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Logic (Classical) First-Order Logic

Introduction

First-order logic (FOL) is a richer language than propositional logic. Its lexicon

contains not only the symbols ∧, ∨, ¬, and → (and parentheses) from

propositional logic, but also the symbols ∃ and ∀ for “there exists” and “for all”,

along with various symbols to represent variables, constants, functions, and

relations.

There are two sorts of things involved in a first-order logic formula:

terms, which denote the objects that we are talking about;

formulas, which denote truth values.

Examples:

“Not all birds can fly.”

“Every mother is older than her children.”

“John and Peter have the same maternal grandmother.”
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Syntax

The alphabet of a first-order language is organised into the following
categories.

Variables: x, y, z, . . . ∈ X (arbitrary elements of an underlying domain)

Constants: a, b, c, . . . ∈ C (specific elements of an underlying domain)

Functions: f, g, h, . . . ∈ F (every function f as a fixed arity, ar(f))

Predicates: P,Q, R, . . . ∈ P (every predicate P as a fixed arity, ar(P ))

Logical connectives: �, ⊥, ∧, ∨, ¬, →, ∀ (for all), ∃ (there exists)

Auxiliary symbols: “.”, “(“ and “)”.

We assume that all these sets are disjoint. C, F and P are the non-logical
symbols of the language. These three sets constitute the vocabulary

V = C ∪ F ∪ P.
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Syntax

Terms
The set of terms of a first-order language over a vocabulary V is given by
the following abstract syntax

TermV � t ::= x | c | f(t1, . . . , tar(f))

Formulas
The set FormV , of formulas of FOL, is given by the abstract syntax

FormV � φ, ψ ::= P (t1, . . . , tar(P )) | ⊥ | � | (¬φ) | (φ ∧ ψ) | (φ ∨ ψ)
| (φ → ψ) | (∀x.φ) | (∃x.φ)

An atomic formula has the form ⊥, �, or P (t1, . . . , tar(P )). A ground term is a
term without variables. Ground formulas are formulas without variables, i.e.,
quantifier-free formulas φ such that all terms occurring in φ are ground terms.
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Syntax

Convention
We adopt some syntactical conventions to lighten the presentation of
formulas:

Outermost parenthesis are usually dropped.

In absence of parentheses, we adopt the following convention about
precedence. Ranging from the highest precedence to the lowest, we
have respectively: ¬, ∧, ∨ and →. Finally we have that → binds
more tightly than ∀ and ∃.

All binary connectives are right-associative.

Nested quantifications such as ∀x.∀y.φ are abbreviated to ∀x, y.φ.

∀x.φ denotes the nested quantification ∀x1, . . . , xn. φ.
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Modeling with FOL

“Not all birds can fly.”

We can code this sentence assuming the two unary predicates B and F

expressing
B(x) – x is a bird
F (x) – x can fly

The declarative sentence “Not all birds can fly” can now be coded as

¬∀x.B(x) → F (x)

or, alternatively, as
∃x.B(x) ∧ ¬F (x)
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Modeling with FOL

“Every mother is older than her children.”
“John and Peter have the same maternal grandmother.”
Using constants symbols j and p for John and Peter, and predicates =, mother
and older expressing that

mother(x, y) – x is a mother of y

older(x, y) – x is older than y

these sentences could be expressed by

∀x.∀y.mother(x, y) → older(x, y)

∀x, y, u, v.mother(x, y) ∧mother(y, j ) ∧mother(u, v) ∧mother(v, p) → x = u

A different and more elegant encoding is to represent y’mother in a more direct
way, by using a function instead of a relation. We write m(y) to mean y’mother.
This way the two sentences above have simpler encondings.

∀x. older(m(x), x) and m(m(j)) = m(m(p))
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Modeling with FOL

Assume further the following predicates and constant symbols
flower(x) – x is a flower likes(x, y) – x likes y

sport(x) – x is a sport brother(x, y) – x is brother of y

a – Anne

“Anne likes John’s brother.” ∃x. brother(x, j) ∧ likes(a, x)

“John likes all sports.” ∀x. sports(x) → likes(j , x)

“John’s mother likes flowers.” ∀x.flower(x) → likes(m(j ), x)

“John’s mother does not like some sports.” ∃y. sport(y) ∧ ¬likes(m(j ), y)

“Peter only likes sports.” ∀x. likes(p, x) → sports(x)

“Anne has two children.”

∃x1, x2.mother(a, x1) ∧mother(a, x2) ∧ x1 �= x2 ∧

∀z. mother(a, z) → z = x1 ∨ z = x2
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Free and bound variables

The free variables of a formula φ are those variables occurring in φ that are
not quantified. FV(φ) denotes the set of free variables occurring in φ.

The bound variables of a formula φ are those variables occurring in φ that
do have quantifiers. BV(φ) denote the set of bound variables occurring in φ.

Note that variables can have both free and bound occurrences within the same
formula. Let φ be ∃x.R(x, y) ∧ ∀y. P (y, x), then

FV(φ) = {y} and BV(φ) = {x, y}.

A formula φ is closed (or a sentence) if it does not contain any free variables.

If FV(φ) = {x1, . . . , xn}, then

� its universal closure is ∀x1. . . .∀xn. φ

� its existential closure is ∃x1. . . .∃xn. φ
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Substitution

Substitution

We define u[t/x] to be the term obtained by replacing each
occurrence of variable x in u with t.

We define φ[t/x] to be the formula obtained by replacing each free
occurrence of variable x in φ with t.

Care must be taken, because substitutions can give rise to undesired
effects.

Given a term t, a variable x and a formula φ, we say that t is free for x in

φ if no free x in φ occurs in the scope of ∀z or ∃z for any variable z

occurring in t.

From now on we will assume that all substitutions satisfy this condition.
That is when performing the φ[t/x] we are always assuming that t is free
for x in φ.
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Substitution

Convention

We write φ(x1, . . . , xn) to denote a formula having free variables
x1, . . . , xn. We write φ(t1, . . . , tn) to denote the formula obtained by
replacing each free occurrence of xi in φ with the term ti. When using
this notation, it should always be assumed that each ti is free for xi in φ.
Also note that when writhing φ(x1, ..., xn) we do not mean that x1, ..., xn

are the only free variables of φ.

A sentence of first-order logic is a formula having no free variables.

The presence of free variables distinguishes formulas from sentences.

This distinction did not exist in propositional logic.

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 13 / 44

Logic (Classical) First-Order Logic

Semantics

V-structure
Let V be a vocabulary. A V-structure M is a pair M = (D, I) where D is a
nonempty set called the interpretation domain, and I is an interpretation function

that assigns constants, functions and predicates over D to the symbols of V as
follows:

for each constant symbol c ∈ C, the interpretation of c is a constant
I(c) ∈ D;

for each f ∈ F , the interpretation of f is a function I(f) : D
ar(f) → D;

for each P ∈ P, the interpretation of P is a function I(P ) : D
ar(P ) → {0, 1}.

In particular, 0-ary predicate symbols are interpreted as truth values.

V-structures are also called models for V.
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Semantics

Assignment

An assignment for a domain D is a function α : X→D.

We denote by α[x �→ a] the assignment which maps x to a and any other
variable y to α(y).

Given a V-structure M = (D, I) and given an assignment α : X→D, we
define an interpretation function for terms, αM : TermV→D, as follows:

αM(x) = α(x)
αM(c) = I(c)
αM(f(t1, . . . , tn)) = I(f)(αM(t1), . . . ,αM(tn))
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Semantics

Satisfaction relation

Given a V-structure M = (D, I) and given an assignment α : X→D, we
define the satisfaction relation M, α |= φ for each φ ∈ FormV as follows:

M, α |= �

M, α �|= ⊥

M, α |= P (t1, . . . , tn) iff I(P )(αM(t1), . . . ,αM(tn)) = 1
M, α |= ¬φ iff M, α �|= φ

M, α |= φ ∧ ψ iff M, α |= φ and M, α |= ψ

M, α |= φ ∨ ψ iff M, α |= φ or M |= ψ

M, α |= φ → ψ iff M, α �|= φ or M, α |= ψ

M, α |= ∀x.φ iff M, α[x �→ a] |= φ for all a ∈ D

M, α |= ∃x.φ iff M, α[x �→ a] |= φ for some a ∈ D
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Validity and satisfiability

When M, α |= φ, we say that M satisfies φ with α.

We write M |= φ iff M, α |= φ holds for every assignment α.

A formula φ is

valid iff M, α |= φ holds for all structure M and assignments α.
A valid formula is called a tautology. We write |= φ.

satisfiable iff there is some structure M and some assigment α

such that M, α |= φ holds.

unsatisfiable iff it is not satisfiable.
An unsatisfiable formula is called a contradiction.

refutable iff it is not valid.
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Consequence and equivalence

Given a set of formulas Γ, a model M and an assignment α, M is said to satisfy

Γ with α, denoted by M, α |= Γ, if M, α |= φ for every φ ∈ Γ.

Γ entails φ (or that φ is a logical consequence of Γ), denoted by Γ |= φ, iff for all
structures M and assignments α, whenever M, α |= Γ holds, then M, α |= φ

holds as well.

φ is logically equivalent to ψ, denoted by φ ≡ ψ, iff {φ} |= ψ and {ψ} |= φ.

Deduction theorem
Γ, φ |= ψ iff Γ |= φ → ψ
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Consistency

The set Γ is consistent or satisfiable iff there is a model M and an
assigment α such that M, α |= φ holds for all φ ∈ Γ.

We say that Γ is inconsistent iff it is not consistent and denote this by
Γ |= ⊥.

Proposition

{φ,¬φ} |= ⊥

If Γ |= ⊥ and Γ ⊆ Γ�, then Γ� |= ⊥.

Γ |= φ iff Γ,¬φ |= ⊥
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Substitution

Formula ψ is a subformula of formula φ if it occurs syntactically
within φ.

Formula ψ is a strict subformula of φ if ψ is a subformula of φ and
ψ �= φ

Substitution theorem
Suppose φ ≡ ψ. Let θ be a formula that contains φ as a subformula. Let
θ

� be the formula obtained by safe replacing (i.e., avoiding the capture of
free variables of φ) some occurrence of φ in θ with ψ. Then θ ≡ θ

�.
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Adquate sets of connectives for FOL

Renaming of bound variables

If y is free for x in φ and y �∈ FV(φ), then the following equivalences hold.

∀x.φ ≡ ∀y.φ[y/x]
∃x.φ ≡ ∃y.φ[y/x]

Lemma
The following equivalences hold in first-order logic.

∀x.φ ∧ ψ ≡ (∀x.φ) ∧ (∀x.ψ) ∃x.φ ∨ ψ ≡ (∃x.φ) ∨ (∃x.ψ)
∀x.φ ≡ (∀x.φ) ∧ φ[t/x] ∃x.φ ≡ (∃x.φ) ∨ φ[t/x]

¬∀x.φ ≡ ∃x.¬φ ¬∃x.φ ≡ ∀x.¬φ

As in propositional logic, there is some redundancy among the connectives
and quantifiers since ∀x.φ ≡ ¬∃x.¬φ and ∃x. φ ≡ ¬∀x.¬φ.
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Decidability

Given formulas φ and ψ as input, we may ask:

Decision problems

Validity problem: “Is φ valid ?”
Satisfiability problem: “Is φ satisfiable ?”
Consequence problem: “Is ψ a consequence of φ ?”
Equivalence problem: “Are φ and ψ equivalent ?”

These are, in some sense, variations of the same problem.

φ is valid iff ¬φ is unsatisfiable
φ |= ψ iff ¬(φ → ψ) is unsatisfiable
φ ≡ ψ iff φ |= ψ and ψ |= φ

φ is satisfiable iff ¬φ is not valid
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Decidability

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.

A decision problem is decidable if it has a solution.

A decision problem is undecidable if it is not decidable.

In PL we could, in theory, compute a truth table to determine whether or not a

formula is satisfiable. In FOL, we would have to check every model to do this.

Theorem (Church & Turing)

The decision problem of validity in first-order logic is undecidable: no
program exists which, given any φ, decides whether |= φ.

The decision problem of satisfiability in first-order logic is undecidable:
no program exists which, given any φ, decides whether φ is satisfiable.
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Semi-decidability

However, there is a procedure that halts and says “yes” if φ is valid.

A decision problem is semi-decidable if exists a procedure that, given an
input,

halts and answers “yes” iff “yes” is the correct answer,

halts and answers “no” if “no” is the correct answer, or

does not halt if “no” is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the
correct answer is “yes”.

The decision problem of validity in first-order logic is semi-decidable.
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Normal forms

A first-order formula is in negation normal form (NNF) if the implication
connective is not used in it, and negation is only applied to atomic
formulas.

If x does not occur free in ψ, then the following equivalences hold.

(∀x.φ) ∧ ψ ≡ ∀x.φ ∧ ψ ψ ∧ (∀x.φ) ≡ ∀x.ψ ∧ φ

(∀x.φ) ∨ ψ ≡ ∀x.φ ∨ ψ ψ ∨ (∀x.φ) ≡ ∀x.ψ ∨ φ

(∃x.φ) ∧ ψ ≡ ∃x.φ ∧ ψ ψ ∧ (∃x.φ) ≡ ∃x.ψ ∧ φ

(∃x.φ) ∨ ψ ≡ ∃x.φ ∨ ψ ψ ∨ (∃x.φ) ≡ ∃x.ψ ∨ φ

The applicability of these equivalences can always be assured by
appropriate renaming of bound variables.
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Normal forms

A formula is in prenex form if it is of the form Q1x1.Q2x2. . . . Qnxn.ψ

where each Qi is a quantifier (either ∀ or ∃) and ψ is a quantifier-free
formula.

Prenex form of ∀x.(∀y.P (x, y) ∨Q(x)) → ∃z.P (x, z)

First we compute the NNF and then we go for the prenex form.

∀x.(∀y.P (x, y) ∨Q(x)) → ∃z.P (x, z) ≡

∀x.¬(∀y.P (x, y) ∨Q(x)) ∨ ∃z.P (x, z) ≡

(NNF) ∀x.∃y.(¬P (x, y) ∧ ¬Q(x)) ∨ ∃z.P (x, z) ≡

(prenex) ∀x.∃y.∃z.(¬P (x, y) ∧ ¬Q(x)) ∨ P (x, z)
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Herbrand/Skolem normal forms

Let φ be a first-order formula in prenex normal form.

The Herbrandization of φ (written φ
H) is an existential formula obtained

from φ by repeatedly and exhaustively applying the following transformation:

∃x1, . . . , xn.∀y.ψ � ∃x1, . . . , xn.ψ[f(x1, . . . , xn)/y]

with f a fresh function symbol with arity n (i.e. f does not occur in ψ).

The Skolemization of φ (written φ
S) is a universal formula obtained from φ

by repeatedly applying the transformation:

∀x1, . . . , xn∃y.ψ � ∀x1, . . . , xn.ψ[f(x1, . . . , xn)/y]

with f a fresh function symbol with arity n.

Herbrand normal form (resp. Skolem normal form) formulas are those
obtained by the process of Herbrandization (resp. Skolemization).
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Herbrandization/Skolemization

A formula φ and its Herbrandization/Skolemization are not logically equivalent.

Proposition
Let φ be a first-order formula in prenex normal form.

φ is valid iff its Herbrandization φ
H is valid.

φ is unsatisfiable iff its Skolemization φ
S is unsatisfiable.

It is convenient to write Herbrand and Skolem formulas using vector
notation ∃x.ψ and ∀x.ψ (with ψ quantifier free), respectively.

The quantifier-free sub-formula can be furthered normalised:

� Universal CNF: ∀x.
�

i

�
j
lij

� Existencial DNF: ∃x.
�

i

�
j
lij

where literals are either atomic predicates or negation of atomic predicates.

Herbrandization/Skolemization change the underlying vocabulary. These
additional symbols are called Herbrand/Skolem functions.
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Herbrandization/Skolemization

The requirement that the original formula be in prenex normal form is too
strong: Skolemization/Herbrandization can be applied to formulas in
negative normal form. In fact, this relaxation results in potentially simpler
Skolem normal forms (with fewer Skolem functions, or functions with lower
arity).

Herbrand (resp. Skolem) normal form is important since it allows to reduce
validity (resp. unsatisfiability) of a first-order formula to the existence of
suitable instances of a quantifier-free formula, considering models
constructed directly from the syntax of terms.
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Herbrand models

Herbrand interpretation
Let V be a first-order vocabulary and assume V has at least one constant symbol
(otherwise, we explicitly expand the vocabulary with such a symbol). A Herbrand

Interpretation H = (DH, IH) is a V-structure specified by a set of closed atomic
predicates (i.e. atomic predicates applied to ground terms), also denoted by H.
The interpretation structure is given as follows:

Interpretation domain: DH is the set of ground terms for the vocabulary V.
It is called the Herbrand universe for V.

Interpretation of constants: for every c ∈ V, IH(c) = c;

Interpretation of functions: for every f ∈ V with ar(f) = n, IH(f) consists
of the n-ary function that, given ground terms t1, . . . , tn, returns the ground
term f(t1, . . . , tn);

Interpretation of predicates: for every P ∈ V with ar(P ) = n, IH(P ) is the
n-ary relation {(t1, . . . , tn) | P (t1, . . . , tn) ∈ H}.
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Herbrand’s theorem

Lemma
An existential formula φ is valid iff for every Herbrand model H,
H |= φ.

A universal formula φ is unsatisfiable iff there exists no Herbrand
model H such that H |= φ.

Herbrand’s Theorem

An existential first-order formula ∃x.ψ (with ψ quantifier-free) is valid
iff there exists an integer k and ground instances ψσ1, . . . ,ψσk such
that ψσ1 ∨ . . . ∨ ψσk is propositionally valid.

A universal formula ∀x.ψ (with ψ quantifier-free) is unsatisfiable iff
there exists an integer k and closed instances ψσ1, . . . ,ψσk such that
ψσ1 ∧ · · · ∧ ψσk is propositionally unsatisfiable.
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Semi-decidability

Theorem
The problem of validity of first-order formulas is semi-decidable, i.e. there
exists a procedure that, given a first-order formula, answers “yes” iff the
formula is valid (but might not terminate if the formula is not valid).

An interesting refinement is to investigate fragments in which bounds
can be established for searching the ground instance space.

This immediately leads to a bound on the number of instances whose
search is required by Herbrand’s theorem, turning validity of formulas
decidable.

Clearly if the set of ground terms is finite, the set of ground instances
of the formula under scrutiny will be finite as well.
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Semi-decidability

Consider a vocabulary with two constants 1 and 2, and two unary predicates P

and Q. To prove the validity of the formula ∃x. (P (x) → ∀y. P (y)), we can

1 Calculate the prenex normal form equivalent of the formula.

∃x.∀y. (¬P (x) ∨ P (y))

2 Calculate the Herbrandization of the result. This process introduces a new
function f in the vocabulary.

∃x. ¬P (x) ∨ P (f(x))

3 The set of ground terms for the new vocabulary is
{1, 2, f(1), f(2), f(f(1)), f(f(2)), ...}

4 Using the Herbrand’s Theorem we can say that ∃x. ¬P (x) ∨ P (f(x)) is
valid, because the formula

(¬P (1) ∨ P (f(1))) ∨ (¬P (2) ∨ P (f(2))) ∨ (¬P (f(1)) ∨ P (f(f(1))))

5 Hence, ∃x. (P (x) → ∀y. P (y)) is valid.
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Decidable fragments

If the underlying vocabulary has a finite set of constants and no function
symbol, the set of ground terms is finite. Note however that function
symbols might be introduced during the Herbrandization/Skolemization.

Restricting attention to formulas whose prenex normal form has the shape
∀x.∃y. ψ ensures that only constants are introduced by Herbrandization.

� This fragment of formulas is normally known as the AE fragment.

� The class of formulas can be further enlarged by observing that a
formula not in AE may be equivalent to one in AE (e.g. miniscope –
pushing existential quantifiers inside the formula, thus minimizing their
scopes).

∃x.∀y. P (x) ∨Q(y) ≡ ∃x.P (x) ∨ ∀y.Q(y) ≡ ∀y.∃x. P (x) ∨Q(y)
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Decidable fragments

Although first-order validity is undecidable, there are special simple
fragments of FOL where it is decidable, e.g.

Monadic predicate logic (i.e. only unary predicates and no function
symbols) is decidable.

The Bernays-Schönfinkel class of formulas (i.e. formulas that can be
written with all quantiers appearing at the beginning of the formula
with existentials before universals and that do not contain any
function symbols) is decidable.
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FOL with equality

There are different conventions for dealing with equality in first-order logic.

We have follow the approach of considering equality predicate (=) as a
non-logical symbol, treated in the same way as any other predicate.
We are working with what are usually known as “first-order languages

without equality”.

An alternative approach, usually called “first-order logic with equality”,
considers equality as a logical symbol with a fixed interpretation.

In this approach the equality symbol (=) is interpreted as the equality
relation in the domain of interpretation. So we have, for a structure
M = (D, I) and an assignment α : X→D, that

M, α |= t1 = t2 iff αM(t1) and αM(t2) are the same element of D
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Logic (Classical) First-Order Logic

FOL with equality

To understand the significant difference between having equality with the status
of any other predicate, or with a fixed interpretation as in first-order logic with
equality, consider the formulas

∃x1, x2.∀y. y = x1 ∨ y = x2

With a fixed interpretation of equality, the validity of this formula implies
that the cardinality of the interpretation domain is at most two – the
quantifiers can actually be used to fix the cardinality of the domain, which is
not otherwise possible in first-order logic.

∃x1, x2.¬(x1 = x2)
The validity of this formula implies that there exist at least two distinct
elements in the domain, thus its cardinality must be at least two.
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Logic (Classical) First-Order Logic

Many-sorted FOL

A natural variant of first-order logic that can be considered is the one that
results from allowing different domains of elements to coexist in the
framework. This allows distinct “sorts” or types of objects to be
distinguished at the syntactical level, constraining how operations and
predicates interact with these different sorts.

Having full support for different sorts of objects in the language allows for
cleaner and more natural encodings of whatever we are interested in
modeling and reasoning about.

By adding to the formalism of FOL the notion of sort, we can obtain a
flexible and convenient logic called many-sorted first-order logic, which has
the same properties as FOL.
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Logic (Classical) First-Order Logic

Many-sorted FOL

A many-sorted vocabulary (signature) is composed of a set of sorts, a set of
function symbols, and a set of predicate symbols.

� Each function symbol f has associated with a type of the form
S1 × . . .× Sar(f)→S where S1, . . . , Sar(f), S are sorts.

� Each predicate symbol P has associated with it a type of the form
S1 × . . .× Sar(P ).

� Each variable is associated with a sort.

The formation of terms and formulas is done only accordingly to the typing
policy, i.e., respecting the “sorts”.

The domain of discourse of any structure of a many-sorted vocabulary is
fragmented into different subsets, one for every sort.

The notions of assignment and structure for a many-sorted vocabulary, and
the interpretation of terms and formulas are defined in the expected way.
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Logic (Classical) First-Order Logic

Proof system

So far we have taken the “semantic” approach to logic, with the aim
of characterising the semantic concept of model, from which validity,
satisfiability and semantic entailment were derived.

However, this is not the only possible point of view.

Instead of adopting the view based on the notion of truth, we can
think of logic as a codification of reasoning. This alternative approach
to logic, called “deductive”, focuses directly on the deduction relation
that is induced on formulas, i.e., on what formulas are logical
consequences of other formulas.

We will explore this perspective later in this course.
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Logic (Classical) First-Order Logic

Exercises (from [Huth&Ryan 2004])

Use the predicates
A(x, y) : x admires y P (x) : x is a professor
B(x, y) : x attended y S(x) : x is a student

L(x) : x is a lecture

and the nullary function symbol (constant) ’Mary’ to translate the following
into predicate logic:

1 Mary admires every professor.
2 Some professor admires Mary.
3 Mary admires herself.
4 No student attended every lecture.
5 No lecture was attended by every student.
6 No lecture was attended by any student.
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Logic (Classical) First-Order Logic

Exercises (from [Huth&Ryan 2004])

Find appropriate predicates and their specification to translate the following
into predicate logic:

1 All red things are in the box.
2 Only red things are in the box.
3 No animal is both a cat and a dog.
4 Every prize was won by a boy.
5 A boy won every prize.
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Logic (Classical) First-Order Logic

Exercises (from [Huth&Ryan 2004])

Let F (x, y) mean that x is the father of y; M(x, y) denotes x is the mother
of y. Similarly, H(x, y), S(x, y), and B(x, y) say that x is the
husband/sister/brother of y, respectively. You may also use constants to
denote individuals, like ’Ed’ and ’Patsy’. However, you are not allowed to
use any predicate symbols other than the above to translate the following
sentences into predicate logic:

1 Everybody has a mother.
2 Everybody has a father and a mother.
3 Whoever has a mother has a father.
4 Ed is a grandfather.
5 All fathers are parents.
6 All husbands are spouses.
7 No uncle is an aunt.
8 Nobody’s grandmother is anybody’s father.
9 Ed and Patsy are husband and wife.
10 Carl is Monique’s brother-in-law.
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Logic (Classical) First-Order Logic

Exercises (from [RSD 2011])

Compute Herbrand and Skolem normal forms for each of the following
formulas:

1 ∃x.(∀y.∃z.P (x, y, z)) ∧ ∃x.∀y.¬P (x, y, z)
2 ∀x.(∃y.Q(x, y)) ∨ ∀y.∃z.R(x, y, z)
3 ∀x.(∃y.P (x, y)) → ∃y.Q(x, y)
4 ∀x.P (x) ∧ (∀y.Q(y)) → ∃y.R(x, f(x, y))
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