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Abstract. Developing a good software architecture for a complex sys-
tem is a critically important step for insuring that the system will satisfy
its principal objectives. Unfortunately, today descriptions of software ar-
chitecture are largely based on informal “box-and-line” drawings that
are often ambiguous, incomplete, inconsistent, and unanalyzable. This
need not be the case. Over the past decade a number of researchers have
developed formal languages and associated analysis tools for software ar-
chitecture. In this paper I describe a number of the representative results
from this body of work.

1 Introduction

The field of software architecture is concerned with the design and modeling of
systems at a level of abstraction that reveals their gross structure and allows
one to reason about key system properties, such as performance, reliability, and
security. Typically architectural modeling is done by describing a system as a set
of interacting components, where low-level implementation details are hidden,
and relevant high-level system level properties (such as expected throughputs,
latencies, and reliabilities) are exposed [29, 32].

Software architecture can be viewed as a level of design and system modeling
that forms a bridge between requirements and code. By providing a high-level
model of system structure it permits one to understand a system in much sim-
pler terms than is afforded by code level structures, such as classes, variables,
methods, and the like. Moreover, if characterized properly an architectural de-
scription should in principle allow one to argue that a system’s design satisfies
key requirements by appealing to abstract reasoning over the structure. Finally,
an architecture forms a blueprint for implementations, indicating what are the
principle loci of computation and data storage, the channels of communication,
and the interfaces through which communication takes place.

To illustrate with a simple example, consider a simple pipelined dataflow
architecture, in which streams of data are processed in linear fashion by a se-
quence of stream transformations, or “filters.” When annotated with properties
such as rates of processing, buffering capabilities of the channels, and expected
input rates, one can typically reason about expected throughput and latency of
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the overall system. Additionally, the architectural structure likely mirrors the
implementation structures For example, each filter might be implemented as a
separate process communicating over buffered, asynchronous channels provided
by the operating system.

Software architecture consequently plays a critical role in almost all aspects
of the software development lifecycle.

Requirements specification: Architectural design allows one to determine
what one can build, and what requirements are reasonable. Often an ar-
chitectural sketch is necessary to assess product viability. For example, a
preliminary architectural design might tell one whether subsecond response
time is a feasible requirement on a new client-server system.

System design: Software architecture is a form of high-level system design. It
typically determines the first, and most critical, system decomposition. A
system without a well-conceived architecture is doomed to failure.

Implementation: As noted, an architecture is often the blueprint for low-level
design and implementation. The components in an architectural description
typically represent subsystems in the implementation, where the architec-
tural interfaces correspond to the interfaces provided by an implementation.

Reuse: Most systems exhibit regular structures that represent instances of
reusable idioms. For example signal processing systems are often designed
as stream processing systems. Data-centric information systems are often
designed as 3-tiered client-server systems. More generally, software architec-
tures are a key component of product lines and frameworks. Those systems
exploit architectural (and coding) regularities across a family of systems to
make it possible to design and create new systems at low cost by specializing
a general framework to create a particular product.

Maintenance: Software architectures facilitate maintenance by clarifying the
system design, and enabling maintainers to understand the impact of changes.
Since maintenance can account for well over half of a system’s lifetime costs,
and a substantial portion of maintenance is simply understanding a sys-
tem in order to make a desired change, software architectures can be play a
significant role in maintenance.

Run time adaptation: Increasingly systems are expected to operate continu-
ously. Automated mechanisms for detecting and repairing system faults while
a system is running will likely become essential capabilities in future systems.
Software architecture can play an key role in supporting self adaptation, by
providing a reflective model that can be used as a basis for automated repair.

Unfortunately, the potential uses of software architecture are thwarted by to-
day’s relatively informal approaches to architectural representation, documenta-
tion, and analysis. Architectural designs are, more often than not, simply infor-
mal “box-and-line” diagrams accompanied by prose. While these representations
remain useful to practitioners [31] they suffer from their imprecision. Generally,
it is not possible to use them for analysis, to determine with confidence whether
some property holds of a system, whether a design is complete or consistent,
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whether an implementation conforms to an architectural design, or whether a
proposed change violates an architectural principle.

In an effort to improve this situation many researchers have proposed formal
notations and tools to set architectural design on a more solid engineering foot-
ing. Indeed, over the past decade dozens of architectural description languages
(ADLs), numerous architectural evaluation methods, and many architectural
analysis tools have been proposed by researchers [14, 23].

In the remainder of this paper, we outline some of the ways in which formal
methods and notations can be brought to bear on software architecture. We
begin with a brief introduction to software architecture. Next we consider various
formal approaches to modeling and analyzing architectures. Then we briefly
consider automated support, and conclude by listing some of the more interesting
open research problems.

2 Software Architecture

Before characterizing ways in which we can apply formal modeling and analysis
to software architecture, it is important to be clear about what we mean by the
term. Definitions of software architecture abound. (The Software Engineering
Institute’s Web site catalogs more than 90 definitions [8].) A typical one is the
following:

The structure or structures of the system, which comprise software com-
ponents, the externally visible properties of those components, and the
relationships among them [6].

Unfortunately, as with most definitions of software architecture, this one begs the
questions: What structures? What is a component? What kinds of relationships
are relevant? What is an externally visible property?

In practice there are a number of kinds of structural decompositions of a
system [8, 18]. Each of these has a legitimate place in the design and description
of a complex software system, and each has its associated uses with respect to
modeling and analysis.

One of these is a code decomposition, in which the primary elements are
code modules (classes, packages, etc.). Relationships between these elements
typically determine code usage and functionality relationships (imports, calls,
inherits-from, etc.). Typical analyses include dependency analysis, portability
analysis, reuse analysis.

A second class of decomposition characterizes the run-time structures of a
system. Elements in such descriptions include the principal components of a sys-
tem that exist as a system is running (clients, servers, databases, etc.). Also im-
portant in such descriptions are the communication channels that determine how
the components interact. Relationships between these elements determine which
components can communicate with each other and how they do so. Analyses
of these structures address run-time properties, such as potential for deadlocks
and race conditions, reliability, performance, and security. Whether a particular
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analysis can be performed will usually depend on the kind of system. For exam-
ple, a queueing theoretic analysis might only be valid for a system composed of
components that process streams of requests submitted by clients. Or, a schedu-
lability analysis might only be valid for a system in which each component is
treated as a periodic process.

Other structural representations might emphasize the physical context in
which a system is deployed (processors, networks etc.), or developed (organiza-
tional teams or business units).

In this paper we focus on the second of these classes of structure: run-time de-
compositions emphasizing the principal computational elements and their com-
munication channels. Sometimes this is referred to as the “component and con-
nector” viewtype [8]. Indeed, in what follows, unless otherwise indicated, when
we refer to the software architecture a system, we will mean a component and
connector architectural view of it.

While systems can in principle be described as arbitrary compositions of
components and connectors, in practice there are a number of benefits to con-
straining the design space for architectures by associating an architectural style
with the architecture. An architectural style typically defines a vocabulary of
types for components, connectors, interfaces, and properties together with rules
that govern how elements of those types may be composed.

Requiring a system to conform to a style has many benefits, including support
for analysis, reuse, code generation, and system evolution [11, 34, 7]. Moreover,
the notion of style often maps well to widely-used component integration infras-
tructures (such as EJB, HLA, CORBA), which prescribe the kinds of components
allowed and the kinds of interactions that may take place between them.

3 Formal Approaches to Software Architecture

Since architectural description is a multi-faceted problem, it is helpful to classify
the properties of interest into several broad categories:

Structure: What are the principal components and the connectors that allow
those components to communicate? What kinds of interfaces do components
provide? What are the boundaries of subsystem encapsulation? Do the struc-
tures conform to any constraints on topology? Is the design complete?

Design Constraints: What design decisions should not change over time?
What assumptions are being made that should be preserved in the face
of future modification, or dynamically evolving architectures?

Style: What are the constraints implied by the architectural style? Does a given
system conform to constraints of a given architectural style? What analyses
are appropriate for a particular architectural style. What are the relation-
ships between different architectural styles? Is it possible to combine two
styles to produce a third one?

Behavior: What is the abstract behavior of each of the components? What
are the protocols of communication that are required for two components to
interact? Are the components behaviorally compatible? How does a system
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evolve structurally over time? Can we guarantee that all possible structures
that emerge at run time will satisfy some property?

Refinement: Does a more detailed representation, and in particular a concrete
implementation, respect the structure and properties of an architectural de-
sign?

Let us now consider how formal representations of software architecture can
address many of these questions.

3.1 Formalizing Architectural Structure

Over the past decade there has been considerable research devoted to the prob-
lem of providing more precise ways to characterize the structure of software
architectures, and to derive properties of those structures. Indeed, more than
a dozen Architecture Description Languages (or ADLs) have been proposed.
These notations usually provide both a conceptual framework and a concrete
syntax for modeling software architectures. They also typically provide tools for
parsing, unparsing, displaying, compiling, analyzing, or simulating architectural
descriptions written in their associated language.

Examples of ADLs include Aesop [11], Adage [9], C2 [22], Darwin [20],
Rapide [19], SADL [26], UniCon [30], Meta-H [7], and Wright [4]. While all of
these languages are concerned with architectural design, each provides certain
distinctive capabilities: Adage supports the description of architectural frame-
works for avionics navigation and guidance; Aesop supports the use of archi-
tectural styles; C2 supports the description of user interface systems using an
event-based style; Darwin supports the analysis of distributed message-passing
systems; Meta-H provides guidance for designers of real-time avionics control
software; Rapide allows architectural designs to be simulated, and has tools for
analyzing the results of those simulations; SADL provides a formal basis for
architectural refinement; UniCon has a high-level compiler for architectural de-
signs that support a mixture of heterogeneous component and connector types;
Wright supports the formal specification and analysis of interactions between
architectural components.

Although there is considerable diversity in the capabilities of different ADLs,
all share a similar conceptual basis [23], that determines a common foundation
for architectural description. The main elements are:

– Components represent the primary computational elements and data stores
of a system. Intuitively, they correspond to the boxes in box-and-line de-
scriptions of software architectures. Typical examples of components include
such things as clients, servers, filters, objects, blackboards, and databases. In
most ADLs components may have multiple interfaces, each interface defining
a point of interaction between a component and its environment.

– Connectors represent interactions among components. Computationally
speaking, connectors mediate the communication and coordination activi-
ties among components. That is, they provide the “glue” for architectural
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designs, and intuitively, they correspond to the lines in box-and-line descrip-
tions. Examples include simple forms of interaction, such as pipes, procedure
call, and event broadcast. But connectors may also represent more com-
plex interactions, such as a client-server protocol or a SQL link between a
database and an application. Connectors also have interfaces that define the
roles played by the various participants in the interaction represented by the
connector.

– Systems represent configurations (graphs) of components and connectors.
In modern ADLs a key property of system descriptions is that the overall
topology of a system is defined independently from the components and con-
nectors that make up the system. (This is in contrast to most programming
language module systems where dependencies are wired into components via
import clauses.) Systems may also be hierarchical: components and connec-
tors may represent subsystems that have “internal” architectures.

– Properties represent semantic information about a system and its compo-
nents that goes beyond structure. As noted earlier, different ADLs focus
on different properties, but virtually all provide some way to define one
or more extra-functional properties together with tools for analyzing those
properties. For example, some ADLs allow one to calculate overall system
throughput and latency based on performance estimates of each component
and connector [33].

– Constraints represent claims about an architectural design that should re-
main true even as it evolves over time. Typical constraints include restric-
tions on allowable values of properties, topology, and design vocabulary. For
example, an architecture might constrain its design so that the number of
clients of a particular server is less than some maximum value.

– Styles represent families of related systems. An architectural style typi-
cally defines a vocabulary of design element types and rules for compos-
ing them [32]. Examples include dataflow architectures based on graphs of
pipes and filters, blackboard architectures based on shared data space and
a set of knowledge sources, and layered systems. Some architectural styles
additionally prescribe a framework1 as a set of structural forms that spe-
cific applications can specialize. Examples include the traditional multistage
compiler framework, 3-tiered client-server systems, the OSI protocol stack,
and user interface management systems.

As a very simple illustrative example, consider a simple containing a client
and server component connected by a RPC connector. The server itself might be
represented by a subarchitecture. Properties of the connector might include the
protocol of interaction that it requires. Properties of the server might include the
1 Terminology distinguishing different kinds of families of architectures is far from

standard. Among the terms used are “product-line frameworks,” “component inte-
gration standards,” “kits,” “architectural patterns,” “styles,” “idioms,” and others.
For the purposes of this paper, the distinctions between these kinds of architectural
families is less important than the fact that they all represent a set of architectural
instances.
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average response time for requests. Constraints on the system might stipulate
that no more than five clients can ever be connected to this server and that
servers may not initiate communication with a client. The style of the system
might be a “client-server” style in which the vocabulary of design includes clients,
servers, and RPC connectors.

This conceptual basis of ADLs provides a natural way to model the run-
time architectures of systems. First, ADLs allow one to describe compositions
of components precisely, making explicit the ways in which those components
communicate. Second, they support hierarchical descriptions and encapsulation
of subsystems as components in a larger system. Third, they support the specifi-
cation and analysis of non-functional properties. Fourth, many ADLs provide an
explicit home for describing the detailed semantics of communication infrastruc-
ture (through specification of connector types). Fifth, ADLs allow one to define
constraints on system composition that make clear what kinds of compositions
are allowed. Finally, architectural styles allow one to make precise the differences
between kinds of component integration standards.

To be concrete, we now describe a representative ADL, called Acme [13]
Acme supports the definition of four distinct aspects of architecture. First is
structure—the organization of a system as a set of interacting parts. Second is
properties of interest—information about a system or its parts that allow one to
reason abstractly about overall behavior (both functional and extra-functional).
Third is constraints—guidelines for how the architecture can change over time.
Fourth is types and styles—defining classes and families of architecture.

Structure Architectural structure is defined in Acme using seven core types
of entities: components, connectors, systems, ports, roles, representations, and
rep-maps. Consistent with the vocabulary outlined earlier, Acme components
represent computational elements and data stores of a system. A component
may have multiple interfaces, each of which is termed a port. A port identifies
a point of interaction between the component and its environment, and can
represent an interface as simple as a single procedure signature. Alternatively, a
port can define a more complex interface, such as a collection of procedure calls
that must be invoked in certain specified orders, or an event multicast interface.

Acme connectors represent interactions among components. Connectors also
have interfaces that are defined by a set of roles. Each role of a connector defines
a participant of the interaction represented by the connector. Binary connectors
have two roles such as the caller and callee roles of an RPC connector, the reading
and writing roles of a pipe, or the sender and receiver roles of a message passing
connector. Other kinds of connectors may have more than two roles. For example
an event broadcast connector might have a single event-announcer role and an
arbitrary number of event-receiver roles.

Acme systems are defined as graphs in which the nodes represent components
and the arcs represent connectors. This is done by identifying which component
ports are attached to which connector roles.
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Figure 1 contains an Acme description of the simple architecture described
above. A client component is declared to have a single send-request port, and the
server has a single receive-request port. The connector has two roles designated
caller and callee. The topology of this system is defined by listing a set of
attachments that bind component ports to connector roles. In this case, the
client’s requesting port is bound to the rpc’s caller role, and the servers’s request-
handling port is bound to the rpc’s callee role.

System simple_cs = {
Component client = { Port sendRequest }
Component server = { Port receiveRequest }
Connector rpc = { Roles {caller, callee} }
Attachments : {

client.sendRequest to rpc.caller ;
server.receiveRequest to rpc.callee }

}

Fig. 1. Simple Client-Server System in Acme.

To support hierarchical descriptions of architectures, Acme permits any com-
ponent or connector to be represented by one or more detailed, lower-level de-
scriptions. Each such description is termed a representation.

When a component or connector has an architectural representation there
must be some way to indicate the correspondence between the internal system
representation and the external interface of the component or connector that
is being represented. A rep-map (short for “representation map”) defines this
correspondence. In the simplest case a rep-map provides an association between
internal ports and external ports (or, for connectors, internal roles, and external
roles).2 In other cases the map may be considerably more complex.

Figures 2 illustrates the use of representations in elaborating the simple
client-server example. In this case, the server component is elaborated by a
more detailed architectural representation.

Properties The seven classes of design element outlined above are sufficient
for defining the structure of an architecture as a graph of components and con-
nectors. However, there is more to architectural description than structure. But
what exactly? Looking at the range of ADLs, each typically has its own forms
of auxiliary information that determines such things as the run-time semantics
of the system, protocols of interaction, scheduling constraints, and resource con-
sumption. Clearly, the needs for documenting extra-structural properties of a
system’s architecture depend on the nature of the system, the kinds of analyses
required, the tools at hand, and the level of detail included in the description.
2 Note that rep-maps are not connectors: connectors define paths of interaction, while

rep-maps identify an abstraction relationship between sets of interface points.
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System simpleCS = {
Component client = { ... }
Component server = {

Port receiveRequest;
Representation serverDetails = {

System serverDetailsSys = {

Component connectionManager = {
Ports { externalSocket; securityCheckIntf; dbQueryIntf } }

Component securityManager = {
Ports { securityAuthorization; credentialQuery; } }

Component database = {
Ports { securityManagementIntf; queryIntf; } }

Connector SQLQuery = { Roles { caller; callee } }
Connector clearanceRequest = { Roles { requestor; grantor } }
Connector securityQuery = {

Roles { securityManager; requestor } }
Attachments {

connectionManager.securityCheckIntf to clearanceRequest.requestor;
securityManager.securityAuthorization to clearanceRequest.grantor;
connectionManager.dbQueryIntf to SQLQuery.caller;
database.queryIntf to SQLQuery.callee;
securityManager.credentialQuery to securityQuery.securityManager;
database.securityManagementIntf to securityQuery.requestor; }

}
Bindings { connectionManager.externalSocket to server.receiveRequest }

}
}
Connector rpc = { ... }
Attachments { client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

Fig. 2. Client-Server System with Representation.

To accommodate the open-ended requirements for specification of auxiliary
information, Acme supports annotation of architectural structure with arbitrary
lists of properties. Figure 3 shows the simple client-server system elaborated
with several properties. In the figure, properties document such things as the
client’s expected request rate and the location of its source code. For the rpc
connector, properties document the protocol of interaction described as a Wright
specification [4] (described in Section 3.4).

Properties serve to document details of an architecture relevant to its design
and analysis. However, from Acme’s point of view properties are uninterpreted
values—that is, they have no intrinsic semantics. Properties become useful, how-
ever, when tools use them for analysis, translation, display, and manipulation.
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System simple_cs = {
Component client = {

Port sendRequest;
Properties { requestRate : float = 17.0;

sourceCode : externalFile = "CODE-LIB/client.c" }}

Component server = {
Port receiveRequest;
Properties { idempotent : boolean = true;

maxConcurrentClients : integer = 1;
multithreaded : boolean = false;
sourceCode : externalFile = "CODE-LIB/server.c" }}

Connector rpc = {
Role caller;
Role callee;
Properties { synchronous : boolean = true;

maxRoles : integer = 2;
protocol : WrightSpec = "..." }}

Attachments {
client.send-request to rpc.caller ;
server.receive-request to rpc.callee }

}

Fig. 3. Client-Server System with Properties.

3.2 Formalizing Architectural Design Constraints

One of the key ingredients of an architecture model is a set of design constraints
that determine how an architectural design is permitted to evolve over time.
Acme uses a constraint language based on first order predicate logic. That is,
design constraints are expressed as predicates over architectural specifications.
The constraint language includes the standard set of logical constructs (con-
junction, disjunction, implication, quantification, and others). It also includes a
number of special functions that refer to architecture-specific aspects of a system.
For example, there are predicates to determine if two components are connected,
and if a component has a particular property. Other functions return the set of
components in a given system, the set of ports of a given component, the set of
representations of a connector, and so forth. Figure 4 lists a representative set
of example functions. (For a detailed description see [25].)

Constraints can be associated with any design element of an architectural
model. The scope of the constraint is determined by that association. For exam-
ple, if a constraint is attached to a system then it can refer to any of the design
elements contained within it (components, connectors, and their parts). On the
other hand, a constraint attached to a component can only refer to that compo-
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Connected(comp1, comp2) True if component comp1 is connected to
component comp2 by at least one connector

Reachable(comp1, comp2) True if component comp2 is in the transitive
closure of Connected(comp1, *)

HasProperty(elt, propName) True if element elt has a property called propName
HasType(elt, typeName) True if element elt has type typeName
SystemName.Connectors The set of connectors in system SystemName
ConnectorName.Roles The set of the roles in connector ConnectorName

Fig. 4. Sample Functions for Constraint Expressions.

nent (using the special keyword self , and its parts (that is, its ports, properties,
and representations).

To give a few examples, consider the following constraints that might be
associated with a system:

connected(client, server)

will be true if the components named client and server are connected directly
by a connector.

Forall conn : connector in systemInstance.Connectors @ size(conn.roles)
= 2

will be true of a system in which all of the connectors are binary connectors.

Forall conn : connector in systemInstance.Connectors @
Forall r : role in conn.Roles @

Exists comp : component in systemInstance.Components @
Exists p : port in comp.Ports @ attached(p,r) and (p.protocol

= r.protocol)

will be true when all connectors in the system are attached to a port, and the
attached (port, role) pair share the same protocol. Here the port and role protocol
values are represented as properties of the port and role design elements.

Constraints can also define the range of legal property values, as in

self.throughputRate >= 3095

and indicate relationships between properties, as in

comp.totalLatency =
(comp.readLatency + comp.processingLatency + comp.writeLatency)

Constraints may be attached to design elements in one of two ways: as an
invariant or a heuristic. In the first case, the constraint is taken to be a rule
that cannot be violated. In the second case, the constraint is taken to be a
rule that should be observed, but may be selectively violated. Tools that check
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for consistency will naturally treat these differently. A violation of an invariant
makes the architectural specification invalid, while a violation of a heuristic is
treated as a warning.

Figure 5 illustrates how constraints might be used for a hypothetical Mes-
sagePath connector. In this example an invariant prescribes the range of le-
gal buffer sizes, while a heuristic prescribes a maximum value for the expected
throughput.

System messagePathSystem = {
...
Connector MessagePath = {

Roles {source; sink;}
Property expectedThroughput : float = 512;
Invariant (queueBufferSize >= 512) and (queueBufferSize <= 4096);
Heuristic expectedThroughput <= (queueBufferSize / 2);

}
}

Fig. 5. MessagePath Connector with Invariants and Heuristics.

3.3 Formalizing Architectural Style

An important general capability for the description of architectures is the ability
to define styles—or families—of systems. Styles allow one to define a domain-
specific or application-specific design vocabulary, together with constraints on
how that vocabulary can be used. This in turn supports packaging of domain-
specific design expertise, use of special-purpose analysis and code-generation
tools, simplification of the design process, and the ability to check for confor-
mance to architectural standards.

The basic building block for defining styles in Acme is a type system that
can be used to encapsulate recurring structures and relationships. Using Acme
one can define types of components, connectors, ports, and roles. Each such
type provides a type name and a list of required substructure, properties, and
constraints.

Figure 6 illustrates the definition of a Client component type. The type
definition specifies that any component that is an instance of type Client must
have at least one port called Request and a property called request-rate of type
float. Further, the invariants associated with the type require that all ports of
a Client component have a protocol property whose value is rpc-client, that no
client more than 5 ports, that a component’s request rate is larger greater than
0. Finally, there is a heuristic indicating that the request-rate should be less than
100.
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Component Type Client = {
Port Request = {Property protocol: CSPprotocolT};
Property request-rate: Float;
Invariant Forall p in self.Ports @ p.protocol = rpc-client;
Invariant size(self.Ports) <= 5;
Invariant request-rate >= 0;
Heuristic request-rate < 100;

}

Fig. 6. Component Type “Client.”

An Acme style, or family3 is defined by specifying a set of types and a
set of constraints. The types provide the design vocabulary for the style. The
constraints determine how instances of those types can be used.

Figure 7 illustrates the definition of a “Pipe and Filter” style, together with
a sample system declaration using the style. The style defines two component
types, one connector type, and one property type. The single invariant of this
family prescribes that all connectors must be pipes. The system simplePF is
then defined as an instance of the style. This declaration allows the system to
make use of any of the types in the style, and it must satisfy all of the style’s
invariants.

But what does it mean for an instance to satisfy a type? In Acme, types
are interpreted as predicates, and asserting that an instance satisfies a type is
the same as asserting that it satisfies the predicate denoted by the type. The
predicate associated with a type is constructed by viewing declared structure
as asserting the existence of that structure in each instance. In other words, a
type defines the minimal structure of its instances.4 (Hence, in the example of
Figure 7 it is essential to include the invariant asserting that all connectors have
type pipe.)

The use of a predicate-based type system has several important consequences.
First, design elements (and systems) can have an arbitrary number of types. For
example, the fact that a structural element is declared to be of a particular
type, does not preclude it from satisfying other type specifications. This is an
important property since it permits, for example, a system to be considered a
valid instance of a style, even though it was not explicitly declared as such.

Second, the use of invariants fits smoothly within the type system. Adding a
invariant to a structural type or family simply conjoins that predicate with the
others in the type. This means that the type system becomes quite expressive –
essentially harnessing predicate logic to create useful type distinctions.

3 For historical reasons a “style” in Acme is termed a “family.”
4 The semantics of the Acme type system is similar to – but considerably simpler than

– that of other predicate-based type systems, such as the one used by PVS [28]. For
a formal treatment of the semantics, see [25].
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Family PipeFilterFam = {

Component Type FilterT = {
Ports { stdin; stdout; };
Property throughput : int;

};
Component Type UnixFilterT extends FilterT with {

Port stderr;
Property implementationFile : String;

};
Connector Type PipeT = {

Roles { source; sink; };
Property bufferSize : int;

};
Property Type StringMsgFormatT = Record [ size:int; msg:String; ];
Invariant Forall c in self.Connectors @ HasType(c, PipeT);

}

System simplePF : PipeFilterFam = {

Component smooth : FilterT = new FilterT
Component detectErrors : FilterT;
Component showTracks : UnixFilterT = new UnixFilterT extended with {

Property implementationFile : String = "IMPL_HOME/showTracks.c";
};

// Declare the system’s connectors
Connector firstPipe : PipeT;
Connector secondPipe : PipeT;

// Define the system’s topology
Attachments { smooth.stdout to firstPipe.source;

detectErrors.stdin to firstPipe.sink;
detectErrors.stdout to secondPipe.source;
showTracks.stdin to secondPipe.sink; }

}

Fig. 7. Definition of a Pipe-Filter Family.

Third, the process of type checking becomes one of checking satisfaction of
a set of predicates over declared structures. Hence, types play two useful roles:
(a) they encapsulate common, reusable structures and properties, and (b) they
support a powerful form of checkable redundancy.

The use of predicates does, however, raise the issue that, in general, checking
for satisfaction of predicates is not decidable. Therefore, systems that rely on
predicate-based type systems usually do so with the aid of a theorem prover
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(for example, PVS [28]). In Acme, however, we constrain the expressiveness of
types so that type checking remains decidable by ensuring that quantification
is only over finite sets of elements. (Finiteness comes from the fact that Acme
structures can only declare a finite number of subparts – components, ports,
representations, and others.)

3.4 Formalizing Architectural Behavior

In addition to formal modeling of architectural structure, properties, constraints
and styles, it is also useful to be able to model and analyze architectural be-
havior. By associating behavior with architectures, we are able to express much
richer semantic models, capturing things such as the fact that a pipe provides
buffered, order-preserving data transmission, or that a given component will call
the services of another component in some particular order. This in turn al-
lows us to attach analyze important properties, such as system deadlocks, race
conditions, and interface incompatibilities.

In principle there are many possible ways one might specify behavior of the
elements in an architectural model. Indeed, almost any formalism can be used,
and researchers have experimented with formal techniques ranging from pre-
post conditions [1], process algebras [4, 20], statecharts [5], POSets [19], rewrite
rules [17], and many others.

However, all of these have a similar flavor: (1) they document the individual
elements with behavior characterized in terms of abstract events, states and
transitions, and (2) they then perform various composition checks or simulations
to test for aggregate behavior, mismatches, deadlocks, and other anomalies.

Wright. To illustrate how this can be done, consider the Wright architecture
specification language [4]. Wright adopts an approach based on the process alge-
bra CSP [16]. Specifically it associates a CSP-like process with each component,
each component interface (port), each connector, and each connector interface
(role). The overall behavior is then a set of interacting protocols.

The notation used is a subset of CSP, containing the following elements:

– Processes and Events: A process describes an entity that can engage in
communication events.5 Events may be primitive or they can have associated
data (as in e?x and e!x, representing input and output of data, respectively).
The simplest process, STOP, is one that engages in no events. The event

√

is used represent the “success” event. The set of events that a process, P,
understands is termed the “alphabet of P,” or αP .

– Prefixing: A process that engages in event e and then becomes process P
is denoted e→P .

5 It should be clear that by using the term “process” we do not mean that the im-
plementation of the protocol would actually be carried out by a separate operating
system process. That is to say, processes are logical entities used to specify the
components and connectors of a software architecture.
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– Alternative: (“deterministic choice”) A process that can behave like P or
Q, where the choice is made by the environment, is denoted P Q. ( “Envi-
ronment” refers to the other processes that interact with the process.)

– Decision: (“non-deterministic choice”) A process that can behave like P or
Q, where the choice is made (non-deterministically) by the process itself, is
denoted P#Q.

– Named Processes: Process names can be associated with a (possibly re-
cursive) process expression. Unlike CSP, however, we restrict the syntax so
that only a finite number of process names can be introduced. We do not
permit, for example, names of the form Namei, where i can range over the
positive numbers.

In process expressions → associates to the right and binds tighter than either
or #. So e→f→P g→Q is equivalent to (e→(f→P )) (g→Q).

In addition to this standard notation from CSP we introduce three notational
conventions. First, we use the symbol § to represent a successfully terminating
process. This is the process that engages in the success event,

√
, and then stops.

(In CSP, this process is called SKIP.) Formally, § def=
√
→STOP. Second, we

allow the introduction of scoped process names, as follows: let Q = expr1 in R.
Third, as in CSP, we allow events and processes to be labeled. The event e
labeled with l is denoted l.e. The operator “:” allows us to label all of the events
in a process, so that l : P is the same process as P , but with each of its events
labeled. For our purposes we use the variant of this operator that does not label√

. We use the symbol Σ to represent the set of all unlabeled events.
This subset of CSP defines processes that are essentially finite state. It pro-

vides sequencing, alternation, and repetition, together with deterministic and
non-deterministic event transitions.

Connector Description. To see how this is used let us consider first how a
connector is specified. A connector type is specified by a set of roles processes
and a glue process. The roles describe the expected local behavior of each of the
interacting parties. For example, the client-server connector illustrated earlier
would have a client role and a server role. The client role process might describe
the client’s behavior as a sequence of alternating requests for service and receipts
of the results. The server role might describe the server’s behavior as the alter-
nate handling of requests and return of results. The glue specification describes
how the activities of the client and server roles are coordinated. It would say
that the activities must be sequenced in the order: client requests service, server
handles request, server provides result, client gets result.

This is how it would be written using the notation just outlined.

connector Service =
role Client = request!x→ result?y → Client # §
role Server = invoke?x→ return!y → Server §
glue = Client.request?x→ Service.invoke!x

→Service.return?y→Client.result!y→glue
§
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The Server role describes the communication behavior of the server. It is de-
fined as a process that repeatedly accepts an invocation and then returns; or it
can terminate with success instead of being invoked. Because we use the alter-
native operator ( ), the choice of invoke or

√
is determined by the environment

of that role (which, as we will see, consists of the other roles and the glue).
The Client role describes the communication behavior of the user of the ser-

vice. Similar to Server, it is a process that can call the service and then receive
the result repeatedly, or terminate. However, because we use the decision oper-
ator (#) in this case, the choice of whether to call the service or to terminate
is determined by the role process itself. Comparing the two roles, note that the
two choice operators allow us to distinguish formally between situations in which
a given role is obliged to provide some services – the case of Server – and the
situation where it may take advantage of some services if it chooses to do so –
the case of Client.

The glue process coordinates the behavior of the two roles by indicating how
the events of the roles work together. Here glue allows the Client role to decide
whether to call or terminate and then sequences the remaining three events and
their data.

The example above illustrates that the connector description language is
capable of expressing the traditional notion of providing and using a set of ser-
vices – the kind of connection supported by import/export clauses of module
interconnection.

As another illustration, consider two examples of a shared data connector.

connector Shared Data1 =
role User1 = set→User1 # get→User1 # §
role User2 = set→User2 # get→User2 # §
glue = User1.set→glue User2.set→glue

User1.get→glue User2.get→glue §

connector Shared Data2 =
role Initializer =

let A = set→A # get→A # §
in set→A

role User = set→User # get→User # §
glue = let Continue = Initializer.set→Continue

User.set→Continue
Initializer.get→Continue
User.get→Continue §

in Initializer.set→Continue §

The first, Shared Data1, indicates that the data does not require an explicit ini-
tialization value. The second, Shared Data2, indicates that there is a distinguished
role Initializer that must supply the initial value.

To take a more complex example, consider the following specification of a
pipe connector.
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connector Pipe =
role Writer = write→Writer # close→§
role Reader =

let ExitOnly = close→§
in let DoRead = (read→Reader

read-eof→ExitOnly)
in DoRead # ExitOnly

glue = let ReadOnly = Reader.read→ReadOnly
Reader.read-eof
→Reader.close →§
Reader.close→§

in let WriteOnly = Writer.write→WriteOnly
Writer.close→§

in Writer.write→glue
Reader.read→glue
Writer.close→ReadOnly
Reader.close→WriteOnly

It might appear to be a simple matter to define a pipe: both the writer
and the reader decide when and how many times they will write or read, after
which they will each close their side of the pipe. In fact, the writer role is just
that simple. The reader, on the other hand, must take other considerations into
account. There must be a way to inform the reader that there will be no more
data.

Connector Semantics. The intuition behind a connector description is that
the roles are treated as independent processes, constrained only by the glue,
which serves to coordinate and interleave the events. To make this idea precise
we use the CSP parallel composition operator, ‖, for interacting processes. The
process P1‖P2 is one whose behavior is permitted by both P1 and P2. That
is, for the events in the intersection of the processes’ alphabets, both processes
must agree to engage in the event. We can then take the meaning of a connector
description to be the parallel interaction of the glue and the roles, where the
alphabets of the roles and glue are arranged so that the desired coordination
occurs.

Hence, the meaning of a connector description with roles R1, R2, . . ., Rn,
and glue Glue is the process:

Glue ‖ (R1:R1 ‖ R2:R2 ‖ . . . ‖ Rn:Rn)

where Ri is the (distinct) name of role Ri, and

αGlue = R1:Σ ∪ R2:Σ ∪ . . . ∪ Rn:Σ ∪ {
√
}.

In this definition we arrange for the glue’s alphabet to be the union of all
possible events labeled by the respective role names (e.g. Client, Server), together
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with the
√

event. This allows the glue to interact with each role. In contrast,
(except for

√
) the role alphabets are disjoint and so each role can only interact

with the glue. Because
√

is not relabeled, all of the roles and glue can (and must)
agree on

√
for it to occur. In this way we ensure that successful termination of

a connector becomes the joint responsibility of all the parties involved.

Describing Components. Thus far we have concerned ourselves with the
definition of connector types. To complete the picture we must also describe the
ports of components and how those ports are attached to specific connector roles
in a complete software architecture.

In Wright, component ports are also specified by processes: The port process
defines the expected behavior of the component at that particular point of inter-
action. For example, a component that uses a shared data item only for reading
might be partially specified as follows:

component DataUser =
port DataRead = get→DataRead # §
other ports...

Since the port protocols define the actual behavior of the components when
those ports are associated with the roles, the port protocol takes the place of
the role protocol in the actual system. Thus, an attached connector is defined
by the protocol that results from the replacement of the role processes with
the associated port processes. More formally, the meaning of attaching ports
P1 . . . Pn as roles R1 . . . Rn of a connector with glue Glue is the process:

Glue ‖ (R1:P1 ‖ R2:P2 ‖ . . . ‖ Rn:Pn).

Note that this definition of attachment implies that port protocols need not
be identical to the role protocols that they replace. This is advantageous because
it allows greater opportunities for reuse. For instance, in the above example, the
DataUser component should be able to interact with another component (via a
shared data connector) even though it never needs to set. As another example,
we would expect to be able to attach a File port as the Reader role of a pipe (as
is commonly done in Unix when directing the output of a pipe to a file).

But this raises an important question: when is a port “compatible” with a
role? For example, it would be reasonable to forbid DataRead to be used as the
Initializer role for the Shared Data2 connectors, since it requires an initial set;
clearly DataRead will never provide this event.

Analyzing Architectural Behavior. Once one has a formal definition of
behavior there are a number of analyses that one can perform. The most obvious
one is checking that a connector is well-formed. That is to say, that the Glue
in combination with the roles does not lead to deadlock. Another useful check
is to investigate race conditions. This can be done by checking whether certain
events can ever occur out of order.
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Yet another check is to answer questions like “what ports may be used in
this role?” At first glance it might seem that the answer is obvious: simply check
that the port and role protocols are equivalent. But as illustrated earlier, it is
important to be able to attach a port that is not identical to the role. On the
other hand, we would like to make sure that the port fulfills its obligations to the
interaction. For example, if a role requires an initialization as the first operation
(cf., the shared data example), we would like to guarantee that any port actually
performs it.

Informally, we would like to be able to guarantee that an attached port
process always acts in a way that the corresponding role process is capable
of acting. This can be recast as follows: When in a situation predicted by the
protocol, the port must always continue the protocol in a way that the role could
have.

In CSP this intuitive notion is captured by the concept of refinement. Roughly,
process P2 refines P1 (written P1 & P2) if the behaviors of P1 include those of
P2. Technically, the definition is given in terms of the failures/divergences model
of CSP [16, Chapter 3]. For various technical reasons, however, the actual def-
inition of compatibility is a little more complex to define, although it captures
the same essential idea of refinement. (See [4] for details.)

As another check, one can investigate whether a port can be left unattached.
This can be done by seeing if the port will deadlock when connected to a “do
nothing” connector. Other checks are described in detail in [2].

Analyzing Reconfigurable Architectures Thus far the analysis has assumed
a static architecture: that is, the structure of the architecture does not change
during the execution of a system. While this is often a useful approximation to
systems, clearly in the general case systems do evolve structurally. At the very
least, during initialization the system must be created, and this is not likely to
be an atomic operation.

As another example, consider a simple client-server system, such as the one
illustrated earlier, but that allows for the possibility that a server may crash. In
such cases the system might reconfigure itself so that the client uses a backup
server. This can be done by adding a new connector during run time. One of the
things we would like to guarantee for such a system is that no client requests
are lost. This requires some constraints on when reconfiguration can happen.

Some work has been done to address these issues, although comparatively
that work is relatively sparse. In our own work we showed how to extend Wright
to handle dynamically changing topologies [3]. Others have looked at ways to
use the Pi Calculus to specify such things [20]. Others have looked at graph
grammars [24] and category-theoretic approaches [35]. Unfortunately, in all of
these cases the complexity of the specification becomes drastically higher, and
the models become much less tractable for static analysis.
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4 Automated Support

For all of the formal approaches outlined earlier, researchers have developed
numerous tools to aid in the modeling and analysis process for architects. Broadly
speaking there are three general categories of tools:

1. Design Assistants: These tools tend to focus on providing a graphical front
end to allow architects to develop designs. Typically they provide a pallet
of component and connector types that can be instantiated to create system
descriptions. Typical examples are environments such as C2 [22], MetaH [7],
Aesop [11], and Darwin [20].

2. Design Checkers: While automated support for architectural creation and
browsing is valuable, to be effective one must also provide analysis capabili-
ties. Hence, a number of tools have been created to perform various checks.
For example AcmeStudio [25] checks for violations of design constraints.
Wright provides a tool for performing the checks outlined earlier. Those
checks are based on the use of the FDR [10] model checker for CSP. Kramer
and Magee demonstrate how to use their LTSA tool to check specifications
written in their process algebra, FSP [21].

3. Code Generators: In many cases a formal definition of an architecture can
be used to generate system code. For example, the UniCon system handles
the generation of connector code for a wide variety of connector types [30].
Similarly C2 can generate partial implementations in using various infras-
tructures to handle component interaction.

5 Conclusion and Future Prospects

As we have tried to illustrate, software architecture is a field in which formal
modeling and analysis can have a major impact. While the state of practice
continues to rely on informal and semi-formal descriptions, considerable research
has been done to develop good formal models and associated tools for analyzing
them.

But the story is far from complete and there a number of areas in which
further research is needed. Here are a few.

– Scalability: Although some large case studies have been carried out (e.g.,
[5]), there are relatively few demonstrated success stories for large, complex
industrial systems. When systems have thousands of components, it is not
clear how well the representation techniques (particularly graphical ones)
scale. Nor is it clear whether analyses remain tractable. For example, many
analysis tools are based on model checkers, which have significant limitation
on the size of the model that can be checked.

– Dynamism: As noted earlier a key issue is modeling systems whose structure
changes at run time.

– Code conformance: One of the big problems is guaranteeing that an imple-
mentation conforms to its architectural specification. In situations where a



22 David Garlan

code generator is used it is often possible to guarantee conformance by con-
struction. But more generally, given an architecture and body of code, there
has been very little work on finding ways to make sure they are consistent.
The main problem is that architectures (as we have discussed them) repre-
sent run-time models, whereas code is obviously a design-time artifact. In
general it is undecidable whether a given body of code will generate a given
architecture.

There are also some intriguing new directions being explored in the area
of self-adaptive systems. Increasingly systems are required to run continuously.
Moreover they must often do this in the context of environments whose resources
are constantly changing (e.g., wireless bandwidth), or whose components may
be changing dynamically (e.g., web services). One approach that is being in-
vestigated by a number of researchers is the incorporation of self-adaptation or
self-healing into a system. The interesting question is how should one do this?

One approach is to use architectural models as the basis for system moni-
toring and repair [12, 15, 27]. The idea is that the architectural model becomes
available at run-time in order to understand whether a system is performing
optimally, and if not it can be used model to reason about reasonable repair
strategies at a high level of abstraction. While work is just beginning in this
area, it appears to be a promising avenue for future research.
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