicated code when several
tests share the same initialization and cleanup code.

� … before and after each test method inside a test
class

• JUnit: Use the setUp() and tearDown() methods. Both of these
methods are part of the junit.framework.TestCase class.

• NUnit: build methods and annotate them with SetUp and
TearDown tags

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Setup and teardown (2)

� …. One-time set ut and tear down

• You want to run some setup code one time and then run several
tests. You only want to run your cleanup code after all of the
tests are finished, ex.: establish a database connection.

• JUnit: Use the junit.extensions.TestSetup class to define test
suites

- Pass a TestSuite to the TestSetup constructor. This means that
TestSetup’s setUp() method is called once before the entire suite,
and tearDown() is called once afterwards.

TestSetup setup = new TestSetup(new TestSuite(TestPerson.class)) {…}

• NUnit: methods annotated with TestFixtureSetup and
TestFixtureTearDown attributes.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Mutation Testing

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation Testing

� Mutation testing is a fault-based testing technique that is
based on the assumption that a program is well tested if all
simple faults are predicted and removed; complex faults are
coupled with simple faults and are thus detected by tests that
detect simple faults.

� Mutation testing is used to test the quality of your test suite.
This is done by mutating certain statements in your source
code and checking if your test code is able to find the errors.

• How do you know that you can trust your unit tests?

• How do you know that they’re really telling you the truth?

• If they don't find a bug, does that really mean that there aren't any?

• What if you could test your tests?

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing

� Mutation testing is a method of software testing, which
involves modifying program's source code or byte code in small
ways. In short, any tests which pass after code has been
mutated are defective. These, so-called mutations, are based
on well-defined mutation operators that either mimic typical
programming errors (such as using the wrong operator or
variable name) or force the creation of valuable tests (such as
driving each expression to zero). The purpose is to help the
tester develop effective tests or locate weaknesses in the test
data used for the program or in sections of the code that are
seldom or never accessed during execution.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing

� Mutation Testing is the process of generating tests to improve
the mutation analysis score.

� Mutation Analysis is the process of measuring how good a test
set is (how many mutations it kills).

� The mutation score is the ratio of dead mutants over the
total number of non-equivalent mutants. Thus, the tester's
goal is to raise the mutation score to 1.00, indicating that all
mutants have been detected. A test set that kills all the
mutants is said to be adequate relative to the mutants. If (as
is likely) mutants are still alive, the tester can enhance the
set of test cases by supplying new inputs.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing

� A mutation operator is a rule that is applied to a program to
create mutants. Typical mutation operators, for example,
replace each operand by every other syntactically legal operand,
or modify expressions by replacing operators and inserting new
operators, or delete entire statements.

� Examples of traditional mutation operators

• Statement deletion.

• Replace each Boolean sub-expression with true and false.

• Replace each arithmetic operation with another one, e.g. + with *, - and /.

• Replace each Boolean relation with another one, e.g. > with >=, == and <=.

• Replace each variable with another variable declared in the same scope
(variable types should be the same).

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Method-level Mutation Operators

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation operators

� Beside this, there are mutation operators for object-oriented
languages, for concurrent constructions, complex objects like
containers etc. They are called class-level mutation
operators.

� For example, muJava classifies class mutation operators into
four groups: Encapsulation, Inheritance, Polymorphism and
Java-Specific Features.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Inter-Class Mutation Operators

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing process

Automated step

Manual step

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing process

� Starts with a code component and its associated test cases (in
a state such that the code passes all test cases)

� The original code component is modified in a simple way
(replace operators, constants, etc.) to provide a set of similar
components that are called mutants, based on typical errors

� The original test cases are run with each mutant

� Live mutants cannot be distinguished from the original
program (parent)

� Distinguishing a mutant from its parent is referred to as killing
such mutant

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing process

� If a mutant remains live (passes all the test cases), then either
the mutant is equivalent to the parent (and is ignored), or it is
not equivalent, in which case additional test cases should be
developed in order to kill such mutant

� The rate of mutants "killed" (after removing mutants that are
equivalent to the original code) gives an indication of the rate
of undetected defects that may exist in the original code

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Weak/Strong mutation testing

if (a && b) c=1; else c=0;

� The condition mutation operator would replace ‘&&’ with ‘||’
and produce the following mutant:

if (a || b) c=1; else c=0;

� Now, for the test to kill this mutant, the following condition
should be met:

• (1) Test input data should cause different program states for the mutant
and the original program. For example, a test with a=1 and b=0 would
do this.

• (2) The value of ‘c’ should be propagated to the program’s output and
checked by the testing.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Weak/Strong mutation testing

� Weak mutation testing (or weak mutation coverage) requires
that only the first condition is satisfied. Strong mutation
testing requires that both conditions are satisfied. Strong
mutation is more powerful, since it ensures that the test suite
can really catch the problems. Weak mutation is closely
related to code coverage methods. It requires much less
computing power to ensure that the test suite satisfies weak
mutation testing than strong mutation testing.

� Weak Mutation Testing is a coverage measure - i.e. tells you
about the code that is run by your tests.

� Strong Mutation Testing measures whether your code needs
to be like it is to pass the tests.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalent mutants

� Many mutation operators can produce equivalent mutants. For
example, boolean relation mutation operator will replace
“==“ with ">=" and produce the following mutant:

original mutant

� However, it is not possible to find a test case which could kill
this mutant. The resulting program is equivalent to the
original one. Such mutants are called equivalent mutants.

int index=0;
while (…) { …;

index++;
if (index>=10)

break;
}

int index=0;
while (…) { …;

index++;
if (index==10)

break;
}

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalent mutants

� Equivalent mutants detection is one of biggest obstacles for
practical usage of mutation testing. The effort, needed to
check if mutants are equivalent or not, can be very high even
for small programs.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Computational effort

� One of the barriers to the practical use of mutation testing is
the unacceptable computational expense of generating and
running vast numbers of mutant programs against the test
cases. The number of mutants generated for a software unit is
proportional to the product of the number of data references
and the number of data objects. Typically, this is a large
number for even small software units. Because each mutant
program must be executed against at least one, and
potentially many, test cases, mutation analysis requires large
amounts of computation.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Computational effort

� Approaches to reduce this computational expense usually
follow one of three strategies: do fewer, do smarter, or do
faster.

• The do fewer approaches seek ways of running fewer mutant programs
without incurring intolerable information loss.

• The do smarter approaches seek to distribute the computational
expense over several machines or factor the expense over several
executions by retaining state information between runs or seek to avoid
complete execution.

• The do faster approaches focus on ways of generating and running each
mutant program as quickly as possible.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Tools

� Mothra

� Proteum

� muJava

� MuClipse

� Jumble

� JesTer (for Java)

� PesTer (for Python)

� SQLMutation

� Nester (for C#)

� …

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercises

1: Bool A,B,C; Int V;
2: read(A);read(B);read(C);read(V);
3: while (V<20) {
4: if (A /\ (B \/ C))
5: V:= V+5;
6: if (A /\ ~B)
7: V:=V+10;
8: }
9: print V;

• Conceba casos de teste (com grau de cobertura de 100%) para o programa
considerando os seguintes mutantes. Indique qual o valor retornado pelo
programa em cada um desses casos de teste.

Id Mutação

1 3: while (V<=20) A=T; B=T; C=T; V=20; R=20 ;R’=25

2 4: if (A \/ (B \/ C)) A=F; B=F; C=T ;V=15; R=“loop” ;R’=20

3 6: if (A \/ ~B) A=F; B=F; C=T ;V=15; R=“loop” ;R’=25

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Integration testing

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Integration testing

� Testing of groups of components integrated to create a sub-
system. Components should be tested previously.

� Usually the responsibility of an independent testing team
(except sometimes in small projects)

� Integration testing should be black-box testing with tests
derived from the technical specification

� A principal goal is to detect defects that occur on the
interfaces of units

� Main difficulty is localising errors

� Incremental integration testing (as opposed to big-bang
integration testing) reduces this difficulty

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Interfaces types

� Parameter interfaces

• Data passed from one procedure to another

� Shared memory interfaces

• Block of memory is shared between procedures

� Procedural interfaces

• Sub-system encapsulates a set of procedures to be called by other
sub-systems

� Message passing interfaces

• Sub-systems request services from other sub-systems

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Interface errors

� Interface misuse

• A calling component calls another component and makes an error
in its use of its interface e.g. parameters in the wrong order

� Interface misunderstanding

• A calling component embeds assumptions about the behaviour of
the called component which are incorrect

� Timing errors

• The called and the calling component operate at different speeds
and out-of-date information is accessed

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Interface testing guidelines

� Design tests so that parameters to a called procedure are
at the extreme ends of their ranges

� Always test pointer parameters with null pointers

� Design tests which cause the component to fail

� Use stress testing in message passing systems

� In shared memory systems, vary the order in which
components are activated

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test harness: drivers and stubs

� Test harness: auxiliary code
developed to support testing

� Test drivers

• Call the target code, simulating
calling units or a user

• In automatic testing:
implementation of test cases
and procedures

� Test stubs

• Simulate
modules/units/systems called
by the target code

• Mock objects can be used for
this purpose

Component under test

Test driver

Test stub

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Big-bang integration testing

Interfaces under test

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Incremental integration testing

� Top-down integration testing

• Start with high-level system and integrate from the top-down replacing individual
components by stubs where appropriate

� Bottom-up integration testing

• Integrate individual components in levels until the complete system is created

� Sandwich Testing

• Combination of Top-down with Bottom-up testing

� Collaboration integration testing

• Appropriate for iterative development strategies where software components are
created and fatten as new use cases are implemented (through a collaboration of
objects and components)

• Scenario based testing

� The integration testing strategy must follow the software
construction strategy

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Bottom-up integration testing
T
im

e

interfaces under test

interfaces already tested

components under test
(in fact, unit testing…)

interfaces under test

components under test

components already tested

Test drivers

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Top-down integration testing
T
im

e
Test driver

Test stub

interfaces under test

interfaces under
test

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Top-down versus bottom-up

� Architectural validation

• Top-down integration testing is better at discovering errors in the
system architecture

� System demonstration

• Top-down integration testing allows a limited demonstration at an
early stage in the development

� Test implementation

• Top-down integration requires the development of complex stubs to
drive significant data upward while bottom-up integration requires
drivers. Often a combination of approaches known as sandwich

� Test observation

• Problems with both approaches. Extra code may be required to
observe tests

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Collaboration integration testing

Scope of collaboration 1
(typically a vertical slice)

Scope of collaboration 2

T
im

e

[source: Robert V. Binder]
Test driver

Test stub

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

System testing

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

System testing

� Testing the system as a whole by an independent testing team

� Often requires many resources: laboratory equipment, long test times, etc.

� Usually based on a requirements document, specifying both functional and
non-functional (quality) requirements

� Preparation should begin at the requirements phase with the development
of a master test plan and requirements-based tests (black-box tests)

� The goal is to ensure that the system performs according to its
requirements, by evaluating both functional behavior and quality
requirements such as reliability, usability, performance and security

� Especially useful for detecting external hardware and software interface
defects, for example, those causing race conditions, deadlocks, problems
with interrupts and exception handling, and ineffective memory usage

� Tests implemented on the parts and subsystems may be reused/repeated,
and additional tests for the system as a whole may be designed

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Types of system testing

Fully integrated
software system

Functional
tests

Stress and
load tests

Security
tests

Configuration
testsPerformance

tests
Recovery

tests ...

Usage
profile

System tests

Test
team

User
Manuals

Require-
ments

Document

System ready for
acceptance testing

Reliability and
availability

tests

Usability and
accessibility

tests

tests applicable depend on the
characteristics of the system and the

available test resources

Test
results

GUI testing

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Functional testing

� Ensure that the behavior of the system adheres to the requirements
specification

� Black-box in nature

� Equivalence class partitioning, boundary-value analysis and state-
based testing are valuable techniques

� Document and track test coverage with a (tests to requirements)
traceability matrix

� A defined and documented form should be used for recording test
results from functional and other system tests

� Failures should be reported in test incident reports
• Useful for developers (together with test logs)

• Useful for managers for progress tracking and quality assurance purposes

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Performance testing

� Goals:
• See if the software meets the performance requirements

• See whether there are any hardware or software factors that impact on the
system's performance

• Provide valuable information to tune the system

• Predict the system's future performance levels

� Results of performance tests should be quantified, and the
corresponding environmental conditions should be recorded

� Resources usually needed
• a source of transactions to drive the experiments, typically a load generator

• an experimental test bed that includes hardware and software the system under
test interacts with

• instrumentation of probes that help to collect the performance data (event
logging, counting, sampling, memory allocation counters, etc.)

• a set of tools to collect, store, process and interpret data from probes

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Stress and load testing

� Load testing – maximize the load imposed on the system (volume of data,
number of users, ...)

• Examples:
- a system is required to handle 10 interrupts / second and the load causes 20 interrupts/second
- a suitcase being tested for strength and endurance is stomped by a multi tonne elephant
- testing a word processor by editing a very large document

� Stress testing – minimize the resources available to the system (processor,
memory, disk space, ...). Stress testing often uncovers race conditions,
deadlocks, depletion of resources in unusual or unplanned patterns, and
upsets in normal operation that are not revealed under normal testing
conditions

• Examples:
- run processes that consume resources (CPU, memory, disk, network) on the Web and database servers
- take the database offline, then restart it

� The goal is to try to break the system, find the circumstances under which it
will crash, and provide confidence that the system will continue to operate
correctly (possibly with bad performance but with correct functional
behavior) under conditions of stress

� Supported by many of the resources used for performance testing

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Configuration testing

� Configuration testing checks for failure of the system to perform under all
of the combinations of hw and sw configurations. Typical sw systems
interact with multiple hw devices such as disc drives, tape drives, and
printers.

� Objectives [Beizer]:

• show that all the configuration changing commands and menus work properly

• show that all interchangeable devices are really interchangeable, and that they each enter
the proper states for the specified conditions

• show that the systems' performance level is maintained when the devices are interchanged,
or when they fail

� Types of test to be performed:

• rotate and permute the positions of devices to ensure physical/logical device permutations
work for each device

• induce malfunctions in each device, to see if the system properly handles the malfunction

• induce multiple device malfunctions to see how the system reacts

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Security testing

� Evaluates system characteristics that relate to the availability,
integrity and confidentiality of system data and services

� Computer software and data can be compromised by
• criminals intent on doing damage, stealing data and information, causing denial

of service, invading privacy

• errors on the part of honest developers/maintainers (and users?) who modify,
destroy, or compromise data because of misinformation, misunderstandings,
and/or lack of knowledge

� Both can be perpetuated by those inside and outside on an
organization

� Areas to focus: password checking, legal and illegal entry with
passwords, password expiration, encryption, browsing, trap doors,
viruses, ...

� Usually the responsibility of a security specialist

� See Segurança em Sistemas Informáticos
(http://www.fe.up.pt/si/Disciplinas_geral.FormView?P_ANO_LECTIVO=2003/2004&P_CAD_CODIGO=EI1202&P_PERIODO=2S)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Recovery testing

� Drive a system to losses of resources in order to determine if
it can recover properly from these losses

� Especially important for transaction systems

� Example: loss of a device during a transaction

� Tests would determine if the system could return to a well-
known state, and that no transactions have been compromised

• Systems with automated recovery are designed for this purpose

� Areas to focus [Beizer]:
• Restart – the ability of the system to restart properly on the last

checkpoint after a loss of a device

• Switchover – the ability of the system to switch to a new processor, as a
result of a command or a detection of a faulty processor by a monitor

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Reliability and availability testing

� Software reliability is the probability that a software system will operate
without failure under given conditions for a given interval

• May be measured by the mean time between failures (MTBF)

• MTBF = MTTF (mean time to failure) + MTTR (mean time to repair)

� Software availability is the probability that a software system will be
available for use

• May be measured by the percentage of time the system is on or uptime (example: 99,9%)

• A = MTTR / MTBF

� Low reliability is compatible with high availability in case of low MTTR

� Requires statistical testing based on usage characteristics/profile

• During testing, the system is loaded according to the usage profile

� More information: Ilene Burnstein, section 12.5

� Usually evaluated only by high maturity organizations

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Usability and accessibility testing

� Usability tests are concerned with external
Properties: The user’s perspective:

•Satisfaction: subjective view (pleasant, comfortable,
intuitive, consistent)

•Reliable: refers to the errors a user can do when using
the system

•Learnability: time taken to learn how to use the
system

•Efficiency: how efficient a user can be when using the
system

� See also Interacção Pessoa Computador
http://www.fe.up.pt/si/Disciplinas_geral.FormView?P_ANO_LECTIVO=2003/2004&P_CAD_CODIGO=EI1108&P_PERIODO=1S

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Usability and accessibility testing

� Accessibility testing is the technique of making sure that your
product is accessibility compliant.

� Typical accessibility problems can be classified into following
four groups, each of them with different access difficulties
and issues:

• Visual impairments such as blindness, low or restricted vision, or color
blindness. User with visual impairments uses assistive technology
software that reads content loud. User with weak vision can also make
text larger with browser setting or magnificent setting of operating
system

• Motor skills such as the inability to use a keyboard or mouse, or to make
fine movements

• Hearing impairments such as reduced or total loss of hearing

• Cognitive abilities such as reading difficulties, dyslexia or memory loss

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

GUI testing: manual techniques

� Heuristic Methods

• A group of specialists studies the interface in order to find problems that they
can identify.

� Guidelines

• Recommendations about user interfaces. E.g.: how to organize the display and
the menu structure.

� Cognitive walkthrough

• The developers walk through the interface in the context of core tasks a typical
user will need to accomplish. The actions and the feedback of the interface are
compared to the user’s goals and knowledge, and discrepancies between user’s
expectations and the steps required by the interface are noted.

� Usability tests

• The interface is studied under real-world or controlled conditions (real users),
with evaluators gathering data on problems that arise during its use.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Automated GUI testing approaches

� Capture-Replay tools
- WinRunner, Rational Robot, Android

� Random input testing tools
- Rational’s TestFactory uses dumb monkey method

� Unit testing frameworks
- JUnit, NUnit

� Model-based testing tools
- Spec Explorer (API testing)
- Spec Explorer with GUI testing extensions
- Guitar (Atif Memon)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Acceptance testing

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Acceptance testing

� (1) Formal testing conducted to determine whether or not a
system satisfies its acceptance criteria and to enable the
customer to determine whether or not to accept the system.
(2) Formal testing conducted to enable a user, customer, or
other authorized entity to determine whether to accept a
system or component.

[IEEE Standard Glossary of Software Engineering Terminology 610.12-1990]

� Usually the responsibility of the customer -> costumer tests

� Tests are usually based on a requirements document or a user
manual

� A principal goal is to check if customer requirements and
expectations are met

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Regression testing

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Regression testing

� Regression testing is not a level of testing, but it is the
retesting of software that occurs when changes are made to
ensure that the new version of the software has retained the
capabilities of the old version and that no new defects have
been introduced due to the changes

� Regression tests are especially important when multiple
software releases are developed

� Sometimes the execution of all tests is not feasible so there is
the need to select a subset of those tests in order to reduce
the time for regression testing. Some techniques to support
such selection are execution trace, execution slice and test
prioritization [source: Aditya P. Mathur]

[Source: Burstein]

[Source: Burstein]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Test process

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test process

� Test planning and control

• Verifying the mission of testing, defining the objectives of testing and
the specification of test activities in order to meet the objectives and
mission

� Test analysis and design

• Activity where general testing objectives are transformed into tangible
test conditions and test cases

Test planning and control

Test analysis and
design

Test implementation
and execution

Evaluation exit
criteria and
reporting

Test closure

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test process

� Test implementation and execution

• Activity where test procedures or scripts are specified by combining the
test cases in a particular order and including any other information
needed for test execution, the environment is set up and tests are run

� Evaluation exit criteria and reporting

• Activity where test execution is assessed against the defined objectives.
Includes: checking test logs against exit criteria specified in test
planning; assessing if more tests are needed or the exit criteria should
be changed; write a summary report for stakeholders

Test planning and control

Test analysis and
design

Test implementation
and execution

Evaluation exit
criteria and
reporting

Test closure

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test process

� Test closures activities

• Collect data from completed test activities to consolidate experience,
testware, facts and numbers. Include:

- Checking which planned deliverables have been delivered, the closure of
incident reports or raising of change records for any that remain open, and
the documentation of the acceptance of the system

- Finalizing and archiving testware, the test environment and the test
infrastructure for later reuse

- Handover of testware to the maintenance organization
- Analyzing lessons learned for future releases and projects, and the

improvement of test maturity

Test planning and control

Test analysis and
design

Test implementation
and execution

Evaluation exit
criteria and
reporting

Test closure

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test planning

� One of the key ways of improving the chances of a successful
UAT (User acceptance testing) project is to have a good test
plan in place. The IEEE 829 document standard outlines the
sixteen key sections that should be in any test plan.

� User Acceptance Testing (UAT) is a process to obtain
confirmation by a Subject Matter Expert (SME), preferably
the owner or client of the object under test, through trial or
review, that the modification or addition meets mutually
agreed-upon requirements. In software development, UAT
is one of the final stages of a project and often occurs
before a client or customer accepts the new system.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test planning

Test
Policy

Test
Strategy

Acceptance Test
Plan

Sys. Int. Test
Plan

System Test
Plan

Project/Master
Test Plan

Comp. Int. Test
Plan

Component Test
Plan

Risk

Organization
level

Example: Peform manual tests

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test Policy

� The test policy describes the organization’s philosophy
toward testing (and possibly quality assurance). It is set down,
either in writing or by management direction, laying out the
overall objectives about testing that the organization wants to
achieve. This policy may be developed by the Information
Technology, Research and Development, or Product
Development department, but should reflect the
organizational values and goals as they relate to testing.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test Policy

� Where a written test policy exists, it may be a short, high-
level document that:

• Provides a definition of testing, such as building confidence that the
system works as intended and detecting defects.

• Lays out a fundamental test process, e.g., test planning and control,
test analysis and design, test implementation and execution, evaluating
of test exit criteria and test reporting, and, test closure activities.

• Describes how to evaluate the effectiveness and efficiency of testing,
e.g., the percentage of defects to be detected (Defect Detection
Percentage) and the relative cost of defects detected in testing as
opposed to after release.

• Defines desired quality targets, such as reliability (e.g., measured in
term of failure rate) or usability.

• Specifies activities for test process improvement, e.g., application of
the Test Maturity Model or Test Process Improvement model, or
implementation of recommendations from project retrospectives.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test Strategy

� The test strategy describes the organization’s methods of
testing, including product and project risk management, the
division of testing into levels, or phases, and the high-level
activities associated with testing. The test strategy, and the
process and activities described in it, should be consistent
with the test policy. It should provide the generic test
requirements for the organization or for one or more projects.

� Test strategies (also called test approaches) may be classified
based on when test design begins:

• Preventative strategies design tests early to prevent defects

• Reactive strategies where test design comes after the software or
system has been produced.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test Strategy

� Typical strategies (or approaches) include:

• Analytical strategies, such as risk-based testing

• Model-based strategies, such as operational profiling

• Methodical strategies, such as quality-characteristic based

• Process- or standard-compliant strategies, such as IEEE 829-based

• Dynamic and heuristic strategies, such as using bug-based attacks

• Consultative strategies, such as user-directed testing

• Regression testing strategies, such as extensive automation.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Project/Master Test Plan

� The master test plan describes the application of the test
strategy for a particular project, including the particular
levels to be carried out and the relationship among those
levels. The master test plan should be consistent with the test
policy and strategy, and, in specific areas where it is not,
should explain those deviations and exceptions. The master
test plan should complement the project plan or operations
guide in that it should describe the testing effort that is part
of the larger project or operation.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Project/Master Test Plan

� Typical topics for a master test plan include:

• Items to be tested and not to be tested

• Quality attributes to be tested and not to be tested

• Testing schedule and budget (which should be aligned with the project
or operational budget)

• Test execution cycles and their relationship to the software release plan

• Business justification for and value of testing

• Relationships and deliverables among testing and other people or
departments

• Definition of what test items are in scope and out of scope for each
level described

• Specific entry criteria, continuation (suspension/resumption) criteria,
and exit criteria for each level and the relationships among the levels

• Test project risk.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Risk analysis

� What if there isn't enough time for thorough testing?
Use risk analysis, along with discussion with project
stakeholders, to determine where testing should be focused.
Since it's rarely possible to test every possible aspect of an
application, every possible combination of events, every
dependency, or everything that could go wrong, risk analysis
is appropriate to most software development projects. This
requires judgment skills, common sense, and experience. (If
warranted, formal methods are also available.)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Risk analysis

� Risk analysis considerations can include:

• Which functionality is most important to the project's intended purpose?

• Which functionality is most visible to the user?

• Which functionality has the largest safety impact?

• Which functionality has the largest financial impact on users?

• Which aspects of the application are most important to the customer?

• Which aspects of the application can be tested early in the development cycle?

• Which parts of the code are most complex, and thus most subject to errors?

• Which parts of the application were developed in rush or panic mode?

• Which aspects of similar/related previous projects caused problems?

• Which aspects of similar/related previous projects had large maintenance expenses?

• Which parts of the requirements and design are unclear or poorly thought out?

• What do the developers think are the highest-risk aspects of the application?

• What kinds of problems would cause the worst publicity?

• What kinds of problems would cause the most customer service complaints?

• What kinds of tests could easily cover multiple functionalities?

• Which tests will have the best high-risk-coverage to time-required ratio?

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test planning

� Test planning is influenced by

• The test policy of the organization

• The scope of the testing

• Test objectives

• Risk

• Constraints

• Criticality

• Testability

• Availability of resources

� Test planning is a continuous activity hence we should update the plan to
reflect:

• Changes in requirements

• Change in risk

• Increased knowledge of original requirements and risk

• Results from the testing carried out

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exit criteria

� The purpose of exit criteria is to define when to stop testing.
Typically, exit test criteria may consist of:

• Thoroughness measures, such as coverage of code, functionality or risk

• Estimates of defect density or reliability measures

• Cost

• Residual risk, such as defects not fixed or lack of test coverage in
certain areas

• Schedules such as those based on time to market

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test planning documents (IEEE 829)

� Outlines of test planning documents in the “Standard for
Software Test Documentation” is IEEE 829 – 1998, include
templates for:

• At the test planning stage the deliverable is:
- Test Plan

• At test specification stage the deliverables are:
- Test design specifications
- Test case specification
- Test procedures specification
- Test item transmittal report

• At test execution stage the deliverables are:
- Test log
- Test incident report
- Test summary report

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Test case design strategies

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Test case design strategies and techniques

Black-box testing
(not code-based)
(sometimes called
functional testing)

White-box testing
(also called code-based
or structural testing)

Outputs

Inputs

Techniques /
Methods

Strategy Knowledge
sources

Requirements document
Specifications
User manual

Models
Domain knowledge

Defect analysis data
Intuition

Experience

Equivalence class partitioning
Boundary value analysis
Cause effect graphing

Error guessing
Random testing

State-transition testing
Scenario-based testing

Program code
Control flow graphs

Data flow graphs
Cyclomatic complexity

High-level design
Detailed design

Control flow testing/coverage:
•Statement coverage

•Branch (or decision) coverage
•Condition coverage

•Branch and condition coverage
•Modified condition/decision coverage

•Multiple condition coverage
• Independent path coverage

•Path coverage
Data flow testing/coverage

Class testing/coverage
Mutation testing

Tester's
View

(adapted from: I. Burnstein, pg.65)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

Black box

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning

Divide all possible inputs into classes (partitions) such that :

� There is a finite number of input equivalence classes

� You may reasonably assume that

• the program behaves analogously for inputs in the same class

• one test with a representative value from a class is sufficient

• if the representative detects a defect

then other class members would detect the same defect

(Can also be applied

to outputs)

all inputs

i1

i4
i2 i3

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning

Faults targeted

� The entire set of inputs to any application can be divided into at
least two subsets: one containing all the expected, or legal, inputs
(E) and the other containing all unexpected, or illegal, inputs (U).

� Each of the two subsets, can be further subdivided into subsets on
which the application is required to behave differently (e.g., E1, E2,
E3, and U1, U2).

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Sistematic procedure for equivalence
partitioning (1)
� 1. Identify the input domain: Read the requirements carefully and

identify all input and output variables, their types, and any
conditions associated with their use.

• Environment variables, such as class variables used in the method under test and
environment variables in Unix, Windows, and other operating systems, also serve
as input variables. Given the set of values each variable can assume, an
approximation to the input domain is the product of these sets.

� 2. Equivalence classing: Partition the set of values of each variable
into disjoint subsets. Each subset is an equivalence class. Together,
the equivalence classes based on an input variable partition the
input domain. Partitioning the input domain using values of one
variable, is done based on the expected behavior of the program.

• Values for which the program is expected to behave in the “same way” are
grouped together. Note that “same way” needs to be defined by the tester.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Sistematic procedure for equivalence
partitioning (2)
� 3. Combine equivalence classes: This step is usually omitted and

the equivalence classes defined for each variable are directly used
to select test cases. However, by not combining the equivalence
classes, one misses the opportunity to generate useful tests.

• The equivalence classes are combined using the multidimensional partitioning
approach described earlier.

� 4. Identify infeasible equivalence classes: An infeasible
equivalence class is one that contains a combination of input data
that cannot be generated during test. Such an equivalence class
might arise due to several reasons.

• For example, suppose that an application is tested via its GUI, i.e., data is input
using commands available in the GUI. The GUI might disallow invalid inputs by
offering a palette of valid inputs only. There might also be constraints in the
requirements that render certain equivalence infeasible.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning

� Identify input equivalence classes

• Based on conditions on inputs/outputs in specification/description

• Both valid and invalid input equivalence classes

• Based on heuristics and experience, E.g.,:
- “input x in [1..10]” → classes: x < 1, 1 ≤ x ≤ 10, x > 10
- “enumeration A, B, C” → classes: A, B, C, not{A,B,C}
- “input integer n” → classes: n not an integer, n<min, min≤n<0, 0≤n≤max, n>max

� Define one (or a couple of) test cases for each class

• Test cases that cover valid classes (1 test case for 1 or more valid classes)

• Test cases that cover at most one invalid class (1 test case for 1 invalid class)

• Usually useful to test for 0/null/empty and other special cases

� Combine equivalent classes

• Combine valid with invalid values to increase the capability of detecting missing
code

� Identify infeasible classes

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning - Example 1

� Consider an application A that takes an integer denoted by age as
input. Let us suppose that the only legal values of age are in the
range [1..120]. The set of input values is now divided into a set E
containing all integers in the range [1..120] and a set U containing
the remaining integers.

All integers

[1..120]

Other integers

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning - Example 1

� Further, assume that the application is required to process all values
in the range [1..61] in accordance with requirement R1 and those in
the range [62..120] according to requirement R2. Thus E is further
subdivided into two regions depending on the expected behavior.

� Similarly, it is expected that all invalid inputs less than or equal to 1
are to be treated in one way while all greater than 120 are to be
treated differently. This leads to a subdivision of U into two
categories.

© Aditya P. Mathur 2006

All integers

[62-120]

[1..61]

<1

>120

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning - Example 1

� Tests selected using the equivalence partitioning technique aim at
targeting faults in the application under test with respect to inputs
in any of the four regions, i.e., two regions containing expected
inputs and two regions containing the unexpected inputs.

� It is expected that any single test selected from the range [1..61]
will reveal any fault with respect to R1. Similarly, any test selected
from the region [62..120] will reveal any fault with respect to R2. A
similar expectation applies to the two regions containing the
unexpected inputs.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

(1) (2) (3)

(4) (5)

(6) (7)

nr of inputs 1 0 , > 1

input type integer non-integer

particular x < 0 , >= 0

Equivalence class partitioning - Example 2

Test a function that calculates the absolute value of an integer x

� Equivalence classes :

� Test cases :

Criteria Valid eq. classes Invalid eq. classes

x = (2)

x = 10 20 (3)

x = “XYZ” (5)

x = -10 (1,4,6)

x = 100 (1,4,7)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partitioning - Example 3

� Test a program that computes the sum of the first N integers

as long as this sum is less than maxint. Otherwise an error should be

reported. If N is negative, then it takes the absolute value N.

� Formally:

Given integer inputs N and maxint compute result :

result = if this <= maxint, error otherwise∑
K=0

|N|

k

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

� Equivalence classes:
Condition Valid eq. classes Invalid eq. classes

nr of inputs 2 < 2, > 2

type of input int int int no-int, no-int int, no-int no-int

abs(N) N < 0, N ≥ 0

maxint ∑ k ≤ maxint,
∑ k > maxint

� Test Cases : maxint N result
Valid 100 10 55

100 -10 55
10 10 error

Invalid 10 - error
10 20 30 error
“XYZ” 10 error
100 9.1E4 error

Equivalence class partitioning - Example 3

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence classes based on program output

� In some cases the equivalence classes are based on the output
generated by the program. For example, suppose that a program
outputs an integer.

� It is worth asking: “Does the program ever generate a 0? What are
the maximum and minimum possible values of the output?”

� These two questions lead to the two following equivalence classes
based on outputs:

• E1: Output value v is 0.

• E2: Output value v is the maximum possible.

• E3: Output value v is the minimum possible.

• E4: All other output values.

� Based on the output equivalence classes one may now derive
equivalence classes for the inputs. Thus each of the four classes
given above might lead to one equivalence class consisting of inputs.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence classes for variables: range

Eq. Classes Example

One class with
values inside the
range and two
with values
outside the
range.

speed
∈∈∈∈[60..90]

{50}, {75},
{92}

area: float
area≥≥≥≥0.0

{{-1.0},
{15.52}}

age: int {{-1}, {56},
{132}}

letter: char {{J}, {3}}

© Aditya P. Mathur 2006

Constraints Classes

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Eq. Classes Example

At least one
containing all
legal strings and
one all illegal
strings based on
any constraints.

firstname:
string

{{ε}, {Sue},
{Loooong
Name}}

Constraints Classes

Equivalence classes for variables: strings

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Eq. Classes Example

Each value in a
separate class

autocolor:{red,
blue, green}

{{red,} {blue},
{green}}

up:boolean {{true}, {false}}

Constraints Classes

Equivalence classes for variables: enumeration

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Eq. Classes Example

One class containing
all legal arrays, one
containing the empty
array, and one
containing a larger
than expected array.

int [] aName:
new int[3];

{[]}, {[-10, 20]},
{[-9, 0, 12, 15]}

Constraints Classes

Equivalence classes for variables: arrays

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence classes for variables:
compound data types

� Arrays in Java and records, or structures, in C++, are compound
types. Such input types may arise while testing components of an
application such as a function or an object.

� While generating equivalence classes for such inputs, one must
consider legal and illegal values for each component of the
structure.

struct transcript{
string fName; // First name.
string lName; // Last name.
string cTitle [200]; // Course titles.
char grades [200]; // Letter grades corresponding

to course titles.
}

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Partitioning

� Unidimensional partitioning

• One way to partition the input domain is to consider one input variable at a
time. Thus each input variable leads to a partition of the input domain. We
refer to this style of partitioning as unidimensional equivalence partitioning
or simply unidimensional partitioning.

This type of partitioning is commonly used.

� Multidimensional partitioning

• Another way is to consider the input domain I as the set product of the input
variables and define a relation on I. This procedure creates one partition
consisting of several equivalence classes. We refer to this method as
multidimensional equivalence partitioning or simply multidimensional
partitioning.

• Multidimensional partitioning leads to a large number of equivalence classes
that are difficult to manage manually. Many classes so created might be
infeasible. Nevertheless, equivalence classes so created offer an increased
variety of tests as is illustrated in the next section.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Partitioning Example (1)

� Consider an application that requires two integer inputs x and y.
Each of these inputs is expected to lie in the following ranges:
3≤ x≤7 and 5≤y≤9.

� For unidimensional partitioning we apply the partitioning guidelines
to x and y individually. This leads to the following six equivalence
classes.

� E1: x<3 E2: 3≤x≤7 E3: x>7 (y ignored)

� E4: y<5 E5: 5≤y≤9 E6: y>9 (x ignored)

� For multidimensional partitioning we consider the input domain to
be the set product X x Y. This leads to 9 equivalence classes.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Partitioning Example (2)

� 9 equivalent classes

• E1: x<3, y<5

• E3: x<3, y>9

• E2: x<3, 5≤y≤9

• E4: 3≤x≤7, y<5

• E5: 3≤x≤7, 5≤y≤9

• E6: 3≤x≤7, y>9

• E7: x>7, y<5

• E8: x>7, 5≤y≤9

• E9: x>7, y>9

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
Based on experience / heuristics :

� Testing boundary conditions of equivalence classes is more effective,

i.e., values directly on, above, and beneath edges of classes

• If a system behaves correctly at boundary values, than it probably will work
correctly at "middle" values

� Choose input boundary values as tests in input classes instead of, or

additional to arbitrary values

� Choose also inputs that invoke output boundary values

(values on the boundary of output classes)

� Example strategy as extension of equivalence class partitioning:

• choose one (or more) arbitrary value(s) in each equivalent class

• choose values exactly on lower and upper boundaries of equivalent classes

• choose values immediately below and above each boundary (if applicable)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis

“Bugs lurk in corners and congregate at boundaries.”

[Boris Beizer, "Software testing techniques"]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
Example 1

Test a function for calculation of absolute value of an integer

� Valid equivalence classes :

Condition Valid eq. classes Invalid eq. Classes

particular abs < 0, >= 0

� Test cases :

class x < 0, arbitrary value: x = -10

class x >= 0, arbitrary value x = 100

classes x < 0, x >= 0, on boundary : x = 0

classes x < 0, x >= 0, below and above: x = -1, x = 1

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
A self-assessment test 1 [Myers]

� “A program reads three integer values. The three values are

interpreted as representing the lengths of the sides of a triangle.

The program prints a message that states whether the triangle is

scalene (all lengths are different), isosceles (two lengths are equal),

or equilateral (all lengths are equal).”

Write a set of test cases to test this program.

Inputs: l1, l2, l3 , integer, li > 0, li < lj + lk

Output: error, scalene, isosceles or equilateral

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
A self-assessment test 1 [Myers]

1. valid scalene triangle ?

2. valid equilateral triangle ?

3. valid isosceles triangle ?

4. 3 permutations of previous ?

5. side = 0 ? (boundary "plane")

6. negative side ?

7. one side is sum of others ? (boundary)

8. 3 permutations of previous ?

9. one side larger than sum of others ?

10. 3 permutations of previous ?

11. all sides = 0 ? (boundary "corner")

12. non-integer input ?

13. wrong number of values ?

Test cases for:

valid inputs: invalid inputs:

l1

l3

l2

11.

5.

“Bugs lurk in corners and
congregate at boundaries.”

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
Example 2

� Given inputs maxint and N compute result :

result = if this <= maxint, error otherwise∑
K=0

|N|

k

� Valid equivalence classes :

condition valid eq. classes boundary values.

abs(N) N < 0, N ≥ 0 N = (-2), -1, 0, 1

maxint ∑∑∑∑ k ≤ maxint, ∑∑∑∑ k = maxint-1,

∑∑∑∑ k > maxint maxint,

maxint+1,

(maxint+2)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
Example 2

� Test Cases :

maxint N result maxint N result

55 10 55 100 0 0
54 10 error 100 -1 1
56 10 55 100 1 1
0 0 0 … … …

� How to combine the boundary conditions of different inputs ?

Take all possible boundary combinations ? This may blow up ……

N

maxint

maxint = 0+1+2+...+|N|

N = 0

errorerror

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
Example 3: search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
Found : out BOOLEAN; L: out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

(source: Ian Sommerville)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

� P1 - Inputs which conform to the pre-conditions (valid)

• array with 1 value (boundary)

• array with more than one value (different size from test case to
test case)

� P2 - Inputs where a pre-condition does not hold (invalid)

• array with zero length

� P3 - Inputs where the key element is a member of
the array

• first, last and middle positions in different test cases

� P4 - Inputs where the key element is not a member
of the array

Boundary value analysis
Example 3 - input partitions

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Boundary value analysis
Example 3 – test cases (valid cases only)

Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Cause-effect graphing

� Black-box technique to analyze combinations of input conditions

� Identify causes and effects in specification

↓↓↓↓ ↓↓↓↓
inputs / outputs /

initial state final state

conditions conditions

� Make Boolean Graph linking causes and effects

� Annotate impossible combinations of causes and effects

� Develop decision table from graph with in each column

a particular combination of inputs and outputs

� Transform each column into test case

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Cause-effect graphing
Example 2

∑ k ≤ maxint

∑ k > maxint

N < 0

N ≥ 0

∑ k

error

and

xor
and

causes ∑ k ≤ maxint 1 1 0 0

(inputs) ∑ k > maxint 0 0 1 1

N < 0 1 0 1 0

N ≥ 0 0 1 0 1

effects ∑ k 1 1 0 0

(outputs) error 0 0 1 1

Decision table

("truth table")

Each entry in de
decision table is a
0 or a 1 depending
on whether or not
the corresponding
condition is false

or true

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Cause-effect graphing

� Systematic method for generating test cases representing

combinations of conditions

� Differently from eq. class partitioning, we define a test case for

each possible combination of conditions

� Combinatorial explosion of number of possible combinations

• In the worst case, if n causes are related to an effect e, then the maximum

number of combinations that bring e to a 1-state is 2n.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Error guessing

� Just ‘guess’ where the errors are ……

� Intuition and experience of tester

� Ad hoc, not really a technique

� But can be quite effective

� Strategy:

• Make a list of possible errors or error-prone situations (often related to boundary

conditions)

• Write test cases based on this list

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Risk based testing

� Risk-based testing (RBT) is a type of software testing that

prioritizes the features and functions to be tested based on

priority/importance and likelihood or impact of failure. More

sophisticated ‘error guessing’

� Try to identify critical parts of program (high risk code sections):

• parts with unclear specifications

• developed by junior programmer while his wife was pregnant ……

• complex code :

measure code complexity - tools available (McGabe, Logiscope,…)

� High-risk code will be more thoroughly tested

(or be rewritten immediately ……)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Testing for race conditions

� Also called bad timing and concurrency problems

� Problems that occur in multitasking systems (with multiple threads or
processes)

� A kind of boundary analysis related to the dynamic views of a system (state-
transition view and process-communication view)

� Examples of situations that may expose race conditions:

• problems with shared resources:
- saving and loading the same document at the same time with different programs
- sharing the same printer, communications port or other peripheral
- using different programs (or instances of a program) to simultaneously access a common

database

• problems with interruptions:
- pressing keys or sending mouse clicks while the software is loading or changing states

• other problems:
- shutting down or starting two or more instances of the software at the same time

� Knowledge used: dynamic models (state-transition models, process models)

[source: Ron Patton]

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Random testing

� Input values are randomly generated

� Do you know that a monkey using a piano keyboard could play a
Vivaldi opera? Could the same monkey, using your application,
discovery defects?

� Two kinds of tools

• Dumb monkeys – low IQ; they can’t recognize an error when
they see one

• Smart monkeys – generate inputs with some knowledge to
reflect expected usage; get knowledge from state table or model
of the AUT.

� Microsoft says that 10 to 20% of the bugs in Microsoft projects are
found by these tools

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Random testing

� Advantages

• Good for finding system crashes

• Particularly adequate for performance testing (it's not necessary to
check the correctness of outputs)

• No effort in generating test cases

• Independent of updates

• Increase confidence on the software when running several hours without
finding errors

• “Easy” to implement

� Disadvantages

• Not good for finding other kinds of errors

• Difficult to reproduce the errors (repeat test cases / sequence of inputs)

• Unpredictable

• May not cover special cases that are discovered by "manual" techniques

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Deriving test cases from requirements and
use cases

� Particularly adequate for system and acceptance testing

� From requirements:

• You have a list of requirements

• Define at least one test case for each requirement

• Build and maintain a (tests to requirements) traceability matrix

� From use cases:

• You have use cases that capture functional requirements

• Each use case is described by one or more normal flow of events and
zero or more exceptional flow of events

• Define at least one test case for each flow of events (also called
scenario)

• Build and maintain a (tests to use cases) traceability matrix

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

State-transition testing

� Construct a state-transition model (state machine view) of the item to be
tested (from the perspective of a user/client). E.g., with a state diagram in
UML

� Define test cases to exercise all states and all transitions between states

• Usually, not all possible paths (sequences of states and transitions), because of
combinatorial explosion

• Each test case describes a sequence of inputs and outputs (including input and
output states), and may cover several states and transitions

• Also test to fail – with unexpected inputs for a particular state

� We will talk about this techniques in more detail in the
following lectures

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Black box testing: Which One ?

� Black box testing techniques :

• Equivalence partitioning

• Boundary value analysis

• Cause-effect graphing

• Error guessing

• …………

� Which one to use ?

• None of them is complete

• All are based on some kind of heuristics

• They are complementary

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Black box testing: which one ?

� Always use a combination of techniques

• When a formal specification is available try to use it

• Identify valid and invalid input equivalence classes

• Identify output equivalence classes

• Apply boundary value analysis on valid equivalence classes

• Guess about possible errors

• Cause-effect graphing for linking inputs and outputs

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise

• The control software of BCS, abbreviated as CS, allows a human
operator to give one of three commands (cmd): change the boiler
temperature (temp), shut down the boiler (shut), and cancel the
request (cancel).

• Command temp causes CS to ask the operator to enter the amount by
which the temperature is to be changed (tempch). Values of tempch are
in the range [-10..10] in increments of 5 degrees Fahrenheit. An
temperature change of 0 is not an option.

• BCS examines variable V. If V is set to GUI, the operator is asked to
enter one of the three commands via a GUI. However, if V is set to file,
BCS obtains the command from a command file.

• The command file may contain any one of the three commands,
together with the value of the temperature to be changed if the
command is temp. The file name is obtained from variable F.

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise

Control Software
(CS)G

U
I

datafile

cmd

tempch

V Fcmd: command
(temp, shut, cancel)

tempch: desired
temperature change

(-10..10)

V, F: Environment variables

V ∈{GUI, file}

F: file name if V is set to “file.”

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise

� Identify input domain

� Identify equivalence classes

� Combine equivalence classes

� Discard infeasible equivalence classes

� Generate sample tests for BCS from the remaining feasible
equivalence classes

© Aditya P. Mathur 2006

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Identify input domain

Variable Kind Type Value(s)

V Environment Enumerated {GUI, file}

F Environment String A file name

cmd Input via GUI or file Enumerated {temp,cancel,shut}

tempch Input via GUI or file Enumerated {-10,-5,5,10}

S = V x F x cmd x tempch

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Equivalence class partition

Variable Partition

V {{GUI},{file},{undefined}}

F f_valid, f_invalid

cmd {{temp},{cancel},{shut},{c_invalid}}

tempch {{-10,-5,5,10},{t_invalid}}

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Combine equivalence classes

� Variables V, F, cmd and tempch have been partitioned into 3,
2, 4 and 2 susets, respectively

� Set products of these four variables leads to a total of
3x2x4x5=120

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Discard infeasable classes

� The amount by which the boiler temperature is to be changed is needed only
when the operator selects temp for cmd, Thus all equivalent classes that
match the following template are infeasable

• {(V,F,{cancel,shut,c_invalid},t_valid U t_invalid)} = 3x2x3x5 = 90

� GUI does not allow invalid values of temperature change to be input. Two
more equivalente classes infeasable

• {(GUI,f_valid,temp,t_invalid)} and {(GUI,f_invalid,temp,t_invalid)}

� Carefully designed application might not ask for the values of cmd and
tempch when V=file and F contains a file name that does not exist

• {(file, f_invalid, temp, t_valid U t_invalid)}

� Application will not allow values of cmd and tempch to e input when V is
undefined

• {(undefined, -, temp, t_valid U t_invalid)}

� Discard 90+2+5+5=102 equivalence classes

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Result

{(GUI,f_valid,temp,t_valid)} = 4

{(GUI,f_invalid,temp,t_valid)} = 4

{(GUI, -, cancel, NA)} = 2

{(file, f_valid,temp,t_valid U t_invalid)} = 5

{(file,f_valid,shut,NA)} = 1

{(file,f_invalid,NA,NA)} = 1

{(undefined,NA,NA,NA)} = 1

total = 18

- means that data can be input but is not used by the software

NA means that data cannot be input to the control software

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

TQS - Teste e Qualidade de Software
(Software Testing and Quality)

White box

Ana Paiva

apaiva@fe.up.pt www.fe.up.pt/~apaiva

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

White-box testing

� Derivation of test cases according to program structure.
Knowledge of the program is used to identify additional test
cases

� Used mainly for unit testing

� Programming language dependent

� Extent to which (source) code is executed, i.e., covered

� Different kind of coverage :

• based on control flow analysis - statement, decision, condition, decision
and condition, MC/DC, path, ...

• based on data flow analysis

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Control flow analysis
Example

1 PROGRAM sum (maxint, N : INT)
2 INT result := 0 ; i := 0 ;
3 IF N < 0
4 THEN N := - N ;
5 WHILE (i < N) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (“too large”)
12 END.

N < 0 N := -N;Yes

(i < N) and
(result <= maxint)

i := i+1;
result := result + i;

Yes

result <= maxint

No

Start

No

Exit

result := 0;
i := 0;

output(“too large”);output(result);

Yes No

result = , if this <= maxint

error, otherwise

∑
K=0

|N|

k

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Statement coverage

� Execute (exercise) every statement of a program

• Generate a set of test cases such that each statement of the program is
executed at least once

� Weakest white-box criterion

� Analysis supported by many commercial and freeware tools
(test coverage or code coverage tools)

• Standard Unix tool: tcov

• A listing indicates how often each statement was executed and the
percentage of statements executed

� Note: in case of unreachable statements, statement coverage
is not possible

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Example : statement coverage

Tests for complete

statement (node) coverage:

N < 0 N := -N;Yes

(i < N) and
(result <= maxint)

i := i+1;
result := result + i;

Yes

result <= maxint

No

Start

No

Exit

result := 0;
i := 0;

output(“too large”);output(result);

Yes No

inputs outputs

maxint N result

10 -1 1

0 -1 too large

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Decision (or branch) coverage

� Execute every branch of a program :
each possible outcome of each decision occurs at least once

� Example:

• simple decision: IF b THEN s1 ELSE s2

- b should be tested for true and false

• multiple decision:
CASE x OF
1 : ….
2 : ….
3 : ….

� Stronger than statement coverage

• IF THEN without ELSE – if the condition is always true all the statements
are executed, but branch coverage is not achieved (infeasibility)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Example : decision (or branch) coverage

Tests for complete

statement (node) coverage:

Take:

N < 0 N := -N;Yes

(i < N) and
(result <= maxint)

i := i+1;
result := result + i;

Yes

result <= maxint

No

Start

No

Exit

result := 0;
i := 0;

output(“too large”);output(result);

Yes No

branch not
tested

inputs outputs

maxint N result

10 -1 1

0 -1 too large

are not sufficient for

decision (branch) coverage!

inputs outputs

maxint N result

10 3 6

0 -1 too large

for complete decision

(branch) coverage

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Condition coverage

� Design test cases such that each possible outcome of each
condition in a decision (composite condition) occurs at least once

� Example:

• decision (i < N) AND (result <= maxint)
consists of two conditions : (i < N) , (result <= maxint)

• test cases should be designed such that each condition gets value
true and false at least once

� Last test cases of previous slides already guarantee condition (and
branch) coverage

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Condition and decision (or condition /
decision) coverage

Test cases:

maxint N i result i<N result<=maxint

-1 1 0 0 true false

1 0 0 0 false true

give condition coverage
for all conditions

But don't preserve

branch coverage

⇓⇓⇓⇓
always take care that

condition coverage
preserves branch coverage :

condition and decision coverage

N < 0 N := -N;Yes

(i < N) and
(result <= maxint)

i := i+1;
result := result + i;

Yes

result <= maxint

No

Start

No

Exit

result := 0;
i := 0;

output(“too large”);output(result);

Yes No

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Modified Condition/Decision Coverage

� Also known as MC/DC or MCDC

� Design test cases such that

• every decision in the program has taken all possible outcomes at least once
(decision coverage)

• every condition in a decision in the program has taken all possible outcomes at
least once (condition coverage)

• every condition in a decision has been shown to independently affect that
decision’s outcome; a condition is shown to independently affect a decision’s
outcome by varying just that condition while holding fixed all other possible
conditions

- condition – a Boolean expression containing no Boolean operators
- decision – a Boolean expression composed of conditions and zero or more Boolean

operators

� Created at Boeing, required for level A (critical) software for the
Federal Aviation Administration (FAA) in the USA by RCTA/DO-178B

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Modified Condition/Decision Coverage

/\

T

\/ C

T

A B

/\

T

\/ C

A B

/\

\/ C

A B

/\

T

\/ C

A B

/\

\/ C

F

A B

/\

\/ C

A B
(A \/ B) /\ C

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Modified Condition/Decision Coverage

� Test cases required to meet the MC/DC criteria

Test
case

Conditions Decision

A B A and B

1 True True True
2 False True False
3 True False False

Test
case

Conditions Decision

A B A or B

1 False False False
2 True False True
3 False True True

Test
case

Condition Decision

A not A

1 True False
2 False True

Test
case

Conditions Decision

A B A xor B

1 True True False
2 False True True
3 True False True

(or another combination)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Modified Condition/Decision Coverage
� Consider the following fragment of code:

� MC/DC may be achieved with the following set of test inputs (note that there
are alternative sets of test inputs, which will also achieve MC/DC):

Case A B C Outcome

1 FALSE FALSE TRUE FALSE

2 TRUE FALSE TRUE TRUE

3 FALSE TRUE TRUE TRUE

4 FALSE TRUE FALSE FALSE

� Because:
• A is shown to independently affect the outcome of the decision condition by case

1 and case 2

• B is shown to independently affect the outcome of the decision condition by case
1 and case 3

• C is shown to independently affect the outcome of the decision condition by case
3 and case 4

cases 2 a 4 are sufficient for
branch and condition

coverage, but only if logical
operators do not short-circuit

are not evaluated if logical
operators short-circuit

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Multiple condition coverage

� Design test cases for each combination of conditions

� Example:

• (i < N) (result <= maxint)

false false

false true

true false

true true

� Implies decision, condition, decision and condition, modified
branch/condition coverage

� But : exponential blow-up (2number of conditions)

� Again : some combinations may be infeasible

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Path coverage

� Execute every possible path of a program, i.e., every possible
sequence of statements

� Strongest white-box criterion (based on control flow analysis)

� Usually impossible: infinitely many paths (in case of loops)

� So: not a realistic option

� But note : enormous reduction w.r.t. all possible test cases
(each sequence of statements executed for only one value)
(doesn't mean exhaustive testing)

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

� Obtain a maximal set of linearly independent paths
(also called a basis of independent paths)
• If each path is represented as a vector with the number of times

that each edge of the control flow graph is traversed, the paths
are linearly independent if it is not possible to express one of them
as a linear combination of the others

� Generate a test case for each independent path

� The number of linearly independent paths is given by
the McCabe's cyclomatic complexity of the program
• Number of edges - Number of nodes + 2 in the control flow graph

• Measures the structural complexity of the program

Independent path (or basis path) coverage

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Independent path (or basis path) coverage

� Problem: some paths may be impossible to execute

� Also called structured testing (see McCabe for details)

� McCabe's argument: this approach produces a number
of test cases that is proportional to the complexity of
the program (as measured by the cyclomatic
complexity), which, in turn, is related to the number of
defects expected

� More information:
• http://www.mccabe.com/iq_research_metrics.htm

• "Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric", Arthur H. Watson, Thomas J. McCabe, NIST

Special Publication 500-235

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Example: Independent path coverage

Theorem: In a strongly connected graph, G, the
cyclomatic number is equal to the maximum
number of linear independent circuits.

� 5 independent circuits

• (abefa),(beb),(abea),(acfa),(adcfa)

� 5 independent paths

• (abef), (abebef),(abeabef),(acf),(adcf)

• This set of independent paths forms the basis for
the set of all circuits in the graph.

� For instance

• The path (abea(be)3f) = 2(abebef)-(abef)

a

b c d

e

f

1 2 3 4 5 6 7 8 9 10
abefa 1 0 0 1 0 0 0 1 0 1
beb 0 0 0 1 1 0 0 0 0 0
abea 1 0 0 1 0 0 0 0 1 0
acfa 0 1 0 0 0 1 0 0 0 1
adcfa 0 0 1 0 0 1 1 0 0 1

1 2 3

45

6

7

8

9
10

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Example: Independent path coverage

N < 0 N := -N;Yes

(i < N) and
(result <= maxint)

i := i+1;
result := result + i;

Yes

result <= maxint

No

Start

No

Exit

result := 0;
i := 0;

output(“too large”);output(result);

Yes No

number of independent paths
≡≡≡≡ cyclomatic complexity

= number of edges - number of nodes + 2
= 12 – 10 + 2

= 4

3

Test cases

Path inputs outputs

maxint N result

1 1 0 0

2 -1 0 too large

3 -1 -1 too large

4 10 1 1

421

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

White-Box Testing : Overview
statement
coverage

condition
coverage

decision (or branch)
coverage

condition and decision
coverage

Path
coverage

modified condition / decision
coverage

independent path (or
basis path) coverage

multiple- condition
coverage

only if paths across
composite conditions are

distinguished

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Data flow testing

� We say a variable is defined in a statement when its value is
assigned or changed

Y = 26 * X

• This is indicated as a def for the variable Y

� We say a variable is used in a statement when its value is
utilized in a statement. The value of the variable is not
changed. Data flow roles:

• c-use for variable X:
Y = 26 * X

• p-use for variable X:
if (X > 98)

Y = max

• others: undefined or dead

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Data flow testing

� Coverage criteria

• All def

• All p-uses

• All c-uses/some p-uses

• All p-uses/some c-uses

• All uses

• All def-use paths

• … and several variants of this technique …

� The strongest of these criteria is all def-use paths. This
includes all p- and c-uses.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Data flow graph

� A data-flow graph of a program, also known as def-use graph,
captures the flow of definitions (also known as defs) across
basic blocks in a program.

� It is similar to a control flow graph of a program in that the
nodes, edges, and all paths thorough the control flow graph
are preserved in the data flow graph. An example follows.

© Aditya P. Mathur 2007

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Data flow graph: Example

� Given a program, find its basic blocks, compute defs, c-uses
and p-uses in each block. Each block becomes a node in the
def-use graph (this is similar to the control flow graph).

� Attach defs, c-use and p-use to each node in the graph. Label
each edge with the condition which when true causes the
edge to be taken.

� We use di(x) to refer to the definition of variable x at node i.
Similarly, ui(x) refers to the use of variable x at node i.

© Aditya P. Mathur 2007

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

© Aditya P. Mathur 2007

Data flow graph: Example (contd.)

Unreachable node

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

© Aditya P. Mathur 2007
188

Def-clear path

Any path starting from a node at which
variable x is defined and ending at a node at

which x is used, without redefining x
anywhere else along the path, is a def-clear

path for x.

Path 2-5 is def-clear for variable z defined at
node 2 and used at node 5. Path 1-2-5 is NOT
def-clear for variable z defined at node 1 and

used at node 5.

Thus definition of z at node 2 is live at node
5 while that at node 1 is not live at node 5.

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

© Aditya P. Mathur 2007

Def-clear path (another example)

Find def-clear paths for defs and uses of x and z.
Which definitions are live at node 4?

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Mutation testing (fault injection)
� Starts with a code component and its associated test cases (in a state such

that the code passes all test cases)

� The original code component is modified in a simple way (replace operators,
constants, etc.) to provide a set of similar components that are called
mutants, based on typical errors

� The original test cases are run with each mutant

� Live mutants cannot be distinguished from the original program (parent)

� Distinguishing a mutant from its parent is referred to as killing such mutant

� If a mutant remains live (passes all the test cases), then either the mutant
is equivalent to the parent (and is ignored), or it is not equivalent, in which
case additional test cases should be developed in order to kill such mutant

� The rate of mutants "killed" (after removing mutants that are equivalent to
the original code) gives an indication of the rate of undetected defects that
may exist in the original code

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

� In object oriented systems, the units to be tested are typically
classes, but can also be methods or clusters of related classes

� Complete test coverage of a class involves
• Testing all operations associated with an object

• Setting and interrogating all object attributes

• Exercising the object in all possible states

� Each test case typically exercises a possible object lifecycle, with
alternating operation calls to change and query the object's state

� Encapsulation, inheritance and polymorphism complicate the
design of test cases

• Encapsulation – how to check the object's state?

• Inheritance – how to (unit) test abstract classes, abstract methods and interfaces?

• Polymorphism – how to test methods with callbacks (from super-class to sub-class)?
(same problem with event handlers)

Class testing / coverage

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

White-Box testing : How to Apply ?

� Don’t start with designing white-box test cases!

� Start with black-box test cases
(equivalence partitioning, boundary value analysis,
cause effect graphing, derivation with formal methods,…)

� Check white-box coverage
(statement, branch, condition,… , coverage)

� Use a testing coverage tool

� Design additional white-box test cases for not covered code

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 1

If the pseudocode below were a programming language ,how many
tests are required to achieve 100% statement coverage?

If x=3 then
Display_messageX;
If y=2 then

Display_messageY;
Else

Display_messageZ;
Else

Display_messageZ;

� 1. Choose the correct answer

a) 1; b) 2; c) 3; d) 4

Using the same code example as question 17,how many tests are
required to achieve 100% branch/decision coverage?

� 2. Choose the correct answer

a) 1; b) 2; c) 3; d) 4

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 2

� Given the following code, which is true about the minimum
number of test cases required for full statement and branch
coverage:

Read P
Read Q
IF P+Q > 100 THEN

Print “Large”
ENDIF
If P > 50 THEN

Print “P Large”
ENDIF

a) 1 test for statement coverage, 3 for branch coverage

b) 1 test for statement coverage, 2 for branch coverage

c) 1 test for statement coverage, 1 for branch coverage

d) 2 tests for statement coverage, 3 for branch coverage

e) 2 tests for statement coverage, 2 for branch coverage

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 3 (1)

� A Program is written to meet the following requirements:

• R1: Given coordinate positions x, y and z, and a direction valued d, the
program must invoke one of the three functions fire-1, fire-2, fire-3 as
per conditions bellow:

- R1.1: Invoke fire-1 when (x<y) AND (z * z > y) AND (prev=“East”).
- R1.2: Invoke fire-2 when (x<y) AND (z * z ≤ y) OR (current=“South”).
- R1.3: Invoke fire-3 when none of the two conditions above is true.

• R2: The invocation described above must continue until an input
Boolean variable becomes true.

© Aditya P. Mathur 2007

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 3 (2)
1 begin
2 float x, y, z;
3 direction d;
4 string prev, current;
5 bool done;

6 input(done);
7 current=“North”;
8 while (~done) { � condition C1
8 input (d);
10 prev=current; current=f(d);
11 input(x,y,z);
12 if ((x<y) and (z*z > y) and (prev==“East”)) � Condition C2
13 fire-1(x,y);
14 else if ((x<y) and (z*z<=y) or (current==“South”)) � Condition C3
15 fire-2(x,y);
16 else
17 fire-3(x,y);
17 input(done);
18 }
19 output(“Firing completed.”);
20 end

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 3 (3)

� Verify that the following set T1 of four tests, executed in the
given order, is adequate with respect to statement, block,
and decision coverage criteria but not with respect to the
condition coverage criterion.

� C2 and C3 are not covered because x<y is not covered, i.e., it
is not evaluated to false

Test set T1

Test Requirement done d x y z

t1 R1.2 False East 10 15 3

t2 R1.1 False South 10 15 4

t3 R1.3 False North 10 15 5

t4 R2 True - - - -

© Aditya P. Mathur 2007

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 3 (4)

Test set T2

Test Requirement done d x y z

t1 R1.2 False East 10 15 3

t2 R1.1 False South 10 15 4

t3 R1.3 False North 10 15 5

t5 R1.1 and R1.2 False South 10 5 5

t4 R2 True - - - -

Test set T2 is adequate according to MC/DC?
In case of C2, we note that conditions (x<y) and (z*z>y) are kept constant in t2 and t3, while
(prev==“East”) is varied. These two tests demonstrate the independence effect of (prev==“East”) on
C2. However, the independence effect of the remaining two conditions is not demonstrated by T2.
In case of C3, we note that tests t3 and t4, conditions (z*z <= y) and (current==“South”) are held
constant, while (x<y) is varied. These two tests demonstrate the independence effect of (x<y) on C3.
Tests t1 and t3 demonstrate the independence effect of (z*z<y) on C3. However, the independence
effect of (current==“South”) on C3 is not demonstrated bt T2. This analysis reveals that we need to
add at least two tests to T2 to obtain MC/DC coverage.

© Aditya P. Mathur 2007

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 3 (5)

� Verify that the following set T3, obtained by adding t6, t7, t8, and
t9 to T2 is adequate with respect to MC/DC coverage criterion. Note
again that sequencing of tests is important in this case (especially
for t1 and t7)!

Test set T3
Test Requirement done d x y z
t1 R1.2 False East 10 15 3
t6 R1 False East 10 5 2
t7 R1 False East 10 15 3
t2 R1.1 False South 10 15 4
t3 R1.3 False North 10 15 5
t5 R1.1 and R1.2 False South 10 5 5
t8 R1 False South 10 5 2
t9 R1 False North 10 5 2
t4 R2 True - - - -

© Aditya P. Mathur 2007

‹#›Teste e Qualidade de Software, MIEIC/PRODEI, Ana Paiva & Pascoal Faria

Exercise 4

� Suppose that condition C=C1 AND C2 AND C3 has been coded
as C’=C1 AND C3. Four tests that form an MC/DC adequate set
for C’ are in the following table. Verify that the following set
of four tests is MC/DC adequate but does not reveal the error.

Test C C’ Error
detected?C1, C2, C3 C1 and C2 and C3 C1 and C3

t1
t2

true, true, true
false, false, false

true
false

true
false

No

t3
t4

true, true, false
false, false, true

false
false

false
false

No

© Aditya P. Mathur 2007

