
Structure and behaviour
(background)

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

November, 2011

Introduction Transition structures Simulation Bisimulation

The architecture of functional designs

SA as studied at MFES (until now):

Interfaces: f :: · · · −→ · · ·
Components: f = · · ·
Connectors: ·, 〈 , 〉, ×, +, ...
Configurations: functions assembled by composition
Properties: invariants (pre-, post-conditions)
Behavioural effects: monads and Kleisli compostion
Underlying maths: universal algebra and relational calculus

Introduction Transition structures Simulation Bisimulation

... can be extended to reactive systems?

Software Architecture is challenged by the continuous evolution
towards very large, heterogeneous, highly dynamic computing
systems, whose behaviour cannot be characterized in terms of a
io-relation. In most cases, such a behaviour

• is potentially non-terminating,

• expresses a continued interaction with the system’s
environment and sub-systems which execute concurrently in
distributed, often loosely coupled configurations.

Introduction Transition structures Simulation Bisimulation

Behaviour & Interaction

[R. Milner, 1997]
Thus software, from being a prescription for how to do something
— in Turing’s terms a ”list of instructions” — becomes much
more akin to a description of behaviour, not only programmed on a
computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]
The subject of Computer Science is not information processing or
symbol manipulation, but generated behaviour.

Introduction Transition structures Simulation Bisimulation

Behaviour & Interaction

[R. Milner, 1997]
Thus software, from being a prescription for how to do something
— in Turing’s terms a ”list of instructions” — becomes much
more akin to a description of behaviour, not only programmed on a
computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]
The subject of Computer Science is not information processing or
symbol manipulation, but generated behaviour.

Introduction Transition structures Simulation Bisimulation

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions

Introduction Transition structures Simulation Bisimulation

The architecture of reactive designs

Interfaces: · · ·
Components: · · ·
Connectors: · · ·
Configurations: · · ·
Properties: · · ·
Behavioural effects: · · ·
Underlying maths: · · ·

Introduction Transition structures Simulation Bisimulation

Automata
Definition
A = 〈A,U, uo ,F ,T 〉
where

• A is an alphabet

• U = {u0, u1, u2, ...} is a set of states

• u0 ∈ U is the initial state

• F ⊆ U is the set of final states

• T ⊆ U × A× U is the transition relation usually given as a
A-indexed family of relations over U:

u′
a←− u ⇔ 〈u′, a, u〉 ∈ T

• deterministic

• finite

• image finite

Introduction Transition structures Simulation Bisimulation

Automata
Definition
A = 〈A,U, uo ,F ,T 〉
where

• A is an alphabet

• U = {u0, u1, u2, ...} is a set of states

• u0 ∈ U is the initial state

• F ⊆ U is the set of final states

• T ⊆ U × A× U is the transition relation usually given as a
A-indexed family of relations over U:

u′
a←− u ⇔ 〈u′, a, u〉 ∈ T

• deterministic

• finite

• image finite

Introduction Transition structures Simulation Bisimulation

Automata

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)

Introduction Transition structures Simulation Bisimulation

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Introduction Transition structures Simulation Bisimulation

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Introduction Transition structures Simulation Bisimulation

After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Non termination (no final states as in automata)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

Introduction Transition structures Simulation Bisimulation

Labelled Transition Structure

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u

Introduction Transition structures Simulation Bisimulation

Labelled Transition Structure

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u

Introduction Transition structures Simulation Bisimulation

Labelled Transition Structure

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Definition
Given a transition structure 〈U, α←− : A× U ←− U〉, each u ∈ U
determines a labelled transition system, i.e.,

〈U, u, α←− : A× U ←− U〉

fixing u as the initial state

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Pre- and Post-states

Postα(u, a) = {u′ ∈ U | u′ α
a⇐= u} Postα(u) =

⋃
a∈A

Postα(u, a)

Preα(u, a) = {u′ ∈ U | u α
a⇐= u′} Preα(u) =

⋃
a∈A

Preα(u, a)

Terminal state and successor

• u is a terminal state if Postα(u) = ∅

• a a-successor is · · ·

• a direct successor is · · ·

Introduction Transition structures Simulation Bisimulation

Reachability

Definition
The reachability relation, α⇐= : A× U ←− U , is defined inductively

• u α
ε⇐= u for each u ∈ U, where ε ∈ A∗ denotes the empty word;

• if u′′ α
σ⇐= u and u′ α

a←− u′′ then u′′ α
σa⇐= u, for a ∈ A, σ ∈ A∗

Reachable state
t ∈ U is reachable from u ∈ U iff there is a word σ ∈ A∗ st t α

σ⇐= u

Introduction Transition structures Simulation Bisimulation

Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other
determines the other uniquely.
The existence and uniqueness of such a transformation leads to the
identification of a transpose operator Λ characterized by the following
universal property:

f = ΛR ⇔ (yRx ⇔ y ∈ f x)

for relation R : Y ←− X and function f : PY ←− X or, in a completely
pointfree formulation

f = ΛR ⇔ R = ∈ ·f

Introduction Transition structures Simulation Bisimulation

Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other
determines the other uniquely.
The existence and uniqueness of such a transformation leads to the
identification of a transpose operator Λ characterized by the following
universal property:

f = ΛR ⇔ (yRx ⇔ y ∈ f x)

for relation R : Y ←− X and function f : PY ←− X or, in a completely
pointfree formulation

f = ΛR ⇔ R = ∈ ·f

Introduction Transition structures Simulation Bisimulation

Transposition

f = ΛR ⇔ R = ∈ ·f

Properties

Cancellation ∈ ·ΛR = R

Reflexivity Λ ∈ = id

Fusion - a Λ(f · R) = Pf · ΛR

Fusion - b Λ(R · f) = ΛR · f

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Transposing α←−

through
α = Λ α←− ⇔ α←−=∈ ·α

gives rise to function
α : P(A× U)←− U

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Transposing α←−

through
α = Λ α←− ⇔ α←−=∈ ·α

gives rise to function
α : P(A× U)←− U

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Transposition also applies to morphisms
A morphism h : β ←− α is a function h : V ←− U st the following
diagram commutes

U

h

��

α // P(A× U)

P(id×h)
��

V
β // P(A× V)

i.e.,
P(id× h) · α = β · h

or, going pointwise,

{〈a, h x〉 | 〈a, x〉 ∈ α u} = β (h u)

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

but P(id× h) · α = β · h

has the following relational counterpart:

(id× h) · α←− = β←− · h

because

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

(id× h) · α←− = β←− · h
⇔ { transpose is a isomorphism }

Λ((id× h) · α←−) = Λ(β←− · h)

⇔ { Λ(f · R) = Pf · ΛR e Λ(R · f) = ΛR · f }
P(id× h) · Λ(α←−) = Λ(β←−) · h

⇔ { definition α←− }
P(id× h) · Λ(∈ ·α) = Λ(∈ ·β) · h

⇔ { Λ(R · f) = ΛR · f }
P(id× h) · Λ(∈) · α = Λ(∈) · β · h

⇔ { Λ(∈) = id }
P(id× h) · α = β · h

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Equality
(id× h) · α←− = β←− · h

can be re-written in terms of an A-indexed family of binary relations:

h · α
a←− = β

a←− · h

which can be decomposed in

h · α
a←− ⊆ β

a←− · h (1)

β
a←− · h ⊆ h · α

a←− (2)

Introduction Transition structures Simulation Bisimulation

Labelled Transition System

Equality
(id× h) · α←− = β←− · h

can be re-written in terms of an A-indexed family of binary relations:

h · α
a←− = β

a←− · h

which can be decomposed in

h · α
a←− ⊆ β

a←− · h (1)

β
a←− · h ⊆ h · α

a←− (2)

Introduction Transition structures Simulation Bisimulation

Going pointwise ...

Transition preservation

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { introducing variables }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ u′ (h◦ · β

a←− · h) u〉
⇔ { relating-functional-images rule }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ h u′ β

a←− h u〉

Introduction Transition structures Simulation Bisimulation

Going pointwise ...

Transition reflection

β
a←− · h ⊆ h · α

a←−
⇔ { introducing variables }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ (β
a←− · h) u ⇒ v ′ (h · α

a←−) u〉
⇔ { relating-functional-images rule and relational composition }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ β
a←− h u ⇒

〈∃ u′ : u′ ∈ U : u′ α
a←− u ∧ v ′ = h u′)〉〉

Introduction Transition structures Simulation Bisimulation

Simulation

Intuition

A state v simulates another state u if every transition from v is
corresponded by a transition from u and this capacity is kept along
the whole life of the system to which state space v belongs to.

Introduction Transition structures Simulation Bisimulation

Simulation

Definition
Given α←− : U × A←− U and β←− : V × A←− V both over A, a
simulation of α←− in β←− is a relation S : V ←− U such that

∀a∈A∀u∈U,v∈V . vSu ⇒

(∀u′∈U . u
′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

v

a

��

⇐ v S u

a

��
v ′ S u′ u′

Introduction Transition structures Simulation Bisimulation

Simulation

Definition
Given α←− : U × A←− U and β←− : V × A←− V both over A, a
simulation of α←− in β←− is a relation S : V ←− U such that

∀a∈A∀u∈U,v∈V . vSu ⇒

(∀u′∈U . u
′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

v

a

��

⇐ v S u

a

��
v ′ S u′ u′

Introduction Transition structures Simulation Bisimulation

Example

q1
d // q2 p2

q0

a
>>

a

p0
a // p1

d
>>

e

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}

Introduction Transition structures Simulation Bisimulation

Simulation

Lemma
A relation S : V ←− U is a simulation of α←− in β←− iff, for all
a ∈ A

S · a−→α ⊆
a−→β ·S

Introduction Transition structures Simulation Bisimulation

Properties

because

∀a∈A,u∈U,v∈V . vSu ⇒
(∀u′∈U . u

′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

⇔ { composition }

∀a∈A,u∈U,v∈V . vSu ⇒ (∀u′∈U . u
a−→α u′ ⇒ v (

a−→β ·S) u′

⇔ { left relational division }

∀a∈A,u∈U,v∈V . vSu ⇒ v ((
a−→β ·S)/

a−→α) u

⇔ { going pointfree }

S ⊆ (
a−→β ·S)/

a−→α

⇔ { Galois connection: (·R) a (/R) }

S · a−→α ⊆
a−→β ·S

Introduction Transition structures Simulation Bisimulation

Properties

Lemma

1. The identity relation id and the empty relation is a simulation

2. The composition S · R of two simulations is a simulation

3. The union S ∪ R of two simulations is a simulation

Introduction Transition structures Simulation Bisimulation

Properties
because

1.

⊥· a−→α ⊆
a−→β ·⊥ ∧ id · a−→α ⊆

a−→α · id
⇔ { ⊥ and id are absorving and identity for composition }

true

2.

(S · R) · a−→α ⊆
a−→β · (S · R)

⇐ { S · a−→γ ⊆
a−→β ·S , ·-assoc, monotony }

(S · R) · a−→α ⊆ S · a−→γ ·R
⇐ { R· a−→α⊆

a−→γ ·R, ·-assoc, monotony }

(S · R) · a−→α ⊆ (S · R) · a−→α

Introduction Transition structures Simulation Bisimulation

Properties
because

1.

⊥· a−→α ⊆
a−→β ·⊥ ∧ id · a−→α ⊆

a−→α · id
⇔ { ⊥ and id are absorving and identity for composition }

true

2.

(S · R) · a−→α ⊆
a−→β · (S · R)

⇐ { S · a−→γ ⊆
a−→β ·S , ·-assoc, monotony }

(S · R) · a−→α ⊆ S · a−→γ ·R
⇐ { R· a−→α⊆

a−→γ ·R, ·-assoc, monotony }

(S · R) · a−→α ⊆ (S · R) · a−→α

Introduction Transition structures Simulation Bisimulation

Properties

3.

(S ∪ R) · a−→α ⊆
a−→β · (S ∪ R)

⇔ { (R·) and (·R) preserve ∪ as lower adjoints }

(S · a−→α ∪R ·
a−→α) ⊆ (

a−→β ·S ∪
a−→β ·R)

⇐ { ∪ definition }

S · a−→α ⊆
a−→β ·S ∧ R · a−→α ⊆

a−→β ·R
⇔ { hipotheses }

true

Introduction Transition structures Simulation Bisimulation

Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

because
By definition . is the greatest simulation. Then (why?), . · . ⊆ . and
id ⊆ ..

Introduction Transition structures Simulation Bisimulation

Bisimulation

Definition
A relation S : V ←− U over the state spaces of α←− : U ×A←− U and

β←− : V × A←− V is a bisimulation iff both S and S◦ are simulations

i.e.

S · a−→α ⊆
a−→β ·S ∧ β

a←− ·S ⊆ S · α
a←−

for all a ∈ A.

Introduction Transition structures Simulation Bisimulation

Bisimulation

Definition
A relation S : V ←− U over the state spaces of α←− : U ×A←− U and

β←− : V × A←− V is a bisimulation iff both S and S◦ are simulations

i.e.

S · a−→α ⊆
a−→β ·S ∧ β

a←− ·S ⊆ S · α
a←−

for all a ∈ A.

Introduction Transition structures Simulation Bisimulation

Bisimulation

because
The first conjunct defines S as a simulation.
The second one is derived as follows:

S◦ is a simulation

⇔ { definition of simulation }

S◦· a−→β ⊆
a−→α ·S◦

⇔ { (
a−→γ)◦ = γ

a←− }

S◦ · (β
a←−)◦ ⊆ (α

a←−)◦ · S◦

⇔ { (R · S)◦ = S◦ · R◦ }

(β
a←− ·S)◦ ⊆ (S · α

a←−)◦

⇔ { monotonicity: R ⊆ S ⇔ R◦ ⊆ S◦ }

β
a←− ·S ⊆ S · α

a←−

Introduction Transition structures Simulation Bisimulation

Bisimulation

going pointwise

β
a←− ·S ⊆ S · α

a←−
⇔ { Galois: (R·) a (R\) }

S ⊆ β
a←− \(S · α

a←−)

⇔ { introducing variables }

∀v∈V ,u∈U . vSu ⇒ v (β
a←− \(S · α

a←−)) u

⇔ { definition of left division \ }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
α

a←− v ⇒ v ′ (β
a←− ·S) u′)

⇔ { definition of · }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
β

a←− v ⇒ (∃u′∈U . u
′
α

a←− u ∧ v ′Su′))

Introduction Transition structures Simulation Bisimulation

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy

Introduction Transition structures Simulation Bisimulation

Examples

q1
a

~~

a

m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add

Introduction Transition structures Simulation Bisimulation

Examples

q1
a

~~

a

m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add

Introduction Transition structures Simulation Bisimulation

Properties

Lemma
The graph of a transition structure morphism h : β ←− α, i.e., h itself
regarded as a binary relation, is a bisimulation.

Introduction Transition structures Simulation Bisimulation

Properties

because (the other inclusion being trivial):

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { monotonicity }

(α
a←−)◦ ⊆ (h◦ · β

a←− · h)◦

⇔ { converse }
a−→α ⊆ h◦· a−→β · h

⇔ { shunting }

h · a−→α ⊆
a−→β · h

Introduction Transition structures Simulation Bisimulation

Properties

Lemma
The converse of a bisimulation S : V ←− U is still a bissimulation.

Introduction Transition structures Simulation Bisimulation

Properties

because

S◦ is bisimulation

⇔ { definition of bisimulation }

S◦· a−→α ⊆
a−→β ·S◦ ∧ β

a←− ·S◦ ⊆ S◦ · α
a←−

⇔ { (
a−→γ)◦ = γ

a←− }

S◦ · (α
a←−)◦ ⊆ (β

a←−)◦ · S◦ ∧ (
a−→β)◦ · S◦ ⊆ S◦ · (a−→α)◦

⇔ { converse of composition }

(α
a←− ·S)◦ ⊆ (S · β

a←−)◦ ∧ (S · a−→β)◦ ⊆ (
a−→α ·S)◦

⇔ { monotonicity }

α
a←− ·S ⊆ S · β

a←− ∧ S · a−→β ⊆
a−→α ·S

⇔ { hipothesis }
true

Introduction Transition structures Simulation Bisimulation

Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation

Introduction Transition structures Simulation Bisimulation

Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.

Introduction Transition structures Simulation Bisimulation

Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.

Introduction Transition structures Simulation Bisimulation

Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a
>>

a

p0
a // p1

b // p3

q2
b // q3

Introduction Transition structures Simulation Bisimulation

After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

Introduction Transition structures Simulation Bisimulation

After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

Introduction Transition structures Simulation Bisimulation

After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

	Introduction
	Transition structures
	Simulation
	Bisimulation

