
Logic

Logic
(Métodos Formais em Engenharia de Software)

Maria João Frade

Departmento de Informática

Universidade do Minho

2011/2012

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 1 / 55

Logic

Roadmap

Inductive Definitions
I inductive types and its elimination mechanisms
I proof by induction; case analysis; general recursion
I relations as inductive types; logical connectives as inductive types
I some datatypes of programming

Case Study: Programmig Language Semantics
I encoding of a very simple imperative programming language
I natural semantic; axiomatic semantics
I correctness of axiomatic semantics w.r.t. the natural semantics

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 2 / 55

Logic

Bibliography

Coq in a Hurry. Yves Bertot. February 2010.

[Bertot&Castéran 2004] Interactive Theorem Proving and Program
Development Coq’Art: The Calculus of Inductive Constructions. Yves
Bertot & Pierre Castéran. Springer, 2004.

[Bertot 2009] Theorem-proving support in programming language
semantics. From Semantics to Computer Science, essays in Honour of Gilles
Kahn. Cambridge University Press, 2009.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 3 / 55

Logic Inductive Definitions

Inductive Definitions

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 4 / 55

Logic Inductive Definitions

Induction

Induction is a basic notion in logic and set theory.

When a set is defined inductively we understand it as being “built up
from the bottom” by a set of basic constructors.

Elements of such a set can be decomposed in “smaller elements” in a
well-founded manner.

This gives us principles of
I “proof by induction” and
I “function definition by recursion”.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 5 / 55

Logic Inductive Definitions

Inductive types

We can define a new type I inductively by giving its constructors together with
their types which must be of the form

⌧1! . . .!⌧n!I , with n � 0

Constructors (which are the introduction rules of the type I) give the
canonical ways of constructing one element of the new type I.

The type I defined is the smallest set (of objects) closed under its
introduction rules.

The inhabitants of type I are the objects that can be obtained by a finite
number of applications of the type constructors.

Type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in ⌧i must be in positive positions in order to assure the
well-foundedness of the datatype.

For instance, assuming that I does not occur in types A and B: I!B!I,
A!(B!I)!I or ((I!A)!B)!A!I are valid types for a constructor of I, but
(I!A)!I or ((A!I)!B)!A!I are not.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 6 / 55

Logic Inductive Definitions

Induction types - examples

The inductive type N : Set of natural numbers has two constructors

0 : N
S : N ! N

A well-known example of a higher-order datatype is the type O : Set of ordinal
notations which has three constructors

Zero : O
Succ : O ! O
Lim : (N ! O) ! O

To program and reason about an inductive type we must have means to analyze
its inhabitants.

The elimination rules for the inductive types express ways to use the objects of
the inductive type in order to define objects of other types, and are associated to
new computational rules.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 7 / 55

Logic Inductive Definitions

Recursors

When an inductive type is defined in a type theory the theory should automatically
generate a scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equipped with a recursor that can be used to
define functions and prove properties on that type.

The recursor is a constant RI that represents the structural induction
principle for the elements of the inductive type I, and the computation rule
associated to it defines a safe recursive scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

� ` P : N!Type � ` a : P 0 � ` a

0 : ⇧x :N. P x!P (Sx)
� ` RN P aa

0 : ⇧n :N. P n

and its reduction rules are

RN P aa

0 0 ! a

RN P aa

0 (Sx) ! a

0
x (RN P aa

0
x)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 8 / 55

Logic Inductive Definitions

Proof-by-induction scheme

The proof-by-induction scheme can be recovered by setting P to be of type
N!Prop.

Let indN := � P :N!Prop.RN P we obtain the following rule

� ` P : N!Prop � ` a : P 0 � ` a

0 : ⇧x :N. P x!P (Sx)
� ` indN P aa

0 : ⇧n :N. P n

This is the well known structural induction principle over natural numbers. It
allows to prove some universal property of natural numbers (8n :N. Pn) by
induction on n.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 9 / 55

Logic Inductive Definitions

Primitive recursion scheme

The primitive recursion scheme (allowing dependent types) can be recovered by
setting P : N!Set.

Let recN := � P :N!Set.RN P we obtain the following rule

� ` T : N!Set � ` a : T 0 � ` a

0 : ⇧ x :N. T x!T (Sx)
� ` recN T a a

0 : ⇧n :N. T n

We can define functions using the recursors.

For instance, a function that doubles a natural number can be defined as follows:

double := recN (�n :N. N) 0 (�x :N. �y :N.S (S y))

This approach gives safe way to express recursion without introducing
non-normalizable objects.

However, codifying recursive functions in terms of elimination constants is quite
far from the way we are used to program. Instead we usually use general recursion
and case analysis.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 10 / 55

Logic Inductive Definitions

Case analysis

Case analyses gives an elimination rule for inductive types.

For instance, n : N means that n was introduced using either 0 or S, so we may
define an object case n of {0) b1 | S) b2} in another type � depending on
which constructor was used to introduce n.

A typing rule for this construction is

� ` n : N � ` b1 : � � ` b2 : N!�

� ` case n of {0) b1 | S) b2} : �

and the associated computation rules are

case 0 of {0) b1 | S) b2} ! b1

case (Sx) of {0) b1 | S) b2} ! b2 x

The case analysis rule is very useful but it does not give a mechanism to define
recursive functions.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 11 / 55

Logic Inductive Definitions

General recursion

Functional programming languages feature general recursion, allowing recursive
functions to be defined by means of pattern-matching and a general fixpoint
operator to encode recursive calls.

The typing rule for N fixpoint expressions is

� ` N!✓ : s �, f : N!✓ ` e : N!✓

� ` (fix f = e) : N!✓

and the associated computation rules are

(fix f = e) 0 ! e[(fix f = e)/f] 0
(fix f = e) (Sx) ! e[(fix f = e)/f] (Sx)

Of course, this approach opens the door to the introduction of non-normalizable
objects.

Using this, the function that doubles a natural number can be defined by

(fix double = �n : N. case n of {0) 0 | S) (�x : N.S (S (double x)))})
Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 12 / 55

Logic Inductive Definitions

About termination

Checking convertibility between types may require computing with recursive
functions. So, the combination of non-normalization with dependent types
leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require
recursive functions to be encoded in terms of recursors or allow restricted
forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose
syntactical restrictions through a predicate Gf on untyped terms. This
predicate enforces termination by constraining all recursive calls to be applied
to terms structurally smaller than the formal argument of the function.

The restricted typing rule for fixpoint expressions hence becomes:

� ` N!✓ : s �, f : N!✓ ` e : N!✓

� ` (fix f = e) : N!✓

if Gf (e)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 13 / 55

Logic Inductive Definitions

Computation

Recall that typing judgments in Coq are of the form E |� ` M : A, where E is
the global environment and � is the local context.

Computations are performed as series of reductions.

�-reduction for compute the value of a function for an argument:

(�x :A. M) N !� M [N/x]

�-reduction for unfolding definitions:

M ! � N if (M := N) 2 E |�

◆-reduction for primitive recursion rules, general recursion and case analysis

⇣-reduction for local definitions: let x := N in M ! ⇣ M [N/x]

Note that the conversion rule is

E |� ` M : A E |� ` B : s

E |� ` M : B

if A =�◆�⇣ B and s 2 {Prop,Set,Type}

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 14 / 55

Logic Inductive Definitions

Natural numbers

Inductive nat :Set := O : nat

| S : nat -> nat.

The declaration of this inductive type introduces in the global environment not only the
constructors O and S but also the recursors: nat rect, nat ind and nat rec

Check nat rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Print nat ind.

nat_ind = fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Print nat rec.

nat_rec = fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 15 / 55

Logic Inductive Definitions

Vectors of length n over A.

Inductive vector (A : Type) : nat -> Type :=
| Vnil : vector A 0
| Vcons : A -> forall n : nat, vector A n -> vector A (S n).

Remark the di↵erence between the two parameters A and n:
– A is a general parameter, global to all the introduction rules,
– n is an index, which is instantiated di↵erently in the introduction rules.

The type of constructor Vcons is a dependent function.

Variables b1 b2 : B.

Check (Vcons b1 (Vcons b2 (Vnil))).

Vcons B b1 1 (Vcons B b2 0 (Vnil B)) : vector B 2

Check vector rect.

vector_rect

: forall (A : Type) (P : forall n : nat, vector A n -> Type),

P 0 (Vnil A) ->

(forall (a : A) (n : nat) (v : vector A n),

P n v -> P (S n) (Vcons A a n v)) ->

forall (n : nat) (v : vector A n), P n v
Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 16 / 55

Logic Inductive Definitions

Equality

In Coq, the propositional equality between two inhabitants a and b of the same
type A, noted a = b, is introduced as a family of recursive predicates “to be equal
to a”, parameterized by both a and its type A. This family of types has only one
introduction rule, which corresponds to reflexivity.

Inductive eq (A : Type) (x : A) : A -> Prop :=
| refl_equal : (eq A x x).

The induction principle of eq is very close to the Leibniz’s equality but not exactly
the same.

Check eq ind.

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Notice that the syntax “a = b” is an abbreviation for “eq a b”, and that the
parameter A is implicit, as it can be inferred from a.

Inductive eq (A : Type) (x : A) : A -> Prop :=
| refl_equal : x = x.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 17 / 55

Logic Inductive Definitions

Relations as inductive types

Some relations can also be introduced as an inductive family of propositions. For
instance, the order n  m on natural numbers is defined as follows in the
standard library:

Inductive le (n:nat) : nat -> Prop :=
| le_n : (le n n)
| le_S : forall m : nat, (le n m) -> (le n (S m)).

Notice that in this definition n is a general parameter, while the second
argument of le is an index. This definition introduces the binary relation
n  m as the family of unary predicates “to be greater or equal than a given
n”, parameterized by n.

The Coq system provides a syntactic convention, so that “le x y” can be
written “x <= y”.

The introduction rules of this type can be seen as rules for proving that a
given integer n is less or equal than another one. In fact, an object of type
n  m is nothing but a proof built up using the constructors le n and le S.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 18 / 55

Logic Inductive Definitions

Logical connectives in Coq

In the Coq system, most logical connectives are represented as inductive types,
except for) and 8 which are directly represented by! and ⇧-types, negation
which is defined as the implication of the absurd and equivalence which is defined
as the conjunction of two implications.

Definition not := fun A : Prop => A -> False.

Notation "~ A" := (not A) (at level 75, right associativity).

Inductive True : Prop := I : True.

Inductive False : Prop := .

Inductive and (A : Prop) (B : Prop) : Prop :=
| conj : A -> B -> (and A B).

Notation "A /\ B" := (and A B) (at level 80, right associativity).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 19 / 55

Logic Inductive Definitions

Logical connectives in Coq

Inductive or (A : Prop) (B : Prop) : Prop :=
| or_introl : A -> (or A B)
| or_intror : B -> (or A B).

Notation "A \/ B" := (or A B) (at level 85, right associativity).

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
| ex_intro : forall x : A, P x -> ex P.

exists x:A, P is an abbreviation of ex A (fun x:A => P).

Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).

Notation "P <-> Q" := (iff P Q) (at level 95, no associativity).

The constructors are the introduction rules.
The induction principle gives the elimination rules.

All the (constructive) logical rules are now derivable.
Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 20 / 55

Logic Inductive Definitions

Some datatypes of programming

Inductive unit : Set := tt : unit.

Inductive bool : Set := true : bool | false : bool.

Inductive nat : Set := O : nat | S : nat -> nat.

Inductive option (A : Type) : Type := Some : A -> option A
| None : option A.

Inductive identity (A : Type) (a : A) : A -> Type :=
refl_identity : identity A a a.

Some operations on bool are also provided: andb (with infix notation &&), orb
(with infix notation ||), xorb, implb and negb.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 21 / 55

Logic Inductive Definitions

Some datatypes of programming

Inductive sum (A B : Type) : Type := inl : A -> A + B
| inr : B -> A + B.

Inductive prod (A B : Type) : Type := pair : A -> B -> A * B.

Definition fst (A B : Type) (p : A * B) := let (x, _) := p in x.

Definition snd (A B : Type) (p : A * B) := let (_, y) := p in y.

The constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B : Prop) : Set :=
| left : A -> {A} + {B}
| right : B -> {A} + {B}.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 22 / 55

Logic Inductive Definitions

If-then-else

The sumbool type can be used to define an “if-then-else” construct in Coq.

Coq accepts the syntax if test then ... else ... when test has either of
type bool or {A}+{B}, with propositions A and B.

Its meaning is the pattern-matching match test with
| left H => ...
| right H => ...

end.

We can identify {P}+{~P} as the type of decidable predicates:

The standard library defines many useful predicates, e.g.

le_lt_dec : forall n m : nat, {n <= m} + {m < n}
Z_eq_dec : forall x y : Z, {x = y} + {x <> y}
Z_lt_ge_dec : forall x y : Z, {x < y} + {x >= y}

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 23 / 55

Logic Inductive Definitions

If-then-else

A function that checks if an element is in a list.
Fixpoint elem (a:Z) (l:list Z) {struct l} : bool :=

match l with
| nil => false
| cons x xs => if Z_eq_dec x a then true else (elem a xs)

end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 24 / 55

Logic Inductive Definitions

Exercises

Demo

Load the file IndDefs.v in the Coq proof assistant. Analyse the examples
and solve the exercises proposed.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 25 / 55

Logic Programming Language Semantics

Case Study: Programming Language Semantics

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 26 / 55

Logic Programming Language Semantics

Introduction

A typical application of Coq is the formalization of programming
languages semantics. E.g.

I The CompCert compiler certification project (INRIA);
I The Concurrent C Minor Project (Princeton);
I The Ynot project (Harvard);
I Java Card EAL7 certification (in industrial context).

The following paper illustrates the formalization, in Coq, of many
aspects of programming language semantics.

Yves Bertot. Theorem-proving support in programming language semantics.
From Semantics to Computer Science, essays in Honour of Gilles Kahn.
Cambridge University Press, 2009.

We will see a fragment of this work.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 27 / 55

Logic Programming Language Semantics

Semantics of programming languages

The meaning of a grammatically correct program can be formalized in
di↵erent ways:

Operational semantics is focused on the computation the program
induces on a machine (small-step, or structural, if the emphasis is on
the individual steps of the execution; big-step, or natural semantics, if
the emphasis is on the relationship between the initial and the final
state of the execution).

Denotational semantics is focused on representing the e↵ect of
executing a program by a mathematical object.

Axiomatic semantics is focused on specific properties (expressed by
assertions) of the e↵ect of executing a program.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 28 / 55

Logic Programming Language Semantics

The paper

Describes several views of the semantics of a simple programming
language.
Covered aspects are: operational semantics (big-step and small-step),
denotational semantics, axiomatic semantics, and abstract
interpretation.
Descriptions as recursive functions are also provided whenever
suitable, thus yielding a verification condition generator and a static
analyser that can be run inside the theorem prover.
Extraction of an interpreter from the denotational semantics is also
described.
All di↵erent aspects are formally proved sound with respect to the
natural semantics specification.

We will just focus on the encoding of the programming language, its
natural semantics and axiomatics semantics, and the correctness of
axiomatic semantics with respect to the natural semantics.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 29 / 55

Logic Programming Language Semantics

Encoding

One can decribe programming languages relying mostly on the basic
concepts of inductive types and inductive propositions.

Programs can be represented as an inductive datatype, following the
tradition of abstract syntax trees.

Operational semantics: the execution of instructions can be described
as inductive propositions.

Axiomatic semantics: Hoare triples can be described as inductive
propositions.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 30 / 55

Logic Programming Language Semantics

The programming language

We consider a while loop programing language with simple arithmetic
expressions.

The language has been trimmed to a bare skeleton, but still retains
the property of being Turing complete.

Execution states are represented as environments, encoded by lists of
pairs binding a variable name and a value.

We will use:

⇢ as meta-variables for variable declarations (environment),
e for expressions,
b for boolean expressions,
i for instructions,
x, y, x1 for variable names,
n, n1, n

0 to represent integers.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 31 / 55

Logic Programming Language Semantics

The programming language

The syntactic categories are defined as follows:

6 Bertot

o�spring, JavaCard. More recent work by Leroy and his team show that this work can be
extended to the formalization of e�cient compilers.

2 Concrete and abstract syntax

We consider a while loop programing language with simple arithmetic expressions: it is the
Imp language of [24] without the conditional instruction. The language has been trimmed
to a bare skeleton, but still retains the property of being Turing complete. We will use ⇢ as
meta-variables for variable declarations (we will also often use the word environment), e for
expressions, b for boolean expressions, and i for instructions. We use an infinite denumerable
set of variable names whose elements are written x, y, x1, . . . and we use n, n1, n

0 to represent
integers. The syntactic categories are defined as follows:

⇢ ::= (x, n) · ⇢|� e ::= n | x | e+e b ::= e <e

i ::= skip | x:=e | i;i | while b do i done

The intended meaning of most of these constructs should be obvious. The only suprising
element may be the skip instruction: this is an empty program, which does nothing.

In the theorem prover, we use inductive types to describe these syntactic categories. The
convention that numbers are expressions needs to be modified: there is a constructor anum in
the type of arithmetic expression aexpr that maps a number to the corresponding expression.
Similarly, variable names are transformed into arithmetic expressions and assignments just
use variable names as first components.

Inductive aexpr : Type := avar (s : string) | anum (n : Z) | aplus (a1 a2 :aexpr).

Inductive bexpr : Type := blt (a1 a2 : aexpr).

Inductive instr : Type :=
assign (s: string)(e:aexpr) | sequence (i1 i2:instr) | while (b:bexpr)(i:instr) | skip.

3 Operational semantics

3.1 Evaluation and environment update

3.1.1 Inference rules

We will describe the evaluation of expressions using judgments of the form ⇢ ` e ! v or
⇢ ` b ! v (with a straight arrow). These judgments should be read as in environment ⇢, the
arithmetic expression e (resp. the expression b) has the value v. The value v is an integer or
a boolean value depending on the kind of expression being evaluated. The rules describing

INRIA

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 32 / 55

Logic Programming Language Semantics

The programming language

In the theorem prover, we use inductive types to describe these syntactic
categories.

Inductive aexpr : Type :=
avar (s : string) | anum (n : Z) | aplus (e1 e2 : aexpr).

Inductive bexpr : Type := blt (e1 e2 : aexpr).

Inductive instr : Type :=
skip

| assign (s : string) (e : aexpr)
| sequence (i1 i2 : instr)
| while (b : bexpr) (i : instr).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 33 / 55

Logic Programming Language Semantics

Evaluation of expressions

Evaluation of expressions is decribed using judgments of the form ⇢ ` e!v or
⇢ ` b!v. The value v is an integer or a boolean value depending on the kind of
expression being evaluated.

Evaluation is decribed by the following rules:
Theorem proving support in programming language semantics 7

evaluation are as follows:

⇢ ` n ! n (x, n) · ⇢ ` x ! n

⇢ ` x ! n x 6= y

(y, n

0) · ⇢ ` x ! n

⇢ ` e1 ! n1 ⇢ ` e2 ! n2

⇢ ` e1+e2 ! n1 + n2

⇢ ` e1 ! n1 ⇢ ` e2 ! n2 n1 < n2

⇢ ` e1<e2 ! true

⇢ ` e1 ! n1 ⇢ ` e2 ! n2 n2  n1

⇢ ` e1<e2 ! false

During the execution of instructions, we will regularly need describing the modification of
an environment, so that the value associated to a variable is modified. We use judgments
of the form ⇢ ` x, n 7! ⇢

0, which should be read as x has a value in ⇢ and ⇢

0 and the value
for x in ⇢

0 is n; every other variable that has a value in ⇢ has the same value in ⇢

0. This is
simply described using two inference rules, in the same spirit as rules to evaluate variables.

3.1.2 Theorem prover encoding

Judgments of the form · ` · ! · are represented by three-argument inductive predicates
named aeval and beval. We need to have two predicates to account for the fact that the
same judgment is actually used to describe the evaluations of expressions of two di�erent
types. The encoding of premises is quite straight forward using nested implications, and
we add universal quantifications for every variable that occurs in the inference rules. All
inference rules for a given judgment are grouped in a single inductive definition. This makes
it possible to express that the meaning of the judgment · ` · ! · is expressed by these
inferences and only these inferences rules.

Environments are encoded as lists of pairs of a string and an integer, so that the envi-
ronment � is encoded as nil and the environment (x, n) · ⇢ is (x,n)::r.

Definition env := list(string*Z).

Inductive aeval : env ! aexpr ! Z ! Prop :=
ae int : 8 r n, aeval r (anum n) n

| ae var1 : 8 r x n, aeval ((x,n)::r) (avar x) n
| ae var2 : 8 r x y v v’ , x 6= y ! aeval r (avar x) v ! aeval ((y,v’)::r) (avar x) v
| ae plus : 8 r e1 e2 v1 v2, aeval r e1 v1 ! aeval r e2 v2 !

aeval r (aplus e1 e2) (v1 + v2).

Inductive beval : env ! bexpr ! bool ! Prop :=
| be lt1 : 8 r e1 e2 v1 v2, aeval r e1 v1 ! aeval r e2 v2 ! v1 < v2 !

beval r (blt e1 e2) true
| be lt2 : 8 r e1 e2 v1 v2, aeval r e1 v1 ! aeval r e2 v2 ! v2  v1 !

beval r (blt e1 e2) false.

RR n 6242

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 34 / 55

Logic Programming Language Semantics

Evaluation of expressions

Judgments of the form ⇢ ` e!v are represented by the three-argument inductive
predicate aeval.
The encoding of premises is quite straight forward using nested implications, and
universal quantifications are added for every variable that occurs in the inference
rules.

Definition env := list (string*Z).

Inductive aeval : env -> aexpr -> Z -> Prop :=
ae_int : forall r n, aeval r (anum n) n

| ae_var1 : forall r x v, aeval ((x,v)::r) (avar x) v
| ae_var2 : forall r x y v v’ , x <> y -> aeval r (avar x) v’ ->

aeval ((y,v)::r) (avar x) v’
| ae_plus : forall r e1 e2 v1 v2,

aeval r e1 v1 -> aeval r e2 v2 ->
aeval r (aplus e1 e2) (v1 + v2).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 35 / 55

Logic Programming Language Semantics

Evaluation of expressions

Judgments of the form ⇢ ` b!v are represented by the three-argument inductive
predicate beval.

Inductive beval : env -> bexpr -> bool -> Prop :=
| be_lt1 : forall r e1 e2 v1 v2,

aeval r e1 v1 -> aeval r e2 v2 ->
v1 < v2 -> beval r (blt e1 e2) true

| be_lt2 : forall r e1 e2 v1 v2,
aeval r e1 v1 -> aeval r e2 v2 ->
v2 <= v1 -> beval r (blt e1 e2) false.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 36 / 55

Logic Programming Language Semantics

Environment update

During the execution of instructions, it is necessary to describe the modification
of an environment, so that the value associated to a variable is modified. The
judgments ⇢ ` x, n 7! ⇢

0 state the environment update, which can be described
by the following inference rules:

(x, v) · ⇢ ` x, v

0 7! (x, v

0) · ⇢

⇢ ` x, v

0 7! ⇢

0
x 6= y

(y, v) · ⇢ ` x, v

0 7! (y, v) · ⇢0

These rules are also encoded as an inductive definition for a predicate named
s update.

Inductive s_update : env -> string -> Z -> env -> Prop :=
| s_up1 : forall r x v v’, s_update ((x,v)::r) x v’ ((x,v’)::r)
| s_up2 : forall r r’ x y v v’, s_update r x v’ r’ ->

x <> y -> s_update ((y,v)::r) x v’ ((y,v)::r’).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 37 / 55

Logic Programming Language Semantics

Natural semantics

Natural semantics (introduced by Gilles Kahn), also called big-step semantics,
describes how the overall results of the executions are obtained.
Judgments ⇢ ` i ⇢

0 should be read as “executing i from the initial environment
⇢ terminates and yields the new environment ⇢

0”.

Theorem proving support in programming language semantics 9

The proof of the first lemma is done by induction on the structure of r, the proof of the
second lemma is done by induction on e, while the proof of the third lemma is done by
induction on the structure of the proof for aeval (using the induction principle, which is
generated when the inductive predicate is declared). Using simple proof commands, each of
these proofs is less than ten lines long. We also have similar correctness proofs for bf and uf.

3.3 Natural semantics

With natural semantics [21], Gilles Kahn proposed that one should rely on judgments ex-
pressing the execution of program fragments until they terminate. The same style was
also called big-step semantics. The main advantage of this description style is that it sup-
ports very concise descriptions for sequential languages. For our little language with four
instructions, we only need five inference rules.

We rely on judgments of the form ⇢ ` i ⇢

0 (with a twisted arrow). These judgments
should be read as executing i from the initial environment ⇢ terminates and yields the new
environment ⇢

0.

⇢ ` skip ⇢

⇢ ` e! n ⇢ ` x, n 7! ⇢

0

⇢ ` x:=e ⇢

0

⇢ ` i1 ⇢

0
⇢

0 ` i2 ⇢

00

⇢ ` i1;i2 ⇢

00
⇢ ` b! false

⇢ ` while b do i done ⇢

⇢ ` b! true ⇢ ` i ⇢

0
⇢

0 ` while b do i done ⇢

00

⇢ ` while b do i done ⇢

00

Because it is described using collections of rules, the judgment · ` · · can be described
with an inductive predicate exactly like the judgments for evaluation and update. We use
the name exec for this judgment.

Like the judgment ⇢ ` e! v, the judgment ⇢ ` i ⇢

0 actually describes a partial func-
tion. However, this partial function cannot be described as a structural recursive function
as we did when defining the functions lookup and af. For while loop, Such a function would
present a recursive call where neither the environment nor the instruction argument would
be a sub-structure of the corresponding initial argument. This failure also relates to the fact
that the termination of programs is undecidable for this kind of language, while structural
recursion would provide a terminating tool to compute whether programs terminate. In the
later section on denotational semantics, we will discuss ways to encode a form of recursion
that is powerful enough to describe the semantics as a recursive function.

4 Axiomatic semantics

We study now the encoding of axiomatic semantics as proposed by Hoare [20] and the
weakest pre-condition calculus as proposed by Dijkstra [15]. The principle of this semantic
approach is to consider properties that are satisfied by the variables of the program before
and after the execution.

RR n 6242

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 38 / 55

Logic Programming Language Semantics

Natural semantics

The judgment ⇢ ` i ⇢

0 can be described with an inductive predicate exec.

Inductive exec : env -> instr -> env -> Prop :=
| SN1 : forall r, exec r skip r
| SN2 : forall r r’ x e v,

aeval r e v -> s_update r x v r’ ->
exec r (assign x e) r’

| SN3 : forall r r’ r’’ i1 i2,
exec r i1 r’ -> exec r’ i2 r’’ ->
exec r (sequence i1 i2) r’’

| SN4 : forall r r’ r’’ b i,
beval r b true -> exec r i r’ ->
exec r’ (while b i) r’’ -> exec r (while b i) r’’

| SN5 : forall r b i,
beval r b false -> exec r (while b i) r.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 39 / 55

Logic Programming Language Semantics

Axiomatic semantics

Axiomatic semantics (proposed by Tony Hoare) defines the meaning of a program
by describing its e↵ect on assertions about the program state (the environment).

Judgments {P} i {Q} state that “if P is satisfied before executing i and
executing i terminates, then Q is guaranteed to be satisfied after executing i”.

10 Bertot

4.1 The semantic rules

To describe this approach, we use judgments of the following form: {P}i{Q}. This should
be read as if P is satisfied before executing i and executing i terminates, then Q is guaranteed
to be satisfied after executing i.

There are two key aspects in axiomatic semantics: first the behavior of assignment
is explained by substituting variables with arithmetic expressions; second the behavior of
control operators is explained by isolating properties that are independent from the choice
made in the control operator and properties that can be deduced from the choice made in
the control operator.

{P}skip{P} {P}i1{Q} {Q}i2{R}
{P}i1;i2{R}

{P [x� e]}x:=e{P} {b � P}i{P}
{P}while b do i done{¬b � P}

P) P1 {P1}i{Q1} Q1) Q

{P}i{Q}
In the rule for while loops, the property P corresponds to something that should be verified
whether the loop body is executed 0, 1, or many times: it is independent from the choice
made in the control operator. However, when the loop terminates, one knows that the
test must have failed, this is why the output property for the loop contains ¬b. Also, if P

should be preserved independently of the number of executions of the loop, then it should
be preserved through execution of the loop body, but only when the test is satisfied.

We call the first four rules structural rules: each of them handles a construct of the
programming language. The last rule, known as the consequence rule, makes it possible to
mix logical reasoning about the properties with the symbolic reasoning about the program
constructs. To prove the two premises that are implications, it is necessary to master the
actual meaning of the properties, conjunction, and negation.

4.2 Theorem prover encoding

The first step is to define a data-type for assertions. Again, we keep things minimal. Obvi-
ously, the inference rules require that the language of assertions contain at least conjunctions,
negations, and tests from the language’s boolean expressions. We also include the possibil-
ity to have abitrary predicates on arithmetic expressions, represented by a name given as a
string.

Inductive assert : Type :=
a b (b: bexpr) | a not (a: assert) | a conj (a a’: assert) | pred (s: string)(l: int aexpr).

Inductive condition : Type := c imp (a a’:assert).

For variables that occur inside arithmetic expressions, we use valuation functions of type
string! Z instead of environments and we define a new function af’ (respectively bf’, lf’)

INRIA

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 40 / 55

Logic Programming Language Semantics

Axiomatic semantics

Relates properties instead of relating states.

Relates logical reasoning with program constructs.

Requires a syntax for the assertions.

The behavior of assignment is explained using substitution.

The formal system describing the semantics is usualy called Hoare Logic.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 41 / 55

Logic Programming Language Semantics

Assertions and conditions

The language of assertions contains conjunctions, negations, and tests from the
language’s boolean expressions. It is also included the possibility to have arbitrary
predicates on arithmetic expressions, represented by a name given as a string.

Inductive assert : Type :=
a_b (b : bexpr) | a_not (a : assert) | a_conj (a a’ : assert)

| pred(s : string)(l : list aexpr).

The consequence rule, makes it possible to mix logical reasoning about the
properties with the symbolic reasoning about the program constructs. To prove
the two premises that are implications, it is necessary to master the actual
meaning of the properties, conjunction, and negation.

Inductive condition : Type :=
| c_imp : assert -> assert -> condition.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 42 / 55

Logic Programming Language Semantics

Substitution

We define substitution for assertions. The function is called a subst, and uses
substitution for arithmetic expressions, boolean expressions, and so on.

Fixpoint a_subst (a:assert)(s:string)(v:aexpr)
{struct a} : assert :=
match a with
a_b e => a_b (b_subst e s v)

| a_not a => a_not (a_subst a s v)
| pred p l => pred p (l_subst l s v)
| a_conj a1 a2 => a_conj(a_subst a1 s v)(a_subst a2 s v)
end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 43 / 55

Logic Programming Language Semantics

Substitution

We also define substitution for arithmetic expressions subst, boolean expressions
b subst, and lists of arithmetic exepressions l subst.

Fixpoint subst (e:aexpr)(s:string)(v:aexpr) {struct e} : aexpr :=
match e with
avar s’ => if string_dec s s’ then v else e

| anum n => anum n
| aplus e1 e2 => aplus (subst e1 s v) (subst e2 s v)
end.

Definition b_subst (b:bexpr) (s:string) (v:aexpr) : bexpr :=
match b with blt e1 e2 => blt (subst e1 s v)(subst e2 s v) end.

Fixpoint l_subst (l:list aexpr)(s:string)(v:aexpr)
{struct l} : list aexpr :=
match l with
nil => nil

| a::tl => subst a s v::l_subst tl s v
end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 44 / 55

Logic Programming Language Semantics

Interpretation functions

For variables that occur inside arithmetic expressions, we use valuation functions
of type string->Z instead of environments and we define a function af’ (resp.
bf’, lf’) to compute the value of an arithmetic expression (resp. boolean
expressions, lists of arithmetic expressions) for a given valuation.

Fixpoint af’ (g : string -> Z)(a : aexpr) {struct a} : Z :=
match a with
avar s => g s

| anum n => n
| aplus e1 e2 => af’ g e1 + af’ g e2
end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 45 / 55

Logic Programming Language Semantics

Interpretation functions

To give a meaning to predicates, we use lists of pairs associating names and
predicates on lists of integers as predicate environments and we have a function
f p to map an environment and a string to a predicate on integers.

Definition p_env := list (string * (list Z -> Prop)).

Fixpoint f_p (preds : p_env) (s:string) (args:list Z)
{struct preds} : Prop :=
match preds with
(a,m)::tl => if string_dec a s then m args else f_p tl s args

| nil => True
end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 46 / 55

Logic Programming Language Semantics

Interpretation functions

With all these functions, we can interpret assertions as propositional values using
a function i a and conditions using a function i c.

Fixpoint i_a (preds : p_env) (g : string->Z) (a : assert)
{struct a} : Prop :=
match a with
a_b e => bf’ g e

| a_not a => ~ i_a preds g a
| pred p l => f_p preds p (lf’ g l)
| a_conj a1 a2 => i_a preds g a1 /\ i_a preds g a2
end.

Definition i_c (m : p_env) (g : string->Z) (c : condition) :=
match c with
c_imp a1 a2 => i_a m g a1 -> i_a m g a2

end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 47 / 55

Logic Programming Language Semantics

Interpretation functions

The validity of conditions can be expressed for a given predicate environment by
saying that their interpretation should hold for any valuation.

Definition valid (preds: p_env) (c:condition) :=
forall g, i_c preds g c.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 48 / 55

Logic Programming Language Semantics

Encoding of Hoare Logic

We can then define the axiomatic semantics.

Inductive ax_sem (preds : p_env) :
assert -> instr -> assert -> Prop :=

ax1 : forall P, ax_sem preds P skip P
| ax2 : forall P x e, ax_sem preds (a_subst P x e) (assign x e) P
| ax3 : forall P Q R i1 i2,

ax_sem preds P i1 Q -> ax_sem preds Q i2 R ->
ax_sem preds P (sequence i1 i2) R

| ax4 : forall P b i,
ax_sem preds (a_conj (a_b b) P) i P ->
ax_sem preds P (while b i) (a_conj (a_not (a_b b)) P)

| ax5 : forall P P’ Q’ Q i,
valid preds (c_imp P P’) -> ax_sem preds P’ i Q’ ->
valid preds (c_imp Q’ Q) ->
ax_sem preds P i Q.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 49 / 55

Logic Programming Language Semantics

Proving the correctness

We want to certify that the properties of programs that we can prove using
axiomatic semantics hold for actual executions of programs, as described by the
natural semantics.
We first define a mapping from the environments used in operational semantics to
the valuations used in the axiomatic semantics. This mapping is called e to f,
the expression (e to f e g x) is the value of x in the environment e, when it is
defined, and g x otherwise. The formula (e to f e g) is also written e@g.

Fixpoint e_to_f(r:list(string*Z))(g:string->Z)(var:string):Z :=
match r with
nil => g var

| (s,v)::tl =>
if string_dec s var then v else e_to_f tl g var

end.

Notation "r @ g" := (e_to_f r g) (at level 30, right associat...

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 50 / 55

Logic Programming Language Semantics

Proving the correctness

The correctness of axiomatic semantics is expressed by stating that if (exec r i
r’) and (ax sem P i Q) hold, if P holds in the initial environment, Q should
hold in the final environment Q.

Theorem ax_sem_sound :
forall m r i r’ g P Q, exec r i r’ -> ax_sem m P i Q ->
i_a m (r@g) P -> i_a m (r’@g) Q.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 51 / 55

Logic Programming Language Semantics

Proving the correctness

When we attempt to prove this statement by induction on exec and case
analyis on ax sem, we encounter problem because uses of consequence rules
may make axiomatic semantics derivations arbitrary large.

To reduce this problem we introduce a notion of normalized derivations
where exactly one consequence step is associated to every structural step.

We introduce an extra inductive predicate call nax to model these
normalized derivation.

nax is an encoding of a goal-directed system for Hoare Logic.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 52 / 55

Logic Programming Language Semantics

Proving the correctness

Inductive nax (preds: p_env) :
assert -> instr -> assert -> Prop :=

nax1 : forall P Q,
valid preds (c_imp P Q) -> nax preds P skip Q

| nax2 : forall P P’ Q x e,
valid preds (c_imp P (a_subst P’ x e)) ->
valid preds (c_imp P’ Q) ->
nax preds P (assign x e) Q

| nax3 : forall P P’ Q’ R’ R i1 i2,
valid preds (c_imp P P’) ->
valid preds (c_imp R’ R) ->
nax preds P’ i1 Q’ -> nax preds Q’ i2 R’ ->
nax preds P (sequence i1 i2) R

| nax4 : forall P P’ Q b i,
valid preds (c_imp P P’) ->
valid preds (c_imp (a_conj (a_not (a_b b)) P’) Q) ->
nax preds (a_conj (a_b b) P’) i P’ ->
nax preds P (while b i) Q.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 53 / 55

Logic Programming Language Semantics

Proving the correctness

ax sem and nax are proved equivalent.

Lemma ax_sem_nax : forall m P i Q,
ax_sem m P i Q -> nax m P i Q.

Lemma nax_ax_sem : forall m P i
Q, nax m P i Q -> ax_sem m P i Q.

The correctness statement can now be proved by induction on exec and by cases
on nax, while a proof by double induction would be required with ax sem.

Theorem nax_sound :
forall m r i r’ g, exec r i r’ ->
forall P Q, nax m P i Q ->
i_a m (r@g) P -> i_a m (r’@g) Q.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 54 / 55

Logic Programming Language Semantics

Further reading

Check the package Semantics in the Coq Users’ Contributions.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 55 / 55

