Structure and behaviour (background)

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

November, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bisimulation

The architecture of **functional designs**

SA as studied at MFES (until now):

Interfaces: Components: Connectors: Configurations: Properties: Behavioural effects: Underlying maths: $\begin{array}{l} f :: \cdots \longrightarrow \cdots \\ f = \cdots \\ \vdots, \langle , \rangle, \times, +, \ldots \end{array}$

functions assembled by composition invariants (pre-, post-conditions) monads and Kleisli compostion universal algebra and relational calculus

Bisimulation

... can be extended to reactive systems?

Software Architecture is challenged by the continuous evolution towards very large, heterogeneous, highly dynamic computing systems, whose behaviour cannot be characterized in terms of a io-relation. In most cases, such a behaviour

- is potentially non-terminating,
- expresses a continued interaction with the system's environment and sub-systems which execute concurrently in distributed, often loosely coupled configurations.

Bisimulation

Behaviour & Interaction

[R. Milner, 1997]

Thus software, from being a prescription for how to do something — in Turing's terms a "list of instructions" — becomes much more akin to a description of behaviour, not only programmed on a computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]

The subject of Computer Science is not information processing or symbol manipulation, but generated behaviour.

Bisimulation

Behaviour & Interaction

[R. Milner, 1997]

Thus software, from being a prescription for how to do something — in Turing's terms a "list of instructions" — becomes much more akin to a description of behaviour, not only programmed on a computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]

The subject of Computer Science is not information processing or symbol manipulation, but generated behaviour.

Bisimulation

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment along its overall computation

- in contrast to sequential systems whose meaning is defined by the results of finite computations, the behaviour of reactive systems is mainly determined by interaction and mobility of non-terminating processes, evolving concurrently.
- observation ⇔ interaction
- behaviour ⇔ a structured record of interactions

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The architecture of reactive designs

Interfaces:	•••
Components:	•••
Connectors:	•••
Configurations:	•••
Properties:	•••
Behavioural effects:	•••
Underlying maths:	•••

Automata

- A is an alphabet
- $U = \{u_0, u_1, u_2, ...\}$ is a set of states
- $u_0 \in U$ is the initial state
- $F \subseteq U$ is the set of final states
- *T* ⊆ *U* × *A* × *U* is the transition relation usually given as a *A*-indexed family of relations over *U*:

$$u' \xleftarrow{a} u \Leftrightarrow \langle u', a, u \rangle \in T$$

- deterministic
- finite
- image finite

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Automata

- A is an alphabet
- $U = \{u_0, u_1, u_2, ...\}$ is a set of states
- $u_0 \in U$ is the initial state
- $F \subseteq U$ is the set of final states
- *T* ⊆ *U* × *A* × *U* is the transition relation usually given as a *A*-indexed family of relations over *U*:

$$u' \xleftarrow{a} u \Leftrightarrow \langle u', a, u \rangle \in T$$

• deterministic

- finite
- image finite

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

automaton behaviour $\,\,\Leftrightarrow\,\,$ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

•
$$L_1 + L_2 \triangleq L_1 \cup L_2$$
 (union)

•
$$L_1 \cdot L_2 \triangleq \{ st \mid s \in L_1, t \in L_2 \}$$
 (concatenation)

• $L^* \triangleq \{\epsilon\} \cup L \cup (L \cdot L) \cup (L \cdot L \cdot L) \cup ...$ (iteration)

Bisimulation

Automata

There is a syntax to specify such languages:

 $E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$

where $a \in \Sigma$.

- which regular expression specifies {*a*, *bc*}?
- and {*ca*, *cb*}?

and an algebra of regular expressions:

$$(E_1 + E_2) + E_3 = E_1 + (E_2 + E_3)$$

$$(E_1 + E_2) E_3 = E_1 E_3 + E_2 E_3$$

$$E_1 (E_2 E_1)^* = (E_1 E_2)^* E_1$$

Bisimulation

Automata

There is a syntax to specify such languages:

 $E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$

where $a \in \Sigma$.

- which regular expression specifies {a, bc}?
- and {*ca*, *cb*}?

and an algebra of regular expressions:

$$(E_1 + E_2) + E_3 = E_1 + (E_2 + E_3)$$

$$(E_1 + E_2) E_3 = E_1 E_3 + E_2 E_3$$

$$E_1 (E_2 E_1)^* = (E_1 E_2)^* E_1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

After thoughts

- ... need more general models and theories:
 - Several interaction points (\neq functions)
 - Non termination (no final states as in automata)
 - Need to distinguish normal from anomolous termination (eg deadlock)
 - Non determinisim should be taken seriously: the notion of equivalence based on accepted language is blind wrt non determinism

Labelled Transition Structure

Relational characterization A LTS over a set A of names is a pair

$$\langle U, \alpha \leftarrow : A \times U \leftarrow U \rangle$$

where

- $U = \{u_0, u_1, u_2, ...\}$ is a set of states
- $_{\alpha} \leftarrow : A \times U \leftarrow U$ is an arrow in Rel, capturing the transition relation,

often given as an A-indexed family of binary relations

$$u' \ _{lpha} \xleftarrow{a} u \ \Leftrightarrow \ \langle a, u' \rangle \ _{lpha} \longleftarrow u$$

or simply,

$$u' \xleftarrow{a} u \Leftrightarrow \langle a, u' \rangle_{\alpha} \longleftarrow u$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Labelled Transition Structure

Relational characterization A LTS over a set A of names is a pair

$$\langle U, \alpha \leftarrow : A \times U \leftarrow U \rangle$$

where

- $U = \{u_0, u_1, u_2, ...\}$ is a set of states
- $_{\alpha} \leftarrow : A \times U \leftarrow U$ is an arrow in Rel, capturing the transition relation,

often given as an A-indexed family of binary relations

$$u' \ _{\alpha} \xleftarrow{a} u \ \Leftrightarrow \ \langle a, u' \rangle \ _{\alpha} \xleftarrow{} u$$

or simply,

$$u' \xleftarrow{a} u \Leftrightarrow \langle a, u' \rangle_{\alpha} \longleftarrow u$$

Bisimulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Labelled Transition Structure

Relational characterization A LTS over a set A of names is a pair

$$\langle U, \alpha \leftarrow : A \times U \leftarrow U \rangle$$

where

- $U = \{u_0, u_1, u_2, ...\}$ is a set of states
- $_{\alpha} \leftarrow : A \times U \leftarrow U$ is an arrow in Rel, capturing the transition relation,

often given as an A-indexed family of binary relations

$$u'_{\alpha} \xleftarrow{a} u \Leftrightarrow \langle a, u' \rangle_{\alpha} \longleftarrow u$$

or simply,

$$u' \xleftarrow{a} u \Leftrightarrow \langle a, u' \rangle_{\alpha} \longleftarrow u$$

Bisimulation

Labelled Transition System

Definition

Given a transition structure $\langle U, \alpha \leftarrow : A \times U \leftarrow U \rangle$, each $u \in U$ determines a labelled transition system, i.e.,

$$\langle U, u, \alpha \leftarrow : A \times U \leftarrow U \rangle$$

fixing u as the initial state

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Labelled Transition System

Pre- and Post-states

$$\mathsf{Post}_{\alpha}(u, a) = \{ u' \in U \mid u' \ \alpha \stackrel{a}{\Leftarrow} u \} \qquad \mathsf{Post}_{\alpha}(u) = \bigcup_{a \in A} \mathsf{Post}_{\alpha}(u, a)$$
$$\mathsf{Pre}_{\alpha}(u, a) = \{ u' \in U \mid u \ \alpha \stackrel{a}{\Leftarrow} u' \} \qquad \mathsf{Pre}_{\alpha}(u) = \bigcup_{a \in A} \mathsf{Pre}_{\alpha}(u, a)$$

Terminal state and successor

- u is a terminal state if $\mathsf{Post}_{\alpha}(u) = \emptyset$
- a *a*-successor is · · ·
- a direct successor is · · ·

Bisimulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reachability

Definition

The reachability relation, $_{lpha} := A imes U \longleftarrow U$, is defined inductively

• $u \ _{\alpha} \xleftarrow{\epsilon} u$ for each $u \in U$, where $\epsilon \in A^*$ denotes the empty word;

• if
$$u'' \,_{\alpha} \xleftarrow{\sigma} u$$
 and $u' \,_{\alpha} \xleftarrow{a} u''$ then $u'' \,_{\alpha} \xleftarrow{\sigma a} u$, for $a \in A, \sigma \in A^*$

Reachable state

 $t \in U$ is reachable from $u \in U$ iff there is a word $\sigma \in A^*$ st $t \, _{\alpha} \stackrel{\sigma}{\longleftarrow} \, u$

Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other determines the other uniquely.

The existence and uniqueness of such a transformation leads to the identification of a transpose operator Λ characterized by the following universal property:

 $f = \Lambda R \Leftrightarrow (yRx \Leftrightarrow y \in f x)$

for relation $R: Y \longleftarrow X$ and function $f: \mathcal{P}Y \longleftarrow X$ or, in a completely pointfree formulation

 $f = \Lambda R \iff R = \in \cdot f$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other determines the other uniquely.

The existence and uniqueness of such a transformation leads to the identification of a transpose operator Λ characterized by the following universal property:

 $f = \Lambda R \Leftrightarrow (yRx \Leftrightarrow y \in f x)$

for relation $R: Y \longleftarrow X$ and function $f: \mathcal{P}Y \longleftarrow X$ or, in a completely pointfree formulation

 $f = \Lambda R \Leftrightarrow R = \in \cdot f$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transposition

 $f = \Lambda R \iff R = \in \cdot f$

Properties

Cancellation	$\in \cdot \Lambda R = R$
Reflexivity	$\Lambda \in = \ {\rm id}$
Fusion - a	$\Lambda(f\cdot R) = \mathcal{P}f\cdot\Lambda R$
Fusion - b	$\Lambda(R\cdot f) = \Lambda R\cdot f$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Labelled Transition System

Transposing $_{\alpha} \leftarrow -$

through

 $\alpha = \Lambda_{\alpha} \longleftrightarrow \quad \Leftrightarrow \quad \alpha \longleftrightarrow = \in \cdot \alpha$

gives rise to function

 $\alpha:\mathcal{P}(A\times U)\longleftarrow U$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Labelled Transition System

Transposing
$$_{\alpha} \leftarrow$$

through

 $\alpha = \Lambda_{\alpha} \longleftrightarrow \quad \Leftrightarrow \quad \alpha \longleftrightarrow = \in \cdot \alpha$

gives rise to function

 $\alpha:\mathcal{P}(\boldsymbol{A}\times\boldsymbol{U})\longleftarrow\boldsymbol{U}$

Bisimulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Labelled Transition System

Transposition also applies to morphisms

A morphism $h: \beta \longleftarrow \alpha$ is a function $h: V \longleftarrow U$ st the following diagram commutes

$$U \xrightarrow{\alpha} \mathcal{P}(A \times U)$$

$$\downarrow^{h} \qquad \qquad \downarrow^{\mathcal{P}(\mathrm{id} \times h)}$$

$$V \xrightarrow{\beta} \mathcal{P}(A \times V)$$

i.e.,

$$\mathcal{P}(\mathsf{id} \times h) \cdot \alpha = \beta \cdot h$$

or, going pointwise,

$$\{\langle a, hx \rangle \mid \langle a, x \rangle \in \alpha u\} = \beta (h u)$$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Labelled Transition System

but
$$\mathcal{P}(\operatorname{id} \times h) \cdot \alpha = \beta \cdot h$$

has the following relational counterpart:

$$(\mathsf{id} \times h) \cdot {}_{\alpha} \longleftarrow = {}_{\beta} \longleftarrow \cdot h$$

because

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Labelled Transition System

$$(\mathrm{id} \times h) \cdot {}_{\alpha} \longleftarrow {}_{\beta} \longleftarrow {}_{h} h$$

$$\Leftrightarrow { transpose is a isomorphism }$$

$$\wedge((\mathrm{id} \times h) \cdot {}_{\alpha} \longleftarrow) = \wedge({}_{\beta} \longleftarrow {}_{h})$$

$$\Leftrightarrow { \Lambda(f \cdot R) = \mathcal{P}f \cdot \wedge R \ e \ \wedge(R \cdot f) = \wedge R \cdot f }$$

$$\mathcal{P}(\mathrm{id} \times h) \cdot \wedge({}_{\alpha} \longleftarrow) = \wedge({}_{\beta} \longleftarrow) \cdot h$$

$$\Leftrightarrow { definition } {}_{\alpha} \longleftarrow }$$

$$\mathcal{P}(\mathrm{id} \times h) \cdot \wedge(\in \cdot \alpha) = \wedge(\in \cdot \beta) \cdot h$$

$$\Leftrightarrow { \Lambda(R \cdot f) = \wedge R \cdot f }$$

$$\mathcal{P}(\mathrm{id} \times h) \cdot \wedge(\in) \cdot \alpha = \wedge(\in) \cdot \beta \cdot h$$

$$\Leftrightarrow { \Lambda(\in) = \mathrm{id} }$$

$$\mathcal{P}(\mathrm{id} \times h) \cdot \alpha = \beta \cdot h$$

Bisimulation

Labelled Transition System

Equality

$$(\mathsf{id} \times h) \cdot {}_{\alpha} \longleftarrow = {}_{\beta} \longleftarrow \cdot h$$

can be re-written in terms of an A-indexed family of binary relations:

$$h \cdot {}_{\alpha} \xleftarrow{a} {}_{\beta} = {}_{\beta} \xleftarrow{a} {}_{\gamma} h$$

which can be decomposed in

$$\begin{array}{ccc} h \cdot {}_{\alpha} \xleftarrow{a}{\leftarrow} & \subseteq {}_{\beta} \xleftarrow{a}{\leftarrow} h & (1) \\ {}_{\beta} \xleftarrow{a}{\leftarrow} h \subseteq {}_{\beta} \xleftarrow{a}{\leftarrow} & (2) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bisimulation

Labelled Transition System

Equality

$$(\mathsf{id} \times h) \cdot {}_{\alpha} \longleftarrow = {}_{\beta} \longleftarrow \cdot h$$

can be re-written in terms of an A-indexed family of binary relations:

$$h \cdot {}_{\alpha} \stackrel{a}{\longleftarrow} = {}_{\beta} \stackrel{a}{\longleftarrow} \cdot h$$

which can be decomposed in

$$\begin{array}{rcl} h \cdot {}_{\alpha} \xleftarrow{a}{\leftarrow} & \subseteq {}_{\beta} \xleftarrow{a}{\leftarrow} h & (1) \\ {}_{\beta} \xleftarrow{a}{\leftarrow} h \subseteq {}_{\beta} \xleftarrow{a}{\leftarrow} h & (2) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bisimulation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Going pointwise ...

Transition preservation

 $\begin{array}{rcl} h \cdot {}_{\alpha} \xleftarrow{a}{\leftarrow} & \subseteq {}_{\beta} \xleftarrow{a}{\leftarrow} \cdot h \\ \Leftrightarrow & \left\{ \begin{array}{r} shunting \end{array} \right\} \\ {}_{\alpha} \xleftarrow{a}{\leftarrow} & \subseteq {}_{h} \circ \cdot {}_{\beta} \xleftarrow{a}{\leftarrow} \cdot h \\ \Leftrightarrow & \left\{ \begin{array}{r} introducing variables \end{array} \right\} \\ \langle \forall \ u, u' \ : \ u, u' \in U : \ u' {}_{\alpha} \xleftarrow{a}{\leftarrow} u \ \Rightarrow \ u' \left(h^{\circ} \cdot {}_{\beta} \xleftarrow{a}{\leftarrow} \cdot h \right) u \rangle \\ \Leftrightarrow & \left\{ \begin{array}{r} relating-functional-images rule \end{array} \right\} \\ \langle \forall \ u, u' \ : \ u, u' \in U : \ u' {}_{\alpha} \xleftarrow{a}{\leftarrow} u \ \Rightarrow \ h \ u' {}_{\beta} \xleftarrow{a}{\leftarrow} h \ u \rangle \end{array} \right.$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Going pointwise ...

Transition reflection

$$\beta \stackrel{a}{\leftarrow} \cdot h \subseteq h \cdot {}_{\alpha} \stackrel{a}{\leftarrow} \\ \{ \text{ introducing variables } \} \\ \langle \forall u, v' : u \in U, v' \in V : v' ({}_{\beta} \stackrel{a}{\leftarrow} \cdot h) u \Rightarrow v' (h \cdot {}_{\alpha} \stackrel{a}{\leftarrow}) u \rangle \\ \Leftrightarrow \qquad \{ \text{ relating-functional-images rule and relational composition } \} \\ \langle \forall u, v' : u \in U, v' \in V : v' {}_{\beta} \stackrel{a}{\leftarrow} h u \Rightarrow \\ \langle \exists u' : u' \in U : u' {}_{\alpha} \stackrel{a}{\leftarrow} u \wedge v' = h u') \rangle \rangle$$

Bisimulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Intuition

A state v simulates another state u if every transition from v is corresponded by a transition from u and this capacity is kept along the whole life of the system to which state space v belongs to.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Simulation

Definition Given $_{\alpha} \leftarrow : U \times A \leftarrow U$ and $_{\beta} \leftarrow : V \times A \leftarrow V$ both over A, a simulation of $_{\alpha} \leftarrow$ in $_{\beta} \leftarrow$ is a relation $S : V \leftarrow U$ such that

$$\begin{array}{l} \forall_{a\in A}\forall_{u\in U,v\in V} \cdot vSu \Rightarrow \\ (\forall_{u'\in U} \cdot u' \ _{\alpha} \xleftarrow{a} \ u \Rightarrow (\exists_{v'\in V} \cdot v' \ _{\beta} \xleftarrow{a} \ v \ \land \ v'Su'))\end{array}$$

Simulation

Definition Given $_{\alpha} \leftarrow : U \times A \leftarrow U$ and $_{\beta} \leftarrow : V \times A \leftarrow V$ both over A, a simulation of $_{\alpha} \leftarrow$ in $_{\beta} \leftarrow$ is a relation $S : V \leftarrow U$ such that

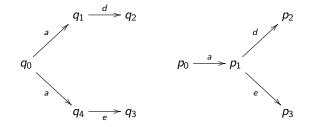
$$\forall_{a \in A} \forall_{u \in U, v \in V} \cdot vSu \Rightarrow (\forall_{u' \in U} \cdot u' \ _{\alpha} \xleftarrow{a} u \Rightarrow (\exists_{v' \in V} \cdot v' \ _{\beta} \xleftarrow{a} v \land v'Su'))$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Example



 $q_0 \lesssim p_0$ cf. $\{\langle q_0, p_0
angle, \langle q_1, p_1
angle, \langle q_4, p_1
angle, \langle q_2, p_2
angle, \langle q_3, p_3
angle\}$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulation

Lemma A relation $S: V \longleftarrow U$ is a simulation of $_{\alpha} \longleftarrow$ in $_{\beta} \longleftarrow$ iff, for all $a \in A$

$$S \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot S$$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Properties

because

$$\begin{array}{l} \forall_{a \in A, u \in U, v \in V} \cdot vSu \Rightarrow \\ (\forall_{u' \in U} \cdot u' \ \alpha \stackrel{a}{\leftarrow} u \Rightarrow (\exists_{v' \in V} \cdot v' \ \beta \stackrel{a}{\leftarrow} v \land v'Su')) \\ \Leftrightarrow \qquad \{ \text{ composition } \} \\ \forall_{a \in A, u \in U, v \in V} \cdot vSu \Rightarrow (\forall_{u' \in U} \cdot u \stackrel{a}{\rightarrow}_{\alpha} u' \Rightarrow v (\stackrel{a}{\rightarrow}_{\beta} \cdot S) u' \\ \Leftrightarrow \qquad \{ \text{ left relational division } \} \\ \forall_{a \in A, u \in U, v \in V} \cdot vSu \Rightarrow v ((\stackrel{a}{\rightarrow}_{\beta} \cdot S)/\stackrel{a}{\rightarrow}_{\alpha}) u \\ \Leftrightarrow \qquad \{ \text{ going pointfree } \} \\ S \subseteq (\stackrel{a}{\rightarrow}_{\beta} \cdot S)/\stackrel{a}{\rightarrow}_{\alpha} \\ \Leftrightarrow \qquad \{ \text{ Galois connection: } (\cdot R) \dashv (/R) \} \\ S \cdot \stackrel{a}{\rightarrow}_{\alpha} \subseteq \stackrel{a}{\rightarrow}_{\beta} \cdot S \end{array}$$

Bisimulation

Lemma

- 1. The identity relation id and the empty relation is a simulation
- 2. The composition $S \cdot R$ of two simulations is a simulation
- 3. The union $S \cup R$ of two simulations is a simulation

Bisimulation

Properties

because

1.

$$\bot \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot \bot \quad \land \quad \mathsf{id} \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\alpha} \cdot \mathsf{id}$$

 $\Leftrightarrow \qquad \left\{ \begin{array}{c} \bot \text{ and id are absorving and identity for composition} \end{array} \right\} \\ \text{true}$

2.

$$(S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot (S \cdot R)$$

$$\Leftrightarrow \qquad \{ S \cdot \stackrel{a}{\longrightarrow}_{\gamma} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot S, \text{ --assoc, monotony } \}$$

$$(S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq S \cdot \stackrel{a}{\longrightarrow}_{\gamma} \cdot R$$

$$\Leftrightarrow \qquad \{ R \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\gamma} \cdot R, \text{ --assoc, monotony } \}$$

$$(S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq (S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bisimulation

Properties

because

1.

$$\bot \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot \bot \quad \land \quad \mathsf{id} \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\alpha} \cdot \mathsf{id}$$

 $\Leftrightarrow \qquad \left\{ \begin{array}{c} \bot \text{ and id are absorving and identity for composition} \end{array} \right\} \\ \text{true}$

2.

$$(S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot (S \cdot R)$$

$$\Leftrightarrow \{ S \cdot \stackrel{a}{\longrightarrow}_{\gamma} \subseteq \stackrel{a}{\longrightarrow}_{\beta} \cdot S, \text{ --assoc, monotony } \}$$

$$(S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq S \cdot \stackrel{a}{\longrightarrow}_{\gamma} \cdot R$$

$$\Leftrightarrow \{ R \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq \stackrel{a}{\longrightarrow}_{\gamma} \cdot R, \text{ --assoc, monotony } \}$$

$$(S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subseteq (S \cdot R) \cdot \stackrel{a}{\longrightarrow}_{\alpha}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Bisimulation

Properties

3.

 $(S \cup R) \cdot \xrightarrow{a}_{\alpha} \subseteq \xrightarrow{a}_{\beta} \cdot (S \cup R)$ $\Leftrightarrow \qquad \{ (R \cdot) \text{ and } (\cdot R) \text{ preserve } \cup \text{ as lower adjoints } \}$ $(S \cdot \xrightarrow{a}_{\alpha} \cup R \cdot \xrightarrow{a}_{\alpha}) \subseteq (\xrightarrow{a}_{\beta} \cdot S \cup \xrightarrow{a}_{\beta} \cdot R)$ $\Leftrightarrow \qquad \{ \cup \text{ definition } \}$ $S \cdot \xrightarrow{a}_{\alpha} \subseteq \xrightarrow{a}_{\beta} \cdot S \land R \cdot \xrightarrow{a}_{\alpha} \subseteq \xrightarrow{a}_{\beta} \cdot R$ $\Leftrightarrow \qquad \{ \text{ hipotheses } \}$ true

Bisimulation

Similarity

Definition

$$p \lesssim q \iff \langle \exists \ R \ :: \ R \text{ is a simulation and } \langle p,q
angle \in R
angle$$

Lemma

The similarity relation is a preorder

(ie, reflexive and transitive)

because

By definition \lesssim is the greatest simulation. Then (why?), $\lesssim\cdot\lesssim\subseteq\lesssim$ and id $\,\subseteq\lesssim.$

Bisimulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bisimulation

Definition

A relation $S : V \longleftarrow U$ over the state spaces of $_{\alpha} \longleftarrow : U \times A \longleftarrow U$ and $_{\beta} \longleftarrow : V \times A \longleftarrow V$ is a bisimulation iff both S and S° are simulations i.e.

$$S \cdot \xrightarrow{a}_{\alpha} \subseteq \xrightarrow{a}_{\beta} \cdot S \land _{\beta} \xleftarrow{a} \cdot S \subseteq S \cdot _{\alpha} \xleftarrow{a}$$
 for all $a \in A$.

Bisimulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bisimulation

Definition

A relation $S : V \longleftarrow U$ over the state spaces of $_{\alpha} \longleftarrow : U \times A \longleftarrow U$ and $_{\beta} \longleftarrow : V \times A \longleftarrow V$ is a bisimulation iff both S and S° are simulations i.e.

$$S \cdot \xrightarrow{a}_{\alpha} \subseteq \xrightarrow{a}_{\beta} \cdot S \land _{\beta} \xleftarrow{a} \cdot S \subseteq S \cdot _{\alpha} \xleftarrow{a}$$
 for all $a \in A$.

Bisimulation

Bisimulation

because

The first conjunct defines S as a simulation. The second one is derived as follows:

> S° is a simulation { definition of simulation } \Leftrightarrow $S^{\circ} \cdot \xrightarrow{a}_{\beta} \subset \xrightarrow{a}_{\alpha} \cdot S^{\circ}$ $\Leftrightarrow \qquad \left\{ \begin{array}{c} (\xrightarrow{a} \gamma)^{\circ} = \gamma \xleftarrow{a} \end{array} \right\}$ $S^{\circ} \cdot ({}_{\beta} \xleftarrow{a})^{\circ} \subset ({}_{\alpha} \xleftarrow{a})^{\circ} \cdot S^{\circ}$ $\Leftrightarrow \{ (R \cdot S)^\circ = S^\circ \cdot R^\circ \}$ $({}_{\beta} \xleftarrow{a} \cdot S)^{\circ} \subseteq (S \cdot {}_{\alpha} \xleftarrow{a})^{\circ}$ { monotonicity: $R \subseteq S \Leftrightarrow R^\circ \subseteq S^\circ$ } \Leftrightarrow $_{\beta} \xleftarrow{a} \cdot S \subset S \cdot _{\alpha} \xleftarrow{a}$

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Bisimulation

Bisimulation

going pointwise

$$\beta \stackrel{a}{\leftarrow} \cdot S \subseteq S \cdot {}_{\alpha} \stackrel{a}{\leftarrow} \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \text{Galois:} (R \cdot) \dashv (R \setminus) \end{array} \right\} \\ S \subseteq {}_{\beta} \stackrel{a}{\leftarrow} \setminus (S \cdot {}_{\alpha} \stackrel{a}{\leftarrow}) \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \text{introducing variables} \end{array} \right\} \\ \forall_{v \in V, u \in U} \cdot vSu \Rightarrow v \left({}_{\beta} \stackrel{a}{\leftarrow} \setminus (S \cdot {}_{\alpha} \stackrel{a}{\leftarrow}) \right) u \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \text{definition of left division} \setminus \end{array} \right\} \\ \forall_{v \in V, u \in U} \cdot vSu \Rightarrow (\forall_{v' \in V} \cdot v' {}_{\alpha} \stackrel{a}{\leftarrow} v \Rightarrow v' ({}_{\beta} \stackrel{a}{\leftarrow} \cdot S) u') \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \text{definition of} \cdot \end{array} \right\} \\ \forall_{v \in V, u \in U} \cdot vSu \Rightarrow (\forall_{v' \in V} \cdot v' {}_{\beta} \stackrel{a}{\leftarrow} v \Rightarrow (\exists_{u' \in U} \cdot u' {}_{\alpha} \stackrel{a}{\leftarrow} u \wedge v'Su')) \end{array} \right.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bisimulation

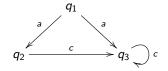
Bisimulation

The Game characterization

Two players R and I discuss whether the transition structures are mutually corresponding

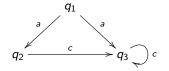
- *R* starts by chosing a transition
- I replies trying to match it
- if I succeeds, R plays again
- R wins if I fails to find a corresponding match
- *I* wins if it replies to all moves from *R* and the game is in a configuration where all states have been visited or *R* can't move further. In this case is said that *I* has a wining strategy

Bisimulation

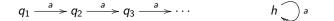


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bisimulation



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma

The graph of a transition structure morphism $h: \beta \leftarrow \alpha$, i.e., h itself regarded as a binary relation, is a bisimulation.

Bisimulation

Properties

because (the other inclusion being trivial):

 $h \cdot \alpha \xleftarrow{a} \subset \beta \xleftarrow{a} \cdot h$ \Leftrightarrow { shunting } $_{\alpha} \stackrel{a}{\leftarrow} \subset h^{\circ} \cdot {}_{\beta} \stackrel{a}{\leftarrow} \cdot h$ \Leftrightarrow { monotonicity } $(\alpha \stackrel{a}{\leftarrow})^{\circ} \subset (h^{\circ} \cdot \beta \stackrel{a}{\leftarrow} \cdot h)^{\circ}$ \Leftrightarrow { converse } $\xrightarrow{a}_{\alpha} \subset h^{\circ} \cdot \xrightarrow{a}_{\beta} \cdot h$ \Leftrightarrow { shunting } $h \cdot \stackrel{a}{\longrightarrow}_{\alpha} \subset \stackrel{a}{\longrightarrow}_{\beta} \cdot h$

Bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma

The converse of a bisimulation $S: V \leftarrow U$ is still a bissimulation.

Bisimulation

Properties

because

 S° is bisimulation { definition of bisimulation } \Leftrightarrow $S^{\circ} \cdot \xrightarrow{a}_{\alpha} \subset \xrightarrow{a}_{\beta} \cdot S^{\circ} \wedge {}_{\beta} \xleftarrow{a} \cdot S^{\circ} \subset S^{\circ} \cdot {}_{\alpha} \xleftarrow{a}$ $\Leftrightarrow \qquad \{ (\xrightarrow{a})^{\circ} = \sqrt{a} \}$ $S^{\circ} \cdot (\alpha \xleftarrow{a})^{\circ} \subset (\beta \xleftarrow{a})^{\circ} \cdot S^{\circ} \wedge (\xrightarrow{a})^{\circ} \cdot S^{\circ} \subset S^{\circ} \cdot (\xrightarrow{a})^{\circ}$ \Leftrightarrow { converse of composition } $(\alpha \xleftarrow{a} \cdot S)^{\circ} \subset (S \cdot \beta \xleftarrow{a})^{\circ} \wedge (S \cdot \xrightarrow{a} \beta)^{\circ} \subset (\xrightarrow{a} \alpha \cdot S)^{\circ}$ \Leftrightarrow { monotonicity } $\alpha \xleftarrow{a} \cdot S \subset S \cdot \beta \xleftarrow{a} \wedge S \cdot \xrightarrow{a} \beta \subset \xrightarrow{a} \gamma \cdot S$ \Leftrightarrow { hipothesis }

true

Bisimilarity

Definition

 $p \sim q \iff \langle \exists R :: R \text{ is a bisimulation and } \langle p, q \rangle \in R \rangle$

Lemma

- 1. The identity relation id is a bisimulation
- 2. The empty relation \perp is a bisimulation
- 3. The converse R° of a bisimulation is a bisimulation
- 4. The composition $S \cdot R$ of two bisimulations S and R is a bisimulation
- 5. The $\bigcup_{i \in I} R_i$ of a family of bisimulations $\{R_i \mid i \in I\}$ is a bisimulation

Bisimulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma The bisimilarity relation is an equivalence relation

(ie, reflexive, symmetric and transitive)

Lemma

The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim .

Bisimulation

Lemma

The bisimilarity relation is an equivalence relation

(ie, reflexive, symmetric and transitive)

Lemma

The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim .

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Bisimulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

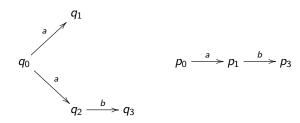
Bisimilarity

Warning

The bisimilarity relation \sim is not the symmetric closure of \lesssim

Example

 $q_0 \lesssim p_0, \; p_0 \lesssim q_0 \; \; \; {
m but} \; \; p_0
ot \sim q_0$



Bisimulation

After thoughts

Similarity as the greatest simulation

$$\leq \triangleq \bigcup \{ S \mid S \text{ is a simulation} \}$$

Bisimilarity as the greatest bisimulation

$$\sim \triangleq \bigcup \{ S \mid S \text{ is a bisimulation} \}$$

% cf relational translation of definitions \lesssim and \sim as greatest fix points (Tarski's theorem)

Bisimulation

After thoughts

Similarity as the greatest simulation

$$\leq \triangleq \bigcup \{S \mid S \text{ is a simulation} \}$$

Bisimilarity as the greatest bisimulation

 $\sim \triangleq \bigcup \{ S \mid S \text{ is a bisimulation} \}$

% cf relational translation of definitions \lesssim and \sim as greatest fix points (Tarski's theorem)

Bisimulation

After thoughts

Similarity as the greatest simulation

$$\lesssim \triangleq \bigcup \{S \mid S \text{ is a simulation} \}$$

Bisimilarity as the greatest bisimulation

 $\sim \triangleq \bigcup \{S \mid S \text{ is a bisimulation} \}$

cf relational translation of definitions \lesssim and \sim as greatest fix points (Tarski's theorem)