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Logic Introduction

What is a (formal) logic?

Logic is defined as the study of the principles of reasoning. One of its
branches is symbolic logic, that studies formal logic.

A formal logic is a language equipped with rules for deducing the
truth of one sentence from that of another.

A logic consists of
� A logical language in which (well-formed) sentences are expressed.
� A semantics that defines the intended interpretation of the symbols

and expressions of the logical language.
� A proof system that is a framework of rules for deriving valid

judgments.

Examples: propositional logic, first-order logic, higher-order logic,
modal logics, ...
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Logic Introduction

What is a logical language?

A logical language consists of

logical symbols whose interpretations are fixed

non-logical symbols whose interpretations vary

These symbols are combined together to form well-formed formulas.
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Logic Introduction

Logic and computer science

Logic and computer science share a symbiotic relationship
� Logic provides language and methods for the study of theoretical

computer science.
� Computers provide a concrete setting for the implementation of logic.

Formal logic makes it possible to calculate consequences at the
symbolic level, so computers can be used to automate such symbolic
calculations.

Moreover, logic can be used to model the situations we encounter as
computer science professionals, in such a way that we can reason
about them formally.
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Logic Introduction

Motivation

Many applications of formal methods rely on generating formulas of a logical
system and investigate about their validity or satisfiablility.

Constraint-satisfaction problems arise in diverse application areas, such as

� software and hardware verification
� static program analysis
� test-case generation
� scheduling and planning
� ...

These problems can be encoded by logical formulas. Solvers for such
formulations (SAT solvers and SMT solvers) play a crucial rule in their
resolution.
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Logic Introduction

Motivation

Increased attention has led to enormous progress in this area in the last
decade. Modern SAT procedures can check formulas with hundreds of
thousands of variables. Similar progress has been observed for SMT solvers
for more commonly occurring theories.

SMT solvers are the core engine of many tools for program analysis, testing
and verification.

Modern SMT solvers integrate specialized theory solvers with propositional
satisfiability search techniques.
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Logic Introduction

Goals of this course

Review the basic concepts of Propositional Logic and First-Order
Logic.

Address the issues of decidability of logical systems.

Talk about the algorithms that underlie a large number of automatic
proof tools.

Illustrate the use of automatic theorem provers and proof assistants.
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Course overview

Classical Propositional Logic

� syntax; semantics; validity; satisfiability; decidability; complexity
� normal forms; DPLL procedure; SAT solvers; modeling with PL

Classical First-Order Logic

� syntax; semantics; validity; satisfiability; modeling with FOL
� normal forms; Herbrandization; Skolemization; Herbrand’s theorem;

semi-decidability; decidable fragments
� FOL with equality; many-sorted FOL

First-Order Theories

� basic definitions; decidability issues; several theories: equality, integers,
linear arithmetic, reals, arrays; combining theories

� satisfiability modulo theories; SMT solvers; SMT-LIB; applications
Natural Deduction

� natural deduction proof system for propositional and predicate logic;
forward and backward reasoning

� soundness; completeness; compactness
� proof assistants; the Coq system
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(Classical) Propositional Logic
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Logic (Classical) Propositional Logic

Roadmap

Classical Propositional Logic

� syntax; semantics; validity; satisfiability; decidability; complexity
� normal forms; DPLL procedure; SAT solvers; modeling with PL

Classical First-Order Logic

First-Order Theories

Natural Deduction
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Logic (Classical) Propositional Logic

Introduction

The language of propositional logic is based on propositions, or
declarative sentences which one can, in principle, argue as being
“true” or “false”.

“The capital of Portugal is Braga.”

“D. Afonso Herriques was the first king of Portugal.”

Propositional symbols are the atomic formulas of the language. More
complex sentences are constructed using logical connectives.

In classical propositional logic (PL) each sentence is either true or
false.

In fact, the content of the propositions is not relevant to PL. PL is
not the study of truth, but of the relationship between the truth of
one statement and that of another.
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Logic (Classical) Propositional Logic

Syntax

The alphabet of a first-order language is organised into the following categories.

Propositional variables: P,Q, R, . . . ∈ VProp (a countably infinite set)

Logical connectives: ⊥ (false) ,� (true), ¬ (not), ∧ (and), ∨ (or), →
(implies)

Auxiliary symbols: “(“ and “)”.

The set Form of formulas of propositional logic is given by the abstract syntax

Form � A, B ::= P | ⊥ | � | (¬A) | (A ∧B) | (A ∨B) | (A → B)

We let A, B,C, F,G, H, . . . range over Form.

Outermost parenthesis are usually dropped. In absence of parentheses, we adopt
the following convention about precedence. Ranging from the highest precedence
to the lowest, we have respectively: ¬, ∧, ∨ and →. All binary connectives are
right-associative.
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Logic (Classical) Propositional Logic

Semantics

The semantics of a logic provides its meaning. What exactly is meaning?
In propositional logic, meaning is given by the truth values true and false,
where true �= false. We will represent true by 1 and false by 0.

An assignment is a function A : VProp→{0, 1}, that assigns to every
propositional variable a truth value.
An assignment A naturally extends to all formulas, A : Form→{0, 1}.
The truth value of a formula is computed using truth tables:

F A B ¬A A ∧B A ∨B A → B ⊥ �

A1(F ) 0 1 1 0 1 1 0 1
A2(F ) 0 0 1 0 0 1 0 1
A3(F ) 1 1 0 1 1 1 0 1
A4(F ) 1 0 0 0 1 0 0 1
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Logic (Classical) Propositional Logic

Semantics

Let A be an assignment and let F be a formula.
If A(F ) = 1, then we say F holds under assignment A, or A models F .
We write A |= F iff A(F ) = 1, and A �|= F iff A(F ) = 0.

An alternative (inductive) definition of A |= F is

A |= �

A �|= ⊥

A |= P iff A(P ) = 1
A |= ¬A iff A �|= A

A |= A ∧B iff A |= A and A |= B

A |= A ∨B iff A |= A or A |= B

A |= A → B iff A �|= A or A |= B
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Logic (Classical) Propositional Logic

Validity, satisfiability, and contradiction

A formula F is

valid iff it holds under every assignment. We write |= F .
A valid formula is called a tautology.

satisfiable iff it holds under some assignment.

unsatisfiable iff it holds under no assignment.
An unsatisfiable formula is called a contradiction.

refutable iff it is not valid.

Proposition

F is valid iff ¬F is a contradiction

(A ∧ (A → B)) → B is valid. A → B is satisfiable and refutable.
A ∧ ¬A is a contradiction.
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Logic (Classical) Propositional Logic

Consequence and equivalence

F |= G iff for every assignment A, if A |= F then A |= G. We say
G is a consequence of F .

F ≡ G iff F |= G and G |= F . We say F and G are equivalent.

Let Γ = {F1, F2, F3, . . . } be a set of formulas.

A |= Γ iff A |= Fi for each formula Fi in Γ. We say A models Γ.

Γ |= G iff A |= Γ implies A |= G for every assignment A. We say
G is a consequence of Γ.

Proposition

F |= G iff |= F → G

Γ |= G and Γ finite iff |=
�

Γ → G
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Logic (Classical) Propositional Logic

Some basic equivalences

A ∨A ≡ A

A ∧A ≡ A

A ∨B ≡ B ∨A

A ∧B ≡ B ∧A

A ∧ (A ∨B) ≡ A

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

¬(A ∨B) ≡ ¬A ∧ ¬B

¬(A ∧B) ≡ ¬A ∨ ¬B

A ∧ ¬A ≡ ⊥

A ∨ ¬A ≡ �

A ∧ � ≡ A

A ∨ � ≡ �

A ∧ ⊥ ≡ ⊥

A ∨ ⊥ ≡ A

¬¬A ≡ A

A → B ≡ ¬A ∨B
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Logic (Classical) Propositional Logic

Consistency

Let Γ = {F1, F2, F3, . . . } be a set of formulas.

Γ is consistent or satisfiable iff there is an assignment that models Γ.

We say that Γ is inconsistent iff it is not consistent and denote this by
Γ |= ⊥.

Proposition

{F,¬F} |= ⊥

If Γ |= ⊥ and Γ ⊆ Γ�, then Γ� |= ⊥.

Γ |= F iff Γ,¬F |= ⊥
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Logic (Classical) Propositional Logic

Theories

A set of formulas T is closed under logical consequence iff for all formulas
F , if T |= F then F ∈ T .

T is a theory iff it is closed under logical consequence. The elements of T
are called theorems.

Let Γ be a set of formulas.

T (Γ) = {F | Γ |= F} is called the theory of Γ.
The formulas of Γ are called axioms and the theory T (Γ) is axiomatizable.
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Logic (Classical) Propositional Logic

Substitution

Formula G is a subformula of formula F if it occurs syntactically
within F .

Formula G is a strict subformula of F if G is a subformula of F and
G �= F

Substitution theorem

Suppose F ≡ G. Let H be a formula that contains F as a subformula.
Let H

� be the formula obtained by replacing some occurrence of F in H

with G. Then H ≡ H
�.
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Logic (Classical) Propositional Logic

Adquate sets of connectives for PL

There is some redundancy among the logical connectives.

Some smaller adquate sets of conectives for PL:

{∧,¬} ⊥ ≡ P ∧ ¬P, � ≡ ¬(P ∧ ¬P ),
A ∨B ≡ ¬(¬A ∧ ¬B), A → B ≡ ¬(A ∧ ¬B)

{∨,¬} � ≡ A ∨ ¬A, ⊥ ≡ ¬(A ∨ ¬A),
A ∧B ≡ ¬(¬A ∨ ¬B), A → B ≡ A ∨B

{→,¬} � ≡ A → A, ⊥ ≡ ¬(A → A),
A ∨B ≡ ¬A → B, A ∧B ≡ ¬(A → ¬B)

{→,⊥} ¬A ≡ A → ⊥, � ≡ A → A,

A ∨B ≡ (A → ⊥) → B), A ∧B ≡ (A → B → ⊥) → ⊥
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Logic (Classical) Propositional Logic

Decidability

A decision problem is any problem that, given certain input, asks a
question to be answered with a “yes” or a “no”.

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.
A decision problem is decidable if it has a solution.

Given formulas F and G as input, we may ask:

Decision problems

Validity problem: “Is F valid ?”
Satisfiability problem: “Is F satisfiable ?”
Consequence problem: “Is G a consequence of F ?”
Equivalence problem: “Are F and G equivalent ?”

All these problems are decidable!
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Logic (Classical) Propositional Logic

Decidability

Any algorithm that works for one of these problems also works for all of
these problems!

F is satisfiable iff ¬F is not valid
F |= G iff ¬(F → G) is not satisfiable
F ≡ G iff F |= G and G |= F

F is valid iff F ≡ �

Truth-table method

For the satisfiability problem, we first compute a truth table for F and
then check to see if its truth value is ever one.

This algorithm certainly works, but is very inefficient.
Its exponential-time! O(2n)

If F has n atomic formulas, then the truth table for F has 2n rows.
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Complexity

An algorithm is polynomial-time if there exists a polynomial p(x) such that
given input of size n, the algorithm halts in fewer than p(n) steps. The
class of all decision problems that can be resolved by some
polynomial-time algorithm is denoted by P (or PTIME).

It is not known whether the satisfiability problem (and the other three
decision problems) is in P.

We do not know of a polynomial-time algorithm for satisfiability.

If it exists, then P = NP !

The Satisfiability problem for PL (PSAT) is NP-complete.
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Complexity

A deterministic algorithm is a step-by-step procedure. At any stage of the

algorithm, the next step is completely determined.

In contrast, a non-deterministic algorithm may have more than one possible “next

step” at a given stage. That is, there may be more than one computation for a

given input.

NP (non-deterministic polynomial-time) decision problems

Let PROB be an arbitrary decision problem. Given certain input, PROB produces an

output of either “yes” or “no”. Let Y be the set of all inputs for which PROB produces

the output of “yes” and let N be the analogous set of inputs that produce output “no”.

If there exists a non-deterministic algorithm which, given input x, can produce the

output “yes” in polynomial-time if and only if x ∈ Y , then PROB is in NP.

If there exists a non-deterministic algorithm which, given input x, can produce the

output “no” in polynomial-time if and only if x ∈ N , then PROB is in coNP.
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Complexity

Essentially, a decision problem is in NP (coNP ) if a “yes” (“no”) answer
can be obtained in polynomial-time by guessing.

Satisfiability problem is NP. Given a formula F compute an assignment A for F .

If A(F ) = 1, then F is satisfiable.

Validity problem is coNP.

NP-complete

A decision problem Π is NP-complete if it is in NP and for every problem
Π1 in NP, Π1 is polynomially reducible to Π (Π1 ∝ Π).

Cook’s theorem (1971)

PSAT is NP-complete.
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Decision procedures for satisfiability

We have seen the truth-table method for deciding satisfiability. However
this method is very inefficient (exponential on the number of atomic
propositions).

The are more efficient algorithms (although not polynomial-time) for the
decision problems presented above:

Semantic Tableaux

Resolution

Davis-Putnam-Logemann-Loveland algorithm (DPLL)

The most successful SAT solvers are based on the DPLL algoritm. This
algoritm recives as input a formula in a specific syntatical format. So, one
has first to transform the input formula to this specific format preserving
satisfiability.
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Normal forms

A literal is a propositional variable or its negation.

A formula A is in negation normal form (NNF), if the only connectives
used in A are ¬, ∧ and ∨, and negation only appear in literals.

A clause is a disjunction of literals.

A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, i.e., it has the form

�

i

� �

j

lij
�

where lij is the j-th literal in the i-th clause.
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Logic (Classical) Propositional Logic

Normalization

Transforming a formula F to equivalent formula F
� in NNF can be

computed by repeatedly replace any subformula that is an instance of the
left-hand-side of one of the following equivalences by the corresponding
right-hand-side

A → B ≡ ¬A ∨B ¬¬A ≡ A

¬(A ∧B) ≡ ¬A ∨ ¬B ¬(A ∨B) ≡ ¬A ∧ ¬B

This algoritm is linear on the size of the formula.
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Normalization

To transform a formula already in NNF into an equivalent CNF, apply
recursively the following equivalences (left-to-right):

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) (A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)
A ∧ ⊥ ≡ ⊥ ⊥ ∧A ≡ ⊥ A ∧ � ≡ A � ∧A ≡ A

A ∨ ⊥ ≡ A ⊥ ∨A ≡ A A ∨ � ≡ � � ∨A ≡ �

This althoritm converts a NNF formula into an equivalente CNF, but its
worst case is exponential on the size of the formula.
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Example

Compute the CNF of ((P → Q) → P ) → P

The first step is to compute its NNF by transforming implications into
disjunctions and pushing negations to proposition symbols:

((P → Q) → P ) → P ≡ ¬((P → Q) → P ) ∨ P

≡ ¬(¬(P → Q) ∨ P ) ∨ P

≡ ¬(¬(¬P ∨Q) ∨ P ) ∨ P

≡ ¬((P ∧ ¬Q) ∨ P ) ∨ P

≡ (¬(P ∧ ¬Q) ∧ ¬P ) ∨ P

≡ ((¬P ∨Q) ∧ ¬P ) ∨ P

To reach a CNF, distributivity is then applied to pull the conjunction
outside:

((¬P ∨Q) ∧ ¬P ) ∨ P ≡ (¬P ∨Q ∨ P ) ∧ (¬P ∨ P )
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Worst-case example

Compute the CNF of (P1 ∧Q1) ∨ (P2 ∧Q2) ∨ . . . ∨ (Pn ∧Qn)

(P1 ∧Q1) ∨ (P2 ∧Q2) ∨ . . . ∨ (Pn ∧Qn)
≡ (P1 ∨ (P2 ∧Q2) ∨ . . . ∨ (Pn ∧Qn)) ∧ (Q1 ∨ (P2 ∧Q2) ∨ . . . ∨ (Pn ∧Qn))
≡ . . .

≡ (P1 ∨ . . . ∨ Pn) ∧
(P1 ∨ . . . ∨ Pn−1 ∨Qn) ∧
(P1 ∨ . . . ∨ Pn−2 ∨Qn−1 ∨ Pn) ∧
(P1 ∨ . . . ∨ Pn−2 ∨Qn−1 ∨Qn) ∧
. . . ∧

(Q1 ∨ . . . ∨Qn)

The original formula has 2n literals, while the equivalent CNF has 2n

clauses, each with n literals.
The size of the formula increases exponentially.
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Definitional CNF

Equisatisfiability

Two formulas F and F
� are equisatisfiable when F is satisfiable iff F

� is
satisfiable.

Any propositional formula can be transformed into a equisatisfiable CNF
formula with only linear increase in the size of the formula.
The price to be paid is n new Boolean variables, where n is the number of
logical conectives in the formula.
This transformation can be done via Tseitin’s encoding.

This tranformation compute what is called the definitional CNF of a
formula, because they rely on the introduction of new proposition symbols
that act as names for subformulas of the original formula.
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Tseitin’s encoding

Tseitin transformation

1 Introduce a new fresh variable for each compound subformula.

2 Assign new variable to each subformula.

3 Encode local constraints as CNF.

4 Make conjunction of local constraints and the root variable.

This transformation produces a formula that is equisatisfiable: the
result is satisfiable iff and only the original formula is satisfiable.

One can get a satisfying assignment for original formula by projecting
the satisfying assignment onto the original variables.

There are various optimizations that can be performed in order to reduce
the size of the resulting formula and the number of additional variables.
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Tseitin’s encoding: an example

Encode P → Q ∧R

1

A1� �� �
P → Q ∧R� �� �

A2

2 We need to satisfy A1 together with the following equivalences

A1 ↔ (P → A2) A2 ↔ (Q ∧R)

3 These equivalences can be rewritten in CNF as
(A1 ∨ P ) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ ¬P ∨A2) and
(¬A2 ∨Q) ∧ (¬A2 ∨R) ∧ (A2 ∨ ¬Q ∨ ¬R), respectively.

4 The CNF which is equisatisfiable with P → (Q ∧R) is

A1 ∧ (A1 ∨ P ) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ ¬P ∨A2)
∧ (¬A2 ∨Q) ∧ (¬A2 ∨R) ∧ (A2 ∨ ¬Q ∨ ¬R)

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 37 / 62

Logic (Classical) Propositional Logic

CNFs

Recall that CNFs are formulas with the following shape (each lij

denotes a literal):

(l11 ∨ l12 ∨ . . . ∨ l1k) ∧ . . . ∧ (ln1 ∨ ln2 ∨ . . . ∨ lnj)

Associativity, commutativity and idempotence of both disjunction and
conjunction allow us to treat each CNF as a set of sets of literals S

S = {{l11, l12, . . . , l1k}, . . . , {ln1, ln2, . . . , lnj}}

An empty inner set will be identified with ⊥, and an empty outer set
with �.
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CNFs validity

The strict shape of CNFs make them particularly suited for checking
validity problems.

� A CNF is a tautology iff all of its clauses are tautologies.
� A clause c is a tautology precisely when there exists a proposition

symbol P such that {P,¬P} ⊆ c (such clauses said to be closed).
� So, a CNF is a tautology iff all of its clauses are closed.

However, the applicability of this simple criterion for validity is
compromised by the potential exponential growth in the CNF
transformation.

This limitation is overcomed considering instead SAT, with
satisfiability preserving CNFs (definitional CNF). Recall that

F is valid iff ¬F is unsatisfiable
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CNFs satisfiability

A formula F is satisfiable if it holds under some assignment (i.e. if
one can find a model for it).

A CNF is satisfied by an assignment if all its clauses are satisfied.
And a clause is satisfied if at least one of its literals is satisfied.

The ideia is to incrementally construct an assignment compatible with
a CNF.

Most current state-of-the-art SAT solvers are based on the
Davis-Putnam-Logemann-Loveland (DPLL) framework: in this
framework the tool can be thought of as traversing and backtracking
on a binary tree, in which

� internal nodes represent partial assignments

� and leaves represent full assignments
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DPLL procedure

The DPLL algorithm is a complete, backtracking-based algorithm for
deciding the satisfiability of propositional CNFs. It was introduced in
the early 1960s.

The DPLL algorithm progresses by making a decision about a variable
an its value, propagates implications of this decision that are easy to
detect, and backtracks in case a conflict is detected in the form of a
falsified clause.

Opposite of a literal

The opposite of a literal l, written −l, is defined by

−l =
�

¬P , if l = P

P , if l = ¬P
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DPLL procedure

If we fix the assignment of a particular proposition symbol, we are able to
simplify the corresponding CNF accordingly.

When we set a literal l to be true,

any clause that has the literal l is now guaranteed to be satisfied, so
we throw it away for the next part of the search.

any clause that had the literal −l, on the other hand, must rely on
one of the other literals in the clause, hence we throw out the literal
−l before going forward.

Simplification of S assuming l holds

S|l =
�
c\{−l} | c ∈ S and l �∈ c

�
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DPLL procedure

If a CNF S contains a clause that consists of a single literal (called unit

clause), we know for certain that the literal must be set to true and S can
be simplified. This is the premise behind the procedure called unit

propagation.

Unit propagation

This procedure receives a CNF S and a partial assignment A (represented by a

set of literals – where P denote that P is set to true, and ¬P that P is set to

false) and apply unit propagation while it is possible and worthwhile.

unit propagate (S,A) {
while {} �∈ S and S has a unit clause l do {

S ← S|l ;
A ← A∪ {l}

}

}
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DPLL procedure

Traditionally the DPLL algorithm is presented as a recursive procedure.
The procedure DPLL is called with the CNF and a partial assignment.

1 First the formula is simplified by the unit propagation procedure.

2 If the simplified formula is {}, the original formula is satisfiable by the
current assignment.

3 If the simplified formula contains the empty clause, this means that the
current assignment does not satisfy the original formula.

4 Otherwise, algorithm runs by choosing a literal l, assigning a truth value to
it, simplifying the formula and then recursively checking if the simplified
formula is satisfiable; if this is the case, the original formula is satisfiable;
otherwise, the same recursive check is done assuming the opposite truth
value for l.

Unsatisfiability of the complete formula can only be detected after exhaustive

search.
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DPLL procedure

DPLL algorithm

This procedure is called with a CNF S and a partial assignment A
(initially ∅).

DPLL(S,A) {
unit propagate(S,A);
if S = {} then return SAT;
else if {} ∈ S then return UNSAT;
else { l ← a literal of S ;

if DPLL (S|l,A ∪ {l}) = SAT then return SAT;
else return DPLL (S|−l,A ∪ {−l})

}

}
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DPLL procedure

Is (¬P ∨Q) ∧ (¬P ∨R) ∧ (Q ∨R) ∧ (¬Q ∨ ¬R) satisfiable?

S A
DPLL {{¬P, Q}, {¬P, R}, {Q, R}, {¬Q,¬R}} ∅
unit propagate

{{¬P, Q}, {¬P, R}, {Q, R}, {¬Q,¬R}} ∅
choose l = P
DPLL {{Q}, {R}, {Q, R}, {¬Q,¬R}} {P = 1}
unit propagate

{{}} {P = 1, Q = 1, R = 1}
−l = ¬P
DPLL {{Q, R}, {¬Q,¬R}} {P = 0}
unit propagate

{{Q, R}, {¬Q,¬R}} {P = 0}
choose l = Q
DPLL {{¬R}} {P = 0, Q = 1}
unit propagate

{} {P = 0, Q = 1, R = 0}
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DPLL procedure

Probably the most important element in SAT solving is the strategy by which the

literals are chosen. This strategy is called the decision heuristic of the SAT solver.

Optimisations to the DPLL procedure are usually explored to avoid unnecessary

branches during execution. Such optimizations include:

� defining new data structures to make the algorithm faster;
� defining variants of the basic backtracking algorithm, such as

� non-chronological backtracking (during backtrack search, for each

conflict backtrack to one of the causes of the conflict);

� conflict-driven backtracking (during backtrack search, for each conflict

learn new clause, which explains and prevents repetition of the same

conflict).

� defining more efficient decision heuristics for choosing the branching
literals, such as

� Jeroslow-Wang (selects literals that appear frequently in short clauses)

� DLIS: Dynamic Large Individual Sum (selects the literal that appears

most frequently in unresolved clauses)

� VSIDS: Variable State Independent Decaying Sum, Berkmin, ...
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Modern SAT solvers

The majority of modern SAT solvers can be classified into two main
categories:

� SAT solvers based on the DPLL framework;
� SAT solvers based on a stochastic search: the solver guesses a full

assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy)
heuristic.

DPLL-based SAT solvers, however, are considered better in most cases.

DPLL-based SAT solvers also have the advantage that, unlike most
stochastic search methods, they are complete (i.e., they always terminate
with the correct answer).

Modern SAT solvers can check formulas with hundreds of thousands
variables and millions of clauses in a reasonable amount of time.
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Modern SAT solvers

In the last two decades, satisfiability procedures have undergone
dramatic improvements in efficiency and expressiveness.
Breakthrough systems like GRASP (1996), SATO (1997), Chaff
(2001) and MiniSAT (2003) have introduced several enhancements to
the efficiency of DPLL-based SAT solving.

New SAT solvers are introduced every year.
� The satisfiability library SATLIB1 is an online resource that proposes,

as a standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.

� Such a uniform test-bed has been serving as a framework for regular
tool competitions organised in the context of the regular SAT
conferences.2

1
http://www.satlib.org

2
http://www.satcompetition.org

Dep. Informática, Univ. Minho Maria João Frade MFES 2011/12 49 / 62

Logic (Classical) Propositional Logic

DIMACS CNF format

DIMACS CNF format is a standard format for CNF used by most
SAT solvers.

Plain text file with following structure:

c <comments>
...
p cnf <num.of variables> <num.of clauses>
<clause> 0
<clause> 0
...

Every number 1, 2, . . . corresponds to a variable (variable names
have to be mapped to a variable).

A negative number denote the negation of the corresponding variable.

Every clause is a list of numbers, separated by spaces. (One or more
lines per clause).
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DIMACS CNF format

Example

A1 ∧ (A1 ∨ P ) ∧ (¬A1 ∨ ¬P ∨A2) ∧ (A1 ∨ ¬A2)

We have 3 variables and 4 clauses.

CNF file:
p cnf 3 4
1 0
1 3 0
-1 -3 2 0
1 -2 0
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Applications of SAT

A large number of problems can be described in terms of satisfiability,
including graph problems, planning, games, scheduling, software and
hardware verification, extended static checking, optimization, test-case
generation, among others.

These problems can be encoded by propositional formulas and solved using
SAT solvers.

problem P �������� formula F
�� CNF converter �� SAT solver

SAT solver output: If F is satisfiable: sat + model
If F is unsatisfiable: unsat + proof

The satisfying assignments (models) of F are the solutions of P.

SAT solvers are core engines for other solvers (like SMT solvers).

SAT solver may be integrated into theorem provers.
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Modeling with PL

When can the meeting take place?

– Maria cannot meet on Wednesday
– Peter can only meet either on Monday, Wednesday or Thursday
– Anne cannot meet on Friday
– Mike cannot meet neither on Tuesday nor on Thursday

Encode into the following proposition:

¬Wed ∧ (Mon ∨ Wed ∨ Thu) ∧¬Fri ∧ (¬Tue ∧¬Thu)
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Modeling with PL

Graph coloring

Can one assign one of K colors to each of the vertices of graph G = (V,E) such
that adjacent vertices are assigned different colors?

Create |V | ×K variables: xij = 1 iff vertex i is assigned color j; 0 otherwise.

For each edge (u, v), require different assigned colors to u and v:
for each 1 ≤ j ≤ K, (xuj → ¬xvj)

Each vertex is assigned exactly one color.

� At least one color to each vertex:

for each 1 ≤ i ≤ |V |,

K�

j=1

xij

� At most one color to each vertex:

for each 1 ≤ i ≤ |V |,

K−1�

a=1

(xia →

K�

b=a+1

¬xib)
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Modeling with PL

At least, at most, exactly one...

How to represent in CNF the following constraints

At least one:
�N

j=1 xj ≥ 1 ?

Standard solution:
N�

j=1

xj

At most one:
�N

j=1 xj ≤ 1 ?

Naive solution:
N−1�

a=1

N�

b=a+1

(¬xa ∨ ¬xb)

More compact solutions are possible.

Exactly one:
�N

j=1 xj = 1 ?

Standard solution: at least 1 and at most 1 constraints.
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Modeling with PL

Placement of guests

We have three chairs in a row and we need to place Anne, Susan and Peter.

Anne does not want to sit near Peter.

Anne does not want to sit in the left chair.

Susan does not want to sit to the right of Peter.

Can we satisfy these constrains?

Denote: Anne = 1, Susan = 2, Peter = 3

Introduce a propositional variable for each pair (person, place)

xij = 1 iff person i is sited in place j; 0 otherwise
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Modeling with PL

Placement of guests (cont.)

Anne does not want to sit near Peter.
((x11 ∨ x13) → ¬x32) ∧ (x12 → (¬x31 ∧ ¬x33))

Anne does not want to sit in the left chair. ¬x11

Susan does not want to sit to the right of Peter.
(x31 → ¬x22) ∧ (x32 → ¬x23)

Each person is placed.
3�

i=1

3�

j=1

xij

No more than one person per chair.

3�

i=1

2�

a=1

3�

b=a+1

(¬xia ∨ ¬xib)
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Modeling with PL

Equivalence checking of if-then-else chains

Original C code

if(!a && !b) h();
else if(!a) g();
else f();

Optimized C code

if(a) f();
else if(b) g();
else h();

Are these two programs equivalent?

1 Model the variables a and b and the procedures that are called using the
Boolean variables a, b, f , g, and h.

2 Compile if-then-else chains into Boolean formulae
compile(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z)

3 Check the validity of the following formula
compile(original) ↔ compile(optimized)

Reformulate it as a SAT problem: Is the Boolean formula
¬ (compile(original) ↔ compile(optimized))

satisfiable?
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Proof system

So far we have taken the “semantic” approach to logic, with the aim
of characterising the semantic concept of model, from which validity,
satisfiability and semantic entailment were derived.

However, this is not the only possible point of view.

Instead of adopting the view based on the notion of truth, we can
think of logic as a codification of reasoning. This alternative approach
to logic, called “deductive”, focuses directly on the deduction relation
that is induced on formulas, i.e., on what formulas are logical
consequences of other formulas.

We will explore this perspective later in this course.
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Exercises

Encode into SAT a Sodoku puzzle.
� 9× 9 square divided into 9 sub-squares
� General rules:

� Values 1-9, one value per cell

� No duplicates in rows

� No duplicates in columns

� No duplicates in sub-squares

� A particular instance of the Sodoku puzzle has some known initial
values.

Use a SAT solver to show that the following two if-then-else
expressions are equivalent.
!(a||b) ? h : !(a==b) ? f : g
!(!a||!b) ? g : (!a&&!b) ? h : f
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Exercises

Convert into an equivalent CNF the following formulas.
� A ∨ (A → B) → A ∨ ¬B

� (A → B ∨ C) ∧ ¬(A ∧ ¬B → C)
� (¬A → ¬B) → (¬A → B) → A

Convert P ∧Q ∨ (R ∧ P ) into a equisatisfiable formula in CNF by
using the Tseitin transformation.

Run by hand the DPLL procedure to decide about the satisfiability of
the formulas above.
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Exercises

Pick up a SAT solver.

Play with simple examples.

Use the SAT solver to test if each of the following formulas is
satisfiable, valid, refutable or a contradition.

� A ∨ (A → B) → A ∨ ¬B

� (A → B ∨ C) ∧ ¬(A ∧ ¬B → C)
� (¬A → ¬B) → (¬A → B) → A

Note that CNF equivalents of these formulas where already calculated.

Search the web for “SAT benchmarks” and experiment.
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