
Process-oriented architectural design

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

December, 2011

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Process-oriented architectural design

The ’rationale’

• components in an architecture are computational entities accessible
through published interfaces which interact in a ’continuous’ way
according to specific protocols

• both interfaces and protocols are specifications of intended
behaviour

• labelled transition systems provide an operational model for
behaviour

• inside which one may reason equationally (bisimilarity) and
inequationally (simulation)

• both components and the glue code that keeps them togethers can
be viewed and described uniformly

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Process-oriented architectural design

What is missing to bring this ’rationale’ into practice?

• a language to describe LTS

• combinators to compose LTS

• a calculus to reason about and transform behaviours, sound and
complete wrt suitable LTS equivalences (e.g., bisimilarity)

• a specific logic to specify LTS properties and corresponding proof
techniques

• an ADL in which interfaces and iteration protocols are described in
a process algebra, which furthermore provides a precise semantics to
the architectural description and possibly some tool support

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Process-oriented architectural design

What is missing to bring this ’rationale’ into practice?

• a language to describe LTS

• combinators to compose LTS

• a calculus to reason about and transform behaviours,
sound and complete wrt suitable LTS equivalences
(e.g., bisimilarity)

• a specific logic to specify LTS properties and
corresponding proof techniques

• an ADL in which interfaces and iteration protocols are
described in a process algebra, which furthermore provides
a precise semantics to the architectural description and
possibly some tool support

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Process-oriented architectural design

What is missing to bring this ’rationale’ into practice?

processes a language to describe LTS

composition combinators to compose LTS

process algebra a calculus to reason about and transform behaviours,
sound and complete wrt suitable LTS equivalences
(e.g., bisimilarity)

modal logic a specific logic to specify LTS properties and
corresponding proof techniques

spec language an ADL in which interfaces and iteration protocols are
described in a process algebra, which furthermore provides
a precise semantics to the architectural description and
possibly some tool support

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Process-oriented architectural design

• process algebras provided the first formal semantics to (at least
some components of) several ADLs

• examples: Wright, Darwin, Acme, AADL (behaviour annex),
PADL, ...

• resort to popular process algebras:
CSP, CCS, ACP, π-calculus, ...

Reference
Alessandro Aldini, Marco Bernardo, Flavio Corradini.
A Process Algebraic Approach to Software Architecture Design

Springer-Verlag, 2010.

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Roadmap

Process algebra (via mCRL2)

• Sequential processes
• Deadlock & termination (LTS revisited)
• Interaction
• Abstraction from internal activity (LTS revisited)
• Processes with data

A process-oriented ADL

An introduction to Archery (by Alejandro Sanchez)

www.unsl.edu.ar/~asanchez/index.php?page=archery

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Actions & processes

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α ::= τ | a(d) | α | α

• actions may be parametric on data

• the structure 〈N , |, τ〉 forms an Abelian monoid

• τ is the empty action, which contains no actions and as such cannot
be observed

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Actions & processes

Process
is a description of how the interaction capacities of a system evolve, i.e.,
its behaviour
for example,

E , a.b + a.E

• analogy: regular expressions vs finite automata

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

The framework

Process
... abstract representation of a system’s behaviour

Algebra
... a mathematical structure satisfying a particular set of axioms

Process Algebra
... a framework for the specification and manipulation of process terms as
induced by a collection of operator symbols, encompassing an operational
and an axiomatic theory (sound and complete wrt bisimilarity)

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N ,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N
• choice: +

• sequential composition: ·
• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N ,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N
• choice: +

• sequential composition: ·
• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Axioms: : +, ·, δ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

• the equality relation is sound: if s = t holds for basic process terms,
then s ∼ t

• and complete: if s ∼ t holds for basic process terms, then s = t

• an axiomatic theory enables equational reasoning

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Axioms: : +, ·, δ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

• the equality relation is sound: if s = t holds for basic process terms,
then s ∼ t

• and complete: if s ∼ t holds for basic process terms, then s = t

• an axiomatic theory enables equational reasoning

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Axioms: : +, ·, δ

Exercise

• show that δ.(a + b) = δ · a + δ · b
• show that a + (δ + a) = a

• is it true that a.(b + c) = a.b + a.c ?

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

mCRL2: A toolset for process algebra

Example

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Deadlock & Termination

Deadlock state
a reachable state that does not terminate and has no outgoing
transitions.

Termination
add a predicate ↓ s to the definition of a LTS

Termination vs deadlock

q1
d // q2

q0

a

>>

a

q4 e

// q3

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Trace equivalence

Trace (from language theory)
A word σ ∈ N ∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→∗ t

Trace (using X to witness final states)
Tr(s), the set of traces of state s, is the minimal set including

ε ∈Tr(s)

X ∈Tr(s) if ↓ s
aσ ∈Tr(s) if ∃t · s a−→ t ∧ σ ∈ Tr(t)

Trace equivalence
Two states are trace equivalent if Tr(s) = Tr(s ′)

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Trace equivalence

In any case, fails to preserve deadlock

d //

p0

a

>>

a

q0

a

d
//

d
//

although preserving sequencing
e.g. before every c an a action b must be done

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Language equivalence

Language (from language theory)
A word σ ∈ N ∗ is a run (or a complete trace) of a state s ∈ S iff there is

another state t ∈ S , such that s
σ−→∗ t and ↓ t. The language

recognized by a state s ∈ S is the set of runs of s

Language (using X to witness final states)
Lang(s), the language recognized by a state s, is the minimal set
including

ε ∈ Lang(s) if s is a deadlock state

X ∈ Lang(s) if ↓ s
aσ ∈ Lang(s) if ∃t · s a−→ t ∧ σ ∈ Lang(t)

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Language equivalence

Two states are language equivalent if Lang(s) = Lang(s ′), i.e., if both
recognize the same language.

... need more general models and theories:

• Several interaction points

• Need to distinguish normal from anomolous termination

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

&&xx
· · ·

&&

· · ·

xx
Language Eq

��
Trace Eq

... collapses for deterministic transition systems: why?

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

p ::= · · · | p ‖ p | p | p | pTp

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• Processes of the form a | a | · · · | a are called multiactions

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T (executes a first action of p)

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Parallel composition

Example P ‖ Q

Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Corresponding LTS:

r1|r2

r2

r1

s2|s3

s3

s2

r1|s3

s3

r1
s2|r2

r2

s2

22/105

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,a|b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interaction

Example ∂r2,s2((Γ{s2|r2→c2}(P ‖ Q))

Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

c2

r1|s3
s3

r1 s3

24/105

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interaction

Enforce communication

• ∇{c}(Γ{a|b→c}(p))

• ∂{a,b}(Γ{a|b→c}(p))

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ and δ cannot be renamed

• what is the LTS of τ{t2}(∂r2,s2(Γ{s2|r2→c2}(P ‖ Q))) ?

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

• R. Milner’s weak bisimulation [Mil80]

• Van Glabbeek and Weijland’s branching bisimulation [GW96]

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Internal actions

τ abstracts internal activity

inert τ : internal activity is undetectable by observation

non inert τ : internal activity is indirectly visible

b //

a

��

τ (no inert)

@@

a
��

τ (inert)

��
a

//

b

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Internal actions

Adding τ to the set of actions has a number of consequences

• only external actions are observable

• the effects of an internal action can only be observed if it
determines a choice

• entails the need of a weaker notion of bisimulation to relate e.g.

p.q and p.(τ + τ.τ).q

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Branching bisimulation

• Intuition similar to that of strong bisimulation: But now, instead of
letting a single action be simulated by a single action, an action can
be simulated by a sequence of internal transitions, followed by that
single action.

• An internal action τ can be simulated by any number of internal
transitions (even by none).

• If a state can terminate, it does not need to be related to a
terminating state: it suffices that a terminating state can be
reached after a number of internal transitions.

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Branching bisimulation

Definition
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N ,

1. If p
a−→1 p

′, then

• either a = τ and p′Rq
• or, there is a sequence q

τ−→2 · · · τ−→2 q
′ of (zero or

more) τ -transitions such that pRq′ and q′
a−→2 q

′′

with p′Rq′′.

2. If p ↓1, then there is a sequence q
τ−→2 · · · τ−→2 q

′ of
(zero or more) τ -transitions such that pRq′ and q′ ↓2.

1’., 2’. symmetrically ...

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Branching bisimilarity

Definition

p ≈b q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Branching bisimulation

... preserves the branching structure

τ

��

τ∗

��
a

��

a

��

τ∗

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Branching bisimilarity

... does not preserve τ -loops

a

��

τ <<

a

��

satisfying a notion of fairness: if a τ -loop exists, then no infinite
execution sequence will remain in it forever if there is a possibility to leave

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Branching bisimilarity

Problem
If an alternative is added to the initial state then transition systems that
were branching bisimilar may cease to be so.

Example: add a b-labelled branch to the initial states of

τ

��
a

��

a

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Rooted branching bisimilarity

Startegy
Impose a rootedness condition [R. Milner, 80]:

Initial τ -transitions can never be inert, i.e., two states are equivalent if
they can simulate each other?s initial transitions, such that the resulting
states are branching bisimilar.

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Rooted branching bisimulation

Definition
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a rooted branching bisimulation iff

1. it is a branching bisimulation

2. for all 〈p, q〉 ∈ R and a ∈ N ,

• If p
a−→1 p

′, then there is a q′ ∈ S2 such that
q

a−→2 q
′ and p′ ≈ q′

• If q
a−→2 q

′, then there is a p′ ∈ S1 such that
p

a−→1 p
′ and p′ ≈ q′

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Rooted branching bisimilarity

Definition

p ≈rb q ⇔ 〈∃ R :: R is a rooted branching bisimulation and 〈p, q〉 ∈ R〉

Lemma

∼ ⊆ ≈rb ⊆ ≈b

Of course, in the absence of τ actions, ∼ and ≈b coincide.

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Example

branching but not rooted

s
a

��

τ

��

a

��

b

��

t

τ

��

b

��

a

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Example

rooted branching bisimilar

s

d

��

a

��

τ

��

a

��

b

��

t

d

��

b

��

a

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Weak bisimulation

Definition [Milner,80]
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a weak bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N ,

1. If p
a−→1 p

′, then

• either a = τ and p′Rq
• or, there is a sequence

q
τ−→2 · · · τ−→2 t

a−→2 t
′ τ−→2 · · · τ−→2 q

′ involving
zero or more τ -transitions, such that p′Rq′.

2. If p ↓1, then there is a sequence q
τ−→2 · · · τ−→2 q

′ of
(zero or more) τ -transitions such that q′ ↓2.

1’., 2’. symmetrically ...

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Weak bisimulation

... does not preserve the branching structure

τ

��

τ∗

��

a

��
a

��

τ∗

��

τ∗

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Weak bisimilarity

Definition

p ≈w q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Example

weak but not branching

s
a

��

a

��

τ

��
c

��
b

��

b

��

t

a

��

c

��

τ

��

b

��

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Rooted weak bisimulation

Definition
Given 〈S1,N , ↓∞,−→∞〉 and 〈S2,N , ↓∈,−→∈〉 over N , relation
R ⊆ S1 × S2 is a rooted weak bisimulation iff for all 〈p, q〉 ∈ R and
a ∈ N ,

• If p
τ−→1 p

′, then there is a non empty sequence of τ such that
q

τ−→2
τ−→2 ...

τ−→2
τ−→2 q

′ and p′ ≈w q′

• Symmetrically ...

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Rooted weak bisimilarity

Definition

p ≈rw q ⇔ 〈∃ R :: R is a rooted weak bisimulation and 〈p, q〉 ∈ R〉

Lemma

≈w

≈b ≈rw

≈rb

∼ (ordered by ⊆)

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Axioms: : +, ·, δ, τ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

A8 x .τ = x

A9 x .(τ.(y + z) + y) = x .(y + z)

• extra axioms are valid wrt branching bisimilarity

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = t++r;

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Examples

A counter
act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

Processes with data
Adding data to processes: example

684

up down

set

act up, down;

set:N;

proc Counter(n:N) = up · Counter(n + 1)

+ (n > 0) ! down · Counter(n � 1)

+
P

m:N set(m) · Counter(m);

init Counter(684);

36/105

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Examples

A prime checker
map primes : Set(N);

eqn primes = {n : N | ∀p,q∈N p, q > 1⇒ (p ∗ q) 6= n};
act yes, no;

ask:N;

proc Checker = Σnask(n).(n ∈ primes→ yes � no).Checker

init Checker

Introduction Sequential processes Deadlock & Termination Interaction Abstraction Processes with data

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

	Introduction
	Sequential processes
	Deadlock & Termination
	Interaction
	Abstraction
	Processes with data

