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Abstract

Reo is a coordination model based on circuit-like connectors which coordinate components through the interplay of data
flow, synchronisation and mutual exclusion, state, and context-dependent behaviour. This paper proposes a scheme based on
connector colouring for determining the behaviour of a Reo connector by resolving its context dependent synchronisation and
mutual exclusion constraints. Colouring a Reo connector in a specific state with given boundary conditions (I/O requests) provides
a means to determine the routing alternatives for data flow. Our scheme has the advantage over previous models in that it is simpler
to implement and that it models Reo connectors more closely in terms of their envisaged semantics than existing formal models.
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1. Introduction

Coordination models and languages [1] have emerged as fundamental tools to address the problem of combining
concurrent, distributed, mobile and heterogenous components, and thus to reduce the intrinsic complexity of the
resulting systems. In this context, Reo [2] has been introduced as an exogenous coordination model for software
component composition using channels. Reo introduces component connectors which act as glue code that not only
connects, but also coordinates components in component-based systems. A component interacts with a connector to
which it is connected anonymously and without any knowledge of other components. From the point of view of a
connector, this means that it must coordinate the concurrent interactions of each of its connected components. Reo
uses an extensible set of channels as primitive connectors, from which designers build complex connectors.

As a specification language Reo supports a variety of architectural models [2]. To be used also as an implementation
language of connectors, Reo needs a formal computational model. This model should: (i) preserve as much as possible
the freedom Reo gives as a specification language; and (ii) facilitate connector implementation in a large-scale
distributed environment.

This paper presents a semantic model based on connector colouring for resolving the context dependent
synchronisation and mutual exclusion constraints required to determine the routing for data flow in Reo connectors.
This model aims to facilitate the data flow computation (and implementation) of Reo connectors in a distributed
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computing environment. This paper considers only connectors whose behaviour is insensitive to data values, and does
not cover Reo’s hide operation [3]. These latter issues will be addressed in future work.

Contribution. The model presented in this paper improves on the existing models of Reo in a number of ways.
Firstly, it differentiates the alternatives of the behaviour of a connector at a finer level of granularity than previous
Reo models [4,3], by considering the context of (the existence of) pending I/O operations at the boundary nodes of
a connector to determine the set of its actual behaviour alternatives. The result more closely models the informal
description of Reo’s behaviour [2]. Secondly, the main composition operator in our model has a number of formal
properties, namely, associativity, commutativity, and idempotency, that make it quite suitable for a distributed
implementation. Compared to less formal implementation schemes that require history computations and backtracking
to resolve various cycles in synchronous segments of a Reo connector, our model requires less mutual exclusion in
a distributed implementation, does not require backtracking, and allows concurrent parties to combine each other’s
partially computed results.

Paper Structure. Section 2 is a review of Reo connectors. We introduce connector colouring in Section 3, and
extend it to deal with context dependency in Section 4. An outline of our existing implementation and an approach
to distributing it are given in Section 5. In Sections 6 and 7, we discuss related and future work, and present our
conclusions.

2. Reo connectors

In this section, we present an overview of the Reo’s component connectors. For a full account of Reo, see Arbab’s
articles [2,4].

The emphasis in Reo is on connectors which act as exogenous coordinators to orchestrate the components that
they interconnect in a composed system. Channels constitute the only primitive connectors in Reo, each of which is a
point-to-point communication medium with two distinct ends. Reo uses a generalized notion of channel. In addition to
the common channel types (synchronous and asynchronous), with bounded or unbounded buffers, and with FIFO and
other ordering schemes, Reo allows an open-ended set of channels, each with its own, sometimes exotic, behaviour.
For instance, a channel in Reo need not have both an input end—accepting input—and an output end—producing
output; it can instead have two input ends or two output ends.

More complex connectors can be constructed out of simpler ones through connector composition. In Reo, channels
are composed by conjoining their ends to form nodes. A node may contain any number of channel ends. We classify
nodes into three different types, depending on the types of their coincident ends: an input node contains only input
channel ends; an output node contains only output channel ends; and a mixed node contains both kinds of channel end.

Components interact with a Reo connector using a simple interface. A component will have access to a number
of input and output nodes. Components perform I/O operations on input and output nodes only. The only way a
component may interact with a connector is by issuing the I/O operations (write and take) on these ends. A connector
can perform a write with some data on an input end, or a take on an ouput end. The write/take will succeed when
the connector either accepts the data of the write, or produces data for the take. It is by delaying these operations
that coordination is achieved. We refer to an I/O operation that is being delayed as a pending operation. In addition,
there are various operations for constructing and reconfiguring Reo connectors, but these are orthogonal to the issues
discussed in this paper.

Sync SyncDrain SyncSpout LossySync

AsyncDrain AsyncSpout FIFO1 FIFO1(x)
x

Fig. 1. Some basic channel types in Reo.

Fig. 1 shows some example channels, whose semantics appear in Section 3. At this stage, we give an informal
description of their behaviour. Sync denotes a synchronous channel. Data flows through this channel if and only if it is
possible simultaneously accept data on one end and pass it out the other end. SyncDrain denotes a synchronous drain.
Data flows into both ends of this channel only if it possible to simultaneously accept the data on both ends. SyncSpout
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denotes a synchronous spout. Data flows out of both ends of this channel only if it possible to simultaneously take the
data from both ends. LossySync denotes a lossy synchronous channel. If a take is pending on the output end of this
channel and a write is issued on the input end, then the channel behaves as a synchronous channel. However, if no
take is pending, the write can succeed, but the data is lost. Observe that this channel has context-dependent behaviour,
as it behaves differently depending upon the context — if it were context independent, the data could be lost even if a
take was present. AsyncDrain denotes an asynchronous drain. Data can flow into only one end of this channel to the
exclusion of data flow at the other end. AsyncSpout denotes an asynchronous spout. Data can flow out of only one end
of this channel to the exclusion of data flow at the other end. FIFO1 denotes an empty FIFO buffer. Data can flow into
the input end of this buffer, but no flow is possible at the output end. After data flows into the buffer, it becomes a full
FIFO buffer. FIFO1(x) denotes a full FIFO buffer. Data can flow out of the output end of this buffer, but no flow is
possible at the input end. After data flows out of the buffer, it becomes an empty FIFO buffer.

A write operation to an input node succeeds only if all (input) channel ends coincident on the node accept the data
item, in which case the data item is written to every input end coincident on the node. An input node thus acts as
a replicator. A take operation on an output node succeeds only if at least one of the output channel ends coincident
on the node offers a suitable data item; if more than one coincident channel end offers suitable data, one is selected
non-deterministically, at the exclusion of all others. An output node, thus, acts as a merger. A mixed node behaves like
a “pumping-station” that combines the behaviour of an output (merger) and an input node (replicator).

Fig. 2. Replicator and Merger, respectively.

To accurately model the behaviour of Reo nodes, we make the merge and replicate behaviour inherent in Reo
nodes explicit and, without loss of generality, model them using two additional primitive connectors: a replicator
and a merger (Fig. 2). The replicator primitive captures the replicator behaviour of an input node, whereas the
merger primitive models the behaviour of an output node. Informally, data will flow through a replicator if it can
simultaneously accept data on its input end and pass it to its two output ends. A merger permits the simultaneous flow
of data from exactly one of its input ends to its output end, to the exclusion of flow on its other input end, making
a non-deterministic choice if required. The mixed node, A, depicted in Fig. 3(a) is expressed in terms of the nodes
A1, . . . , A5 that are connected with one merger and one replicator, as shown in Fig. 3(b). Thus, all nodes in this paper
will consist of at most one input channel end and at most one output channel end.

A

A

A3

A4

A5

1A

A2

(a) (b)

Fig. 3. (a) Reo Node. (b) Node replaced by a merger and a replicator.

The term context in the title refers to the pending I/O requests on a connector’s boundary, that is, the context
in which a connector is used at a particular instant in time. A channel (hence connector) is said to exhibit context
dependent behaviour whenever the behaviour of the channel (hence connector) changes dramatically with changing
context. We use the phrase synchronisation constraints to denote the (context dependent) synchronisation and
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exclusion constraints imposed on the flow of data by Reo channels, replicators, and mergers. We define a routing
as a solution to some synchronisation constraints. It determines where the data should flow and should not flow. The
details of how to actually perform the flow are not a part of the routing. This paper presents a technique for solving
synchronisation constraints based on a connector colouring scheme. Context dependent synchronisation constraints
are solved using an extended connector colouring which can propagate context information to channel ends to dictate
their behaviour.

Although Reo connectors may look like electrical circuits and synchronous channels may lead the reader to
think of Reo connectors as synchronous systems (as in Esterel [5]), it would be wrong to equate Reo with either
model. Although the precise implementation details are more involved, a Reo connector is executed essentially in
two steps: (1) based on pending write/take, solve the synchronisation/exclusion constraints imposed by the channels
of a connector to determine where data can flow; and (2) send data in accordance with the solution in step (1). The
second step may not occur if no data flow is possible. In between steps (2) and (1), new write/take operations may
be performed on the channel ends, or existing ones may be retracted. Not all of the connector needs to be involved in
step (1) at the same time: FIFO buffers, for example, serve to divide connectors into synchronous slices which operate
more or less independently.

Reo is designed so that connectors will be deployed in a distributed setting, with components and Reo nodes
assigned to various machines across the network. We do not require that channels be mapped in a way that follows the
wires of the network, though our implementation will assume that channels could be laid out it such a manner. This
means that the underlying implementation will follow the topology of a connector when performing communications,
which in principle enables Reo to be used in situations of limited connectivity, such as in wireless sensor networks.

3. Basic connector colouring

The semantics of a Reo connector is defined as a composition of the semantics of its constituent channels and
nodes. We illustrate Reo’s semantics through an example, in part to give an understanding of how Reo works, but
also to motivate the upcoming notion of connector colouring. The connector in Fig. 4 is an exclusive router built

Fig. 4. Exclusive router connector.

by composing five Syncs, two LossySyncs and one SyncDrain. The intuitive behaviour of this connector is that data
obtained through its input node A is delivered to exactly one of its output nodes, F or G. If both F and G are willing
to accept data, then the node E non-deterministically selects which side of the connector will succeed in passing data.
The SyncDrain and the two Syncs in the node E conspire to ensure that data flows at precisely one of C and D, and
hence at F and G, whenever data flows at B. An informal, graphical way of depicting the possible data flow through
the exclusive router is by colouring where the data flows, as illustrated in Fig. 5, where the thick solid line marks
the parts of the connector where data flows, while unmarked parts correspond to the parts where no data flows. This
idea of colouring underlies our model. Note that we abstract away from the direction of data flow, as the channels
themselves determine this.

3.1. Colouring

Our model is based on the idea of marking data flow and its absence by colours. Each colouring of a connector is
a solution to the synchronisation constraints imposed by its channels and nodes. Let Colour denote the set of colours.
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Fig. 5. Possible data flow behaviour. The thick solid line marks the part of the connector where data flows synchronously. In unmarked parts, no
data flows.

A reasonable minimal set of colours is Colour = { , }, where the colour ‘ ’ marks places in the connector where
data flows, and the colour ‘ ’ marks the absence of data flow.

Reo semantics dictates that data is never stored or lost at nodes [2]. Thus, the data flow at one end attached to a
node must be the same as at the other end attached to the node. Either data will flow out of one end, through the node,
and into the other end, or there will be no flow at all. Hence, the two ends plugged together will be given the same
colour, and thus we just colour the node. Colouring nodes determines the colouring of their attached ends, which in
turn determines the colouring of the connector, and thus the data flow through the entire connector. Colouring all the
nodes of a connector, in a manner consistent with the colourings of its constituents, produces a valid description of
data flow through the connector. Channels and other primitive connectors then determine the actual data flow based
on the colouring of their ends.

The following definition formalizes the notion of a colouring. Let Node be a denumerable set of node names.

Definition 1 (Colouring). A colouring c : N → Colour for N ⊆ Node is a function that assigns a colour to every
node of a connector. �

Let’s consider a FIFO1 with input end n1 and output end n2. One of its possible colourings is the function
c1 : {n1 7→ , n2 7→ }, which describes the situation where data flows through the input end n1 and no data
flows through the output end n2.

Channels, nodes, and connectors typically have multiple possible colourings to model the alternative ways in
which they can behave in the different contexts in which they can be used. The collection of possible colourings of a
connector is represented by its colouring table.

Definition 2 (Colouring Table). A colouring table, T , over nodes N ⊆ Node is a set of colourings with
domain N . �

Colouring a connector involves composing the colourings of its constituents so that they agree on the colour of their
common nodes. To capture this notion, we define the binary operator, ‘·’, called join, which combines colouring tables.

Definition 3. The join of two tables T1 and T2, denoted T1 · T2, is defined: T1 · T2
.
= {c1 ∪ c2 | c1 ∈ T1, c2 ∈ T2, n ∈

dom(c1) ∩ dom(c2) ⇒ c1(n) = c2(n)}.

Here ∪ is the set-theoretic union on the graphs of the functions involved. The result is a function due to the side
condition. The join operation satisfies the following useful properties, where 1 = {∅} is the colouring table with an
empty colouring and 0 = ∅ is the empty colouring table. These properties are straightforward to prove.

Proposition 4. Given colouring tables T , T1, T2, T3. Then:

(1) T1 · (T2 · T3) ≡ (T1 · T2) · T3 (associativity)
(2) T1 · T2 ≡ T2 · T1 (commutativity)
(3) T1 · T1 ≡ T1 (idempotency)
(4) T · 1 ≡ 1 · T ≡ T (unit)
(5) T · 0 ≡ 0 · T ≡ 0 (zero)
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A consequence of these properties is that the “join” operation can form the basis of a distributed algorithm:
associativity and commutativity allow colouring tables to be computed in any order, and idempotency enables the
smooth handling of redundantly computed information, such as when two different concurrent computations of a
colouring reach the same part of a connector.

3.2. Primitives

A colouring table for a Reo connector describes the possible behaviour in a particular configuration (or snapshot)
of the connector, which includes the states of channels, plus the presence or absence of I/O requests. A colouring
corresponds to a possible next step based on that configuration. We choose as primitives: channels, mergers and
replicators, and I/O operations.

Definition 5 (Primitive). A primitive is a labelled tuple (n j1
1 , . . . , n jk

k )c, where for 0 < l ≤ k, nl ∈ Node, jl ∈ {i, o},
k ≥ 1 is the arity of the primitive, and c is its name, such that a node n appears at most as ni and no in (n j1

1 , . . . , n jk
k )c.

A primitive with colouring is a pair of a primitive with a colouring table T over the nodes of the primitive. �

The labels i and o indicate the direction of the end which is connected to node n. For example, (ai , bo)Sync denotes
a Sync whose first end is an input end connected to node a, and whose second end is an output end connected to node
b. A colouring table for this primitive has colourings with domain {a, b}. Labels i and o help ensure that connectors
are well-formed (Definition 6). We often omit such labels, tacitly assuming the well-formedness of connectors.

I/O operations. For each I/O request, a primitive colouring is used to denote whether it will be performed or delayed.
We model the presence of an I/O request as primitive (n j )�, and its absence as (n j )�, where j ∈ {i, o}. The colouring
tables for these primitives are T�

.
= {{n 7→ }} and T�

.
= {{n 7→ }, {n 7→ }}, depicted graphically as and

, respectively. The colouring tables T� and T� model the way components and connectors interact. T�
captures the possibilities when no I/O operation is requested on a node by a component: no data flows through that
node. T� captures the possibilities when a data flow request is made by a component: either the data will flow or the
connector will not allow it to do so.

I/O operations need to be modelled in colouring tables so that we can determine the context dependent behaviour
of a connector. It is the presence and absence of I/O operations on the boundary of a connector which give the context.

Replicators and mergers. The behaviour of replicators and mergers is dictated by the semantics of Reo nodes. Their
colouring tables are given in Fig. 6. A replicator connector, (ai , bo, co)Rep, only allows data to flow synchronously

Replicator Colouring Table

cb

a a

c b

Merger Colouring Table

b

c c c

a a bb a

Fig. 6. Colouring tables of a Replicator and a Merger.
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through all of its ends or none at all. When data flows, the data is replicated from a to b and c. A merger connector,
(ai , bi , co)Mer , allows data to flow synchronously from either a to c or from b to c with the exclusion of data flow at
the other end. If both alternatives are possible, one is selected non-deterministically.

Channels. Fig. 7 presents the colouring tables for a selection of channels. We include entries for both the empty and
full states of the FIFO1. As each channel has two ends which are connected to nodes, there are two colours (which
may be identical) for each channel colouring.

Channel type Sync SyncDrain SyncSpout FIFO1

Colouring Table

Channel type LossySync AsyncDrain AsyncSpout FIFO1(x)
x

Colouring Table

Fig. 7. Channels and their Colouring Tables.

Channels that are completely synchronous, such as Sync, SyncDrain, and SyncSpout, have the property that either
data flows synchronously at both of their ends, or no data flows—abstracting away from the direction of data flow.
Data flows from one end to the other through the Sync, flows into both ends of a SyncDrain, and flows out of both
ends of a SyncSpout, as indicated by the arrows in the diagrams. The LossySync permits data to flow either all the
way through the channel, or just at its input end (in which case, the data is lost), or no data flows. (This is not the
whole story. We revisit this channel in Section 4.) The asynchronous channels, AsyncDrain and AsyncSpout, permit
data flow at one end at a time only, or no data flow at all. The data flow direction is analogous to their synchronous
counterparts. An empty FIFO1 can accept data on its input end. A full FIFO1 can deliver data out of its output end.
The other ends of these channels permit no data flow.

3.3. Connectors

A connector is a collection of primitives composed together, satisfying some well-formedness conditions. As such,
the colouring table of a connector is computed from the colouring tables of its constituents.

Definition 6 (Connector). A connector C is a tuple 〈N , B, E, T 〉, where

• N is the set of nodes that appear in E ;
• B ⊆ N is the set of boundary nodes;
• E is a set of primitive connectors;
• T is a colouring table over N ;

such that:

(1) n ∈ B if and only if n appears only once in E ; and
(2) n ∈ N \ B if and only if n occurs once as no and once as ni in E . �

A primitive with a colouring table can straightforwardly be considered as a connector. A connector’s semantics is
computed by joining the tables and other elements of its constituents:

Definition 7. Let C1 = 〈N1, B1, E1, T1〉 and C2 = 〈N2, B2, E2, T2〉 be connectors such that (N1\B1)∩(N2\B2) = ∅,
and for each n ∈ B1 ∩ B2, ni appears in E1 and no appears in E2, or vice versa. The join of C1 and C2, is given by:
C1 � C2

.
= 〈N1 ∪ N2, (B1 ∪ B2) \ (B1 ∩ B2), E1 ∪ E2, T1 · T2〉. �
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3.4. Example

We illustrate the process of computing the colouring table of a connector from its primitives by means of an
example. To simplify the presentation, we omit some details, which the diligent reader can easily fill in. Let’s consider
the connector:

n1 n2 4nn3 .

Denote the channels as C1, C2, and C3:

C1 = 〈{(n1, n2)Sync}, T1 : {{n1 7→ , n2 7→ }, {n1 7→ , n2 7→ }}〉

C2 = 〈{(n2, n3)AsyncDrain}, T2 : {{n2 7→ , n3 7→ }, {n2 7→ , n3 7→ }, {n2 7→ , n3 7→ }}〉

C3 = 〈{(n4, n3)Sync}, T3 : {{n4 7→ , n3 7→ }, {n4 7→ , n3 7→ }}〉.

The crux of computing C1 � C2 � C3 is computing the underlying table: T1 · T2 · T3. Now,

T1 · T2 = {{n1 7→ , n2 7→ , n3 7→ },

{n1 7→ , n2 7→ , n3 7→ },

{n1 7→ , n2 7→ , n3 7→ }}.

Continuing,

(T1 · T2) · T3 = {{n1 7→ , n2 7→ , n3 7→ , n4 7→ },

{n1 7→ , n2 7→ , n3 7→ , n4 7→ },

{n1 7→ , n2 7→ , n3 7→ , n4 7→ }}.

We can graphically depict the colouring table just computed as:

n1 n2 n3 4n

1 n2 n3 4nn

1 n2 n3 4nn

Indeed, this is the preferred way of presenting colouring tables, because they give a pictorial representation of the data
flow in a manner which follows the shape of the connector.

By adding an I/O request to the boundary nodes of the connector just computed, we have enough context
information to determine how the connector can route data. The following are the two possibilities when there is
an I/O opearation (write) on node n1 and no I/O operation on node n3:

n1 n2 n3 4n

1 n2 n3 4nn

The first entry in the colouring table describes successful data flow. The second entry describes the total absence
of data flow.

In this example, only the first entry should be allowed. The latter possibility is not desirable, because there is no
data flow, although there is no reason to prevent data flow. This is caused partly because connector colouring is not
sensitive to the context in which a connector appears. We shall see in the next section that this problem can be worse,
as it arises not only at the boundary of a connector, but also when channels exhibiting context dependent behaviour
appear in the middle of connectors—how can they determine the context in order to behave correctly? In Section 4
we extend our colouring scheme to accurately describe context dependent behaviour and to propagate it through
connectors. In the remainder of the paper, we refer to the present colouring scheme as 2-colouring, and the extended
one of the next section as 3-colouring.

4. Context dependent connector colouring

In this section, we address the issue of context dependent behaviour. We demonstrate that the 2-colouring scheme
applied to a connector involving a LossySync fails to give the expected data flow behaviour. We observed a similar
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situation in the example at the end of Section 3.4. We argue that this occurs because context information is not
propagated so to enable channels to choose their own correct context dependent behaviour. Previous semantic models
of Reo connectors [3,6] remain at a coarser level of abstraction and fail to address this issue.

A LossySync has the following context dependent behaviour (as described in Section 2). If both a write is pending
on its input end and a take is pending on its output end, then it behaves as a Sync—the write and take simultaneously
succeed, and the data flows through the channel. If, on the other hand, no pending take is present, then the write
succeeds but the data is lost. Problems with the 2-colouring scheme reveal themselves when we compose a LossySync,
an empty FIFO1, and an I/O request on the input end of the LossySync, as follows:

cba .

This connector has the following two alternative 2-colourings:

cba ca b .

The first colouring indicates that the I/O operation succeeds, the data flows through a, and that the LossySync acts
as a Sync sending the data through b into the FIFO1. This is the expected behaviour in this configuration.

The second colouring indicates that data flows through node a, but not at node b, indicating that it is lost in the
LossySync. An empty FIFO1 is, however, input enabled, meaning that it should always be able to accept data. Another
way of seeing this is that an empty FIFO1 always issues a take to whatever channels it is connected to. Indeed, the
only reason that it should not succeed in receiving data is if the connector gives it a reason not to—such as by not
sending it any data. One can therefore interpret the situation as a violation of the intended semantics of the LossySync
channel, because the information that the data can be accepted on its output end is not appropriately propagated to
it. The LossySync cannot detect the presence of the pending take issued by the input-enabled, empty FIFO1 buffer.
Similar situations arise when dealing with a LossySync in isolation or in the context of any connector.

The behaviour of a context dependent primitive depends upon the presence or absence of I/O requests on its
ends. For mixed nodes, however, no I/O request information is present, so it is not obvious what the context is.
The key to resolving this is to determine what context information can be consistently propagated while addressing
synchronisation constraints. Rather than propagating the presence of an I/O request, our approach focuses on
propagating their absence, or more generally, on any reason to delay data flow, such as unsatisfiable synchronisation
constraints (or those due to choices made by a merger).

In the next section, we present the 3-colouring scheme which uses colourings to propagate “reasons to delay.”
Using this scheme, the undesirable colouring for the LossySync-FIFO1 connector described above can be ruled out
due to the mismatch of colours at node b, as follows:

a b c .

This means that the possibility of losing data in the LossySync is no longer a behaviour of the LossySync-FIFO1
connector.

4.1. Trois Couleurs: Reo

To address the problem just described, we modify our set of colours. Since we wish to trace the reason to delay,
we replace the no-data-flow colour by two colours which both use a dashed line marked with an arrow. The arrow
indicates the direction that a reason to delay comes from, that is, it points away from the reason in the direction that
the reason propagates. Thus we now work with colours, Colour = { , , }. In fact, the colours depend upon
how the arrow lies in relation to the channel end being coloured. A no-flow colouring with the arrow pointing towards
the end, •, means give a reason to delay, and a colouring with the arrow pointing the opposite way, •,
means require a reason to delay.1

1 To be precise, the colours also depend upon the direction of data flow. Giving a reason on an input end is the same colour as requiring a reason
on the output end, and giving a reason on an output end is the same colour as requiring a reason on the input end.
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We can compose two colourings at a given node if at least one of the colours involved gives a reason to justify
no flow. Of the four possible combinations of end colourings at a node, three can compose, as given in the following
table:

• X
• X
• X
• ×

The last case is not permitted as it joins two colourings which require a reason to delay, without actually giving a
reason.

Note that after composition has been performed, the direction of the arrow on mixed nodes no longer matters: the
colouring simply represents no data flow. (This fact is used to reduce table sizes.)

A problem with 3-colouring is that tables usually contain redundant entries. The following principle, the flip
rule (Definition 8), reduces tables to their essential colourings. It can be used as a guide for constructing tables
for primitives, and it is also used in the implementation to reduce table sizes.

Definition 8 (The Flip Rule). If colouring table T has an entry c which maps boundary node n to the colour •n ,
that is, giving a reason, then the colouring which is the same as c except that n is mapped to •n , that is, requiring
a reason, is redundant and can be removed from the table.

The rationale behind the flip rule is as follows. Consider two colourings in a table that differ only in the colour
of node n; that is, one colouring has •n , the other has •n . These two colourings can both compose with
a colouring containing colour •n . The resulting colourings have no flow at node n, but are otherwise identical.
Removing the colouring containing •n from the table does not reduce the table’s composibility with other tables.
On the other hand, removing •n does reduce composibility. So the colouring containing •n is superfluous,
whereas the one containing •n is not.

Observe that the flip rule applied to any table T induces a lattice. Denote the largest element, the one with the most
redundancy, as T +. In addition, the flip rule induces an equivalence class on tables (take the symmetric, transitive
closure of the lattice), which we denote ≡.

A minor problem remains. The notion of composition given so far is not compatible with the definitions from
Section 3, as it is not based plugging together matching colours. We can define a second notion of composition
which excludes the third entry from the composition table above, and applies to maximal tables (T +). This notion is
compatible with previous definitions. Furthermore, the two notions are equivalent in the following sense. Let ·1 denote
the first notion and ·2 be the second notion.

Proposition 9. Given tables T1 and T2 which can compose. Then:

T1 ·1 T2 ≡ (T +

1 ) ·2 (T +

2 ).

This means that we can use whichever notion of composition is most convenient, and that we can think in terms of
tables compressed using the flip rule.

The colourings for all primitives will now be redone.

IO operations
An I/O operation primitive has the following colouring table:

I/O (present/absent) Colouring Table

�/�

The second entry indicates that the I/O operation request is delayed, because the connector gives a reason to prevent
it. The third and fourth entries indicate that no I/O operation request is present, and hence no data flow is possible.
Furthermore, the third entry states that the absence of I/O can be used to justify a delay. The fourth entry represents
the case where the reason to delay is already present in the connector.

The one possible case missing from this table, like the second case with the arrow going the other way, does not
make sense. It would read: there is an I/O request which is a cause of delay. This case is therefore omitted.
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Using the flip rule, the colouring table for the I/O primitive can be replaced by the following:

I/O (present/absent) Colouring Table

�/�

The flip rule can be used to recover the missing entry, yielding the fourth (above) from the third. From now on, we
always use tables that are reduced by an application of the flip rule.

Replicators and Mergers. We update the colouring tables for mergers and replicators. The diligent reader may
demonstrate by herself that the flip rule accounts for all other sensible possibilities—while doubling the table size
in each case.

The new colouring table for a replicator is:

Replicator Colouring Table

The last three entries indicate situations where no data can flow. In each case, a reason to delay coming from one
end is sufficient to cause a delay in the entire replicator. The reason for delay is propagated to the other ends.

The new colouring table for a merger is:

Merger Colouring Table

The first two entries in the table deal with choices made by the merger. Data flowing down one input branch is
sufficient reason to delay data flow in the other input branch. The third entry corresponds to no take being present at
the output end: no data flow is possible in the merger, and the reason to delay is propagated to the input ends. The
final entry corresponds to no data flow due to no data availability at either of the two input ends. Again the reason to
delay is propagated.

Note that neither colouring table includes an entry with all arrows pointing outward. This would indicate that the
reason came from nowhere.

Channels. The new colouring tables for channels are given in Fig. 8. The colouring , for example, is shorthand
for the colouring , which means that the reason for delay is propagated from one end of the channel to the
other.

We highlight a few points of interest in this table, focusing only on reasons to delay, leaving the reader to ponder
over the rest.

Failure at one end of a Sync, SyncDrain or SyncSpout, is enough to prevent data flow. The reason is propagated to
the other end. An empty FIFO1 buffer does not enable data flow on its output end, giving a reason for delay. Dually,
a full FIFO1 buffer has a reason to delay its input end. The second entry of the table for a LossySync states that it will
lose the data only when a reason to delay is propagated into its output end, which amounts to saying that the channel
is unable to transfer the data. For the two asynchronous channels, AsyncDrain and AsyncSpout, accepting data on
one end is sufficient reason for delaying the other end. No data flows if both ends have a reason to delay. Note that a
non-deterministic choice may be required to decide between the first two possibilities.
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Channel type Sync SyncDrain SyncSpout FIFO1

Colouring Table

Channel type LossySync AsyncDrain AsyncSpout FIFO1(x)
x

Colouring Table

Fig. 8. 3-Colouring Tables for Channels.

4.2. Example

In this example, we introduce a new primitive, a priority merger, and use it to model a priority router. A priority
merger behaves similarly to a merger, allowing the flow of data from at most one of its input ends to its output end.
The difference is that whenever data is available on both of its input ends, such as when there is a write pending
on both ends, then the channel gives priority to a specific end (marked with an exclamation mark ‘!’). The graphic
representation and the colouring table for the priority merger are presented in Fig. 9. Compare the first two entries in
the table. The first entry means that allowing flow in the right input can give a reason to delay the left input. On the
other hand, the second entry means that data can flow from the left input only if a reason is given on the right input.
This reason could be that no data flow is possible on that input.

Priority Merger Colouring Table

!

Fig. 9. Priority merger connector and its 3-colouring table.

Let’s now construct a priority router. This behaves like an exclusive router, except that rather than making a non-
deterministic choice when two takes are pending, it makes a choice dictated by the priority merger primitive. The
priority router is given in Fig. 10, along with the only 3-colouring possible in the configuration where I/O requests are
present on all of its ends. This means that in the presence of two competing takes on the output ends of the connector,
the left hand one (which has priority) will always succeed. This is because the colouring table of the priority merger
(appropriately rotated), in the presence of the I/O requests, cannot give a reason for the left hand branch to delay,
though it can give a reason for the right hand branch to delay.

Priority Router Colouring

!

Fig. 10. A Priority Router and a colouring exploiting context dependency.
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We recall now the example in Section 3.4 and the case of the LossySync-FIFO1 connector presented in the
beginning of this section. In both cases, we can see that the respective 3-colourings of the undesirable alternatives
are now impossible. In the first example (from Section 3.4), the colours do not match on node n2:

n3n1 n2 4n

In the LossySync-FIFO1 example, the colours do not match on node b:

a b c .

These examples illustrate how the propagation of I/O context in the 3-colour setting can be used to resolve the
context dependency constraints on the priority, I/O operations and LossySync channels. Note, however, that priority
is not globally decided. It may be the case that a decision made by a different part of the connector makes priority
irrelevant or even inverts the decision—it all depends upon the connector.

4.3. Causality loops

The model presented thus far still produces incorrect colourings for some connectors containing loops. Colourings
for synchronous loops in a connector tend to result in so-called causality loops. These occur whenever a chain of
cause-effect events is circular, giving, for example, a colouring that corresponds to data flow being present, but for
which there is no source of data. The anomalous behaviours are a standard problem in synchronous languages [5].
In our setting, the problem is somewhat more complicated, because not only do we need to consider causality loops
which concern data flow, but also causality loops concerning reasons for delay. Both kinds of loops need a source of
either data flow or reason to delay to be valid, depending on the kind of loop. Fig. 11 illustrates the two kinds of loop:
(a) a loop for which the colouring states that data can flow, even though there is no source providing data: where does
the data flowing at C come from? and (b) a loop for which the colouring states that there is a reason for delaying, even
though there is no source providing a reason: where does the reason to delay observed at A come from?

Connector Causality Loop
(a)

A

B

C

A

B

C

(b)

A

C

B

B

A

C

Fig. 11. Causality Loops in Two Reo Connectors. In (a) the loop follows the data flow of the channels. In (b) the loop follows the reason to delay
arrows.

The basic approach to finding causality loops is to trace all paths backwards in causality graphs to see whether there
is, in our case, an actual source of data or delay. Various solutions have been proposed to treat causality loops [7].
These solutions can be adapted to compute in a compositional manner that every path in a colouring has a proper
source, where (a) in a solid colouring, the path is given by the direction of the data flow and the source is a source of
data, and (b) in a no-flow colouring, the path is given by the direction of the arrows and a source is a reason to delay.
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Observe that causality loops are reasoned about at the level of individual colourings; other valid colourings for the
connectors may be possible. Removing colourings that contain causality loops from colouring tables results in a more
sensible semantics for Reo connectors, as colourings which correspond to anomalous situations are removed.

5. Implementing connector colouring

In this section, we discuss how connector colouring forms the basis of a non-distributed implementation of Reo
connectors, and how it can be extended to a distributed implementation based on CWI’s MoCha mobile channel
middleware [8]. Before presenting the details, we outline some requirements that a distributed implementation ought
to satisfy. We then present the general kind of scheme which we anticipate that algorithms implementing connector
colouring will follow. The non-distributed implementation, called Reolite, which implements most of the original Reo
proposal, is described. A distributed algorithm for connector colouring based on spanning trees is presented.

5.1. Requirements for implementation of Reo

A distributed implementation of Reo must fulfil the following requirements:

No global view. In a geographically distributed environment, different parts of a Reo connector may reside on
remote hosts. A global view of a connector’s state can result in single point-of-failure vulnerability, and the
delays necessary for maintaining a consistent global view may inhibit the parallelism inherent in physically
distributed systems. Without a global view, the constituents of a connector have only a limited knowledge
about the connector, and must delegate requests to other parts of the connector in order to obtain the
information required to transport data.

Communication infrastructure and topology. In Reo, channels encapsulate all communication-related activities.
Since channels provide the only infrastructure for communication, only the paths defined by the
interconnection of channels, the connector topology, can be used to send the control information required
to determine the data flow of a Reo connector.

Propagation of synchronisation constraints. Reo channels and nodes impose synchronisation and exclusion
constraints on data flows across the entire connector. Data flows atomically through the “synchronous” parts
of a connector. The state of the entire connector and its boundary may be required to determine how data can
flow.

One approach to determining the flow of data is to optimistically send data along channels and roll back
any changes when synchronisation constraints cannot be met. Aside from requiring a rollback capability
on every channel, which may not be feasible in practice, this approach may, in general, result in too much
resource wastage or network flooding trying to find a suitable data flow.

The alternative preferred here is to pre-compute the routes of possible data flows, and then, non-
deterministically choose one to take, whenever required.

Concurrency. In a distributed environment, multiple parties may interact with a connector at the same time. This
means that more than one computation to determine a connector’s data flow can be active, leading to a
situation where different computations are competing for parts of the connector. Without proper handling of
these situations, these concurrent data flow computations can face race conditions, livelocks, deadlocks, or
simply waste resources.

5.2. Algorithm scheme

Any algorithm using connector colouring as the basis for deciding how to route data through a Reo connector will
need to perform the following steps, though not necessarily strictly in the order presented here. We assume that the
configuration of a connector, including its pending I/Os, is locked when the colouring table is computed, although
at any other time parties may delay, timeout, retry, and new parties may join—changing the configuration of the
connector and its environment.

1. Compute colouring table for complete connector: Collect all the colouring tables from all the channels and
inputs and outputs for the connector. Compute the composite colouring table.
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2. Select route to employ: The computed colouring table may contain 0, 1 or many colourings. If the table has no
elements, no communication occurs. If the table has one element, then that is selected. Otherwise, select a colouring
non-deterministically.

3. Distribute the chosen colouring to all parties: The chosen colouring is distributed to all parties so that they have
a consistent view, according to the synchronisation constraints, of what the data flow will be.

4. Send data: Each data source (write/FIFO1 buffer) which has been selected to have data flow can send its data as
soon as it gets the final colouring table. All the choices that a primitive needs to make are determined by the chosen
colouring.

A number of variations are possible. Rather than globally computing the table, it could be computed using a
parallel algorithm such as all-reduce [9]. If the local tables are T1, . . . , Tn , reduce computes T1 · T2 · · · Tn ; the all
part corresponds to sending this information to all parties. In practice, one does both steps together, relying on the
properties of the operator ‘·’. To deal with the case that multiple entries are possible, simply order the entries in the
table and choose the first. Entries should be placed in the table non-deterministically for fairness. Alternatively, some
form of negotiation might be required to choose a colouring. This falls into the class of problems known as reaching
consensus in a distributed network [10].

We now will describe how connector colouring is implemented in Reolite.

5.3. Reolite: A non-distributed Reo implementation

Reolite [11] is a non-distributed, connector colouring-based, Java implementation of most of Reo, as described in
Arbab’s original article [2].2 Reolite is a rudimentary proof-of-concept to demonstrate the feasibility of connector
colouring compared to the previous approach based on accepts and offers [2,12]. The previous approach to
implementing Reo was so complex that it cost approximately a person-year of effort to implement a system which
neither worked particularly well nor was easy to reason about. Based on connector colouring, Reolite was up and
running within a fortnight.

Reolite permits a number of components, running in their own threads, to interact with a connector, which itself
is managed globally by a single thread. Interaction occurs only between a component’s thread and the connector
whenever a component attempts to write to or take from a channel end. The connector is protected by a global
lock, which means that whenever the connector thread is calculating the colouring table or performing data flow, the
connector cannot be changed—even registering a new pending write or take is impossible. The interaction between a
component and the connector is best described by detailing the two kinds of thread. Note that this locking scheme is
too coarse grained to be scalable, but it works well for the proof-of-concept.

Component thread. Whenever a component performs a write or take on a channel end, it begins interacting with
the connector as follows:

(1) start timer for timeout
(2) obtain connector lock
(3) if writing then register that data is being written to the channel end

if taking then register that data is requested from the channel end
(4) release connector lock
(5) notify connector and block
(6) when awoken

if awoken by connector (assumption: this end was chosen in a colouring)
kill timer
return, with data if operation was a take

if awoken by timeout
obtain connector lock
if write/take has since succeeded

2 Lacking are operations for connecting components to and disconnecting components from connectors, and for moving nodes, as these have no
effect on connector behaviour, the hiding construct, and channels which are data sensitive, such as a filter.
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release connector lock
return, with data if operation was a take

else
deregister write/take
release connector lock
throw timeout exception

Note that a timeout will never occur if the connector is busy, to avoid creating any inconsistency across
the connector. Thus it may be the case that a timeout expires (under the hood), but that data is nevertheless
returned.

Connector Thread

(1) obtain connector lock
(2) collect colourings from all channels and input and output ends (both those which have pending operations and

those which do not)
(3) compute colouring table
(4) select a colouring
(5) loop

select a source of data which is coloured
pass its data into approriate channel, which may create new sources of data
reset input and output ends which have had their request satisfied
remove such ends from colouring

until data has flowed at all coloured ends
(6) release lock.

Channels have data pushed into their input end(s). This data will appear at any output end(s) based on the channel’s
implementation in accordance with the colouring selected for the channel (otherwise the channel is not correctly
implemented).

In addition to this algorithm, the connector periodically gains control and performs any actions that it can—this is
necessary to, for example, push data through chains of FIFO1 buffers.

The implementation of Reolite also enables dynamic reconfiguration of connectors (using join and split [2]),
and permits channel ends to be passed through connectors, enabling complex dynamic coordination patterns. New
components can be added to an existing system, assuming that the connector first knows the name of one of the
channel ends. This deficiency has been removed in MoCha [8], which permits the advertisement and discovery of
channel end names.

5.4. Distributed algorithm — single party version

We now present an informal description of a somewhat idealised version of the distributed algorithm, which is
presently being implemented and tested. We do not address issues of fault tolerance. Full details of this work, including
a proof of correctness, will be reported in future work.

The algorithm which follows may be initiated at any input or output node by an I/O request, or by a buffer trying
to forward its data. In addition, the algorithm may be concurrently initiated at different nodes by different parties. We
first describe the algorithm from the perspective of one such party, assuming that no interference with other parties
occurs. Then, in the next subsection, we describe how to deal with multiple parties computing concurrently.

The algorithm follows the topology of the connector using remote procedure calls rather than message passing.
Calls traverse the graph of a connector by passing from a node, to the channel ends forming the node, then to a
channel, which may propagate the call to their other end, and then to some node again. Information describing the
state of the algorithm may be stored in channel ends. The initial state is SLEEPING.

The first phase of the algorithm is called collect. It proceeds as follows. Starting with the initiating node as root, a
spanning tree of the connector is formed. This is achieved simply by traversing the graph of the connectors, marking
each channel end as it is visited (state COLLECT), ceasing further progress whenever an already-visited end is met.
The forward leg of this phase thus traverses a spanning tree of the Reo connector. The return leg collects the colouring
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tables of each channel and node. The complete colouring table is then computed at the root, and an entry of the table
is chosen.

The algorithm then enters the second phase, called propagate, in which the chosen colouring and the data to be
sent are propagated through the connector. The interesting behaviour occurs on channel ends, and there are essentially
three cases to deal with:

(1) For calls following the direction of the data flow where the channel end is coloured, the colouring is passed
onwards (through channel or through node) along with the data. On the return leg, the state is reset to SLEEPING.

(2) For calls against the direction of the data flow where the channel end is coloured, the colouring is passed onwards,
and on the return leg, the data is returned and the state is reset to SLEEPING.

(3) For calls where there is no data flow, the colouring is propagated, potentially to places where flow is possible, and
the state is immediately reset to SLEEPING.

Nodes get data from any coloured output end and propagate it to any coloured input end. Channels accept data from
coloured input ends, process it whatever manner they see fit, so long as it is consistent with the selected colouring,
and forward data on their coloured output ends.

At the end of this phase, data will be passed through the connector as described by the colouring, and the transient
state stored by the algorithm in the channel ends will be reset to its initial state.

5.5. Distributed algorithm — multiparty version

We now outline a distributed algorithm in which the computation described above is initiated in multiple parts
of the connector. The first thing to note is that the colourings enable one to consider different computations to
be cooperatively computing the same global colouring scheme, which is in contrast to Internet routing algorithms,
where packets compete for passage through the network [13]. This means that any partial table computations can be
combined, potentially reducing work. The second thing to note is that we assume a global ordering on the channel end
names. Although this is a theoretically difficult issue, a number of ways exist for doing this in practice, such as basing
the name of a machine’s network card’s MAC address, the IP number, and/or the active thread’s pid.

As above, every channel end stores state information used by different threads to determine what the other threads
are doing. Initially, all threads are in the SLEEPING state. State COLLECT denotes that the end has passed in the collect
phase—this state stores also data indicating the id of the initiating thread. Finally, the state PROPAGATE indicates that
the algorithm is propagating colouring and potentially data information—this state stores the colouring table, the
direction of propagation (against or with the flow of data) and the data value (if available).

When an end is passed by the collect phase, the algorithm marks the end with state COLLECT and the id of the
initiating end. If the collect phase passes an end which is marked with the same state, it knows that it has hit a loop
and it starts returning the collected results. If it passes an end in state COLLECT with another id, then the thread with
the highest id continues, and the thread with the lowest id backs off. Otherwise, it continues constructing the spanning
tree—it can stop prematurely if it detects that it has completed the colouring. If a collecting thread passes an end which
is in the middle of propagating data (state PROPAGATE), then it also backs off. Whenever a computation backs off, it
waits until the initiating end is reset to the SLEEPING state. The computation will then be retried if the associated I/O
request has not been satisfied.

When an end is passed by the propagate phase and the end is in state COLLECT, the progagate algorithm continues
as normal, setting the state to PROPAGATE (with the direction, colouring table, and any data stored too). If the node
is in the SLEEPING state, it means that another thread of the propagate phase has passed this way, so this thread
returns—the data that it needs to propagate will be stored by another thread in one of the ends previously visited by
this thread. If the propagate phase passes an end in state PROPAGATE, it does one of two things. If this thread has
data, it writes the data into the state on the end and returns. If this thread is waiting for data, it suspends until the end
receives data from some other thread. In all cases, at the end of the propagate phase, ends states are set back to the
original SLEEPING state.

5.6. Discussion

The complexity of sending data though a Reo connector depends upon two factors: the size of the synchronous
slice—a part of the connector not separated by FIFO buffers—and the size of the colouring table, which is a function
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of the size of the synchronous slice. Assume that there are n channel ends in a synchronous slice. The algorithm then,
in the worst case, passes sequentially through these n ends. Assume that the size of the accumulated table is T (n). It
is clear then that the complexity of the algorithm is O(n × T (n)) for each data item that needs to be sent. In the worst
case, the table is exponential in the size of synchronous slice, so the algorithm has exponential complexity. Often table
sizes tend to be linear in n, and thus the overall complexity is O(n2).

The fact that table sizes can be large has tended not to be a problem in our limited experience. Table sizes were
reduced after a number of additional optimisations were implemented: (1) tables are stored as sets, rather than lists, to
avoid duplication; (2) all internal “no-flow” colours have their arrows removed, since the direction of the arrow matters
only on the boundary—this unifies many possible table entries; (3) the flip rule is used to avoid duplication in the table
(Definition 8); and (4) some causality loops are detected and removed (Section 4.3). Combined, these optimisations
reduced the size of the colouring table for the exclusive router from over 1000 entries to just the expected 4.

The high complexity of the algorithm is due to Reo, rather than the algorithm itself. But there are a number of
additional ways of managing the complexity. Firstly, avoiding deploying synchronous slices across different machines
helps localise the cost. Making connectors less synchronous is another way, but this means using a different connector.
Ultimately, the trade-off between degree of synchronisation and acceptable performance can only be determined
through benchmarking various candidate connectors.

The algorithm works in the setting where each party knows nothing of its neighbours, except how to find them (via
the topology of the connector). Different parties can compute concurrently, though the topology of the connector may
limit how much concurrency can be exploited in computing a colouring table. The colouring table is computed as a
solution to the synchronisation constraints before any data flows, rather than optimistically sending data which would
need to be retracted or ignored. Although the colouring table is completely obtained in one node (of a synchronous
slice), we argue that the algorithm still satisfies the no global view constraint, as the algorithm need not maintain this
view. It simply uses it to perform a step. We argue, thus, that the algorithm satisfies the 4 criteria presented at the start
of this section.

There are two other issues to consider: dynamic changes in a Reo connector and partial failure of the network.
Dynamic changes to a Reo connector, such as reconfiguration, can be catered for, as these must observe the locking
scheme and can only occur when the node being modified is in the SLEEPING state. Some of the algorithms for
recofiguration and mobility implemented in the MoCha middleware [8] can be adapted to our setting. The main point
where the algorithm suffers is dealing properly with partial failure. Put simply, the algorithm doesn’t deal with partial
failure. But it is possible to deploy a connector so that it does not suffer from problems of partial failure, by ensuring
that no synchronous slice of a connector spans multiple machines in a network.

5.7. Summary of implementation status

We have a running non-distributed version of the colouring algorithm [11] with GUI support for connector drawing
and connection with Unix processes [14]. Work is being undertaken to extend this to work with Web Services. A
prototype version of the distributed algorithm has begun, using Ruby and its remote procedure call mechanism. This
will serve as a suitable platform for benchmarking various approaches to implementing the distributed algorithm,
as well as to exploring issues such as deployment, before committing to a more difficult C++ implementation and
integration with MoCha [8].

6. Related work

Reo is capable of defining connectors with sophisticated behaviour using very few primitive channels [2,4,6].
Predecessors to Reo, namely MoCha [8] and Manifold [15], did not impose synchronisation constraints to the degree
that Reo does, and hence were simpler to implement but less expressive. Reo enables synchronisation and exclusion
constraints to propagate across a connector, whereas these models could not. Older coordination languages and models
such Linda [16] and Gamma [17] cannot directly exhibit the degree of synchronisation that Reo can. This fact remains
true for all of the coordination models covered in a recent survey [1]: Reo’s approach to coordination, in particular, to
synchronisation and exclusion, is unique.

The notion of connector is not unique to Reo, as it appears in the study of software architecture [18], and also in
the guise of a coordination model for active objects [19]. The main distinguishing feature of Reo is that it enables the
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simple compositional expression of synchronisation and exclusion constraints, whereas the other work on connectors
focuses more on connecting behavioural interfaces of components. Both aspects are pieces of the same pie.

A number of informal and formal models exist for Reo. The first operational description of Reo [2] describes
connector behaviour in the presence and absence of requests at channel ends in a context dependent manner. An
operational model based on what values connectors offered and accepted proved, however, to be too difficult to reason
about and to implement [12]. Semantic models based on a coinductive calculus [6] and on constraint automata [3]
paved the way to reasoning about connectors and their expressiveness, and for the mechanical verification of their
properties. These two models were proven equivalent under mild fairness assumptions.

We will now expend some effort comparing connector colouring with constraint automata. One aspect of the
constraint automata model is that transitions in automata are labelled with the collection of nodes that synchronously
succeed in a given step, at the exclusion of all other nodes present in the connector being modelled. Calculating this
set based on the configuration of a connector (which is equivalent to the state of the constraint automata) is precisely
what connector colouring achieves. That is, the 2-colouring model of a connector produces a set colourings which can
be equated with the transitions in the corresponding constraint automata. Our model has the novelty of being simpler,
as it focuses on the key difficulty, namely that of determining which transition to take next, rather than worrying
about what state that will lead to. Our model also has the advantage of being visually appealing, as the colouring can
overlay the connector. Furthermore, the 3-colouring captures the context dependent behaviour of connectors, which
other semantic models did not.

Network algebra [20] provides a general framework for the study of networks and their behaviour. We expect that
our work can be rephrased in this framework, which would enable a better comparison with other existing work.
The recent work of Bruni et al. [21] proposes a semantic model for CommUnity connectors, the core of which is a
denotation for each primitive connector based on ticks and unticks corresponding to the presence and absence of data
flow. This clearly is similar to our 2-colouring scheme, although we have both loops in our connectors and a larger set
of primitives. As far as we are aware, these languages and formalisms do not have quite the range of expressiveness
covered by the channels present in Reo, such as LossySync with its subtle behaviour, nor do they require or express
context dependence, as we have addressed in this paper.

The synchronised hyperedge replacement approach [22] of modelling distributed systems using graph
transformations has some similarities with Reo, in that the synchronisation is transitive across large chunks of the
graph or connector. Transformations in a graph change the structure of the graph, whereas in Reo the structure of the
connector is more static, though the internal states of buffers may change. Computation in a Reo connector is realised
when data travels though a connector and its state changes, whereas the transformation of a graph is computation in
the graph model.

Milner’s classic SCCS [23] also appears to be an appropriate model for “implementing” our 2- and 3-colouring
schemes,3 by mapping colours to SCCS actions, after polarizing the ends joined at a node. For example, we could
model the 2-colouring behaviour of a LossySync with ends connected to nodes named a and b as:

LossySync(a, b)
.
= δ(Flow(a) × Flow(b) + Flow(a)) :LossySync(a, b)

Modelling the 3-colouring scheme of the same LossySync requires more than a simple use of the delay operator (δ).
Actions need to be expanded to also include no-data-flow colours, in order to properly propagate the constraints they
encode. One possible encoding of the LossySync is the following, which uses NoFlow(b) and NoFlow(b) to denote
the giving and the requiring of a reason, respectively:

LossySync(a, b)
.
= ( Flow(a) × Flow(b) +

Flow(a) × NoFlow(b) +

NoFlow(a) × (NoFlow(b) + NoFlow(b)) ) :LossySync(a, b)

This approach to encoding Reo in SCCS is worth further investigation.
Our model resembles the Tile Model [24]. Indeed, the Tile Model is a very general framework for the compositional

description of transition systems. Our colouring and the semantics of Reo, including its reconfiguration operations,
could very nicely fit within this model, though we do not know how well the Tile Model deals with loops in connectors.

3 We thank an astute referee for this observation.
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The key difference is that the Tile Model is a general formalism, whereas our connector colouring deals with the
specifics of Reo.

Colouring is a natural concept and appears in various contexts throughout the literature. For example, a variant
of Petri nets called Coloured Petri Nets [25] exists. The different colours correspond to abstractions of various data
values; thus colours are types or sorts. Colouring also appears in graph algorithms: these algorithms aim, in general,
to colour different connected parts of the graph differently [26]. So, for example, a 3-colourable graph is one which
each vertex can be assigned one of three colours so that no edge joins two equi-coloured vertices. Both of these uses
of colouring are distinct from ours.

We believe that our 3-colouring scheme is new, and that it can form the basis for the coordination of models which
enforce synchronisation and exclusion constraints in a manner that depends upon the way in which components are
interacting with the coordination layer.

7. Conclusions and future work

We presented a model for Reo connectors based on the idea of colouring a connector with possible data flows
in order to resolve its synchronisation and exclusion constraints. A more sophisticated notion of colouring enables
the model to capture context dependent behaviour, which more closely matches the informal descriptions of Reo’s
semantics [2] than earlier formal attempts [4,3]. Our model is easy to work with and its underlying “join” operation
satisfies useful algebraic properties, making it a suitable basis for the distributed implementation of Reo. Such an
implementation has the freedom to compute data flow possibilities concurrently, in a manner which is robust to
redundancy, because multiple partial computations can be combined. Our work, thus, serves as a basis both for an
implementation and for, a more precise semantic model of, Reo.

The present work has limitations which we intend to address in future work. It does not address all of Reo’s
features: node hiding and data-sensitive behaviour, such as the filter channel [2], need to be added. There are two
difficulties here: (1) it is unclear how to implement hiding to correctly preserve the desired observable behaviour of a
Reo connector, especially in the presence of channels with context dependent behaviour; and (2) it is unclear how to
handle data-sensitive channels efficiently.
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