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Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

November, 2011



Introduction Transition structures Simulation Bisimulation

The architecture of functional designs

SA as studied at MFES (until now):

Interfaces: f :: · · · −→ · · ·
Components: f = · · ·
Connectors: ·, 〈 , 〉, ×, +, ...
Configurations: functions assembled by composition
Properties: invariants (pre-, post-conditions)
Behavioural effects: monads and Kleisli compostion
Underlying maths: universal algebra and relational calculus
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... can be extended to reactive systems?

Software Architecture is challenged by the continuous evolution
towards very large, heterogeneous, highly dynamic computing
systems, whose behaviour cannot be characterized in terms of a
io-relation. In most cases, such a behaviour

• is potentially non-terminating,

• expresses a continued interaction with the system’s
environment and sub-systems which execute concurrently in
distributed, often loosely coupled configurations.
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Behaviour & Interaction

[R. Milner, 1997]
Thus software, from being a prescription for how to do something
— in Turing’s terms a ”list of instructions” — becomes much
more akin to a description of behaviour, not only programmed on a
computer, but occurring by hap or design inside or outside it.

[B. Jacobs, 2005]
The subject of Computer Science is not information processing or
symbol manipulation, but generated behaviour.
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Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions
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The architecture of reactive designs

Interfaces: · · ·
Components: · · ·
Connectors: · · ·
Configurations: · · ·
Properties: · · ·
Behavioural effects: · · ·
Underlying maths: · · ·
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Automata
Definition
A = 〈A,U, uo ,F ,T 〉
where

• A is an alphabet

• U = {u0, u1, u2, ...} is a set of states

• u0 ∈ U is the initial state

• F ⊆ U is the set of final states

• T ⊆ U × A× U is the transition relation usually given as a
A-indexed family of relations over U:

u′
a←− u ⇔ 〈u′, a, u〉 ∈ T

• deterministic

• finite

• image finite
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Automata

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)
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Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1
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After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Non termination (no final states as in automata)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism
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Labelled Transition Structure

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u
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Labelled Transition System

Definition
Given a transition structure 〈U, α←− : A× U ←− U〉, each u ∈ U
determines a labelled transition system, i.e.,

〈U, u, α←− : A× U ←− U〉

fixing u as the initial state
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Labelled Transition System

Pre- and Post-states

Postα(u, a) = {u′ ∈ U | u′ α
a⇐= u} Postα(u) =

⋃
a∈A

Postα(u, a)

Preα(u, a) = {u′ ∈ U | u α
a⇐= u′} Preα(u) =

⋃
a∈A

Preα(u, a)

Terminal state and successor

• u is a terminal state if Postα(u) = ∅

• a a-successor is · · ·

• a direct successor is · · ·
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Reachability

Definition
The reachability relation, α⇐= : A× U ←− U , is defined inductively

• u α
ε⇐= u for each u ∈ U, where ε ∈ A∗ denotes the empty word;

• if u′′ α
σ⇐= u and u′ α

a←− u′′ then u′′ α
σa⇐= u, for a ∈ A, σ ∈ A∗

Reachable state
t ∈ U is reachable from u ∈ U iff there is a word σ ∈ A∗ st t α

σ⇐= u
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Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other
determines the other uniquely.
The existence and uniqueness of such a transformation leads to the
identification of a transpose operator Λ characterized by the following
universal property:

f = ΛR ⇔ (yRx ⇔ y ∈ f x)

for relation R : Y ←− X and function f : PY ←− X or, in a completely
pointfree formulation

f = ΛR ⇔ R = ∈ ·f
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Transposition

f = ΛR ⇔ R = ∈ ·f

Properties

Cancellation ∈ ·ΛR = R

Reflexivity Λ ∈ = id

Fusion - a Λ(f · R) = Pf · ΛR

Fusion - b Λ(R · f ) = ΛR · f
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Labelled Transition System

Transposing α←−

through
α = Λ α←− ⇔ α←−=∈ ·α

gives rise to function
α : P(A× U)←− U
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Labelled Transition System

Transposition also applies to morphisms
A morphism h : β ←− α is a function h : V ←− U st the following
diagram commutes

U

h

��

α // P(A× U)

P(id×h)
��

V
β // P(A× V )

i.e.,
P(id× h) · α = β · h

or, going pointwise,

{〈a, h x〉 | 〈a, x〉 ∈ α u} = β (h u)
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Labelled Transition System

but P(id× h) · α = β · h

has the following relational counterpart:

(id× h) · α←− = β←− · h

because
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Labelled Transition System

(id× h) · α←− = β←− · h
⇔ { transpose is a isomorphism }

Λ((id× h) · α←− ) = Λ( β←− · h)

⇔ { Λ(f · R) = Pf · ΛR e Λ(R · f ) = ΛR · f }
P(id× h) · Λ( α←− ) = Λ( β←− ) · h

⇔ { definition α←− }
P(id× h) · Λ(∈ ·α) = Λ(∈ ·β) · h

⇔ { Λ(R · f ) = ΛR · f }
P(id× h) · Λ(∈) · α = Λ(∈) · β · h

⇔ { Λ(∈) = id }
P(id× h) · α = β · h
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Labelled Transition System

Equality
(id× h) · α←− = β←− · h

can be re-written in terms of an A-indexed family of binary relations:

h · α
a←− = β

a←− · h

which can be decomposed in

h · α
a←− ⊆ β

a←− · h (1)

β
a←− · h ⊆ h · α

a←− (2)
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Going pointwise ...

Transition preservation

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { introducing variables }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ u′ (h◦ · β

a←− · h) u〉
⇔ { relating-functional-images rule }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ h u′ β

a←− h u〉
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Going pointwise ...

Transition reflection

β
a←− · h ⊆ h · α

a←−
⇔ { introducing variables }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ ( β
a←− · h) u ⇒ v ′ (h · α

a←− ) u〉
⇔ { relating-functional-images rule and relational composition }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ β
a←− h u ⇒

〈∃ u′ : u′ ∈ U : u′ α
a←− u ∧ v ′ = h u′)〉〉
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Simulation

Intuition

A state v simulates another state u if every transition from v is
corresponded by a transition from u and this capacity is kept along
the whole life of the system to which state space v belongs to.
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Simulation

Definition
Given α←− : U × A←− U and β←− : V × A←− V both over A, a
simulation of α←− in β←− is a relation S : V ←− U such that

∀a∈A∀u∈U,v∈V . vSu ⇒

(∀u′∈U . u
′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

v

a

��

⇐ v S u

a

��
v ′ S u′ u′
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Example

q1
d // q2 p2

q0

a
>>

a
  

p0
a // p1

d
>>

e
  

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}
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Simulation

Lemma
A relation S : V ←− U is a simulation of α←− in β←− iff, for all
a ∈ A

S · a−→α ⊆
a−→β ·S
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Properties

because

∀a∈A,u∈U,v∈V . vSu ⇒
(∀u′∈U . u

′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

⇔ { composition }

∀a∈A,u∈U,v∈V . vSu ⇒ (∀u′∈U . u
a−→α u′ ⇒ v (

a−→β ·S) u′

⇔ { left relational division }

∀a∈A,u∈U,v∈V . vSu ⇒ v ((
a−→β ·S)/

a−→α ) u

⇔ { going pointfree }

S ⊆ (
a−→β ·S)/

a−→α

⇔ { Galois connection: (·R) a (/R) }

S · a−→α ⊆
a−→β ·S
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Properties

Lemma

1. The identity relation id and the empty relation is a simulation

2. The composition S · R of two simulations is a simulation

3. The union S ∪ R of two simulations is a simulation
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Properties
because

1.

⊥· a−→α ⊆
a−→β ·⊥ ∧ id · a−→α ⊆

a−→α · id
⇔ { ⊥ and id are absorving and identity for composition }

true

2.

(S · R) · a−→α ⊆
a−→β · (S · R)

⇐ { S · a−→γ ⊆
a−→β ·S , ·-assoc, monotony }

(S · R) · a−→α ⊆ S · a−→γ ·R
⇐ { R· a−→α⊆

a−→γ ·R, ·-assoc, monotony }

(S · R) · a−→α ⊆ (S · R) · a−→α
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Properties

3.

(S ∪ R) · a−→α ⊆
a−→β · (S ∪ R)

⇔ { (R·) and (·R) preserve ∪ as lower adjoints }

(S · a−→α ∪R ·
a−→α ) ⊆ (

a−→β ·S ∪
a−→β ·R)

⇐ { ∪ definition }

S · a−→α ⊆
a−→β ·S ∧ R · a−→α ⊆

a−→β ·R
⇔ { hipotheses }

true
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Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

because
By definition . is the greatest simulation. Then (why?), . · . ⊆ . and
id ⊆ ..
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Bisimulation

Definition
A relation S : V ←− U over the state spaces of α←− : U ×A←− U and

β←− : V × A←− V is a bisimulation iff both S and S◦ are simulations

i.e.

S · a−→α ⊆
a−→β ·S ∧ β

a←− ·S ⊆ S · α
a←−

for all a ∈ A.
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Bisimulation

because
The first conjunct defines S as a simulation.
The second one is derived as follows:

S◦ is a simulation

⇔ { definition of simulation }

S◦· a−→β ⊆
a−→α ·S◦

⇔ { (
a−→γ )◦ = γ

a←− }

S◦ · ( β
a←− )◦ ⊆ ( α

a←− )◦ · S◦

⇔ { (R · S)◦ = S◦ · R◦ }

( β
a←− ·S)◦ ⊆ (S · α

a←− )◦

⇔ { monotonicity: R ⊆ S ⇔ R◦ ⊆ S◦ }

β
a←− ·S ⊆ S · α

a←−
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Bisimulation

going pointwise

β
a←− ·S ⊆ S · α

a←−
⇔ { Galois: (R·) a (R\) }

S ⊆ β
a←− \(S · α

a←− )

⇔ { introducing variables }

∀v∈V ,u∈U . vSu ⇒ v ( β
a←− \(S · α

a←− )) u

⇔ { definition of left division \ }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
α

a←− v ⇒ v ′ ( β
a←− ·S) u′)

⇔ { definition of · }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
β

a←− v ⇒ (∃u′∈U . u
′
α

a←− u ∧ v ′Su′))
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Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy
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Examples

q1
a

~~

a

  

m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add
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Properties

Lemma
The graph of a transition structure morphism h : β ←− α, i.e., h itself
regarded as a binary relation, is a bisimulation.
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Properties

because (the other inclusion being trivial):

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { monotonicity }

( α
a←− )◦ ⊆ (h◦ · β

a←− · h)◦

⇔ { converse }
a−→α ⊆ h◦· a−→β · h

⇔ { shunting }

h · a−→α ⊆
a−→β · h
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Properties

Lemma
The converse of a bisimulation S : V ←− U is still a bissimulation.
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Properties

because

S◦ is bisimulation

⇔ { definition of bisimulation }

S◦· a−→α ⊆
a−→β ·S◦ ∧ β

a←− ·S◦ ⊆ S◦ · α
a←−

⇔ { (
a−→γ )◦ = γ

a←− }

S◦ · ( α
a←− )◦ ⊆ ( β

a←− )◦ · S◦ ∧ (
a−→β )◦ · S◦ ⊆ S◦ · ( a−→α )◦

⇔ { converse of composition }

( α
a←− ·S)◦ ⊆ (S · β

a←− )◦ ∧ (S · a−→β )◦ ⊆ (
a−→α ·S)◦

⇔ { monotonicity }

α
a←− ·S ⊆ S · β

a←− ∧ S · a−→β ⊆
a−→α ·S

⇔ { hipothesis }
true
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Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation
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Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.
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Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a
>>

a

  

p0
a // p1

b // p3

q2
b // q3
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After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)
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