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Process-oriented architectural design

The ’rationale’

• components in an architecture are computational entities accessible
through published interfaces which interact in a ’continuous’ way
according to specific protocols

• both interfaces and protocols are specifications of intended
behaviour

• labelled transition systems provide an operational model for
behaviour

• inside which one may reason equationally (bisimilarity) and
inequationally (simulation)

• both components and the glue code that keeps them togethers can
be viewed and described uniformly



Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Process-oriented architectural design

What is missing to bring this ’rationale’ into practice?

• a language to describe LTS

• combinators to compose LTS

• a calculus to reason about and transform behaviours, sound and
complete wrt suitable LTS equivalences (e.g., bisimilarity)

• a specific logic to specify LTS properties and corresponding proof
techniques

• an ADL in which interfaces and iteration protocols are described in
a process algebra, which furthermore provides a precise semantics to
the architectural description and possibly some tool support
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Process-oriented architectural design

What is missing to bring this ’rationale’ into practice?

processes a language to describe LTS

composition combinators to compose LTS

process algebra a calculus to reason about and transform behaviours,
sound and complete wrt suitable LTS equivalences
(e.g., bisimilarity)

modal logic a specific logic to specify LTS properties and
corresponding proof techniques

spec language an ADL in which interfaces and iteration protocols are
described in a process algebra, which furthermore provides
a precise semantics to the architectural description and
possibly some tool support
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Process-oriented architectural design

• process algebras provided the first formal semantics to (at least
some components of) several ADLs

• examples: Wright, Darwin, Acme, AADL (behaviour annex),
PADL, ...

• resort to popular process algebras:
CSP, CCS, ACP, π-calculus, ...

Reference
Alessandro Aldini, Marco Bernardo, Flavio Corradini.
A Process Algebraic Approach to Software Architecture Design

Springer-Verlag, 2010.
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Roadmap

Process algebra (via mCRL2)

• Sequential processes
• Deadlock & termination (LTS revisited)
• Interaction
• Abstraction from internal activity (LTS revisited)
• Processes with data

A process-oriented ADL

An introduction to Archery (by Alejandro Sanchez)

www.unsl.edu.ar/~asanchez/index.php?page=archery
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Actions & processes

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α ::= τ | a(d) | α | α

• actions may be parametric on data

• the structure 〈N , |, τ〉 forms an Abelian monoid

• τ is the empty action, which contains no actions and as such cannot
be observed
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Actions & processes

Process
is a description of how the interaction capacities of a system evolve, i.e.,
its behaviour
for example,

E , a.b + a.E

• analogy: regular expressions vs finite automata
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The framework

Process
... abstract representation of a system’s behaviour

Algebra
... a mathematical structure satisfying a particular set of axioms

Process Algebra
... a framework for the specification and manipulation of process terms as
induced by a collection of operator symbols, encompassing an operational
and an axiomatic theory (sound and complete wrt bisimilarity)
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Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N ,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N
• choice: +

• sequential composition: ·
• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data
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Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)
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Sequential processes
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Axioms: : +, ·, δ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

• the equality relation is sound: if s = t holds for basic process terms,
then s ∼ t

• and complete: if s ∼ t holds for basic process terms, then s = t

• an axiomatic theory enables equational reasoning
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Axioms: : +, ·, δ

Exercise

• show that δ.(a + b) = δ · a + δ · b
• show that a + (δ + a) = a

• is it true that a.(b + c) = a.b + a.c ?
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mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org
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mCRL2: A toolset for process algebra

Example

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;
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Deadlock & Termination

Deadlock state
a reachable state that does not terminate and has no outgoing
transitions.

Termination
add a predicate ↓ s to the definition of a LTS

Termination vs deadlock

q1
d // q2

q0

a

>>

a
  
q4 e

// q3
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Trace equivalence

Trace (from language theory)
A word σ ∈ N ∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→∗ t

Trace (using X to witness final states)
Tr(s), the set of traces of state s, is the minimal set including

ε ∈Tr(s)

X ∈Tr(s) if ↓ s
aσ ∈Tr(s) if ∃t · s a−→ t ∧ σ ∈ Tr(t)

Trace equivalence
Two states are trace equivalent if Tr(s) = Tr(s ′)
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Trace equivalence

In any case, fails to preserve deadlock

d //

p0

a

>>

a

  

q0

a

  
d
//

d
//

although preserving sequencing
e.g. before every c an a action b must be done
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Language equivalence

Language (from language theory)
A word σ ∈ N ∗ is a run (or a complete trace) of a state s ∈ S iff there is

another state t ∈ S , such that s
σ−→∗ t and ↓ t. The language

recognized by a state s ∈ S is the set of runs of s

Language (using X to witness final states)
Lang(s), the language recognized by a state s, is the minimal set
including

ε ∈ Lang(s) if s is a deadlock state

X ∈ Lang(s) if ↓ s
aσ ∈ Lang(s) if ∃t · s a−→ t ∧ σ ∈ Lang(t)
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Language equivalence

Two states are language equivalent if Lang(s) = Lang(s ′), i.e., if both
recognize the same language.

... need more general models and theories:

• Several interaction points

• Need to distinguish normal from anomolous termination

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.
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Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

&&xx
· · ·

&&

· · ·

xx
Language Eq

��
Trace Eq

... collapses for deterministic transition systems: why?
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Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

p ::= · · · | p ‖ p | p | p | pTp
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Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• Processes of the form a | a | · · · | a are called multiactions
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Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T (executes a first action of p)

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t
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Parallel composition

Example P ‖ Q



Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Corresponding LTS:

r1|r2

r2

r1

s2|s3

s3

s2

r1|s3

s3

r1
s2|r2

r2

s2

22/105
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Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed
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Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,a|b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur
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Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked
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Interaction

Example ∂r2,s2((Γ{s2|r2→c2}(P ‖ Q))



Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

c2

r1|s3
s3

r1 s3

24/105
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Interaction

Enforce communication

• ∇{c}(Γ{a|b→c}(p))

• ∂{a,b}(Γ{a|b→c}(p))
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Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed
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Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ and δ cannot be renamed

• what is the LTS of τ{t2}(∂r2,s2(Γ{s2|r2→c2}(P ‖ Q))) ?
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Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);
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Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

• R. Milner’s weak bisimulation [Mil80]

• Van Glabbeek and Weijland’s branching bisimulation [GW96]



Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Internal actions

τ abstracts internal activity

inert τ : internal activity is undetectable by observation

non inert τ : internal activity is indirectly visible

b //

a

��

τ (no inert)

@@

a
��

τ (inert)

��
a

//

b

��
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Internal actions

Adding τ to the set of actions has a number of consequences

• only external actions are observable

• the effects of an internal action can only be observed if it
determines a choice

• entails the need of a weaker notion of bisimulation to relate e.g.

p.q and p.(τ + τ.τ).q
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Branching bisimulation

• Intuition similar to that of strong bisimulation: But now, instead of
letting a single action be simulated by a single action, an action can
be simulated by a sequence of internal transitions, followed by that
single action.

• An internal action τ can be simulated by any number of internal
transitions (even by none).

• If a state can terminate, it does not need to be related to a
terminating state: it suffices that a terminating state can be
reached after a number of internal transitions.
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Branching bisimulation

Definition
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N ,

1. If p
a−→1 p

′, then

• either a = τ and p′Rq
• or, there is a sequence q

τ−→2 · · · τ−→2 q
′ of (zero or

more) τ -transitions such that pRq′ and q′
a−→2 q

′′

with p′Rq′′.

2. If p ↓1, then there is a sequence q
τ−→2 · · · τ−→2 q

′ of
(zero or more) τ -transitions such that pRq′ and q′ ↓2.

1’., 2’. symmetrically ...
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Branching bisimilarity

Definition

p ≈b q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉
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Branching bisimulation

... preserves the branching structure

τ

��

τ∗

��
a

��

a

��

τ∗

��
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Branching bisimilarity

... does not preserve τ -loops

a

��

τ <<

a

��

satisfying a notion of fairness: if a τ -loop exists, then no infinite
execution sequence will remain in it forever if there is a possibility to leave
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Branching bisimilarity

Problem
If an alternative is added to the initial state then transition systems that
were branching bisimilar may cease to be so.

Example: add a b-labelled branch to the initial states of

τ

��
a

��

a

��
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Rooted branching bisimilarity

Startegy
Impose a rootedness condition [R. Milner, 80]:

Initial τ -transitions can never be inert, i.e., two states are equivalent if
they can simulate each other?s initial transitions, such that the resulting
states are branching bisimilar.
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Rooted branching bisimulation

Definition
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a rooted branching bisimulation iff

1. it is a branching bisimulation

2. for all 〈p, q〉 ∈ R and a ∈ N ,

• If p
a−→1 p

′, then there is a q′ ∈ S2 such that
q

a−→2 q
′ and p′ ≈ q′

• If q
a−→2 q

′, then there is a p′ ∈ S1 such that
p

a−→1 p
′ and p′ ≈ q′
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Rooted branching bisimilarity

Definition

p ≈rb q ⇔ 〈∃ R :: R is a rooted branching bisimulation and 〈p, q〉 ∈ R〉

Lemma

∼ ⊆ ≈rb ⊆ ≈b

Of course, in the absence of τ actions, ∼ and ≈b coincide.
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Example

branching but not rooted

s
a

��

τ

��

a

��

b

��

t

τ

��

b

��

a

��



Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Example

rooted branching bisimilar

s

d

��

a

��

τ

��

a

��

b

��

t

d

��

b

��

a

��
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Weak bisimulation

Definition [Milner,80]
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a weak bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N ,

1. If p
a−→1 p

′, then

• either a = τ and p′Rq
• or, there is a sequence

q
τ−→2 · · · τ−→2 t

a−→2 t
′ τ−→2 · · · τ−→2 q

′ involving
zero or more τ -transitions, such that p′Rq′.

2. If p ↓1, then there is a sequence q
τ−→2 · · · τ−→2 q

′ of
(zero or more) τ -transitions such that q′ ↓2.

1’., 2’. symmetrically ...
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Weak bisimulation

... does not preserve the branching structure

τ

��

τ∗

��

a

��
a

��

τ∗

��

τ∗

��
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Weak bisimilarity

Definition

p ≈w q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉
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Example

weak but not branching

s
a

��

a

��

τ

��
c

��
b

��

b

��

t

a

��

c

��

τ

��

b

��
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Rooted weak bisimulation

Definition
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a rooted weak bisimulation iff for all 〈p, q〉 ∈ R and
a ∈ N ,

• If p
τ−→1 p

′, then there is a non empty sequence of τ such that
q

τ−→2
τ−→2 ...

τ−→2
τ−→2 q

′ and p′ ≈w q′

• Symmetrically ...
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Rooted weak bisimilarity

Definition

p ≈rw q ⇔ 〈∃ R :: R is a rooted weak bisimulation and 〈p, q〉 ∈ R〉

Lemma

≈w

≈b ≈rw

≈rb

∼ (ordered by ⊆)



Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Axioms: : +, ·, δ, τ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

A8 x .τ = x

A9 x .(τ.(y + z) + y) = x .(y + z)

• extra axioms are valid wrt branching bisimilarity
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Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;
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Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = t++r;
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Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q
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Examples

A counter
act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);



Processes with data
Adding data to processes: example

684

up down

set

act up, down;

set:N;

proc Counter(n:N) = up · Counter(n + 1)

+ (n > 0) ! down · Counter(n � 1)

+
P

m:N set(m) · Counter(m);

init Counter(684);

36/105
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Examples

A prime checker
map primes : Set(N);

eqn primes = {n : N | ∀p,q∈N p, q > 1⇒ (p ∗ q) 6= n};
act yes, no;

ask:N;

proc Checker = Σnask(n).(n ∈ primes→ yes � no).Checker

init Checker
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Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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