
Logic

Logic
(Métodos Formais em Engenharia de Software)

Maria João Frade

Departmento de Informática
Universidade do Minho

2011/2012

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 1 / 71

Logic

Roadmap

Beyond First-Order Logic
I second-order logic
I simply typed lambda calculus
I higher-order logic

Propositions as Types
I intuitionistic logic
I the Curry-Howard isomorphim

Higher-Order Logic and Type Theory
I
�HOL

I type-theoretic approach to theorem proving

Coq in Brief

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 2 / 71

Logic

Bibliography

[Sorensen&Urzyczyn 2006] Lectures on the Curry-Howard Isomorphism.
Morten Sorensen & Pawel Urzyczyn. Elsevier (2006).

[Barendregt&Geuvers 2001] Proof-assistants using dependent type systems.
Henk Barendregt & Herman Geuvers. In Handbook of Automated
Reasoning, pages 1149-1238. Elsevier (2001).

[Bertot&Castéran 2004] Interactive Theorem Proving and Program
Development Coq’Art: The Calculus of Inductive Constructions. Yves
Bertot & Pierre Castéran. Springer (2004).

Coq in a Hurry. Yves Bertot (2010).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 3 / 71

Logic Beyond First-Order Logic

Beyond First-Order Logic

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 4 / 71

Logic Beyond First-Order Logic

FOL strengths and weaknesses

First-order logic is much more expressive than propositional logic,
having predicate and function symbols, as well as quantifiers.

First-order logic is a powerful language but, as all mathematical
notations, has its weaknesses. For instance,

I It is not possible to define finiteness or countability.

I In FOL without equality it is not possible to express “there exist n

elements satisfying ” for some fixed finite cardinal n.

I It is not possible to express reachability in graphs.

I FOL does not include types into the notation itself. One can provide
such information using the notation available in FOL, but expressions
become more complex. (But many-sorted FOL to solve this problem.)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 5 / 71

Logic Beyond First-Order Logic

Second-order logic

Second-order logic (SOL) is the extension of first-order logic that allows
quantification of predicates.

The symbols of SOL are the same symbols used in FOL.

The syntax of SOL is defined by adding two rules to the syntax of
FOL.

 ::= . . . | 8P. | 9P.

The additional rules make SOL far more expressive than FOL.

The proof system of natural deduction for SOL consists of the
standard deductive system for FOL augmented with substitution rules
for second-order terms.

The standard semantics for SOL leads to a failure of completeness.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 6 / 71

Logic Beyond First-Order Logic

Second-order logic

In SOL, it is possible to write formal sentences which say “the domain is finite”,

“the domain is of countable cardinality”, or “state v is reachable from state u”.

For instance,

“the domain is infinite” can be expressed by

9R. 1 ^ 2 ^ 3 ^ 4 where

 1
def= 8x.8y.8z. R(x, y) ^R(x, z) ! y = z 3

def= 8x.9y. R(x, y)
 2

def= 8x.8y.8z. R(x, y) ^R(z, y) ! x = z 4
def= 9y.8x.¬R(x, y)

“v is R-reachable from u” can be expressed by

8P.9x.9y.9z.¬�1 _ ¬�2 _ ¬�3 _ ¬�4 where

�1
def= P (x, x) �3

def= P (u, v) ! ?
�2

def= P (x, y) ^ P (y, z) ! P (x, z) �4
def= R(x, y) ! P (x, y)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 7 / 71

Logic Beyond First-Order Logic

Higher-order logic

There is no need to stop at second-order logic; one can keep going.

We can add to the language “super-predicate” symbols, which take as
arguments both individual symbols and predicate symbols. And then
we can allow quantification over super-predicate symbols.

And we can keep going further...

We reach the level of type theory.

Higher-order logics allows quantification over “everything”.

One needs to introduce some kind of typing scheme.

The original motivation of Church (1940) to introduce simple type
theory was to define higher-order (predicate) logic.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 8 / 71

Logic Beyond First-Order Logic

Lambda calculus

The lambda calculus was developed by Alonzo Church in the early 1930’s to
serve as a foundation for higher-order logic.

Church actually developed a typed version of the lambda calculus first and
later considered the calculus without types.

However, the untyped calculus was not suitable as a foundation for logic.

The untyped calculus became successful as a “pure calculus of functions”,
ignoring the logic aspect. The emphasis on this calculus was due to Haskell
Curry, who independently invented, in the early 1930’s, a system called
combinatory calculus in order to study variables and substitutions.

It turned out that the combinatory calculus was equivalent to the lambda
calculus and have very similar ideas.

The theory of programming languages came to use the lambda calculus as
the foundational system for studying all the concepts related to
programming.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 9 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!

Types

Fix an arbitrary non-empty set G of ground types.

Types are just ground types or arrow types:

⌧,� ::= T | ⌧!� where T 2 G

Terms
Assume a denumerable set of variables: x, y, z, . . .

Fix a set of term constants for the types.

Terms are built up from constants and variables by �-abstraction and
application:

e, a, b ::= c | x | �x :⌧.e | a b where c is a term constant

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 10 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!

Convention
The usual conventions for omitting parentheses are adopted:

the arrow type construction is right associative;

application is left associative; and

the scope of � extends to the right as far as possible.

Usually, we write

⌧!�!⌧

0!�

0 instead of ⌧!(�!(⌧ 0!�

0))

a b c d instead of ((a b) c) d

�x :�.�b :⌧!�.f x (�z :⌧.b z) instead of
�x :�.(�b :⌧!�.((f x) (�z :⌧.b z)))

(�y :A!�.�x :�!(A!�)!⌧.x (y a) y) (�z :A.f z) instead of
(�y :A!�.(�x :�!((A!�)!⌧).(x (y a)) y)) (�z :A.f z)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 11 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!
Free and bound variables

FV(e) denote the set of free variables of an expression e

FV(c) = {}
FV(x) = {x}

FV(�x :⌧.a) = FV(a)\{x}
FV(a b) = FV(a) [FV(b)

A variable x is said to be free in e if x 2 FV(e).
A variable in e that is not free in e is said to be bound in e.
An expression with no free variables is said to be closed.

Convention
We identify terms that are equal up to a renaming of bound variables
(or ↵-conversion). Example: (�x :⌧. yx) = (�z :⌧. yz).
We assume standard variable convention, so, all bound variables are
chosen to be di↵erent from free variables.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 12 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!

Typing

Functions are classified with simple types that determine the type of their
arguments and the type of the values they produce, and can be applied only
to arguments of the appropriate type.

We use contexts to declare the free variables: � ::= hi | �, x : ⌧

Typing rules

(var)
(x : �) 2 �
� ` x : �

(const)
c has type ⌧

� ` c : ⌧

(abs)
�, x : ⌧ ` e : �

� ` (�x :⌧.e) : ⌧!�

(app) � ` a : ⌧!� � ` b : ⌧
� ` (a b) : �

A term e is well-typed if there are � and � such that � ` e : �.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 13 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!

Example of a typing derivation

z : ⌧, y : ⌧!⌧ ` y : ⌧!⌧

(var)
z : ⌧, x : ⌧!⌧ ` z : ⌧

(var)

z : ⌧, y : ⌧!⌧ ` yz : ⌧

(app)

z : ⌧ ` (�y :⌧!⌧.yz) : (⌧!⌧)!⌧

(abs)
z : ⌧, x : ⌧ ` x : ⌧

(var)

z : ⌧ ` (�x :⌧.x) : ⌧!⌧

(abs)

z : ⌧ ` (�y :⌧!⌧.yz)(�x :⌧.x) : ⌧

(app)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 14 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!
Substitution

Substitution is a function from variables to expressions.

[e1/x1, . . . , en

/x

n

] to denote the substitution mapping x

i

to e

i

for
1  i  n, and mapping every other variable to itself.

[~e/~x] is an abbreviation of [e1/x1, . . . , en

/x

n

]
t[~e/~x] denote the expression obtained by the simultaneous
substitution of terms e

i

for the free occurrences of variables x

i

in t.

Remark
In the application of a substitution to a term, we rely on a variable
convention. The action of a substitution over a term is defined with
possible changes of bound variables.

(�x :⌧.y x)[wx/y] = (�z :⌧.y z)[wx/y] = (�z :⌧.w x z)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 15 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!
Computation

Terms are manipulated by the �-reduction rule that indicates how to
compute the value of a function for an argument.

�-reduction

�-reduction, !
�

, is defined as the compatible closure of the rule

(�x :⌧.a) b !
�

a[b/x]

I ⇣
�

is the reflexive-transitive closure of !
�

.

I =
�

is the reflexive-symmetric-transitive closure of !
�

.

I terms of the form (�x :⌧.a) b are called �-redexes

By compativel closure we mean that
if a !

�

a

0 , then ab !
�

a

0
b

if b !
�

b

0 , then ab !
�

ab

0

if a !
�

a

0 , then �x :⌧.a !
�

�x :⌧.a0

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 16 / 71

Logic Beyond First-Order Logic

Simply typed lambda calculus - �!

Usually there are more than one way to perform computation.

(�x :⌧.f(fx))((�x :⌧.x)z)

��*

(�x :⌧.f(fx))((�y :⌧!⌧.yz)(�x :⌧.x))

HHj
f(f((�y :⌧!⌧.yz)(�x :⌧.x)))

Normalization
The term a is in normal form if it does not contain any �-redex, i.e.,
if there is no term b such that a !

�

b.

The term a strongly normalizes if there is no infinite �-reduction
sequence starting with a.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 17 / 71

Logic Beyond First-Order Logic

Properties of �!

Uniqueness of types

If � ` a : � and � ` a : ⌧ , then � = ⌧ .

Type inference

The type synthesis problem is decidable, i.e., one can deduce automatically
the type (if it exists) of a term in a given context.

Subject reduction

If � ` a : � and a⇣
�

b , then � ` b : � .

Strong normalization

If � ` e : �, then all �-reductions from e terminate.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 18 / 71

Logic Beyond First-Order Logic

Properties of �!

Confluence
If a =

�

b , then a⇣
�

e and b⇣
�

e , for some term e .

Substitution property

If �, x : ⌧ ` a : � and � ` b : ⌧ , then � ` a[b/x] : � .

Thinning

If � ` e : � and � ✓ �0, then �0 ` e : �.

Strengthening

If �, x : ⌧ ` e : � and x 62 FV(e), then � ` e : �.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 19 / 71

Logic Beyond First-Order Logic

�! - Exercices

List the free variables of the following lambda terms

I
�x.((�z.�u.�v. u v z) x f y)

I
�y.�z.(x z) (y z)

I
�x.f x 1

I
�x.((�z.�u.�v. u v z) x f y)

Write down the result of the following substitutions

I (�x.�y. x z)[(�v.v (r 3))/z]
I (�x.�y. x z)[�y. 3/z]
I (�x.�y. x z)[y 3/x]
I (�x.�y. x z)[y 3/z]

�-reduce the term as far as possible the following term

(�f : Int! Int.�x : Int.f (f x)) (�y : Int. + y 2) 3

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 20 / 71

Logic Beyond First-Order Logic

�! - Exercices

Write down possible types for the following lambda terms.

I
�f.�y. f y y

I
�g.�x.�y.�z. g (x z) (y z)

I (�x. x x)(�x. x x)
I (�f.�y. f y y) (�f.�y. f y y)

Let K = �x.�y. x and S = �x.�y.�z. x z (y z).
I Write down type annotations for K and S so that they become

well-typed terms.
I Reduce SKK to normal form.

Consider the following lambda terms:

M = �x. (�z. z x) ((�r.�s. s r) y f))
N = �x.((�z.�u.�v. u v z) x f y)

Use �-reduction to show that M and N are �-equivalent.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 21 / 71

Logic Beyond First-Order Logic

Higher-order logic

Church used Simple Theory of Types to define higher-order logic.

In �!we add the following:

prop as a ground type (to denote the sort of propositions)

): prop!prop!prop (implication)

8
�

: (�!prop)!prop (for each type �)

This defines the language of higher-order logic (HOL).

Thus, an expression of type

⌧!�, represents a function from individuals of type ⌧ to individuals
of type �.

�!prop, represents a unary predicate over individuals of type �.

prop, is defined to be a proposition.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 22 / 71

Logic Beyond First-Order Logic

Higher-order logic

The induction principle can be expressed in HOL.

8
N!prop(�P :N!prop. (P 0)

) (8
N

(�n :N.(P n) P (S n))))
) 8

N

(�x :N.P x))

We use the following notation:

8P :N!prop.((P 0)
) (8n :N. (P n) P (S n)))
) 8x :N.P x)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 23 / 71

Logic Beyond First-Order Logic

Deduction rules for HOL (following Church)

Natural deduction style

Rules are “on top” of simple type theory

Judgements are of the form: � `�

I � = 1, . . . , n

I � is a �!- context

I � ` : prop, � ` 1 : prop, ..., � `
n

: prop

I � is usually left implicit: � `

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 24 / 71

Logic Beyond First-Order Logic

Deduction rules for HOL (following Church)

(axiom) � `� � if � 2 �

()
I

)
�,� `�

� `� �)

()
E

)
� `� �) � ` �

� `�

(8
I

)
� `�,x:�

� `� 8x :�. if x 62 FV(�)

(8
E

)
� `� 8x :�.
� `� [e/x] if � ` e : �

(conversion)
� `�

� `� � if � =
�

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 25 / 71

Logic Beyond First-Order Logic

Deduction rules for HOL (following Church)

Church’s formulation of higher-order logic has additional things:

¬ : prop ! prop (negation).

Classical logic
� ` ¬¬�

� ` �

Define other connectives in terms of),8,¬ (classically)

Choice operator: ◆
�

: (� ! prop) ! �

Rule for ◆
� ` 9!x :�.P x

� ` P (◆
�

P)

This (Church’s original higher-order logic) is basically the underlying logic
of the proof-assistants HOL and Isabelle.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 26 / 71

Logic Beyond First-Order Logic

Higher-order logic

The other connectives can be (constructively) defined in terms of) and 8
as follows:

? def= 8↵ :prop.↵

¬� def= �) ?
� ^ def= 8↵ :prop.(�)) ↵)) ↵

� _ def= 8↵ :prop.(�) ↵)) () ↵)) ↵

9x :�.� def= 8↵ :prop.(8x :�.�) ↵)) ↵

For x, y : � define the equality predicate =
L

called Leibniz equality.

(x =
L

y) def= 8P :�!prop. Px) Py

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 27 / 71

Logic Beyond First-Order Logic

HOL - formal proof

It is not di�cult to check that the elimination and introduction rules for
the logic connectives (^,_,?,¬ and 9) are sound.

A ^B ` A (^-elimination)

Statements Justification
1. A ^B ` 8↵ :prop.(A) B) ↵)) ↵ axiom (def)
2. A ^B ` (A) B) A)) A 8

E

1 [A/↵]

3. A ^B ` A) B) A lemma
4. A ^B ` A)

E

2, 3

lemma

Statements Justification
1. A ^B, A,B ` A axiom
2. A ^B,A ` B) A)

I

1
3. A ^B ` A) B) A)

I

2

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 28 / 71

Logic Beyond First-Order Logic

HOL - formal proof

A, B ` A ^B (^-introduction)

Statements Justification
1. A, B, A) B) ↵ ` A axiom
2. A, B,A) B) ↵ ` B axiom
3. A, B,A) B) ↵ ` A) B) ↵ axiom
4. A, B,A) B) ↵ ` B) ↵)

E

1, 3
5. A, B,A) B) ↵ ` ↵)

E

2, 4
6. A, B ` (A) B) ↵)) ↵)

I

5
7. A, B ` A ^B 8

I

6 (def)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 29 / 71

Logic Beyond First-Order Logic

HOL - formal proof

Leibniz equality is reflexive, symmetric and transitive.

Prove reflexivity and transitivity of =
L

. (easy)

Symmetry is tricky (we need to find an adequate predicate P).

x = y ` y = x

Statements Justification
1. x = y ` 8P :�!prop. Px) Py axiom (def)
2. x = y ` (�z :�.z = x) x) (�z :�.z = x) y 8

E

1 [(�z :�.z = x)/P]

3. x = y ` x = x) x = y conversion 2
4. x = y ` x = x theorem
5. x = y ` y = x)

E

3, 4

The conversion rule is crucial here!

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 30 / 71

Logic Propositions as Types

Propositions as Types

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 31 / 71

Logic Propositions as Types

Two branches of formal logic: classical and intuitionistic

The classical understanding of logic is based on the notion of truth.
The truth of a statement is “absolute” and independent of any
reasoning, understanding, or action. So, statements are either true or
false, and (A _ ¬A) must hold no matter what the meaning of A is.

Intuitionistic (or constructive) logic is a branch of formal logic that
rejects this guiding principle. It is based on the notion os proof. One
judgement about a statement are based on the existence of a proof
(or “construction”) of that statement.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 32 / 71

Logic Propositions as Types

Classical versus intuitionistic logic

Classical logic is based on the notion of truth.
I The truth of a statement is “absolute”: statements are either true or

false.
I Here “false” means the same as “not true”.
I
� _ ¬� must hold no matter what the meaning of � is.

I Information contained in the claim � _ ¬� is quite limited.
I Proofs using the excluded middle law, � _ ¬�, or the double negation

law, ¬¬�! � (proof by contradiction), are not constructive.

Intuitionistic (or constructive) logic is based on the notion of proof.
I Rejects the guiding principle of “absolute” truth.
I
� is “true” if we can prove it.

I
� is “false” if we can show that if we have a proof of � we get a
contradiction.

I To show “� _ ¬�” one have to show � or ¬�. (If neither of these can
be shown, then the putative truth of the disjunction has no
justification.)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 33 / 71

Logic Propositions as Types

Classical logic versus intuitionistic logic

Much of standard mathematics can be done within the framework of
intuitionistic logic, but the task is very di�cult, so mathematicians
use methods of classical logic (as proofs by contradiction).

However the philosophy behind intuitionistic logic is appealing for a
computer scientist. For an intuitionist, a mathematical object (such
as the solution of an equation) does not exist unless a finite
construction (algorithm) can be given for that object.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 34 / 71

Logic Propositions as Types

Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or
“construction” of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

A proof of � ^ is given by presenting a proof of � and a proof of .

A proof of � _ is given by presenting either a proof of � or a proof of
(plus the stipulation that we want to regard the proof presented as evidence
for � _).

A proof �! is a construction which permits us to transform any proof of
� into a proof of .

Absurdity ? (contradiction) has no proof; a proof of ¬� is a construction
which transforms any hypothetical proof of � into a proof of a contradiction.

A proof of 8x.�(x) is a construction which transforms a proof of d 2 D (D
the intended range of the variable x) into a proof of �(d).

A proof of 9x.�(x) is given by providing d 2 D, and a proof of �(d).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 35 / 71

Logic Propositions as Types

Intuitionistic logic

Some classical tautologies that are not intuitionistically valid

� _ ¬� excluded middle law
¬¬�! � double negation law
((�!) ! �) ! � Pierce’s law
(�!) _ (! �)
(�!) ! (¬� _)
¬(� ^) ! (¬� _ ¬)
(¬�!) ! (¬ ! �)
(¬�! ¬) ! (! �)
¬8x.¬�(x) ! 9x.�(x)
¬9x.¬�(x) ! 8x.�(x)
¬8x.�(x) ! 9x.¬�(x)

The constructive independence of the logical connectives contrast with the
classical situation.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 36 / 71

Logic Propositions as Types

Semantics of intuitionistic logic

The semantics of intuitionistic logic are rather more complicated than for
the classical case. A model theory can be given by

Heyting algebras or,

Kripke semantics.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 37 / 71

Logic Propositions as Types

Proof systems for intuitionistic logic

A natural deduction system for intuitionistic propositional logic or
intuitionistic first-order logic are given by the set of rules presented for
PL or FOL, respectively, except the rule for the elimination of double
negation (¬¬

E

).

Traditionally, classical logic is defined by extending intuitionistic logic
with the double negation law, the excluded middle law or with
Pierce’s law.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 38 / 71

Logic Propositions as Types

The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural

deduction for intuitionistic logic and �-calculus.

Observe the analogy between the implicational fragment of intuitionistic
propositional logic and �!

� 2 �
� ` � (assumption)

(x : �) 2 �
� ` x : �

(var)

�,� `
� ` �!

(!
I

)
�, x : � ` e :

� ` (�x :�.e) : �!

(abs)

� ` �! � ` �
� ` (!

E

)
� ` a : �! � ` b : �

� ` (a b) :
(app)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 39 / 71

Logic Propositions as Types

The Curry-Howard isomorphism

The proposition-as-types interpretation establishes a precise relation
between intuitionistic logic and �-calculus.

a proposition A can be seen as a type (the type of its proofs);

and a proof of A as a term of type A.

Hence: A is provable () A is inhabited

Therefore, the formalization of mathematics in type theory becomes

� ` t : A which is equivalent to Type�(t) = A

Proof checking boils down to type checking.

This analogy between systems of formal logic and computational calculi
was first discovered by Haskell Curry and William Howard.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 40 / 71

Logic Propositions as Types

Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user
types in tactics, guiding the proof development system to construct a proof-term.
At the end, this term is type checked and the type is compared with the original
goal.

In connection to proof checking there are some decision problems:

Type Checking Problem (TCP) � ` t : A ?

Type Synthesis Problem (TSP) � ` t : ?

Type Inhabitation Problem (TIP) � ` ? : A

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 41 / 71

Logic Propositions as Types

Type-theoretic approach to interactive theorem proving

provability of formula A () inhabitation of type A

proof checking () type checking
interactive theorem proving () interactive construction of a term

of a given type

So, decidability of type checking is at the core of the type-theoretic
approach to theorem proving.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 42 / 71

Logic Higher-Order Logic and Type Theory

Higher-Order Logic and Type Theory

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 43 / 71

Logic Higher-Order Logic and Type Theory

Higher-order logic and type theory
Following Church’s original definition of higher-order logic, simply typed �-calculus
is used to describe the language of HOL.

Recall the basic constructive core (8,)) of HOL:

(axiom) � `� � if � 2 �

()
I

)

�,� `�

� `� �)

()
E

)

� `� �) � ` �
� `�

(8
I

)

� `�,x:�

� `�,x:� 8x :�. if x 62 FV(�)

(8
E

)

� `� 8x :�.

� `� [e/x] if � ` e : �

(conversion)

� `�

� `� � if � =
�

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 44 / 71

Logic Higher-Order Logic and Type Theory

Higher-order logic and type theory

Following the Curry-Howard isomorphism, why not introduce a �-term notation for
proofs ?

(axiom) � `� x : � if x : � 2 �

()
I

)

�, x : � `� e :

� `� (�x :�.e) : �)

()
E

)

� `� a : �) � `� b : �

� `� (a b) :

(8
I

)

� `�,x:� e :

� `� (�x :�.e) : 8x :�. if x 62 FV(�)

(8
E

)

� `� t : 8x :�.

� `� (t e) : [e/x] if � ` e : �

(conversion)

� `� t :

� `� t : � if � =
�

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 45 / 71

Logic Higher-Order Logic and Type Theory

Higher-order logic and type theory

Here we have two “levels” of types theories:

the (simple) type theory describing the language of HOL

the type theory for the proof-terms of HOL

These levels can be put together into one type theory: �HOL.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 46 / 71

Logic Higher-Order Logic and Type Theory

�HOL

Instead of having two separate categories of expressions (terms and types)
we have a unique category of expressions, which are called pseudo-terms.

Pseudo-terms
The set T of pseudo-terms is defined by

A, B,M, N ::= Prop | Type | Type0 | x | M N | �x :A.M | ⇧x :A. B

We assume a countable set of variables: x, y, z, . . .

S def= {Prop,Type,Type0} is the set of sorts (constants that denote the
universes of the type system). We let s range over S.

Both ⇧ and � bind variables. We have the usual notation for free and bound
variables.

Both) and 8 are generalized by a single construction ⇧.

We write A!B instead of ⇧x :A. B whenever x 62 FV(B).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 47 / 71

Logic Higher-Order Logic and Type Theory

�HOL

Contexts and judgments

Contexts are used to declare free variables.

The set of contexts is given by the abstract syntax: � ::= hi | �, x : A

The domain of a context is defined by the clause
dom(x1 :A1, ..., xn

:A
n

) = {x1, ..., xn

}

A judgment is a triple of the form � ` A : B where A, B 2 T and � is a
context.

A judgment is derivable if it can be inferred from the typing rules of next
slide.

I If � ` A : B then �, A and B are legal.
I If � ` A : s for s 2 S we say that A is a type.

The typing rules are parametrized.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 48 / 71

Logic Higher-Order Logic and Type Theory

�HOL - typing rules

(axioms) hi ` Prop : Type hi ` Type : Type0

(var)
� ` A : s

�, x :A ` x : A

if x 62 dom(�)

(weak)
� ` M : A � ` B : s

�, x :B ` M : A

if x 62 dom(�)

(⇧)
� ` A : s1 �, x :A ` B : s2

� ` (⇧x :A. B) : s2

if (s1, s2) 2 {(Type, Type),

(Prop, Prop), (Type, Prop)}

(app)
� ` M : (⇧x :A. B) � ` N : A

� ` MN : B[N/x]

(�)
�, x :A ` M : B � ` (⇧x :A. B) : s

� ` (�x :A.M) : (⇧x :A. B)

(conv)
� ` M : A � ` B : s

� ` M : B

if A =
�

B

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 49 / 71

Logic Higher-Order Logic and Type Theory

�HOL - dependencies

(⇧)
� ` A : s1 �, x :A ` B : s2

� ` (⇧x :A. B) : s2

if (s1, s2) 2 {(Type, Type), (Prop, Prop), (Type, Prop)}

(Type, Type) forms the function type A!B for A : Type and B : Type; predicate
types. This comprises

I unary or binary predicates like: A ! Prop or A ! A ! Prop;
I higher-order predicates like: (A ! A ! Prop) ! Prop.

(Prop, Prop) forms the propositional type �! for � : Prop and : Prop;
propositional formulas.

(Type, Prop) forms the dependent propositional type (⇧x :A.) for A : Type and
 : Prop; universally quantified formulas.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 50 / 71

Logic Higher-Order Logic and Type Theory

Dependent types

Type constructor ⇧ captures in the type theory the set-theoretic notion of generic
or dependent function space.

Dependent functions

The type of this kind of functions is ⇧x :A. B, the product of a family {B(x)}
x:A

of types. Intuitively

⇧x :A. B(x) =
n

f : A!
[

x:A

B(x) | 8a :A. fa : B(a)
o

i.e., a type of functions f where the range-set depends on the input value.

If f : ⇧x :A. B(x), then f is a function with domain A and such that fa : B(a)
for every a : A.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 51 / 71

Logic Higher-Order Logic and Type Theory

Dependent types

A dependent type is a type that may depend on a value, typically like:

a predicate, which depends on its domain. For instance, the predicate even over
natural numbers

even : nat!Prop

Universal quantification is a dependent function. For instance, 8x : nat. evenx is
encoded by

⇧x :nat. evenx

an array type (or vector), which depends on its length. For instance, the
polymorphic dependent type constructor

Vec : Type!nat!Type

Here is an example of a dependent function in a Haskell like syntax:

gen :: ⇧y :nat. a!Vec a y

gen 0 x = []
gen (n + 1) x = x : (genn x)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 52 / 71

Logic Higher-Order Logic and Type Theory

�HOL - examples

Recall the Leibniz equality. For A :Type, x :A, y :A,

(x =
L

y)
def
= ⇧P :A!Prop. Px!Py

Let �
def
= A : Type, x : A

Reflexivity A : Type, x : A ` (�P :A ! Prop.�q :Px.q) : (x =
L

x)

(3)

�, P :A ! Prop ` Px : Prop

�, P :A ! Prop, q :Px ` q : Px

(var)
(2)

�, P :A ! Prop ` Px ! Px : Prop

�, P :A ! Prop ` �q :Px.q : Px ! Px

(�)
(1)

� ` (x =L x) : Prop

� ` (�P :A ! Prop.�q :Px.q) : (x =L x)
(�)

(1)

(4)

� ` A ! Prop : Type

(4)

� ` A ! Prop : Type

�, P :A ! Prop ` A ! Prop : Type
(weak)

(2)

�, P :A ! Prop ` Px ! Px : Prop

� ` ⇧P :A!Prop. Px!Px : Prop
(⇧)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 53 / 71

Logic Higher-Order Logic and Type Theory

�HOL - examples

(2)

(3)

�, P :A ! Prop ` Px : Prop

(3)

�, P :A ! Prop ` Px : Prop

(3)

�, P :A ! Prop ` Px : Prop

�, P :A ! Prop, z :Px ` Px : Prop
(weak)

�, P :A ! Prop ` Px ! Px : Prop
(⇧)

(3)

(4)

� ` A ! Prop : Type

�, P :A ! Prop ` P : A ! Prop
(var)

` Type : Type0
(axiom)

A :Type ` A : Type
(var)

� ` x : A

(var)
(4)

� ` A ! Prop : Type

�, P :A ! Prop ` x : A

(weak)

�, P :A ! Prop ` Px : Prop
(app)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 54 / 71

Logic Higher-Order Logic and Type Theory

�HOL - examples

(4)

(5)

� ` A : Type

` Prop : Type
(axiom)

` Type : Type0
(axiom)

A :Type ` Prop : Type
(weak)

(5)

� ` A : Type

� ` Prop : Type
(weak)

(5)

� ` A : Type

�, z :A ` Prop : Type
(weak)

� ` A ! Prop : Type
(⇧)

(5)

` Type : Type0
(axiom)

A :Type ` A : Type
(var)

` Type : Type0
(axiom)

A :Type ` A : Type
(var)

� ` A : Type
(weak)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 55 / 71

Logic Higher-Order Logic and Type Theory

�HOL - examples

Recall the Leibniz equality. For A :Type, x :A, y :A,

(x =
L

y)
def
= ⇧P :A!Prop. Px!Py

Let us now prove symmetry for the Leibniz equality.

Let �
def
= A :Type, x :A, y :A, t : (x =

L

y)

Symmetry � ` t(�z :A. z =
L

x)(�P :A!Prop.�q :Px. q) : (y =
L

x)

.

.

.

� ` t : (x =L y)

.

.

.

� ` (�z :A. z =L x) : A ! Prop

� ` t(�z :A. z =L x) : (�z :A. z =L x)x ! (�z :A. z =L x)y

.

.

.

� ` t(�z :A. z =L x) : (x =L x) ! (y =L x)
(conv)

.

.

.

� ` w : (x =L x)

� ` t(�z :A. z =L x)w : (y =L x)

where w is the proof-term of reflexivity (�P :X!Prop.�q :Px. q)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 56 / 71

Logic Higher-Order Logic and Type Theory

Properties of �HOL

There is a propositions-as-types isomorphism between intuitionistic HOL and
�HOL

Uniqueness of types
If � ` M : A and � ` M : B , then A =

�

B .

Subject reduction
If � ` M : A and M ⇣

�

N , then � ` N : A .

Strong normalization
If � ` M : A, then all �-reductions from M terminate.

Confluence
If M =

�

N , then M ⇣
�

R and N ⇣
�

R , for some term R .

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 57 / 71

Logic Higher-Order Logic and Type Theory

Properties of �HOL

Recall the decidability problems:

Type Checking Problem (TCP) � ` M : A ?
Type Synthesis Problem (TSP) � ` M : ?
Type Inhabitation Problem (TIP) � ` ? : A

For �HOL:

TIP is undecidable.

TCP and TSP are decidable.

Remark
Normalization and type checking are intimately connected due to (conv) rule.

Deciding equality of dependent types, and hence deciding the well-typedness of
dependent typed terms, requires to perform computations. If non-normalizing
terms are allowed in types, then TCP and TSP become undecidable.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 58 / 71

Logic Higher-Order Logic and Type Theory

Encoding of logic in type theory

Shallow encoding (Logical Frameworks)

The type theory is used as a logical framework, a meta system for encoding
a specific logic one wants to work with.

The encoding of a logic L is done by choosing an appropriate context �
L

, in
which the language of L and the proof rules are declared.

Usually, the proof-assistants based on this kind of encoding do not produce
standard proof-objects, just proof-scripts.

Examples:

I HOL, based on the Church’s simple type theory. This is a classical
higher-order logic.

I Isabelle, based on intuitionistic simple type theory (used as the meta
logic). Various logics (FOL, HOL, sequent calculi,...) are described.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 59 / 71

Logic Higher-Order Logic and Type Theory

Encoding of logic in type theory

Direct encoding

Each logical construction have a counterpart in the type theory.

Theorem proving consists of the (interactive) construction of a proof-term,
which can be easily checked independently.

Examples:

I Coq - based on the Calculus of Inductive Constructions
I Agda - based on Martin-Lof’s type theory
I Lego - based on the Extended Calculus of Constructions
I Nuprl - based on extensional Martin-Lof’s type theory

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 60 / 71

Logic Coq in Brief

Coq in Brief

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 61 / 71

Logic Coq in Brief

The Coq proof-assistant

The Coq system is a formal proof management system that
I allows the expression of mathematical assertions, and mechanically

checks proofs of these assertions;
I helps to find formal proofs;
I extracts a certified program from the constructive proof of its formal

specification.

Typical applications include the formalization of mathematics and the
formalization of programming languages semantics.

The underlying formal language of Coq is a calculus of constructions
with inductive definitions:

the Calculus of Inductive Constructions (CIC)

(We will come back to this later.)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 62 / 71

Logic Coq in Brief

The Coq proof-assistant

Main features:

interactive theorem proving

functional programming language

powerful specification language
(includes dependent types and inductive definitions)

tactic language to build proofs

type-checking algorithm to check proofs

More concrete stu↵:

3 sorts to classify types: Prop, Set, Type

inductive definitions are primitive

elimination mechanisms on such definitions

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 63 / 71

Logic Coq in Brief

The Coq proof-assistant

In CIC all objects have a type. There are

types for functions (or programs)

atomic types (especially datatypes)

types for proofs

types for the types themselves.

Types are classified by the three basic sorts

Prop (logical propositions)

Set (mathematical collections)

Type (abstract types)

which are themselves atomic abstract types.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 64 / 71

Logic Coq in Brief

Coq syntax

�x :A.� y :A!B. y x fun (x:A) (y:A->B) => y x

8x :A. P x!P x forall x:A, P x -> P x

Inductive types

Inductive nat :Set := O : nat
| S : nat -> nat.

This definition yields: – constructors: O and S
– recursors: nat ind, nat rec and nat rect

General recursion and case analysis

Fixpoint double (n:nat) :nat :=
match n with

| O => O
| (S x) => S (S (double x))

end.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 65 / 71

Logic Coq in Brief

Environment

In the Coq system the well typing of a term depends on an environment
which consists in a global environment and a local context.

The local context is a sequence of variable declarations, written x : A (A is
a type) and “standard” definitions, written x := t : A (that is abbreviations
for well-formed terms).

The global environment is the list of global declarations and definitions.
This includes not only assumptions and “standard” definitions, but also
definitions of inductive objects. (The global environment can be set by
loading some libraries.)

We frequently use the names constant to describe a globally defined
identifier and global variable for a globally declared identifier.

The typing judgments are as follows:

E |� ` t : A

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 66 / 71

Logic Coq in Brief

Declarations and definitions

The environment combines the contents of initial environment, the loaded
libraries, and all the global definitions and declarations made by the user.

Loading modules
Require Import ZArith.
This command loads the definitions and declarations of module ZArith which is
the standard library for basic relative integer arithmetic.

The Coq system has a block mechanism (similar to the one found in many
programming languages) Section id. ... End id. which allows to manipulate the
local context (by expanding and contracting it).

Declarations

Parameter max int : Z. Global variable declaration
Section Example.
Variables A B : Set. Local variable declarations
Variables Q : Prop.
Variables (b:B) (P : A->Prop).

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 67 / 71

Logic Coq in Brief

Declarations and definitions

Definitions

Definition min int := (1 - max int) Global definition

Let FB := B -> B. Local definition

Proof-terms

Lemma trivial : forall x:A, P x -> P x.
intros x H.
exact H.
Qed.

Using tactics a term of type forall x:A, P x -> P x has been created.

Using Qed the identifier trivial is defined as this proof-term and add to
the global environment.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 68 / 71

Logic Coq in Brief

Computation

Computations are performed as series of reductions. The Eval command
computes the normal form of a term with respect to some reduction rules (and
using some reduction strategy: cbv or lazy).

�-reduction for compute the value of a function for an argument:

(�x :A. a) b !
�

a[b/x]

�-reduction for unfolding definitions:

e !
�

t if (e := t) 2 E |�

◆-reduction for primitive recursion rules, general recursion, and case analysis

⇣-reduction for local definitions: let x := a in b !
⇣

b[a/x]

Note that the conversion rule is

E |� ` t : A E |� ` B : s

E |� ` t : B

if A =
�◆�⇣

B and s 2 {Prop,Set,Type}

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 69 / 71

Logic Coq in Brief

Proof example

Section EX.

Variables (A:Set) (P : A->Prop).

Variable Q:Prop.

Lemma example : forall x:A, (Q -> Q -> P x) -> Q -> P x.

Proof.

intros x h g.

apply h.

assumption.

assumption.

Qed.

example = �x :A.�h :Q! Q!P x.�g :Q. h g g

Print example.

example =

fun (x : A) (h : Q -> Q -> P x) (g : Q) => h g g

: forall x : A, (Q -> Q -> P x) -> Q -> P x

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 70 / 71

Logic Coq in Brief

Proof example

Observe the analogy with the lambda calculus.

example = �x :A.�h :Q! Q!Px.�g :Q. h g g

A : Set, P : A!Prop, Q : Prop ` example : 8x :A, (Q) Q) Px)) Q) Px

End EX.

Print example.

example =

fun (A:Set) (P:A->Prop) (Q:Prop) (x:A) (h:Q->Q->P x) (g:Q) => h g g

: forall (A : Set) (P : A -> Prop) (Q : Prop) (x : A),

(Q -> Q -> P x) -> Q -> P x

` example : 8A :Set, 8P :A!Prop, 8Q :Prop, 8x :A, (Q) Q) P x)) Q) P x

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 71 / 71

