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Logic

Roadmap

Classical Propositional Logic

Classical First-Order Logic

First-Order Theories

� basic concepts; decidability issues; several theories: equality, integers,
linear arithmetic, reals, arrays; combining theories

� satisfiability modulo theories; SMT solvers; SMT-LIB; applications

Natural Deduction
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Logic First-Order Theories

Introduction

When judging the validity of first-order formulas we are typically interested
in a particular domain of discourse, which in addition to a specific underlying
vocabulary includes also properties that one expects to hold.

For instance, in formal methods involving the integers, one is not interested
in showing that the formula

∀x, y. x < y → x < y + y

is true for all possible interpretations of the symbols < and +, but only for
those interpretations in which < is the usual ordering over the integers and
+ is the addition function.

We are not interested in validity in general but in validity with respect to
some background theory, a logical theory that fixes the interpretations of
certain predicates and function symbols.
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Logic First-Order Theories

Introduction

Stated differently, we are often interested in moving away from pure logical
validity (i.e. validity in all models) towards a more refined notion of validity
restricted to a specific class of models.

A natural way for specifying such a class of models is by providing a set of
axioms (sentences that are expected to hold in them). Alternatively, one can
pinpoint the models of interest.

First-order theories provide a basis for the kind of reasoning just described.
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Logic First-Order Theories

Theories - basic definitions

Let V be a vocabulary of a first-order language.

A first-order theory T is a set of V-sentences that is closed under derivability
(i.e., T |= φ implies φ ∈ T ).

A T -structure is a V-structure that validates every formula of T .

A formula φ is T -valid (resp. T -satisfiable) if every (resp. some)
T -structure validates φ.

Two formulae φ and ψ are T -equivalent if T |= φ ↔ ψ (i.e, for every
T -structure M, M |= φ iff M |= ψ).
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Logic First-Order Theories

Theories - basic definitions

T is said to be a consistent theory if at least one T -structure exists.

T is said to be a complete theory if, for every V-sentence φ, either T |= φ or
T |= ¬φ.

T is said to be a decidable theory if there exists a decision procedure for
checking T -validity.
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Logic First-Order Theories

Theories - basic definitions

Let K be a class of V-structures. The theory of K, denoted by Th(K), is
the set of sentences valid in all members of K, i.e.,
Th(K) = {φ | M |= φ, for all M∈ K}.

Given a set of V-sentences Γ, the class of models for Γ, denoted by Mod(Γ),
is defined as Mod(Γ) = {M | for all φ ∈ Γ,M |= φ}.

A subset A ⊆ T is called an axiom set for the theory T , when T is the
deductive closure of A, i.e. φ ∈ T iff A |= φ. A theory T is finitely (resp.
recursively) axiomatisable if it possesses a finite (resp. recursive) set of
axioms.

A fragment of a theory is a syntactically-restricted subset of formulae of the
theory.
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Logic First-Order Theories

Theories

For a given V-structure M, the theory Th(M) (of a single-element class of
V-structures) is complete. These semantically defined theories are useful
when one is interested in reasoning in some specific mathematical domain
such as the natural numbers, rational numbers, etc.

However, we remark that such theory may lack an axiomatisation, which
seriously compromises its use in purely deductive reasoning.

If a theory is complete and has a recursive set of axioms, it can be shown to
be decidable.
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Logic First-Order Theories

Theories

The decidability criterion for T -validity is crucial for mechanised reasoning in
the theory T .

It may be necessary (or convenient) to restrict the class of formulas under
consideration to a suitable fragment;

The T -validity problem in a fragment refers to the decision about whether
or not φ ∈ T when φ belongs to the fragment under consideration.

A fragment of interest is the fragment consisting of universal formulas, often
referred to as the quantifier-free (QF) fragment.
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Logic First-Order Theories

Equality and uninterpreted functions TE

The vocabulary of the theory of equality TE consists of

� equality (=), which is the only interpreted symbol (whose meaning is
defined via the axioms of TE);

� constant, function and predicate symbols, which are uninterpreted
(except as they relate to =).

Axioms
� reflexivity: ∀x. x = x
� symmetry: ∀x, y. x = y → y = x
� transitivity: ∀x, y, z. x = y ∧ y = z → x = z
� congruence for functions: for every function f ∈ T with ar(f) = n,

∀x, y. (x1 = y1 ∧ . . . ∧ xn = yn) → f(x1, . . . , xn) = f(y1, . . . , yn)

� congruence for predicates: for every predicate P ∈ T with ar(P ) = n,

∀x, y. (x1 = y1 ∧ . . . ∧ xn = yn) → (P (x1, . . . , xn) ↔ P (y1, . . . , yn))

TE-validity is undecidable, but efficiently decidable for the QF fragment.
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Logic First-Order Theories

Natural numbers and integers

The semantic theories of natural numbers and integers are neither axiomatisable
nor decidable.

Kurt Gödel first incompleteness theorem (1931)

Any effectively generated (i.e. recursively enumerable) theory capable of
expressing elementary arithmetic cannot be both consistent and complete. In
particular, for any consistent, effectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement that is true, but
not provable in the theory.

A semantic theory Th(M), where M interprets each symbol with its
standard mathematical meaning in the interpretation domain, is always a
complete theory.

Therefore, the semantic theories of natural numbers and integers cannot be
axiomatisable, not even by an infinite recursive set of axioms.
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Peano arithmetic TPA

The theory of Peano arithmetic TPA (1889) is a first-order approximation of
the theory of natural numbers.

Vocabulary: VPA = {0, 1,+,×,=}

Axioms:

� axioms of TE

� ∀x. ¬(x + 1 = 0) (zero)
� ∀x, y. x + 1 = y + 1 → x = y (successor)
� ∀x. x + 0 = x (plus zero)
� ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)
� ∀x. x× 0 = 0 (time zero)
� ∀x, y. x× (y + 1) = (x× y) + x (times successor)
� for every formula φ with FV(φ) = {x} (axiom schema of induction)

φ[0/x] ∧ (∀x. φ → φ[x + 1/x]) → ∀x. φ

TPA is incomplete and undecidable, even for the quantifier-free fragment.
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Logic First-Order Theories

Peano arithmetic TPA

The incompleteness result is indeed striking because, at the end of the 19th
century, G. Peano had given a set of axioms that were shown to characterise
natural numbers up to isomorphism. One of these axioms – the axiom of
induction – involves quantification over arbitrary properties of natural
numbers: “for every unary predicate P , if P (0) and ∀n. P (n) → P (n + 1)
then ∀n. P (n)”, which is not a first-order axiom.

It is however important to notice that the approximation done by a
first-order axiom scheme that replaces the arbitrary property P by a
first-order formula φ with a free variable x:

φ[0/x] ∧ (∀x. φ → φ[x + 1/x]) → ∀x. φ

restrict reasoning to properties that are definable by first-order formulas,
which can only capture a small fragment of all possible properties of natural
number. (Recall that the set of first-order formulas is countable while the set
of arbitrary properties of natural numbers is P(N), which is uncountable.)
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Presburger arithmetic TN

The theory of Presburger arithmetic TN is the additive fragment of the
theory of Peano.

Vocabulary: VN = {0, 1,+,=}

Axioms:

� axioms of TE

� ∀x. ¬(x + 1 = 0) (zero)
� ∀x, y. x + 1 = y + 1 → x = y (successor)
� ∀x. x + 0 = x (plus zero)
� ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)
� for every formula φ with FV(φ) = {x} (axiom schema of induction)

φ[0/x] ∧ (∀x. φ → φ[x + 1/x]) → ∀x. φ

TN is both complete and decidable (Presburger, 1929), but it has double
exponential complexity.
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Linear integer arithmetic TZ

Vocabulary: VZ = {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . ,+,−, >,=}

Each symbol is interpreted with its standard mathematical meaning in Z.

� Note: . . . ,−3·,−2·, 2·, 3·, . . . are unary functions. For example, the
intended meaning of 3 · x is x + x + x, and of −2 · x is −x− x.

TZ and TN have the same expressiveness

� For every formula of TZ there is an equisatisfiable formula of TN.

� For every formula of TN there is an equisatisfiable formula of TZ.

Let φ be a formula of TZ and ψ a formula of TN. φ and ψ are equisatisfiable if

φ is TZ-satisfiable iff ψ is TN-satisfiable

TZ is both complete and decidable via the rewriting of TZ-formulae into
TN-formulae.
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TZ versus TN

Consider the TZ-formula ∀x, y.∃z. y + 3x− 3 > −2z

For each variable v ranging over the integers, introduce two variables, vp

and vn ranging over the nonnegative integers.

∀xp, xn, yp, yn.∃zp, zn. (yp − yn) + 3(xp − xn)− 4 > −2(zp − zn)

Eliminate negation.

∀xp, xn, yp, yn.∃zp, zn. yp + 3xp + 2zp > 2zn + yn + 3xn + 4

Eliminate > and numbers.

∀xp, xn, yp, yn.∃zp, zn.∃u. ¬(u = 0) ∧ yp + xp + xp + xp + zn + zp =
zn + zn + yn + xn + xn + xn + 1 + 1 + 1 + 1 + u

This is a TN-formula equisatisfiable to the original one.
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Logic First-Order Theories

TN versus TZ

The TN-formula
∀x.∃y. x = y + 1

is equisatisfiable to the TZ-formula

∀x. x > −1 → ∃y. y > −1 ∧ x = y + 1

To decide TZ-validity for a TZ-formula φ

transform ¬φ to an equisatisfiable TN-formula ¬ψ

decide TN-validity of ψ
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Linear rational arithmetic TQ

The full theory of rational numbers (with addition and multiplication) is
undecidable, since the property of being a natural number can be encoded in
it.

But the theory of linear arithmetic over rational numbers TQ is decidable,
and actually more efficiently than the corresponding theory of integers.

Vocabulary: VQ = {0, 1,+,−,=,≥}

Axioms: 10 (see Manna’s book)

Rational coefficients can be expressed in TQ.

The formula 5
2x + 4

3y ≤ 6 can be written as the TQ-formula

36 ≥ 15x + 8y

TQ is decidable and its quantifier-free fragment is efficiently decidable.
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Reals TR

Surprisingly, the theory of reals TR is decidable even in the presence of
multiplication and quantifiers.

Vocabulary: VR = {0, 1,+,×,−,=,≥}

Axioms: 17 (see Manna’s book)

The inclusion of multiplication allows a formula like ∃x. x2 = 3 to be expressed
(x2 abbreviates x× x). This formula should be TR-valid, since the assignment
x �→

√
3 satisfies x2 = 3.

TR is decidable (Tarski, 1949). However, it has a high time complexity
(doubly exponential).
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Difference arithmetic

Difference logic is a fragment (a sub-theory) of linear arithmetic.

Atomic formulas have the form x− y ≤ c, for variables x and y and
constant c.

Conjunctions of difference arithmetic inequalities can be checked very
efficiently for satisfiability by searching for negative cycles in weighted
directed graphs.

Graph representation: each variable corresponds to a node, and an inequality
of the form x− y ≤ c corresponds to an edge from y to x with weight c.

The quantifier-free satisfiability problem is solvable in O(|V ||E|).
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Arrays TA and T =
A

Arrays are modeled in logic as applicative data structures.

Vocabulary: VA = {read,write, =}

Axioms:
� (reflexivity), (symmetry) and (transitivity) of TE

� ∀a, i, j. i = j → read(a, i) = read(a, j)
� ∀a, i, j, v. i = j → read(write(a, i, v), j) = v
� ∀a, i, j, v. ¬(i = j) → read(write(a, i, v), j) = read(a, j)

= is only defined for array elements.

T =
A

is the theory TA plus an axiom (extensionality) to capture = on arrays.

� ∀a, b. (∀i. read(a, i) = read(b, i)) ↔ a = b

Both TA and T =
A

are undecidable. But their quantifier-free fragments are
decidable.

Alternative fragments are often preferred that subsume the quantifier-free
fragment (allowing restricted forms of index quantification).
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Other theories

Fixed-size bit-vectors
Model bit-level operations of machine words, including 2n-modular
operations (where n is the word size), shift operations, etc.
Decision procedures for the theory of fixed-size bit vectors often rely on
appropriate encodings in propositional logic.

Algebraic data structures
The theories describe data structures that are ubiquitous in programming
like lists, stacks, binary trees, etc.

These theories are built around the theory of equality with uninterpreted
functions, and are normally efficiently decidable for the quantifier-free
fragment.

...
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Combining theories

In practice, the most of the formulae we want to check need a combination
of theories.

Checking x + 2 = y → f(read(write(a, x, 3), y − 2)) = f(y − x + 1)
involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

Given theories T1 and T2 such that V1 ∩ V2 = {=}, the combined theory
T1 ∪ T2 has vocabulary V1 ∪ V2 and axioms A1 ∪A2

Nelson and Oppen showed that if
� satisfiability of the quantifier-free fragment of T1 is decidable,
� satisfiability of the quantifier-free fragment of T2 is decidable, and
� certain technical requirements are met,

then the satisfiability in the quantifier-free fragment of T1 ∪ T2 is decidable.

Most methods available are based on the Nelson-Oppen combination
method.
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Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by (a combination of) specific theories (i.e., it is the problem of determining,
for a theory T and given a formula φ, whether φ is T -satisfiable).

Usually SMT solvers address the issue of satisfiability of quantifier-free
first-order CNF formulas, using as building blocks:

� a propositional SAT solver, and
� state-of-the-art theory solvers.

More precisely, generic Boolean reasoning is separated from theory
reasoning, reducing the theory solver to its essence. The common practice is
to write theory solvers just for conjunctions of literals.

A standard technique for integrating SAT solvers and theory solvers is the
“lazy offline” approach.
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SMT solvers - “lazy offline” approach

Given a formula ψ with atoms {a1, . . . , an} and a set of propositional variables
{P1, . . . , Pn} not occurring in ψ,

The abstraction mapping prop from formulas over {a1, . . . , an} to
propositional formulas over {P1, . . . , Pn} is defined as the homomorphism
induced by prop(ai) = Pi.

The inverse prop−1 of such an abstraction mapping prop simply replaces
propositional variables Pi with their associated atom ai.

For an assignment α of prop(ψ), let the set Φ(α) of first-order literals be defined
as follows

Φ(α) = {prop−1(Pi) | α(Pi) = 1} ∪ {¬prop−1(Pi) | α(Pi) = 0}
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SMT solvers - “lazy offline” approach

Given a CNF A, SAT-Solver(A) returns a tuple (r, α) where r is SAT if A is
satisfiable and UNSAT otherwise, and α is an assignment that satisfies A if
r is SAT.

Given a set of literals S, T-Solver(S) returns a tuple (r, J) where r is SAT if
S is T -satisfiable and UNSAT otherwise, and J is a justification if r is
UNSAT.

Given an unsatisfiable set of literals S, a justification for S is any
unsatisfiable subset J of S. A justification J is non-redundant if there is no
strict subset J � of J that is also unsatisfiable.
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SMT solvers - “lazy offline” approach

Basic SAT and theory solver integration

SMT-Solver (ψ) {
A ← prop(ψ)
loop {

(r, α) ← SAT-Solver(A)
if r = UNSAT then return UNSAT
(r, J) ← T-Solver(Φ(α))
if r = SAT then return SAT
C ←

�
B∈J ¬prop(B)

A ← A ∧ C
}

}

If a valuation α satisfying A is found, but Φ(α) is unsatisfiable, we add to A a

clause C which has the effect of excluding α when the SAT solver is invoked

again in the next iteration. This clause is called a “theory lemma”.
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SMT-Solver( g(a) = x ∧ (f(g(a)) �= f(c) ∨ g(a) = d) ∧ c �= d )

A = prop(ψ) = P1 ∧ (¬P2 ∨ P3) ∧ ¬P4

SAT-Solver(A) = SAT, α = {P1 �→ 1, P2 �→ 0, P4 �→ 0}

Φ(α) = {g(a) = x, f(g(a)) �= f(c), c �= d}

T-Solver(Φ(α)) = UNSAT, J = {g(a) = x, f(g(a)) �= f(c), c �= d}

C = ¬P1 ∨ P2 ∨ P4

A = P1 ∧ (¬P2 ∨ P3) ∧ ¬P4 ∧ (¬P1 ∨ P2 ∨ P4)
SAT-Solver(A) = SAT, α = {P1 �→ 1, P2 �→ 1, P3 �→ 1, P4 �→ 0}

Φ(α) = {g(a) = x, f(g(a)) = f(c), g(a) = d, c �= d}

T-Solver(Φ(α)) = UNSAT, J = {g(a) = x, f(g(a)) = f(c), g(a) = d, c �= d}

C = ¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4

A = P1 ∧ (¬P2 ∨ P3) ∧ ¬P4 ∧ (¬P1 ∨ P2 ∨ P4) ∧ (¬P1 ∨ ¬P2 ∨ ¬P3 ∨ P4)
SAT-Solver(A) = UNSAT
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SMT solvers

The main advantage of the lazy approach is its flexibility, since it can easily
combine any SAT solver with any theory solver.

There are many refinements for this basic algorithm that make the SMT
procedure more efficient. The basic idea is to have a tighter integration
between the two procedures.
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SMT solvers

In the last two decades, SMT procedures have undergone dramatic progress.
There has been enormous improvements in efficiency and expressiveness of
SMT procedures for the more commonly occurring theories.

� The annual competition1 for SMT procedures plays an important rule
in driving progress in this area.

� A key ingredient is SMT-LIB2, an online resource that proposes, as a
standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.

Current SMT solvers: Z3, Yices, MathSAT, Barcelogic, CVC3, openSMT,
Alt-Ergo, etc.

Usually, SMT solvers accept input either in a proprietary format or in
SMT-LIB format.

1http://www.smtcomp.org
2http://www.smtlib.org
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The SMT-LIB repository

Catalog of theory declarations - semi-formal specification of theories
of interest

� A theory defines a vocabulary of sorts and functions. The meaning of
the theory symbols are specified in the theory declaration.

Catalog of logic declarations - semi-formal specification of fragments
of (combinations of) theories

� A logic consists of one or more theories, together with some restrictions
on the kinds of expressions that may be used within that logic.

Library of benchmarks

Utility tools (parsers, converters, ...)

Useful links (documentation, solvers, ...)

See http://www.smtlib.org
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The SMT-LIB language

Textual, command-based I/O format for SMT solvers.

Intended mostly for machine processing. (SMT solvers are typically
used for verification as backends)

All input to and output from a conforming solver is a sequence of one
or more S-expressions

�S-exp� ::= �token� | (�S-exp�∗)

SMT-LIB language expresses logical statements in a many-sorted
first-order logic. Each well-formed expression has a unique sort (type).

Typical usage:
� Asserting a series of logical statements, in the context of a given logic.
� Checking their satisfiability in the logic.
� Exploring resulting models (if SAT) or proofs (is UNSAT)
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The SMT-LIB language

Theories are defined with theory declaration schemes
� Signature (sorts and function symbols) formally specified.
� Semantics informally specified.

Current theories
� ArraysEx - Functional arrays with extensionality.
� Fixed Size BitVectors - Bit vectors with arbitrary size.
� Core - Core theory, defining the basic Boolean operators.
� Ints - Integer numbers.
� Reals - Real numbers.
� Reals Ints - Real and integer numbers.

Some logics (theories; free symbols; sintax restrictions)
� QF UF - Core; free sort and function symbols; no quantifiers
� QF LIA - Ints; free constant symbols: no quantifiers, only linear
� AUFLIA - ArraysEx, Ints; free sort and function symbols; only linear

terms, only arrays of sort (Array Int Int)
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Theorem provers / SAT checkers

φ is valid iff ¬φ is unsatisfiable

logical formula

timeout or 
memoutSMT solver

unsat + 
proof

sat + 
model

It may happen that, for a given formula, a SMT solver returns a timeout,
while another SMT solver returns a concrete answer.
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Applications

SMT solvers are the core engine of many tools for

program analysis

program verification

test-cases generation

bounded model checking

modeling

planning and scheduling

...
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Program verification/analysis

The general architecture of program verification/analysis tools is powered by a
Verification Conditions Generator (VCGen) that produces verification conditions
(also called “proof obligations”) that are then passed to a SMT solver to be
“discharged”. Examples of such tools: Boogie, Frama-C, ESC/JAVA2.

Verification/Analysis 
Tool

logical formula

timeout or 
memoutSMT solver

unsat + 
proof

sat + 
model

counter-example Ok

(annotated) program

VCGen
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Bounded model checking

The key idea of Bounded Model Checking (BMC) is to encode bounded
behaviours of the system that enjoy some given property as a formula whose
models (if any) describe a system trace leading to a violation of the property.

Preliminarily to the generation of the formula, we preprocess the input
program.

Given a bound n > 0, this amounts to applying a number of transformations
which lead to a simplified program whose execution traces have finite length
and correspond to the (possibly truncated) traces of the original program.

The quantifier-free formula is then obtained by generating a quantifier-free
formula for each statement of the resulting program and the resulting
formula is fed to a SMT solver.

If an execution path leading to a violation of an assert statement occurring
in the original program is detected, then a corresponding trace is built and
returned to the user for inspection.
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Bounded model checking

original program
i = a[0];
if (x > 0){
if (x < 10)

x = x + 1;
else

x = x− 1;
}

assert(y > 0 && y < 5);
a[y] = i;

=⇒

single assignment form
i1 = a0[0];
if (x0 > 0){
if (x0 < 10)

x1 = x0 + 1;
else

x1 = x0 − 1;
}

assert(y0 > 0 && y0 < 5);
a1[y0] = i1;

=⇒

conditional normal form
if (true) i1 = a0[0];
if (x0 > 0 && x0 < 10) x1 = x0 + 1;
if (x0 > 0 && !x0 < 10) x1 = x0 − 1;
if (true) assert(y0 > 0 && y0 < 5);
if (true) a1[y0] = i1;
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Bounded model checking

Now, for some given background theory T two set of quantifier-free formulae C
and P such that C |=T

�
P iff no computation path of the program violates any

assert statement in it.

C = { � → i1 = read(a0, 0),
x0 > 0 ∧ x0 < 10 → x1 = x0 + 1,
x0 > 0 ∧ ¬(x0 < 10) → x1 = x0 − 1,
� → write(a1, y0, i1)

}

P = { � → y0 > 0 ∧ y0 < 5 }

Note that C |=T
�
P iff |=T

�
C →

�
P

iff ¬(
�
C →

�
P) is T -unsatisfiable

iff
�
C ∧ ¬

�
P is T -unsatisfiable

The T -models of (
�
C ∧ ¬

�
P) (if any) correspond to the execution paths of the

program that lead to an assertion violation.
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Logic First-Order Theories

Scheduling

Job-shop-scheduling decision problem

Consider n jobs.

Each job has m tasks of varying duration that must be performed
consecutively on m machines.

The start of a new task can be delayed as long as needed in order for a
machine to become available, but tasks cannot be interrupted once they are
started.

Given a total maximum time max and the duration of each task, the problem
consists of deciding whether there is a schedule such that the end-time of every
task is less than or equal to max time units.

Two types of constraints

Precedence between two tasks in the same job.

Resource: a machine cannot run two different tasks at the same time.
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Scheduling

dij - duration of the j-th task of the job i

tij - start-time for the j-th task of the job i

Constraints

� Precedence: for every i, j, ti j+1 ≥ tij + dij
� Resource: for every i �= i�, (tij ≥ ti�j + di�j) ∨ (ti�j ≥ tij + dij)
� The start time of the first task of every job i must be greater than or

equal to zero ti1 ≥ 0
� The end time of the last task must be less than or equal to max

tim + dim ≤ max

Find a solution for this problem

dij Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

and max = 8
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Exercices

Run by hand the SMT-Solver procedure to decide about the
satisfiability of ¬(a ≥ 2) ∧ (a ≥ 2 ∨ a ≥ 7).

Visit the online tutorial guide of the Z3 theorem prover, and
experiment.

Pick up a SMT solver.

Play with simple examples.
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