Lecture Notes (2012.01.19)

Aims: Practice on "Process-oriented architectural design"

```
A. Modelling examples in mCRL2
Note: files with process definitions have extension .mcrl2
    files with properties have extension .mct
A. }1\mathrm{ Buffers
act in1,out1, in2,out2,i1,i2,o1,o2,a01,a02,bi1,bi2,c1,c2:Bool
proc BT = sum x.Bool. (in1(x).out (x).BT + in2(x).out2(x).BT)
    BTa =rename({in1 -> I1, in2 ->i2,out1 -> ao1,out2 -> ao2}, BT);
    B=allow({i1,i2,c1,c2,o1,o2}, comm({ao1lbi1 -> c1, ao2lbi2 -> c2}, BTa |l BTb));
init hide({c1,c2}, B);
A. }2\mathrm{ Dining Philosophers
% Naive solution; 3 dining philosophers
    sort Phil = struct p1 | p2 | p3;
        Fork= struct f1 | f2 | f3;
    map If, rf: Phil -> Fork;
    eqn }\textrm{lf(p1)=f1;
        lf(p2)=f2;
        (p3) = f3;
        ri(p1)=f3
        rf(p3) = f2
    act get, put, up, down, lock, free: Phil # Fork;
        eat: Phil;
    proc P_Phil(p: Phil) = get(p,lf(p)) . get(p,rf(p)).eat(p).
                    put(p.f(p)) put(p,f(p)).P Phil(p);
        P_Fork(f: Fork) = sum p:Phil. up(p,f) . down(p,f) .P_Fork(f);
    init block({ get, put, up, down }
        Mmm({ getlup->lock, put|down->>ree },
        P_Phil(p1) I| P_Phil(p2) || P_Phil(p3)
    ));
% corrected version
    proc P_Phil(p: Phil)=
    (p == p1) -> get(p,rf(p)) . get(p,If(p)) . eat(p).
        put(p,rf(p))}\cdot\operatorname{put(p,lf(p)). P_Phil(p)
        get(p,lf(p)) . get(p,rf(p)). eat(p).
        put(p,If(p)) & put(p,rf(p)) .P_Phil(p)
% for K philosophers
    eqn }K=100
    map K: Pos;
    act get,_get,_get,put,_put,__put: Pos#Pos
        eat: Pos;
    proc
```



```
    Fork(n:Pos) = sum m:Pos.get(m,n).put(m,n).Fork(n)
    ForkPhil(n:Pos) = Fork(n) II Phil(n);
    ForkPhil(p:Pos)=
        (p>1) >( (ForkPhil(p)|KKorkPhil(max(p-1,1)))<>ForkPhil(1); % ie ForkPhil(1) || ... || ForkPhil(k);
    init allow({ __get, __put, eat },
        comm({ getl_get->_get, put|put->_put },
            KForkPhil(K)
    ));
```

Note: Linearisatio
LPE (linear process equation):
one single process name is used in the LHS
and there is precisely one action in front of the recursive invocation of the process variable at the RHS
Examples (states encoded in data variables)
L.
proc $X=$ a.b.c. X
proc $\mathrm{Y}(\mathrm{s}: \mathrm{N}+\mathrm{f})=(\mathrm{s}=1)-->\mathrm{a} \cdot \mathrm{Y}(2)+(\mathrm{s}=2)-->\mathrm{b} \cdot \mathrm{Y}(3)+(\mathrm{s}=3)-->\mathrm{c} \cdot \mathrm{Y}(1)$
$\mathrm{X}=\mathrm{Y}(1)$
proc $X=\operatorname{sum}(n: N) i(n) \cdot o(n) \cdot X$
proc $\quad Y(n: N, b: B)=\operatorname{sum}(m: N) b--i(m) \cdot Y(m,-b)+-b \rightarrow o(n) \cdot Y(n,-b)$
$Y(n$, true $)=X \quad$ for any n
B. Properties

Exercises

a. Give modal formulas for the following properties:
2. Whenever an a can happen in any reachable state, ab action can subsequently be done unless ac happens cancelling the need to do the b .
3. Whenever an a action happens, it must always be possible to do a b after that, although doing the b can infinitely be postponed.
b. Show that the identities $[R 1 \cdot(R 2+R 3)] \phi=[R 1 \cdot R 2+R 1 \cdot R 3] \phi$ and $\langle R 1 \cdot(R 2+R 3)\rangle \phi=\langle R 1 \cdot R 2+R 1 \cdot R 3\rangle \phi$ hold. This shows that regular formulas satisfy the left distribution of sequential composition over choice, which justifies to say that regular formulas represent sequences.

Answers

a.
[-error*] <true>true
2. [true* . a] true ${ }^{\star}$. (b $\left.\cup \mathrm{c}\right)$)true
3. [true* . a . -b*]true* . b)true
b. $[R 1 \cdot(R 2+R 3)] \phi=[R 1][[R 2] \phi \wedge[R 3] \phi)=[R 1][R 2] \phi \wedge[R 1][R 3] \phi=[R 1 \cdot R 2+R 1 \cdot R 2] \phi$.

Further examples

Compare:
muX. X (false) and nu X. X (true)
muX. $<a>X$ and nu X. $<a>X$
wrt a a-reflexive state: only the second is valid in \{s\}; the first is valid in all states in $\}$ both $\}$ and $\{s\}$ are solutions to the equation
always $p=\left[\right.$ true $\left.{ }^{*}\right] p \quad$ and \quad eventually $p=\langle$ true* \rangle
stronger: p will eventually become valid along every path
mu X. (true $X \vee p$) (true also for paths ending in deadlock)
vs muX. (([true] X \wedge <true> true) $\vee p$) (deadlock explicitly avoided)
mu X. [-a]X (action must unavoidably be done, provided there is no deadlock before)
mu X. ([-a]X ^<true>true) (action a must be done anyhow, possibility of deadlock excluded)
both are false for a system with a state with a loop labelled by "b" and a unique outgoing labelled by "a"
because "b" can infinitely be done (and "a" avoided)
A valid formula however is mu X. ([-a]X V <a>true)
Trick:
An effective intuition to understand whether or not a fixed point formula holds is by thinking of it as a graph to be traversed where the fixed point variables are states and the modalities $\langle\mathrm{a}\rangle$ and $[\mathrm{a}$] are seen as transitions.
A formula is true when it can be made true by passing a fin a fimes through the minimal fixed point variables, whereas it is allowed to traverse an infinite number of times through the maximal fixed point variables.

Nesting

* conditional
* fairness:
express that some action must happen, provided it is unboundedly often enabled,
or because some other action happens only a bounded number of times.
mu X. nu Y. $(\langle a\rangle$ true $\wedge[b] X) \vee(\neg(a)$ true $\wedge[b] Y))$
A state without a-transitions must infinitely often be enabled.
Because the X is preceded by a minimal fixed point, the X can only be finitely often 'traversed'.
Within that the variable Y , can be traversed infinitely often, as it is preceded by a maximal fixed point.
nu X. mu Y. $(($ a $a)$ true $\wedge[b] X) \vee(\neg\langle a\rangle$ true $\wedge[b] Y))$
on eacheque sate sat an
outgoing "a" transition. So typically, if "a" is enabled in every state.
$m u X . n u Y .[-a] Y \wedge[a] X$
(action a occurs an finite number of times)
nuX . muY . [-a]Y $\wedge[-] X \wedge\langle-\rangle$ true
(action a occurs an infinite number of times)

Encodings:
$\angle R^{*}>p=m u x . \quad<R>X V p$
$\left[R^{*}\right] p=n u X .[R] X \wedge p$
$\angle R+>p=\angle R><R^{*}>p$
$<R+>p=[R]\left[R^{\star}\right] p$

Exercises
a. Consider the formulas
$\phi 1=\operatorname{muX} \cdot[a] X$
$\phi 2=n u X \cdot[a] X$
If possible, give transition systems where $\phi 1$ is valid in the initial state and $\phi 2$ is not valid and vice versa
b. What do the following formulas express?

Is there a process that shows that these formulas are not equivalent?
$\operatorname{muX} . n u Y$. $([a] Y \vee[b] X)$
$n u X . m u Y$. $([a] Y \vee[b] X)$
Answers
a. mu X. [a]X in invalid in a-loop, the other is valid. As nu X. [a]X equivales true here is no transition system for which the minimal fixed point formula holds, and the maximal one does not.
b. Each sequence consisting of only a and b actions ends in an infinite sequence of a's.
b. Each sequence consisting of only a and b actions ends in an infinite sequen

The first formula is valid and the second is not valid for the process P defined by $P=a . P$

Modal formulas with data

Whenever an error with some number n is observed, a shutdown is inevitable:
[true*. exist n:N. error(n)] mu X. ([-shutdown] X \wedge <true>true)
[true*. exist n:N. (error(n) n fatal(n))] mu X. ([-shutdown] X \wedge <true>true)
As long as no fatal error occurs, there will be no deadlock:
[(for all n:N. - (error(n) \cap fatal(n) $\left.)^{*}\right]$ <true>true
2. Quantifiers over data (in the usual sense).

The same value is never delivered twice can be done as follows:
forall $\mathrm{n}: \mathrm{N}$. [true ${ }^{\star}$. deliver(n) . true* . deliver(n)] false

After sending a message that message can eventually be delivered with some error code n.
(the error code is irrelevant for this requirement, just a parameter of the action)
forall m:Mess . [true*. send(m)] <true* . exists $n: N$. deliver $(m, n)]>$ true
3. Data in the fixed point variables

The property that the merger must satisfy is that as long as the input streams at r1 and r 2 are ascending,
the output must be ascending too.
Variables in1, in2 and out contain the last numbers read and delivered.
It does not appear to be possible to phrase this property without using data in the fixed point variables
nu X (in1 $: N:=0$, in2: $N:=0$, out: $\mathrm{N}:=0$)
forall $\mathrm{s}: \mathrm{N} .([\mathrm{r} 1(\mathrm{~s})](\mathrm{s}>=$ in1 $->\mathrm{X}(\mathrm{s}$, in2, out $)) \wedge$
$[\mathrm{r} 2(\mathrm{~s})](\mathrm{s}>=$ in2 $->x($ in1 $1, \mathrm{~s}$, out) $) \wedge$
[o(s)] (s >= out $->X($ in1, in2, s)))

Exercises
a. Specify a unique number generator that works properly if it does not generate the same number twice.
b. Express the property that a sorting machine only delivers sorted arrays. Arrays are represented by a function $f: N \rightarrow N$.
c. Specify that a store with products of sort Prod is guaranteed to refresh each product. The only way to see this, is that the difference in the number of enter(p) and leave(p) is always guaranteed to become zero within a finite number of steps.

Answers
a. forall $\mathrm{n}: \mathrm{N}$. [true* . gen(n$)$. true* . gen(n)] false
b. forall f : $\mathrm{N}-\mathrm{-}>\mathrm{N}$. [true* . deliver(f$]$] (forall $\mathrm{n}: \mathrm{N} . \mathrm{f}(\mathrm{n}+1)>\mathrm{f}(\mathrm{n})$)
c. forall $x: P$ Product . $n u X(n: N:=0) \cdot[-(e n t e r(x)$ union leave $(x))] X(n) \wedge[\operatorname{enter}(x)] X(n+1) \wedge[$ leave $(x)] X(n-1)$
${ }^{\wedge}$ mu $Y(x: \operatorname{Product}, n: N) .(n=0) \vee[-(e n t e r(x)$ union leave $(x))] Y(x, n) \wedge[e n t e r(x)] Y(x, n+1) \wedge[$ leave $(x)] Y(x, n-1)$

```
C. More examples (mCRL2)
C1 Road&Rail
act car,train,ccross,tcross,
    wait_up,set_up,up,wait_dw,set_dw,dw,
    wait_green,set_green,green,wait_red,set_red,red;
groc Road = car . wait_up.ccross . set_dw. Road;
    Signal = set_green.wait_red.Signal + set_up.wait_dw.Signal;
RR = hide({up,dw,green,red},
            comm({wait_uplset_up -> up, wait_dwlset_dw -> dw,
            wait_green|set_green -> green, wait_redlset_red -> red}
            Road I| Rail I| Signal));
init RR;
need to "unhide":
liveness: [true** <true*.up> true
starvation: [true*] nu X. <lup> X
safety: [true*.green.(!red)*.up] false
```

C2 Philosophers

No deadlock (every philosopher holds a left fork and waits for a right fork (or vice versa):
[true ${ }^{*}$] true ${ }^{\text {a }}$ true
No starvation (a philosopher cannot acquire 2 forks).
forall p:Phil. [true ${ }^{*}$.leat(p) $)^{\star}$] <leat(p) ${ }^{*}$.eat(p)>true

* A philosopher can only eat for a finite consecutive amount of time: forall p:Phil. nu X. mu Y. [eat(p)]Y \&\& [!eat(p)]X
* there is no starvation: for all reachable states it should be possible to eventually perform an eat(p) for each possible value of p :Phil. [true ${ }^{\star}$ (forall p:Phil. mu Y. ([!eat(p)]Y \& \& <true>true))

[^0](in annex)

[^0]: D. Case study: movable patient support unit (from [Groote\&Reniers, 2010] book)

