
Essential Software Architecture

Ian Gorton

Essential
Software
Architecture

With 93 Figures and 11 Tables

123

Author

Ian Gorton
National ICT Australia
Bay 15, Locomotive Workshop
Australian Technology Park, Garden St
Eveleigh NSW 1430, Australia
Ian.gorton@nicta.com.au

Library of Congress Control Number: 2006921741

ACM Computing Classification (1998): D.2

ISBN-10 3-540-28713-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28713-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

Foreword

Architecture is something of a black art in the IT world. Architects learn
on the job, bringing years of experience in design and technology to the
business problems they tackle. It’s not an easy task to impart architecture
knowledge.

So when Ian first spoke to me about the idea of writing this book, I
thought “Great! Finally there will be a book that I can recommend to the
many developers and students who approach me asking what they have to
do to become an IT architect”. I knew that from reading the book they
would discover many of the essential ingredients of being a good practic-
ing IT architect.

In the years that I have known Ian, he has been an inspirational educa-
tor, a pragmatic and decisive software architect, and an idealistic software
architecture researcher. On top of all that, he is an excellent communicator,
who articulates advanced computing concepts clearly and succinctly irre-
spective of his audience – the novice or the experienced. Ian is also full of
great life stories to tell – all told with a great sense of humor (especially af-
ter a few glasses of good wine!).

It is not until Ian handed me drafts of the various chapters that I realized
that this is a must have book for the experienced IT architects too. As con-
sulting enterprise architects, we are usually working inside an enterprise’s
boundary, trying to influence the IT directions of the various departments
within the enterprise, and designing the next evolution of IT architecture
that breaks down the silos within the organization. We are often lone spir-
its, making important technology acquisition and design decisions without
having a reference to look upon for validation of what we are doing. Now,
for practicing architects, Ian’s book serves this precise purpose – it brings
a sense of relief knowing that we are not alone, and that there are many
others who also face similar architecture challenges. Ian’s book, although
by no means a silver bullet to all of our IT architecture challenges, cer-
tainly helps us head in the right direction through the various techniques
and approaches presented.

VI Foreword

So here it is, an essential guide to computer science students as well as
practicing developers and IT professionals who aspire to become an IT ar-
chitect. For the experienced architects, it serves as a reference, a good
validation of our thinking, and provides a summary of emerging technolo-
gies and practices that will be important in the not-too-distant future.

I hope you will enjoy the read as much as I have.

Dr. Anna Liu
Architect Advisor, Microsoft
Sydney, Australia

Preface

Motivation

In the not too distant past, on a decent sized project I was working on, I
convinced a senior developer, a highly skilled and experienced software
engineer, to purchase a copy of “Documenting Software Architectures:
Views and Beyond”. The project was a little sparse in terms of documenta-
tion and process, the team was well aware of this, and I was trying to help
improve the situation. Soon after the book arrived, a brief corridor conver-
sation saw strong expressions of enthusiasm. So strong, an additional pro-
ject team meeting was called for the next week.

In the meeting, the senior engineer held up this “wonderful” book, and
espoused many of its key messages to the team. I was, of course, pleased
that the book I’d recommended had made such an impact. Then the follow
line caught my attention:

“I read the first 30 or so pages, which were great, but only skimmed the
rest.”

I was a little surprised at this statement. Why was the content of this
very informative and incredibly useful book mostly “skimmed”? Surely
anyone could learn much from investing a little time in reading the more
technical chapters? I certainly did. This set me pondering the root cause of
this issue, as I really wanted to instill more architectural knowledge in the
development teams I was working with.

In my career as a roving software architect, I’ve spent a lot of time con-
sulting on projects, providing architectural design skills and knowledge.
These projects have spanned many organizations and different application
domains over the last decade.

A common theme though, is that I work mostly in what would be con-
sidered general information technology (IT) application domains. The sort
of applications that financial institutions, utilities and Government agen-
cies build to manage and deliver information to their customers and trading
partners. These are, broadly, business information systems that leverage

VIII Preface

Commercial-off-the-shelf (COTS) technologies like databases, middle-
ware, packaged applications and web technologies.

I occasionally work on projects in what are considered more technical
domains, such as military, embedded control and telecommunications ap-
plications. I can do this because many of the underlying architectural is-
sues are the same across domains. However, the way these issues manifest
themselves, the particular technology solutions that are commonly adopted
and the technical vocabularies used are radically different. Hence I special-
ize in IT systems – this is where I can hopefully add more value.

Sometimes my role involves designing new application architectures, or
actually more frequently evaluating existing ones and helping evolve them.
In the process, I work closely with the members of projects teams. This is
enjoyable. I always learn from them, and I hope they sometimes learn from
me.

A strikingly common characteristic of most of these projects is a lack of
explicit architectural design. Functional requirements are usually captured,
agreed with stakeholders and managed, and designs that address the func-
tional specifications are fleshed out in detail. But the architectural issues,
the “how” the application achieves its purpose, the “what” happens when
things change and evolve or fail, are frequently implicit (this means they
are in somebody’s head) at best. At worst, they are simply not addressed in
any way that can be described in terms other than accidental. Frequently,
when I ask for an overview of the application architecture and the driving
non-functional requirements at the first technical meeting, people start
drawing on a whiteboard. Or they show me code. Either of these is rarely a
good sign.

The problems and risks of poor architectural practices are well known
and documented within the software engineering profession. A large body
of excellent architectural knowledge is captured in broadly accessible
books, journals and reports from members of the Software Engineering In-
stitute (SEI), Siemens and various other renowned industrial and academic
institutions.

So, I pondered further, why is this information on best practices and
tools not permeating through the IT industry? In response, I can only posit
the following.

In general, the many sources of software architecture information are
extremely thorough, learned and lengthy, requiring a serious investment of
time to fully digest. The SEI books, for example, are based upon many
years of experience working in mostly in military applications. These typi-
cally comprise large embedded, real-time software systems, with a set of
architectural approaches and issues that have a particular emphasis to this
application domain. For example, many of the case studies are about avi-

Preface IX

onics, flight simulation, and engine control applications, and present solu-
tions, such as fixed priority scheduling and process distribution, to the
problems that are encountered in such systems.

I suspect this emphasis on military and embedded domains makes these
materials a difficult read for IT software professionals who are unfamiliar
with the problems and solutions described. The vocabularies used tend to-
wards those that are prevalent in academic circles – I still have not heard
many IT architects discuss architectural styles, connectors or the merits of
formal architecture description languages. They do though discuss archi-
tecture and design patterns, middleware and use UML and informal tech-
niques to model aspects of their architectures.

Further, in the software architecture literature, there is little discussion
of the types of off-the-shelf technologies that are commonly used to ad-
dress architectural problems in business information systems. Fixed prior-
ity schedulers and embedded operating systems are mostly irrelevant in in-
formation systems. Application servers, component technologies and
messaging infrastructures are the basic building blocks that are important
to an IT architect. These are the foundations of the architectures of modern
information systems. It is therefore essential that architects understand
how these technologies can be leveraged to effectively provide the archi-
tectural mechanisms required by a given application.

This book, then, is an attempt to bridge the gap between the needs of IT
professionals and the current body of knowledge in software architecture.

• It attempts to provide clear and concise discussions about the issues,
techniques and methods that are at the heart of sound architectural prac-
tices.

• It describes and analyzes the general purpose component and middle-
ware technologies that support many of the fundamental architectural
patterns used in applications.

• It looks forward to how changes in technologies and practices may af-
fect the next generation of business information systems.

• It uses familiar information systems as examples, taken from the au-
thor’s experiences in banking, e-commerce and government information
systems.

• It also provides pointers and references to existing work on software ar-
chitecture.

If you work as an architect or senior designer, or you want to one day,
this book should be of value to you. And if you’re a student who is study-
ing software engineering and need an overview of the field of software ar-

X Preface

chitecture, this book should be an approachable and useful first source of
information. It certainly won’t tell you everything you need to know – that
will take a lot more than can be included in a book of such modest length.
But it aims to convey the essence of architectural thinking, practices and
supporting technologies, and to position the reader to delve more deeply
into areas that are pertinent to their professional life and interests.

Outline

The book is structured into three basic sections. The first is introductory in
nature, and approachable by a relatively non-technical reader wanting an
overview of software architecture.

The second section is the most technical in nature. It describes the es-
sential skills and technical knowledge that an IT architect needs.

The third is forward looking. Six chapters each introduce an emerging
area of software practice or technology. These are suitable for existing ar-
chitects and designers, as well as people who’ve read the first two sections,
and who wish to gain insights into the future influences on their profes-
sion.

More specifically:

• Chapters 1–3: These chapters provide the introductory material for the
rest of the book, and the area of software architecture itself. Chapter 1
discusses the key elements of software architecture, and describes the
roles of a software architect. Chapter 2 introduces the requirements for a
case study problem, a design for which is presented in Chapter 7.This
demonstrates the type of problem and associated description that a soft-
ware architect typically works on. Chapter 3 analyzes the elements of
some key quality attributes like scalability, performance and availabil-
ity. Architects spend a lot of time addressing the quality attribute re-
quirements for applications. It’s therefore essential that these quality at-
tributes are well understood, as they are fundamental elements of the
knowledge of an architect.

• Chapters 4–7: These chapters are the technical backbone of the book.
Chapter 4 introduces a range of middleware technologies that architects
commonly leverage in application solutions. Chapter 5 presents a three
stage iterative software architecture process. It describes the essential
tasks and documents that involve an architect. Chapter 6 discusses ar-
chitecture documentation, and focuses on the new notations available in
the UML version 2.0. Chapter 7 brings together the information in the
first 6 chapters, showing how middleware technologies can be used to

Preface XI

address the quality attribute requirements for the case study. It also
demonstrates the use of the documentation template described in Chap-
ter 6 for documenting an application architecture.

• Chapters 8–14: These chapters each focus on an emerging technique or
technology that will likely influence the futures of software architects.
These include software product lines, model-driven architecture, aspect-
oriented architecture, service-oriented architectures and Web services,
the Semantic Web and agent technologies. Each chapter introduces the
essential elements of the method or technology, describes the state-or-
the-art and speculates about how increasing adoption is likely to affect
the required skills and practices of a software architect.

Acknowledgements

First, thanks to the chapter contributors who have helped provide the con-
tent on software product lines (Mark Staples), aspect-oriented program-
ming (Jenny Liu), model-driven development (Liming Zhu), Web services
(Paul Greenfield) and the Semantic Web (Judi Thomson). Your efforts and
patience are greatly appreciated. Contact details for the contributing au-
thors are as follows:

Dr Mark Staples, Empirical Software Engineering, National ICT Australia,
email: mark.staples@nicta.com.au

Dr Liming Zhu, Empirical Software Engineering, National ICT Australia,
email: liming.zhu@nicta.com.au

Dr Yan Liu, Empirical Software Engineering, National ICT Australia,
email: jenny.liu@nicta.com.au

Paul Greenfield, School of IT, University of Sydney,
email: p.greenfield@computer.org

Dr Judi McCuaig, University of Guelph, Canada,
email: judi@cis.uguelph.ca

I’d also like to thank everyone at Springer who has helped make this book
a reality, especially the editor, Ralf Gerstner.

I’d also like to acknowledge the many talented software architects, en-
gineers and researchers who I’ve worked closely with recently and/or who
have helped shape my thinking and experience through long and entertain-
ing geeky discussions. In no particular order these are Anna Liu, Paul
Greenfield, Shiping Chen, Paul Brebner, Jenny Liu, John Colton, Dave

XII Preface

Thurman, Jereme Haack, Sven Overhage, John Grundy, Muhammad Ali
Babar, Justin Almquist, Rik Littlefield, Kevin Dorow, Steffen Becker,
Ranata Johnson, Len Bass, Lei Hu, Jim Thomas, Deb Gracio, Nihar
Trivedi, Paula Cowley, Jim Webber, Adrienne Andrew, Dan Adams, Dean
Kuo, John Hoskins, Shuping Ran, Doug Palmer, Nick Cramer, Liming
Zhu, Ralf Reussner, Mark Hoza, Shijian Lu, Andrew Cowell, Tariq Al
Naeem, Wendy Cowley and Alan Fekete.

Ian Gorton
March 2006

Table of Contents

1 Understanding Software Architecture..1
1.1 What is Software Architecture? ...1
1.2 Definitions of Software Architecture2

1.2.1 Architecture Defines Structure3
1.2.2 Architecture Specifies Component Communication5
1.2.3 Architecture Addresses Non-functional Requirements ..6
1.2.4 Architecture is an Abstraction ..6
1.2.5 Architecture Views ...8

1.3 What Does a Software Architect Do?10
1.4 Architectures and Technologies ...11
1.5 Summary ..13
1.6 Further Reading..13

1.6.1 General Architecture...13
1.6.2 Architecture Requirements ...14
1.6.3 Architecture Patterns ..14
1.6.4 Technology Comparisons ...15

2 Introducing the Case Study ...17
2.1 Requirements Overview...17
2.2 Project Context...18
2.3 Business Goals ...20
2.4 Constraints..21
2.5 Summary ..21

3 Software Quality Attributes...23
3.1 Quality Attributes...23
3.2 Performance ...24

3.2.1 Throughput ...25
3.2.2 Response Time ...25
3.2.3 Deadlines ..26
3.2.4 Performance for the ICDE System27

3.3 Scalability...27
3.3.1 Request Load ..28
3.3.2 Simultaneous Connections..29

XIV Contents

3.3.3 Data Size...30
3.3.4 Deployment ..31
3.3.5 Some Thoughts on Scalability31
3.3.6 Scalability for the ICDE Application31

3.4 Modifiability ..31
3.4.1 Modifiability for the ICDE Application33

3.5 Security ..33
3.5.1 Security for the ICDE Application34

3.6 Availability...34
3.6.1 Availability for the ICDE Application35

3.7 Integration ..35
3.7.1 Integration for the ICDE Application36

3.8 Other Quality Attributes...37
3.9 Design Trade-Offs..38
3.10 Summary ..38
3.11 Further Reading..39

4 A Guide to Middleware Architectures and Technologies41
4.1 Introduction ..41
4.2 Technology Classification..42
4.3 Distributed Objects...43
4.4 Message-Oriented Middleware ..46

4.4.1 Message-Oriented Middleware Basics46
4.4.2 Exploiting Message Oriented Middleware Advanced
Features ...49
4.4.3 Publish-Subscribe ...54

4.5 Application Servers ..59
4.5.1 Enterprise JavaBeans..60
4.5.2 EJB Component Model ..61
4.5.3 EJB Programming...63
4.5.4 Deployment Descriptors ...67
4.5.5 Responsibilities of the EJB Container69
4.5.6 Some Thoughts ...70

4.6 Message Brokers ..71
4.7 Business Process Orchestration..78
4.8 Integration Architecture Issues...82
4.9 Summary ..87
4.10 Further Reading..88

4.10.1 CORBA ..88
4.10.2 Message-Oriented Middleware...................................88
4.10.3 Application Servers ..89
4.10.4 Integration Middleware ..89

Contents XV

5 A Software Architecture Process ..91
5.1 Process Outline...91

5.1.1 Determine Architectural Requirements92
5.1.2 Identifying Architecture Requirements93
5.1.3 Prioritizing Architecture Requirements94

5.2 Architecture Design ...95
5.2.1 Choosing the Architecture Framework.........................97
5.2.2 Allocate Components ...106

5.3 Validation...108
5.3.1 Using Scenarios ..109
5.3.2 Prototyping ...112

5.4 Summary and Further Reading ..113

6 Documenting a Software Architecture ...115
6.1 Introduction..115
6.2 What to Document ...116
6.3 UML 2.0...117
6.4 Architecture Views...119
6.5 More on Component Diagrams..122
6.6 Architecture Documentation Template125
6.7 Summary and Further Reading ..126

7 Case Study Design ..129
7.1 Overview ..129
7.2 ICDE Technical Issues ...129

7.2.1 Large Data ..129
7.2.2 Notification...131
7.2.3 Data Abstraction ...132
7.2.4 Platform and Distribution Issues132
7.2.5 API Issues...132
7.2.6 Discussion...133

7.3 ICDE Architecture Requirements134
7.3.1 Overview of Key Objectives134
7.3.2 Architecture Use Cases...134
7.3.3 Stakeholder Architectural Requirements135
7.3.4 Constraints ..137
7.3.5 Non-functional Requirements.....................................137
7.3.6 Risks ...138

7.4 ICDE Solution..138
7.4.1 Relevant Architectural Patterns138
7.4.2 Architecture Overview..138
7.4.3 Structural Views ...139
7.4.4 Behavioral Views ...143

XVI Contents

7.4.5 Implementation Issues ..146
7.5 Architecture Analysis...147

7.5.1 Scenario Analysis ...147
7.5.2 Risks ...148

7.6 Summary ..148

8 Looking Forward..149
8.1 The Challenges of Complexity...149

8.1.1 Business Process Complexity.....................................150
8.1.2 Agility...151
8.1.3 Reduced Costs ..152

8.2 What Next?...154

9 Software Product Lines..155
9.1 Product Lines for ICDE..155
9.2 Software Product Lines ..156
9.3 Benefiting from SPL Development....................................158

9.3.1 Product Lines for ICDE..160
9.4 Product Line Architecture ..160

9.4.1 Reuse Mechanisms ...161
9.4.2 SCM for Reuse ...163
9.4.3 Variation Mechanisms..164
9.4.4 Product Line Architecture for ICDE...........................166

9.5 Adopting Software Product Line Development166
9.5.1 Starting Points for Adopting SPL Development.........167

9.6 Product Line Adoption Practice Areas...............................169
9.6.1 Product Line Adoption for ICDE170

9.7 Ongoing Software Product Line Development170
9.7.1 Change Control...171
9.7.2 Architectural Evolution for SPL Development173
9.7.3 Product Line Development Practice Areas.................174
9.7.4 Product Lines with ICDE ...174

9.8 Conclusions ..176
9.9 Further Reading..177

10 Aspect Oriented Architectures ..179
10.1 Aspects for ICDE Development...179

10.1.1 Introduction to Aspect-Oriented Programming180
10.1.2 Crosscutting Concerns..181
10.1.3 Managing Concerns with Aspects181
10.1.4 AOP Syntax and Programming Model182
10.1.5 Weaving..184
10.1.6 Example of a Cache Aspect......................................185

Contents XVII

10.2 Aspect-Oriented Architectures...186
10.2.1 Architectural Aspects and Middleware.....................187

10.3 State-of-the-Art ..188
10.3.1 Aspect Oriented Modeling in UML..........................188
10.3.2 AOP Tools ..189
10.3.3 Annotations and AOP...189

10.4 Performance Monitoring of ICDE with AspectWerkz.......190
10.5 Conclusions ..194
10.6 Futhur Reading...195

11 Model-Driven Architecture..197
11.1 Model-Driven Development for ICDE197
11.2 What is MDA ...199
11.3 Why MDA?..202

11.3.1 Portability ...203
11.3.2 Interoperability ...203
11.3.3 Reusability..204

11.4 State-of-Art Practices and Tools ..205
11.4.1 AndroMDA...205
11.4.2 ArcStyler...206
11.4.3 Eclipse Modelling Framework (EMF)......................206

11.5 MDA and Software Architecture207
11.5.1 MDA and Non-Functional Requirements.................208
11.5.2 Model Transformation and Software Architecture ...208
11.5.3 SOA and MDA ...209
11.5.4 Analytical Models are Models too............................210

11.6 MDA for ICDE Capacity Planning211
11.7 Summary and Further Reading ..214

12 Service-Oriented Architectures and Technologies217
12.1 Service-Oriented Architecture for ICDE............................217
12.2 Background ..218
12.3 Service-Oriented Systems ..219

12.3.1 Boundaries are Explicit...222
12.3.2 Services are Autonomous ...223
12.3.3 Share Schemas and Contracts, not Implementations 224
12.3.4 Service Compatibility is Based on Policy.................224

12.4 Web Services..225
12.5 SOAP and Messaging ..227
12.6 UDDI, WSDL and Metadata..230
12.7 Security, Transactions and Reliability232
12.8 Web Services and the Future of Middleware233
12.9 ICDE with Web Services ...234

XVIII Contents

12.10 Conclusion and Further Reading..236

13 The Semantic Web..239
13.1 ICDE and the Semantic Web ...239
13.2 Adaptive, Automated, and Distributed...............................240
13.3 The Semantic Web ...241

13.3.1 Metadata ...241
13.3.2 Semantics..244

13.4 Ontologies in ICDE..246
13.5 Semantic Web Services..248
13.6 Cautious Optimism...249
13.7 Further Reading..251

14 Software Agents: An Architectural Perspective253
14.1 Agents in the ICDE Environment253
14.2 What is an Agent? ..253
14.3 Abstraction Revisited ...257
14.4 An Example Agent Technology...258
14.5 Architectural Implications..264

14.5.1 Concurrency ...264
14.5.2 Scalability ...264
14.5.3 Mobility ..266

14.6 Agent Technologies ...267
14.7 Conclusions ..267
14.8 Further Reading..268

15 Concluding Thoughts ...271
15.1 Challenges ..271

15.1.1 Architecture Knowledge Management271
15.1.2 Adaptive Architectures ...273

1 Understanding Software Architecture

1.1 What is Software Architecture?

The last decade has seen a tremendous rise in the prominence of a software
engineering sub-discipline known as software architecture. Technical Ar-
chitects and Chief Architects are job titles that now abound in the software
industry. There’s a Worldwide Institute of Software Architects1, and even a
certain well-known wealthiest person on earth has architect in his job title.
It can’t be a bad gig, then?

I have a sneaking suspicion that “architecture” is one of the most over-
used and least understood terms in professional software development cir-
cles. I hear it regularly misused in such diverse forums as project reviews
and discussions, academic paper presentations at conferences and product
pitches. You know a term is gradually becoming vacuous when it becomes
part of the vernacular of the software industry sales force.

This book is about software architecture. Its aim is to concisely describe
the essential elements of knowledge and key skills that are required to be a
software architect in the software and information technology (IT) indus-
try. Conciseness is a key objective. For this reason, by no means every-
thing an architect needs to know will be covered. If you want or need to
know more, each chapter will point you to additional worthy and useful re-
sources that can lead to far greater illumination.

So, without further ado, let’s try and figure out what, at least I think,
software architecture really is. The remainder of this chapter will address
this question, as well as briefly introducing the major tasks of an architect,
and the relationship between architecture and technology in IT applica-
tions.

1 http://www.wwisa.org/

2 1 Understanding Software Architecture

1.2 Definitions of Software Architecture

Trying to define a term such as software architecture is always a poten-
tially dangerous activity. There really is no widely accepted definition by
the industry. To understand the diversity in views, have a browse through
the list maintained by the Software Engineering Institute2. There’s a lot.
Reading these reminds me of an anonymous quote I heard on a satirical ra-
dio program recently, which went something along the lines of ‘the reason
academic debate is so vigorous is that there is so little at stake’.

I’ve no intention of adding to this debate. Instead, let’s examine three
definitions. As an IEEE member, I of course naturally start with the defini-
tion adopted by my professional body:

“Architecture is defined by the recommended practice as the fundamental
organization of a system, embodied in its components, their relationships
to each other and the environment, and the principles governing its design
and evolution.”
[ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural De-
scription of Software-Intensive Systems]

This lays the foundations for an understanding of the discipline. Archi-
tecture captures system structure in terms of components and how they in-
teract. It also defines system-wide design rules and considers how a system
may change.

Next, it’s always worth getting the latest perspective from some of the
leading thinkers in the field.

“The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among
them.”
[L.Bass, P.Clements, R.Kazman, Software Architecture in Practice (2nd
edition), Addison-Wesley 2003]

This builds somewhat on the above ANSI/IEEE definition, especially as
it makes the role of abstraction (i.e. externally visible properties) in an ar-
chitecture and multiple architecture views (structures of the system) ex-
plicit. Compare this with another, from Garlan and Shaw’s early influential
work:

2 http://www.sei.cmu.edu/architecture/definitions.html

1.2 Definitions of Software Architecture 3

“[Software architecture goes] beyond the algorithms and data structures
of the computation; designing and specifying the overall system structure
emerges as a new kind of problem. Structural issues include gross organi-
zation and global control structure; protocols for communication, syn-
chronization, and data access; assignment of functionality to design ele-
ments; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives.”
[D. Garlan, M. Shaw, An Introduction to Software Architecture, Advances
in Software Engineering and Knowledge Engineering, Volume I, World
Scientific, 1993]

It’s interesting to look at these, as there is much commonality. I include
the third mainly as it’s again explicit about certain issues, such as scalabil-
ity and distribution, which are implicit in the first two. Regardless, analyz-
ing these a little makes it possible to draw out some of the fundamental
characteristics of software architectures. These, along with some key ap-
proaches, are described below.

1.2.1 Architecture Defines Structure

Much of an architect’s time is concerned with how to sensibly partition an
application into a set of inter-related components, modules, objects or
whatever unit of software partitioning works for you3. Different applica-
tion requirements and constraints will define the precise meaning of “sen-
sibly” in the previous sentence – an architecture must be designed to meet
the specific requirements and constraints of the application it is intended
for.

For example, a requirement for an information management system may
be that the application is distributed across multiple sites, and a constraint
is that certain functionality and data must reside at each site. Or, an appli-
cation’s functionality must be accessible from a web browser. Both these
impose some structural constraints (site-specific, web server hosted), and
simultaneously open up avenues for considerable design creativity in parti-
tioning functionality across a collection of related components.

In partitioning an application, the architect assigns responsibilities to
each constituent component. These responsibilities define the tasks a com-
ponent can be relied upon to perform within the application. In this man-

3 Component here and in the remainder of this book is used very loosely to mean a

recognizable “chunk” of software, and not in the sense of the more strict defini-
tion in Szyperski C. (1998) Component Software: Beyond Object-Oriented Pro-
gramming, Addison-Wesley

4 1 Understanding Software Architecture

ner, each component plays a specific role in the application, and the over-
all component ensemble that comprises the architecture collaborates to
provide the required functionality.

Responsibility-driven design (see Wirfs-Brock in Further Reading) is a
technique from object-orientation that can be used effectively to help de-
fine the key components in an architecture. It provides a method based on
informal tools and techniques that emphasize behavioral modeling using
objects, responsibilities and collaborations. I’ve found this extremely help-
ful in past projects for structuring components at an architectural level.

Fig. 1. Two examples of component dependencies

A key structural issue for nearly all applications is minimizing depend-
encies between components, creating a loosely coupled architecture from a
set of highly cohesive components. A dependency exists between compo-
nents when a change in one potentially forces a change in others. By
eliminating unnecessary dependencies, changes are localized and do not
propagate throughout an architecture (see Fig. 1).

Excessive dependencies are simply a bad thing. They make it difficult to
make changes to systems, more expensive to test changes, they increase
build times, and they make concurrent, team-based development harder.

C1

Third Party
Component

'LDJUDP�.H\�
�

&RPSRQHQW�
�
�
�

'HSHQGHQF\�

C1 C2 C3 C4

C

Third Party
Component

AL

)RXU� FRPSRQHQWV� DUH� GLUHFWO\�
GHSHQGHQW� RQ� D� WKLUG� SDUW\�
FRPSRQHQW�� ,I� WKH� WKLUG� SDUW\�
FRPSRQHQW� LV� UHSODFHG�ZLWK�D�
QHZ� FRPSRQHQW� ZLWK� D� GLIIHU�
HQW�LQWHUIDFH��FKDQJHV�WR�HDFK�
FRPSRQHQW�DUH�OLNHO\��

2QO\� WKH�$/� �DEVWUDFWLR P�
SRQHQW� LV� GLUHFWO\� GHSHQGHQW� RQ� WKH�
WKLUG� SDUW\� FRPSRQHQW�� ,I� WKH� WKLUG�
SDUW\� FRPSRQHQW� LV� UHSODFHG��
FKDQJHV� DUH� UHVWULFWHG� WR� WKH� $/�
FRPSRQHQW�RQO\�

C2 C4 C3

1.2 Definitions of Software Architecture 5

1.2.2 Architecture Specifies Component Communication

When an application is divided into a set of components, it becomes neces-
sary to think about how these components communicate data and control
information. The components in an application may exist in the same ad-
dress space, and communicate via straightforward method calls. They may
execute in different threads or processes, and communicate through syn-
chronization mechanisms. Or multiple components may need to be simul-
taneously informed when an event occurs in the application’s environment.
There are many possibilities.

A body of work known collectively as architectural patterns or styles4

has catalogued a number of successfully used structures that facilitate cer-
tain kinds of component communication [see Patterns in Further Reading].
These patterns are essentially reusable architectural blueprints that de-
scribe the structure and interaction between collections of participating
components.

Each pattern has well-known characteristics that make it appropriate to
use to satisfy particular types of requirements. For example, the client-
server pattern has several useful characteristics, such as synchronous re-
quest-reply communications from client to server, and servers supporting
one or more clients through a published interface. Optionally, clients may
establish sessions with servers, which may maintain state about their con-
nected clients. Client-server architectures must also provide a mechanism
for clients to locate servers, handle errors, and optionally provide security
on server access. All these issues are addressed in the client-server archi-
tecture pattern.

The power of architecture patterns stems from their utility, and ability to
convey design information. Patterns are proven to work. If used appropri-
ately in an architecture, you leverage existing design knowledge by using
patterns.

Large systems tend to use multiple patterns, combined in ways that sat-
isfy the architecture requirements. When an architecture is based around
patterns, it also becomes easy for team members to understand a design, as
the pattern infers component structure, communications and abstract
mechanisms that must be provided. When someone tells me their system is
based on a three-tier client-server architecture, I know immediately a con-
siderable amount about their design. This is a very powerful communica-
tion mechanism indeed.

4 Patterns and styles are essentially the same thing, but as a leading software archi-

tecture author told me recently, “the patterns people won”. This book will there-
fore use patterns instead of styles!

6 1 Understanding Software Architecture

1.2.3 Architecture Addresses Non-functional Requirements

Non-functional requirements are the ones that don’t appear in use cases.
Rather than define what the application does, they are concerned with how
the application provides the required functionality.

There are three distinct areas of non-functional requirements:

• Technical constraints: These will be familiar to everyone. They con-
strain design options by specifying certain technologies that the applica-
tion must use. “We only have Java developers, so we must develop in
Java.” “The existing database runs on Windows XP only.” These are
usually non-negotiable.

• Business constraints: These too constraint design options, but for
business, not technical reasons. For example, “In order to widen our po-
tential customer base, we must interface with XYZ tools.” Another ex-
ample is “The supplier of our middleware has raised prices prohibi-
tively, so we’re moving to an open source version.” Most of the time,
these too are non-negotiable.

• Quality attributes These define an application’s requirements in terms
of scalability, availability, ease of change, portability, usability, per-
formance, and so on. Quality attributes address issues of concern to ap-
plication users, as well as other stakeholders like the project team itself
or the project sponsor. Chapter 3 discusses quality attributes in some de-
tail.

An application architecture must therefore explicitly address these as-
pects of the design. Architects need to understand the functional require-
ments, and create a platform that supports these and simultaneously satis-
fies the non-functional requirements.

1.2.4 Architecture is an Abstraction

One of the most useful, but often non-existent, descriptions from an archi-
tectural perspective is something that is colloquially known as a marketec-
ture. This is one page, typically informal depiction of the system’s struc-
ture and interactions. It shows the major components, their relationships
and has a few well chosen labels and text boxes that portray the design
philosophies embodied in the architecture. A marketecture is an excellent
vehicle for facilitating discussion by stakeholders during design, build, re-
view, and of course the sales process. It’s easy to understand and explain,
and serves as a starting point for deeper analysis.

1.2 Definitions of Software Architecture 7

A thoughtfully crafted marketecture is particularly useful because it is
an abstract description of the application. In reality, any architectural de-
scription must employ abstraction in order to be understandable by the
team members and project stakeholders. This means that unnecessary de-
tails are suppressed or ignored in order to focus attention and analysis on
the salient architectural issues. This is typically done by describing the
components in the architecture as black boxes, specifying only their exter-
nally visible properties. Of course, describing system structure and behav-
ior as collections of communicating black box abstractions is normal for
practitioners who use object-oriented design techniques.

One of the most powerful mechanisms for describing an architecture is
hierarchical decomposition. Components that appear in one level of de-
scription are decomposed in more detail in accompanying design docu-
mentation. As an example, Fig. 2 depicts a very simple two level hierarchy
using an informal notation, with two of the components in the top-level
diagram decomposed further.

Different levels of description in the hierarchy tend to be of interest to
different developers in a project. In Fig. 2 it’s likely that the three compo-
nents in the top level description will be designed and built by different
teams working on the application. The architecture clearly partitions the
responsibilities of each team, defining the dependencies between them.

In this hypothetical example, the architect has refined the design of two
of the components, presumably because some non-functional requirements
dictate that further definition is necessary. Perhaps an existing security
service must be used, or the Broker must provide a specific message rout-
ing function requiring a directory service that has a known level of
throughput. Regardless, this further refinement creates a structure that de-
fines and constrains the detailed design of these components.

The simple architecture in Fig. 2 doesn’t decompose the Client compo-
nent. This is, again presumably, because the internal structure and behavior
of the client is not significant in achieving the application’s overall non-
functional requirements. How the Client gets the information that is sent to
the Broker is not an issue that concerns the architect, and consequently the
detailed design is left open to the component’s development team. Of
course, the Client component could possibly be the most complex in the
application. It might have an internal architecture defined by its design
team, which meets specific quality goals for the Client component. These
are, however, localized concerns. It’s not necessary for the architect to
complicate the application architecture with such issues, as they can be
safely left to the Client design team to resolve.

8 1 Understanding Software Architecture

Fig. 2. Describing an architecture hierarchically

1.2.5 Architecture Views

A software architecture represents a complex design artifact. Not surpris-
ingly then, like most complex artifacts, there are a number of ways of
looking at and understanding an architecture. The term “architecture
views” rose to prominence in Philippe Krutchen’s 19955 paper on the 4+1
View Model. This presented a way of describing and understanding an ar-
chitecture based on the following four views:

• Logical view: This describes the architecturally significant elements of
the architecture and the relationships between them. The logical view
essentially captures the structure of the application using class diagrams
or equivalents.

• Process view: This focuses on describing the concurrency and commu-
nications elements of an architecture. In IT applications, the main con-
cerns are describing multi-threaded or replicated components, and the
synchronous or asynchronous communication mechanisms used.

5 P.Krutchen, Architectural Blueprints–The "4+1" View Model of Software Architecture,
IEEE Software, 12(6) Nov. 1995.

Client Broker Server

'LDJUDP�.H\�
�

����&RPSRQHQW�
�
�

'HSHQGHQF\�

C

7RS�/HYHO�$UFKLWHFWXUH�'HVFULSWLRQ�

Security
Server Message

Handler

Directory
Server Data

Store
Request
Handler

1.2 Definitions of Software Architecture 9

• Physical view: This depicts how the major processes and components
are mapped on to the applications hardware. It might show, for example,
how the database and web servers for an application are distributed
across a number of server machines.

• Development view: This captures the internal organization of the soft-
ware components, typically as they are held in a development environ-
ment or configuration management tool. For example, the depiction of a
nested package and class hierarchy for a Java application would repre-
sent the development view of an architecture.

These views are tied together by the architecturally significant use cases
(often called scenarios). These basically capture the requirements for the
architecture, and hence are related to more than one particular view. By
working through the steps in a particular use case, the architecture can be
“tested”, by explaining how the design elements in the architecture re-
spond to the behavior required in the use case. We’ll explore how to do
this ‘architecture testing’ in Chapter 5.

Since Krutchen’s paper, there’s been much thinking, experience and de-
velopment in the area of architecture views. Mostly notably is the work
from the SEI, colloquially known as the “Views and Beyond” approach
(see Further Reading). This recommends capturing an architecture model
using three different views:

• Module: This is a structural view of the architecture, comprising the
code modules such as classes, packages and subsystems in the design. It
also captures module decomposition, inheritance, associations and ag-
gregations.

• Component and Connector: This view describes the behavioral as-
pects of the architecture. Components are typically objects, threads or
processes, and the connectors describe how the components interact.
Common connectors are sockets, middleware like CORBA or shared
memory.

• Allocation: This view shows how the processes in the architecture are
mapped to hardware, and how they communicate using networks and/or
databases. It also captures a view of the source code in the configuration
management systems, and who in the development group has responsi-
bility for each modules.

The terminology used in “Views and Beyond” is strongly influenced by
the architecture description language (ADL) research community. This
community has been influential in the world of software architecture, but

10 1 Understanding Software Architecture

has had limited impact on mainstream information technology. So while
this book will concentrate on two of these views, we’ll refer to them as the
structural view and the behavioral view. Discerning readers should be able
to work out the mapping between terminologies.

1.3 What Does a Software Architect Do?

The environment that a software architect works in tends to define their
exact roles and responsibilities. A good general description of the archi-
tect’s role is maintained by the SEI on their web site6. Instead of summa-
rizing this, I’ll briefly describe, in no particular order, four essential skills
for a software architect, regardless of their professional environment.

• Liaison: Architects play many liaison roles. They liaise between the
customers or clients of the application and the technical team, often in
conjunction with the business and requirements analysts. They liaise be-
tween the various engineering teams on a project, as the architecture is
central to each of these. They liaise with management, justifying de-
signs, decisions and costs. They liaise with the sales force, to help pro-
mote a system to potential purchasers or investors. Much of the time,
this liaison takes the form of simply translating and explaining different
terminology between different stakeholders.

• Software Engineering: Excellent design skills are what get a software
engineer to the position of architect. They are an essential pre-requisite
for the role. More broadly though, architects must promote good soft-
ware engineering practices. Their designs must be adequately docu-
mented and communicated and their plans must be explicit and justified.
They must understand the downstream impact of their decisions, work-
ing appropriately with the application testing, documentation and re-
lease teams.

• Technology Knowledge: Architects have a deep understanding of the
technology domains that are relevant to the types of applications they
work on. They are influential in evaluating and choosing third party
components and technologies. They track technology developments, and
understand how new standards, features and products might be usefully
exploited in their projects. Just as importantly, good architects know
what they don’t know.

6 http://www.sei.cmu.edu/ata/arch_duties.html

1.4 Architectures and Technologies 11

• Risk Management Good architects tend to be cautious. They are con-
stantly enumerating and evaluating the risks associated with the design
and technology choices they make. They document and manage these
risks in conjunction with project sponsors and management. They de-
velop and instigate risk mitigation strategies, and communicate these to
the relevant engineering teams. They try to make sure no unexpected
disasters occur.

Look for these skills in the architects you work with or hire. Architects
play a central role in software development, and must be multi-skilled in
software engineering, technology, management and communications.

1.4 Architectures and Technologies

Architects must make design decisions early in a project lifecycle. Many
of these are difficult, if not impossible, to validate and test until parts of
the system are actually built. Judicious prototyping of key architectural
components can help increase confidence in a design approach, but some-
times it’s still hard to be certain of the success of a particular design choice
in a given application context.

Due to the difficulty of validating early design decisions, architects sen-
sibly rely on tried and tested approaches for solving certain classes of
problems. This is one of the great values of architectural patterns. They
enable architects to reduce risk by leveraging successful designs with
known engineering attributes.

Patterns are an abstract representation of an architecture, in the sense
that they can be realized in multiple concrete forms. For example, the pub-
lish-subscribe architecture pattern describes an abstract mechanism for
loosely coupled, many-to-many communications between publishers of
messages and subscribers who wish to receive messages. It doesn’t how-
ever specify how publications and subscriptions are managed, what com-
munication protocols are used, what types of messages can be sent, and so
on. These are all considered implementation details.

Unfortunately, abstract descriptions of architectures don’t yet execute
on computers, either directly or through rigorous transformation. Until
they do, abstract architectures must be reified by software engineers as
concrete software implementations.

Fortunately, software products vendors have come to the rescue. Widely
utilized architectural patterns are supported in a variety of commercial off-
the-shelf (COTS) technologies. If a design calls for publish-subscribe mes-

12 1 Understanding Software Architecture

saging, or a message broker, or a three-tier architecture, then the choices of
available technology are many and varied indeed. This is an example of
software technologies providing reusable, application-independent soft-
ware infrastructures that implement proven architectural approaches.

Fig. 3. Mapping between logical architectural patterns and concrete technologies�

As Fig. 3 depicts, several classes of COTS technologies are used in
practice to provide packaged implementations of architectural patterns for
use in IT systems. Within each class, competing commercial and open
source products exist. Although these products are superficially similar,
they will have differing feature sets, be implemented differently and have
varying constraints on their use.

Architects are somewhat simultaneously blessed and cursed with this
diversity of product choice. Competition between product vendors drives
innovation, better feature sets and implementations, and lower prices, but it
also places a burden on the architect to select a product that has quality at-
tributes that satisfy the application requirements. All applications are dif-
ferent in some ways, and there is rarely, if ever, a one-size-fits-all product
match. Different COTS technology implementations have different sets of
strengths and weaknesses and costs, and consequently will be better suited
to some types of applications than others.

The difficulty for architects is in understanding these strengths and
weaknesses early in the development cycle for a project, and choosing an
appropriate reification of the architectural patterns they need. Unfortu-
nately, this is not an easy task, and the risks and costs associated with se-
lecting an inappropriate technology are high. The history of the software
industry is littered with poor choices and subsequent failed projects.

Chapter 4 provides a detailed description and analysis of these infra-
structural technologies.

Architectural Patterns/Styles

Application
Servers

Messag-
ing

Message
Brokers

Object
Brokers

Process
Orchestration

&RQFUHWH�&276�WHFKQRORJLHV�

$EVWUDFW�

1.6 Further Reading 13

1.5 Summary

Software architecture is a fairly well defined and understood design disci-
pline. However, just because we know what it is and more or less what
needs doing, this doesn’t mean it’s mechanical or easy. Designing and
validating an architecture for a complex system is a creative exercise, re-
quiring considerable knowledge, experience and discipline. The difficulties
are exacerbated by the early lifecycle nature of much of the work of an ar-
chitect. To my mind, the following quote from Philippe Krutchen sums up
an architect’s role perfectly:

“The life of a software architect is a long (and sometimes painful) succes-
sion of sub-optimal decisions made partly in the dark”

The remainder of this book will describe methods and techniques that
can help you to shed at least some light on architectural design decisions.
Much of this light comes from understanding and leveraging design prin-
ciples and supporting technologies that have proven to work in the past.
Armed with this knowledge, you’ll be able to tackle complex architecture
problems with more confidence, and after a while, perhaps even a little pa-
nache.

1.6 Further Reading

There are lots of good books, reports and papers available in the software
architecture world. Below are some I’d especially recommend. These ex-
pand on the information and messages covered in this chapter.

1.6.1 General Architecture

In terms of defining the landscape of software architecture, and describing
their project experiences, mostly with defense projects, it’s difficult to go
past the following books from members of the Software Engineering Insti-
tute.

L. Bass, P. Clements, R Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley, 2003.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford. Documenting Software Architectures: Views and Be-
yond. Addison-Wesley, 2002.

14 1 Understanding Software Architecture

P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2002.

For a description of the ‘Decomposition Style’, see Documenting Soft-
ware Architecture, page 53. And for an excellent discussion of the uses re-
lationship and its implications, see the same book, page 68.

1.6.2 Architecture Requirements

The original book describing use-cases is:

I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley,
1992.

Responsibility-driven design is an incredibly useful technique for allo-
cating functionality to components and sub-systems in an architecture. The
following should be compulsory reading for architects.

R. Wirfs-Brock, A. McKean. Object Design: Roles, Responsibilities,
and Collaborations. Addison-Wesley, 2002.

1.6.3 Architecture Patterns

There’s a number of fine books on architecture patterns. Buschmann’s
work is an excellent introduction.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,. Pat-
tern-Oriented Software Architecture, Volume 1: A System of Patterns. John
Wiley & Sons, 1996.

D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Pattern-Oriented Soft-
ware Architecture, Volume 2, Patterns for Concurrent and Networked Ob-
jects. John Wiley & Sons, 2000.

Two recent books that focus more on patterns for enterprise systems,
especially enterprise application integrations, are well worth a read.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003

1.6 Further Reading 15

1.6.4 Technology Comparisons

A number of papers that emerged from the Middleware Technology
Evaluation (MTE) project give a good introduction into the issues and
complexities of technology comparisons.

P.Tran, J.Gosper, I.Gorton. Evaluating the Sustained Performance of
COTS-based Messaging Systems. in Software Testing, Verification and
Reliability, vol 13, pp 229-240, Wiley and Sons, 2003.

I.Gorton, A Liu. Performance Evaluation of Alternative Component Ar-
chitectures for Enterprise JavaBean Applications, in IEEE Internet Com-
puting, vol.7, no. 3, pages 18-23, 2003.

A.Liu, I. Gorton. Accelerating COTS Middleware Technology Acquisi-
tion: the i-MATE Process. in IEEE Software, pages 72-79,volume 20, no.
2, March/April 2003.

