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Preface

Ask three modal logicians what modal logic is, and you are likely to get at least
three different answers. The authors of this book are no exception, so we won’t
try to start off with a neat definition. Nonetheless, a number of general ideas guide
our thinking about the subject, and we’ll present the most important right away
as a series of three slogans. These are meant to be read now, and, perhaps more
importantly, referred back to occasionally; doing so will help you obtain a firm
grasp of the ideas and intuitions that have shaped this book. Following the slogans
we’ll discuss the aims and content of the book in more detail.

Our first slogan is the simplest and most fundamental. It sets the basic theme on
which the others elaborate:

Slogan 1: Modal languages are simple yet expressive languages for talk-
ing about relational structures.

In this book we will be examining various propositional modal languages: that is,
the familiar language of propositional logic augmented by a collection of modal
operators. Like the familiar boolean connectives ( , , , , , and ), modal
operators do not bind variables. Thus, as far as syntax is concerned, we will be
working with the simplest non-trivial languages imaginable.
But in spite of their simplicity, propositional modal languages turn out to be an

excellent way of talking about relational structures, and this book is essentially an
attempt to map out some of the ramifications of this. For a start, it goes a long
way towards explaining the recent popularity of modal languages in applied logic.
Moreover, it introduces one of the fundamental themes in the mathematical study
of modal logic: the use of relational structures (that is, relational semantics, or
Kripke semantics) to explicate the logical structure of modal systems.
A relational structure is simply a set together with a collection of relations on

that set. Given the broad nature of this definition, it is unsurprising that relational
structures are to be found just about everywhere. Virtually all familiar mathe-
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matical structures can be thought of as relational structures. Moreover, the enti-
ties commonly used to model the phenomena of interest in various applications
often turn out to be relational structures. For example, theoretical computer sci-
entists use labeled transition systems to model program execution, but a labeled
transition system is just a set (the states) together with a collection of binary re-
lations (the transition relations) that model the behavior of programs. Moreover,
relational structures play a fundamental modeling role in many other disciplines,
including knowledge representation, computational linguistics, formal semantics,
economics, and philosophy. As modal languages are the simplest languages in
which relational structures can be described, constrained, and reasoned about, it is
hardly surprising that applied modal logic has blossomed in recent years.
But relational structures have also played a fundamental role in the development

of the mathematics of modal logic: their use turned modal logic from a rather
esoteric branch of syntax manipulation into an concrete and intuitively compelling
field. In fact, it is difficult to overstate the importance of relational models to modal
logic: their (re)discovery in the late 1950s and early 1960s was the biggest single
impetus to the development of the field. An early application was completeness
theory, the classification of modal logics in relational terms. More recently, rela-
tional semantics has played an important role in mapping out the computational
complexity of modal systems.

Modal languages may be simple — but what makes them special? Our next slogan
tries to pin this down:

Slogan 2: Modal languages provide an internal, local perspective on rela-
tional structures.

That is, modal languages talk about relational structures in a special way: ‘from
the inside’ and ‘locally.’ Rather than standing outside a relational structure and
scanning the information it contains from some celestial vantage point, modal for-
mulas are evaluated inside structures, at a particular state. The function of the
modal operators is to permit the information stored at other states to be scanned
— but, crucially, only the states accessible from the current point via an appropri-
ate transition may be accessed in this way. This idea will be made precise in the
following chapter when we define the satisfaction definition. In the meantime, the
reader who pictures a modal formula as a little automaton standing at some state in
a relational structure, and only permitted to explore the structure by making jour-
neys to neighboring states, will have grasped one of the key intuitions of modal
model theory.
The internal perspective modal languages offer makes them natural for many

applications. For a start, the decidability of many important modal systems stems
from the local step-by-step way that modal formulas are evaluated. Moreover, in
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a number of disciplines, description languages have been devised which offer an
internal perspective on relational structures; often these (independently invented)
systems have turned out to be variants of well-known modal systems, and can
be analyzed using modal techniques. For example, Kasper-Rounds logic (used in
computational linguistics) is essentially a natural notation for a certain fragment of
propositional dynamic logic with intersection, and many of the description logics
used in knowledge representation can be usefully viewed as (fragments of) modal
languages. Finally, it is also the stepwise way in which modal formulas are eval-
uated which explains why the notion of bisimulation, a crucial tool in the process
theoretic study of labeled transition systems, unlocks the door to important charac-
terizations of modal expressivity.

So far there have been only two characters in this discussion: modal languages and
the structures which interpret them. Now it is certainly true that for much of its
history modal logic was studied in isolation, but the true richness of the subject
only becomes apparent when one adopts a broader perspective. Accordingly, the
reader should bear in mind that:

Slogan 3: Modal languages are not isolated formal systems.

One of the key lessons to have emerged since about 1970 is that it is fruitful to
systematically explore the way modal logic is related to other branches of math-
ematical logic. In the pair MODAL LANGUAGES, RELATIONAL STRUCTURES ,
there are two obvious variations that should be considered: the relationships with
other languages for describing relational structures, and the use of other kinds of
structures for interpreting modal languages.
As regards the first option, there are many well-known alternative languages

for talking about relational structure: most obviously, first- or second-order clas-
sical languages. And indeed, every modal language has corresponding classical
languages that describe the same class of structures. But although both modal
and classical languages talk about relational structures, they do so very differently.
Whereas modal languages take an internal perspective, classical languages, with
their quantifiers and variable binding, are the prime example of how to take an
external perspective on relational structures. In spite of this, there is a standard
translation of any modal language into its corresponding classical language. This
translation provides a bridge between the worlds of modal and classical logic, en-
abling techniques and results to be imported and exported. The resultant study is
called correspondence theory, and it is one of the cornerstones of modern modal
logic.
In the most important example of the second variation, modal logic is linked

up with universal algebra via the apparatus of duality theory. In this framework,
modal formulas are viewed as algebraic terms which have a natural algebraic se-
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mantics in terms of boolean algebras with operators, and, from this perspective,
modal logic is essentially the study of certain varieties of equational logic. Now,
even in isolation, this algebraic perspective is of interest — but what makes it a
truly formidable tool is the way it interacts with the perspective provided by re-
lational structures. Roughly speaking, relational structures can be constructed out
of algebras, and algebras can be constructed out of relational structures, and both
constructions preserve essential logical properties. The key technical result that
underlies this duality is the Jónsson-Tarski theorem, a Stone-like representation
theorem for boolean algebras with operators. This opens the door to the world of
universal algebra and, as we will see, the powerful techniques to be found there
lend themselves readily to the analysis of modal logic.
Slogan 3 is fundamental to the way the material in this book is developed: modal

logic will be systematically linked to the wider logical world by both correspon-
dence and duality theory. We don’t view modal logic as a ‘non-classical logic’ that
studies ‘intensional phenomena’ via ‘possible world semantics.’ This is one inter-
pretation of the machinery we will discuss — but the real beauty of the subject lies
deeper.

Let’s try and summarize our discussion. Modal languages are syntactically simple
languages that provide an internal perspective on relational structures. Because of
their simplicity, they are becoming increasingly popular in a number of applica-
tions. Moreover, modal logic is surprisingly mathematically rich. This richness
is due to the intricate interplay between modal languages and the relational struc-
tures that interpret them. At its most straightforward, the relational interpretation
gives us a natural semantic perspective from which to attack problems directly.
But the interplay runs deeper. By adopting the perspective of correspondence the-
ory, modal logic can be regarded as a fragment of first- or second-order classical
logic. Moreover, by adopting an algebraic perspective, we obtain a different (and
no less classical) perspective: modal logic as equational logic. The fascination of
modal logic ultimately stems from the (still not fully understood) links between
these perspectives.

What this book is about
This book is a course in modal logic, intended for both novices and more experi-
enced readers, that presents modal logic as a powerful and flexible tool for working
with relational structures. It provides a thorough grounding in the basic relational
perspective on modal logic, and applies this perspective to issues in completeness,
computability, and complexity. In addition, it introduces and develops in some
detail the perspectives provided by correspondence theory and algebra.
This much is predictable from our earlier discussion. However three additional
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desiderata have helped shape the book. First, we have attempted to emphasize the
flexibility of modal logic as a tool for working with relational structures. One still
encounters with annoying frequency the view that modal logic amounts to rather
simple-minded uses of two operators and . This view has been out of date at
least since the late 1960s (say, since Hans Kamp’s expressive completeness result
for since/until logic, to give a significant, if arbitrary, example), and in view of such
developments as propositional dynamic logic and arrow logic it is now hopelessly
anachronistic and unhelpful. We strongly advocate a liberal attitude in this book:
we switch freely between various modal languages and in the final chapter we
introduce a variety of further ‘upgrades.’ And as far as we’re concerned, it’s all
just modal logic.
Second, two pedagogic goals have shaped the writing and selection of material:

we want to explicate a range of proof techniques which we feel are significant and
worth mastering, and, where appropriate, we want to draw attention to some impor-
tant general results. These goals are pursued fairly single mindedly: on occasion,
a single result may be proved by a variety of methods, and every chapter (except
the following one) proves at least one very general and (we hope) very interesting
result. The reader looking for a catalogue of facts about his or her favorite modal
system probably won’t find it here. But such a reader may well find the technique
needed to algebraize it, to analyze its expressive power, to prove a completeness
result, or to establish its decidability or undecidability — and may even discover
that the relevant results are a special case of something known.
Finally, contemporary modal logic is profoundly influenced by its applications,

particularly in theoretical computer science. Indeed, some of the most interesting
advances in the subject (for example, the development of propositional dynamic
logic, and the investigation of modal logic from a complexity-theoretic standpoint)
were largely due to computer scientists, not modal logicians. Such influences must
be acknowledged and incorporated, and we attempt to do so.

What this book is not about
Modal logic is a broad field, and inevitably we have had to leave out a lot of in-
teresting material, indeed whole areas of active research. There are two principle
omissions: there is no discussion of first-order modal systems or of non-Hilbert-
style proof theory and automated reasoning techniques.
The first omission is relatively easy to justify. First-order modal logic is an en-

terprise quite distinct from the study of propositional systems: its principle concern
is how best to graft together classical logic and propositional modal logic. It is an
interesting field, and one in which there is much current activity, but its concerns
lie outside the scope of this book.
The omission of proof theory and automated reasoning techniques calls for a
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little more explanation. A considerable proportion of this book is devoted to com-
pleteness theory and its algebraic ramifications; however, as is often the case in
modal logic, the proof systems discussed are basically Hilbert-style axiomatic sys-
tems. There is no discussion of natural deduction, sequent calculi, labeled deduc-
tive systems, resolution, or display calculi. A (rather abstract) tableau system is
used once, but only as a tool to prove a complexity result. In short, there’s little
in this book that a proof theorist would regard as real proof theory, and nothing
on implementation. Why is this? Essentially because modal proof theory and au-
tomated reasoning are still relatively youthful enterprises; they are exciting and
active fields, but as yet there is little consensus about methods and few general re-
sults. Moreover, these fields are moving fast; much that is currently regarded as
state of the art is likely to go rapidly out of date. For these reasons we have decided
— rather reluctantly — not to discuss these topics.
In addition to these major areas, there are a host of more local omissions. One

is provability and interpretability logic. While these are fascinating examples of
how modal logical ideas can be applied in mathematics, the principle interest of
these fields is not modal logic itself (which is simply used as a tool) but the formal
study of arithmetic: a typical introduction to these topics (and several excellent
ones exist, for example Boolos [66, 67], and Smoryński [409]) is typically about
ten percent modal and ninety percent arithmetical. A second omission is a topic
that is a traditional favorite of modal logicians: the fine structure of the lattice of
normal modal logics in the basic and language; we confine ourselves in this
book to the relatively easy case of logics extending S4.3. The reader interested in
learning more about this type of work should consult Bull and Segerberg [73] or
Chagrov and Zakharyaschev [86]. Other omissions we regret include: a discussion
of meta-logical properties such as interpolation, a detailed examination of local
versus global consequence, and an introduction to the modal -calculus and model
checking. Restrictions of space and time made their inclusion impossible.

Audience and prerequisites
The book is aimed at people who use or study modal logic, and more generally,
at people working with relational structures. We hope that the book will be of use
to two distinct audiences: a less experienced audience, consisting of students of
logic, computer science, artificial intelligence, philosophy, linguistics, and other
fields where modal logic and relational structures are of importance, and a more
experienced audience consisting of colleagues working in one or more of the above
research areas who would like to learn and apply modal logic in their own area.
To this end, there are two distinct tracks through this book: the basic track (this
consists of selected sections from each chapter, and will be described shortly) and
an advanced track (that is, the entire book).
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The book starts at the beginning, and doesn’t presuppose prior acquaintance
with modal logic; but, even on the basic track, prior acquaintance with first-order
logic and its semantics is essential. Furthermore, the development is essentially
mathematical and assumes that the reader is comfortable with such things as sets,
functions, relations and so on, and can follow mathematical argumentation, such as
proofs by induction. In addition, although we have tried to make their basic track
material as self contained as possible, two of the later chapters probably require a
little more background knowledge than this. In particular, a reader who has never
encountered boolean (or some other) algebras before is likely to find Chapter 5
hard going, and the reader who has never encountered the concept of computable
and uncomputable functions will find Chapter 6 demanding. That said, only a
relatively modest background knowledge in these areas is required to follow the
basic track material; certainly the main thrust of the development should be clear.
The requisite background material in logic, algebra and computability can be found
in Appendices A, B, and C.
Needless to say, we have also tried to make the advanced track material as read-

able and understandable as possible. However, largely because of the different
kinds of background knowledge required in different places, advanced track read-
ers may sometimes need to supplement this book with a background reading in
model theory, universal algebra or computational complexity. Again, the required
material is sketched in the appendices.

Contents
The chapter-by-chapter breakdown of the material is as follows.

Chapter 1. Basic Concepts. This chapter introduces a number of key modal lan-
guages (namely the basic modal language, modal languages of arbitrary similarity
type, the basic temporal language, the language of propositional dynamic logic,
and arrow languages), and shows how they are interpreted on various kinds of re-
lational structures (namely models, frames and general frames). It also establishes
notation, discusses some basic concepts such as satisfaction, validity, logical con-
sequence and normal modal logics, and places them in historical perspective. The
entire chapter is essentially introductory; all sections lie on the basic track.

Chapter 2. Models. This chapter examines modal languages as tools for talking
about models. In the first five sections we prove some basic invariance results,
introduce bisimulations, discuss the use of finite models, and, by describing the
standard translation, initiate the study of correspondence theory. All five sections
are fundamental to later developments — indeed the sections on bisimulations and
the standard translation are among the most important in the entire book — and
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together they constitute the basic track selection. The remaining two sections are
on the advanced track. They probe the expressive power of modal languages using
ultrafilter extensions, ultraproducts, and saturated models; establish the fundamen-
tal role of bisimulations in correspondence theory; and introduce the concepts of
simulation and safety.

Chapter 3. Frames. This chapter examines modal languages as tools for talk-
ing about frames; all sections, save the very last, lie on the basic track. The first
three sections develop the basic theory of frame correspondence: we give exam-
ples of frame definability, show that relatively simple modal formulas can define
frame conditions beyond the reach of any first-order formula (and explain why
this happens), and introduce the concepts needed to state the celebrated Goldblatt-
Thomason theorem. After a short fourth section which discusses finite frames, we
embark on the study of the Sahlqvist fragment. This is a large class of formulas,
each of which corresponds to a first-order frame condition, and we devote three
sections to it. In the final (advanced) section we introduce some further frame
constructions and prove the Goldblatt-Thomason theorem model theoretically.

Chapter 4. Completeness. This chapter has two parts; all sections, save the very
last, lie on the basic track. The first part, consisting of the first four sections, is an
introduction to basic completeness theory (including canonical models, complete-
ness-via-canonicity proofs, canonicity failure, and incompleteness). The second
part is a survey of methods that can be used to show completeness when canonic-
ity fails. We discuss transformation methods, the step-by-step technique, the use
of rules for the undefinable, and devote the final two sections to a discussion of
finitary methods. The first of these sections proves the completeness of Proposi-
tional Dynamic Logic (PDL). The second (the only section on the advanced track)
examines extensions of S4.3, proving (among other things) Bull’s Theorem.

Chapter 5. Algebras and General Frames. The first three sections lie on the ba-
sic track: we discuss the role of algebra in logic, show how algebraic ideas can
be applied to modal logic via boolean algebras with operators, and then prove the
fundamental Jónsson-Tarski theorem. With the basics thus laid we turn to duality
theory, which soon leads us to an algebraic proof of the Goldblatt-Thomason the-
orem (which was proved model theoretically in Chapter 3). In the two remaining
sections (which lie on the advanced track) we discuss general frames from an al-
gebraic perspective, introduce the concept of persistence (a generalization of the
idea of canonicity) and use it to prove the Sahlqvist Completeness Theorem, the
completeness-theoretic twin of the correspondence result proved in Chapter 3.
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Chapter 6. Computability and Complexity. This chapter has two main parts. The
first, comprising the first five sections, is an introduction to decidability and un-
decidability in modal logic. We introduce the basic ideas involved in computing
modal satisfiability and validity problems, and then discuss three ways of proving
decidability results: the use of finite models, the method of interpretations, and
the use of quasi-models and mosaics. The fifth section gives two simple exam-
ples which illustrate how easily undecidable — and indeed, highly undecidable —
modal logics can arise. All of the first part lies on the basic track. The remaining
three sections examine modal logic from the perspective of computational com-
plexity. In particular, the modal relevance of three central complexity classes (NP,
PSPACE, and EXPTIME) is discussed in some detail. We pay particular attention
to PSPACE, proving Ladner’s general PSPACE-hardness result in detail. These
sections lie on the advanced track, but this is partly because computational com-
plexity is likely to be a new subject for some readers. The material is elegant and
interesting, and we have tried to make these sections as self-contained and acces-
sible as possible.

Chapter 7. Extended Modal Logic. This chapter has a quite different flavor from
the others: it’s essentially the party at the end of the book in which we talk about
some of our favorite examples of extended modal systems. We won’t offer any
advice about what to read here — simply pick and choose and enjoy. The topics
covered are: boosting the expressive power of modal languages with the aid of log-
ical modalities, performing evaluation at sequences of states in multi-dimensional
modal logic, naming states with the help of hybrid logics, and completeness-via-
completeness proofs in since/until logic. We also show how to export modal ideas
back to first-order logic by defining the guarded fragment, and conclude by proving
a Lindström Theorem for modal logic.

Nearly all sections end with exercises. Each chapter starts with a chapter guide out-
lining the main themes of the sections that follow. Moreover, each chapter finishes
with a summary, and — except the first — with a section entitled Notes. These give
references for results discussed in the text. (In general we don’t attribute results in
the text, though where a name has become firmly attached — for example, Bull’s
Theorem or Lindenbaum’s Lemma — we use it.) The Notes also give pointers to
relevant work not covered in the text. The final section of Chapter 1 sketches the
history of modal logic, and Appendix D gives a brief guide to textbooks, survey
articles, and other material on modal logic.

Teaching the book
The book can be used as the basis for a number of different courses. Here are some
suggestions.
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Modal Logic and Relational Structures. (1 Semester, 2 hours a week)
All of Chapter 1, all the basic track sections in Chapter 2, and all the basic track
sections in Chapter 3. This course introduces modal logic from a semantically ori-
ented perspective. It is not particularly technical (in fact, only Section 2.5 is likely
to cause any difficulties), and the student will come away with an appreciation of
what modal languages are and the kind of expressivity they offer. It’s deliberately
one-sided — it’s intended as an antidote to traditional introductions.

An Introduction to Modal Logic. (1 Semester, 4 hours a week)
All of Chapter 1, all the basic track material in Chapter 2, the first six or seven
sections of Chapter 3, the first six or seven sections of Chapter 4, and the first four
sections of Chapter 6. In essence, this course adds to the previous one the contents
of a traditional introduction to modal logic (namely completeness-via-canonical
models, and decidability-via-filtrations) and includes extra material on decidability
which we believe should become traditional. This course gives a useful and fairly
balanced picture of many aspects of modern modal logic.

Modal Logic for Computer Scientists. (1 Semester, 4 hours a week)
All of Chapter 1, the first four sections of Chapter 2, the first four sections of
Chapter 3, the first four sections of Chapter 4 plus Section 4.8 (completeness of
PDL), all of Chapter 6, and a selection of topics from Chapter 7. In our opinion,
this course is more valuable than the previous one, and in spite of its title it’s not
just for computer science students. This course teaches basic notions of modal
expressivity (bisimulation, the standard translation, and frame definability), key
ideas on completeness (including incompleteness), covers both computability and
complexity, and will give the student an impression of the wide variety of options
available in modern modal logic. It comes close to our ideal of what a modern,
well-rounded, introduction to modal logic should look like.

Mathematical Aspects of Modal Logic. (1 Semester, 4 hours a week)
Chapter 1, 2, and 3, the first four sections of Chapter 4, and all of Chapter 5. If
you’re teaching logicians, this is probably the course to offer. It’s a demanding
course, and requires background knowledge in both model theory and algebra, but
we think that students with this background will like the way the story unfolds.

Modal Logic. (2 Semesters, 4 hours a week)
But of course, there’s another option: teach the whole book. Given enough back-
ground knowledge and commitment, this is do-able in 2 semesters. Though we
should confess right away that the course’s title is highly misleading: once you
get to the end of the book, you will discover that far from having learned every-
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thing about modal logic, you have merely arrived at the beginning of an unending
journey . . .

1

2.1–2.5 2.6 2.7

3.7 3.1–3.6

3.8

4.1–4.8 4.9

5.6 5.5 5.1–5.4 6.1–6.5 6.6

6.7

6.8

7.1–7.6

Fig. 1. Dependency Diagram

Hopefully these suggestions will spark further ideas. There is a lot of material here,
and by mixing and matching, perhaps combined with judicious use of other sources
(see Appendix D, the Guide to the Literature, for some suggestions) the instructor
should be able to tailor courses for most needs. The dependency diagram (see
Figure 1) will help your planning.

Electronic support
We have set up a home page for this book, where we welcome feedback, and where
we will make selected solutions to the exercises and teaching materials available,
as well as any corrections that may need to be made. The URL is

http://www.mlbook.org
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1

Basic Concepts

Languages of propositional modal logic are propositional languages to which sen-
tential operators (usually called modalities or modal operators) have been added.
In spite of their syntactic simplicity, such languages turn out to be useful tools for
describing and reasoning about relational structures. A relational structure is a
non-empty set on which a number of relations have been defined; they are wide-
spread in mathematics, computer science, artificial intelligence and linguistics, and
are also used to interpret first-order languages.
Now, when working with relational structures we are often interested in struc-

tures possessing certain properties. Perhaps a certain transitive binary relation is
particularly important. Or perhaps we are interested in applications where ‘dead
ends,’ ‘loops,’ and ‘forkings’ are crucial, or where each relation is a partial func-
tion. Wherever our interests lie, modal languages can be useful, for modal oper-
ators are essentially a simple way of accessing the information contained in rela-
tional structures. As we will see, the local and internal access method that modali-
ties offer is strong enough to describe, constrain, and reason about many interesting
and important aspects of relational structures.
Much of this book is essentially an exploration and elaboration of these remarks.

The present chapter introduces the concepts and terminology we will need, and the
concluding section places them in historical context.

Chapter guide
Section 1.1: Relational Structures. Relational structures are defined, and a num-

ber of examples are given.
Section 1.2: Modal Languages. We are going to talk about relational structures

using a number of different modal languages. This section defines the
basic modal language and some of its extensions.

Section 1.3: Models and Frames. Here we link modal languages and relational
structures. In fact, we introduce two levels at which modal languages can

1
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be used to talk about structures: the level of models (which we explore
in Chapter 2) and the level of frames (which is examined in Chapter 3).
This section contains the fundamental satisfaction definition, and defines
the key logical notion of validity.

Section 1.4: General Frames. In this section we link modal languages and rela-
tional structures in yet another way: via general frames. Roughly speak-
ing, general frames provide a third level at which modal languages can be
used to talk about relational structures, a level intermediate between those
provided by models and frames. We will make heavy use of general frames
in Chapter 5.

Section 1.5: Modal Consequence Relations. Which conclusions do we wish to
draw from a given a set of modal premises? That is, which consequence
relations are appropriate for modal languages? We opt for a local conse-
quence relation, though we note that there is a global alternative.

Section 1.6: Normal Modal Logics. Both validity and local consequence are de-
fined semantically (that is, in terms of relational structures). However, we
want to be able to generate validities and draw conclusions syntactically.
We take our first steps in modal proof theory and introduce Hilbert-style
axiom systems for modal reasoning. This motivates a concept of central
importance in Chapters 4 and 5: normal modal logics.

Section 1.7: Historical Overview. The ideas introduced in this chapter have a long
and interesting history. Some knowledge of this will make it easier to
understand developments in subsequent chapters, so we conclude with a
historical overview that highlights a number of key themes.

1.1 Relational Structures
Definition 1.1 A relational structure is a tuple whose first component is a non-
empty set called the universe (or domain) of , and whose remaining compo-
nents are relations on . We assume that every relational structure contains at
least one relation. The elements of have a variety of names in this book, includ-
ing: points, states, nodes, worlds, times, instants and situations.

An attractive feature of relational structures is that we can often display them as
simple pictures, as the following examples show.

Example 1.2 Strict partial orders (SPOs) are an important type of relational struc-
ture. A strict partial order is a pair such that is irreflexive ( ) and
transitive ( ). A strict partial order is a linear order (or
a total order) if it also satisfies the trichotomy condition: .
An example of an SPO is given in Figure 1.1, where , , , , , , ,
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Fig. 1.1. A strict partial order.

and means ‘ and are different, and can be divided by .’ Obviously this is
not a linear order. On the other hand, if we define by ‘ is numerically smaller
than ,’ we obtain a linear order over the same universe . Important examples of
linear orders are , , and , the natural numbers, integers,
rationals and reals in their usual order. We sometimes use the notation for

.
In many applications we want to work not with strict partial orders, but with

plain old partial orders (POs). We can think of a partial order as the reflexive
closure of a strict partial order; that is, if is a strict partial order on , then

is a partial order (for more on reflexive closures, see Exer-
cise 1.1.3). Thus partial orders are transitive, reflexive ( ) and antisymmetric
( ). If a partial order is connected ( )
it is called a reflexive linear order (or a reflexive total order).
If we interpret the relation in Figure 1.1 reflexively (that is, if we take to

mean ‘ and are equal, or can be divided by ’) we have a simple example of
a partial order. Obviously, it is not a reflexive linear order. Important examples of
reflexive linear orders include (or ), , and , the
natural numbers, integers, rationals and reals under their respective ‘less-than-or-
equal-to’ orderings.

Example 1.3 Labeled Transition Systems (LTSs), or more simply, transition sys-
tems, are a simple kind of relational structure widely used in computer science. An
LTS is a pair ) where is a non-empty set of states, is a non-
empty set (of labels), and for each , . Transition systems can
be viewed as an abstract model of computation: the states are the possible states
of a computer, the labels stand for programs, and means that there is
an execution of the program that starts in state and terminates in state . It is
natural to depict states as nodes and transitions as directed arrows.
In Figure 1.2 a transition system with states and labels is

shown. Formally, , while and
. This transition system is actually rather special, for it is deterministic:
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Fig. 1.2. A deterministic transition system.

if we are in a state where it is possible to make one of the three possible kinds of
transition (for example, an transition) then it is fixed which state that transition
will take us to. In short, the relations , and are all partial functions.
Deterministic transition systems are important, but in theoretical computer sci-

ence it is more usual to take non-deterministic transition systems as the basic model
of computation. A non-deterministic transition system is one in which the state we
reach by making a particular kind of transition from a given state need not be fixed.
That is, the transition relations do not have to be partial functions, but can be arbi-
trary relations.

Fig. 1.3. A non-deterministic transition system.

In Figure 1.3 a non-deterministic transition system is shown: is now a non-
deterministic program, for if we execute it in state there are two possibilities:
either we loop back into , or we move to .
Transition systems play an important role in this book. This is not so much be-

cause of their computational interpretation (though that is interesting) but because
of their sheer ubiquity. Sets equipped with collections of binary relations are one
of the simplest types of mathematical structures imaginable, and they crop up just
about everywhere.

Example 1.4 For our next example we turn to the branch of artificial intelligence
called knowledge representation. A central concern of knowledge representation
is objects, their properties, their relations to other objects, and the conclusions one
can draw about them. For example, Figure 1.4 represents some of the ways Mike
relates to his surroundings.
One conclusion that can be drawn from this representation is that Sue has chil-
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lovesowns

son-of

BMW DianaMike

Sue

Fig. 1.4. Mike and others.

dren. Others are not so clear. For example, does Mike love Sue, and does he
love his BMW? Assuming that absence of a not loves arc (like that connecting
the Mike and the Diana nodes) means that the loves relation holds, this is a safe
conclusion to draw. There are often such ‘gaps’ between pictures and relational
structures, and to fill them correctly (that is, to know which relational structure
the picture corresponds to) we have to know which diagrammatic conventions are
being assumed.
Let’s take the picture at face value. It gives us a set BMW Sue Mike Diana

together with binary relations son-of, owns, and not loves. So we have here
another labeled transition system.

Example 1.5 Finite trees are ubiquitous in linguistics. For example, the tree de-
picted in Figure 1.5 represents some simple facts about phrase-structure, namely
that a sentence (S) can consist of a noun phrase (NP) and a verb phrase (VP); an NP
can consist of a proper noun (PN); and VPs can consist of a transitive verb (TV)
and an NP.

S

VPNP

NP
PN TV

PN

Fig. 1.5. A finite decorated tree.

Trees play an important role in this book, so we will take this opportunity to define
them. We first introduce the following important concepts.

Definition 1.6 Let be a non-empty set and a binary relation on . Then ,
the transitive closure of , is the smallest transitive relation on that contains .
That is,

is a transitive binary relation on

Furthermore, , the reflexive transitive closure of , is the smallest reflexive and
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transitive relation on containing . That is,

is a reflexive transitive binary relation on

Note that holds if and only if there is a sequence of elements , ,
. . . , ( ) from such that for each we have . That
is, means that is reachable from in a finite number of -steps. Thus
transitive closure is a natural and useful notion; see Exercise 1.1.3.
With these concepts at our disposal, it is easy to say what a tree is.

Definition 1.7 A tree is a relational structure where:

(i) , the set of nodes, contains a unique (called the root) such that
.

(ii) Every element of distinct from has a unique -predecessor; that is, for
every there is a unique such that .

(iii) is acyclic; that is, . (It follows that is irreflexive.)

Clearly, Figure 1.5 contains enough information to give us a tree in the sense
just defined: the nodes in are the displayed points, and the relation is indicated
by means of a straight line segment drawn from a node to a node immediately
below (that is, is the obvious successor or daughter-of relation). The root of the
tree is the topmost node (the one labeled S).
But the diagram also illustrates something else: often we need to work with

structures consisting of not only a tree , but a whole lot else besides. For
example, linguists wouldn’t be particularly interested in the bare tree just
defined, rather they’d be interested in (at least) the structure

LEFT-OF S NP VP PN TV

Here S, NP, VP, PN, and TV are unary relations on (note that S and are distinct
symbols). These relations record the information attached to each node, namely the
fact that some nodes are noun phrase nodes, while others are proper name nodes,
sentential nodes, and so on. LEFT-OF is a binary relation which captures the left-
to-right aspect of the above picture; the fact that the NP node is to the left of the
VP node might be linguistically crucial.
Similar things happen in mathematical contexts. Sometimes we will need to

work with relational structures which are much richer than the simple trees
just defined, but which, perhaps in an implicit form, contain a relation with all the
properties required of . It is useful to have a general term for such structures; we
will call them tree-like. A formal definition here would do more harm than good,
but in the text we will indicate, whenever we call a structure tree-like, where this
implicit tree can be found. That is, we will say, unless it is obvious, which
definable relation in the structure satisfies the conditions of Definition 1.7. One of
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the most important examples of tree-like structures is the Rabin structure, which
we will meet in Section 6.3.
One often encounters the notion of a tree defined in terms of the (reflexive) tran-

sitive closure of the successor relation. Such trees we call (reflexive and) transitive
trees, and they are dealt with in Exercises 1.1.4 and 1.1.5

Example 1.8 We have already seen that labeled transition systems can be regarded
as a simple model of computation. Indeed, they can be thought of as models for
practically any dynamic notion: each transition takes us from an input state to an
output state. But this treatment of states and transitions is rather unbalanced: it
is clear that transitions are second-class citizens. For example, if we talked about
LTSs using a first-order language, we couldn’t name transitions using constants
(they would be talked about using relation symbols) but we could have constants
for states. But there is a way to treat transitions as first-class citizens: we can work
with arrow structures.
The objects of an arrow structure are things that can be pictured as arrows. As

concrete examples, the mathematically inclined reader might think of vectors, or
functions or morphisms in some category; the computer scientist of programs; the
linguist of the context changing potential of a grammatically well-formed piece of
text or discourse; the philosopher of some agent’s cognitive actions; and so on. But
note well: although arrows are the prime citizens of arrow structures, this does not
mean that they should always be thought of as primitive entities. For example, in
a two-dimensional arrow structure, an arrow is thought of as a pair of
which represents the starting point of , and its endpoint.
Having ‘defined’ the elements of arrow structures to be objects graphically rep-

resentable as arrows, we should now ask: what are the basic relations which hold
between arrows? The most obvious candidate is composition: vector spaces have
an additive structure, functions can be composed, language fragments can be con-
catenated, and so on. So the central relation on arrows will be a ternary composi-
tion relation , where says that arrow is the outcome of composing arrow
with arrow (or conversely, that can be decomposed into and ). Note that

in many concrete examples, is actually a (partial) function; for example, in the
two-dimensional framework we have

iff and (1.1)

What next? Well, in all the examples listed, the composition function has a neutral
element; think of the identity function or the SKIP-program. So, arrow structures
will contain degenerate arrows, transitions that do not lead to a different state.
Formally, this means that arrow structures will contain a designated subset of
identity arrows; in the pair-representation, will be (a subset of) the diagonal:

iff (1.2)
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Another natural relation is converse. In linguistics and cognitive science we might
view this as an ‘undo’ action (perhaps we’ve made a mistake and need to recover)
and in many fields of mathematics arrow-like objects have converses (vectors) or
inverses (bijective functions). So we’ll also give arrow structures a binary reverse
relation . Again, in many cases this relation will be a partial function. For exam-
ple, in the two-dimensional picture, is given by

iff and (1.3)

Although there are further natural candidates for arrow relations (notably some
notion of iteration) we’ll leave it at this. And now for the formal definition: an
arrow frame is a quadruple such that , and are a ternary,
a binary and a unary relation on , respectively. Pictorially, we can think of them
as follows:

The two-dimensional arrow structure, in which the universe consists of all pairs
over the set (and the relations , and are given by (1.1), (1.3) and (1.2),
respectively) is called the square over , notation: . The square arrow frame
over can be pictorially represented as a full graph over : each arrow object

in can be represented as a ‘real’ arrow from to ; the relations
are as pictured above. Alternatively, square arrow frames can be represented two-
dimensionally, cf. the pictures in Example 1.27.

Exercises for Section 1.1
1.1.1 Let be a quasi-order; that is, assume that is transitive and reflexive. Define
the binary relation on by putting iff and .

(a) Show that is an equivalence relation

Let denote the equivalence class of under this relation, and define the following rela-
tion on the collection of equivalence classes: iff .

(b) Show that this is well-defined.
(c) Show that is a partial order.

1.1.2 Let be a transitive relation on a finite set . Prove that is well-founded iff is
irreflexive. ( is called well-founded if there are no infinite paths .)

1.1.3 Let be a binary relation on . In Example 1.2 we defined the reflexive closure
of to be . But we can also give a definition analogous to those
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of and in Definition 1.6, namely that it is the smallest reflexive relation on that
contains :

r is a reflexive binary relation on

Explain why this new definition (and the definitions of and ) are well defined. Show
the equivalence of the two definitions of reflexive closure. Finally, show that if and
only if there is a sequence of elements , , . . . , from such that for each

we have , and give an analogous sequence-based definition of reflexive
transitive closure.

1.1.4 A transitive tree is an SPO such that (i) there is a root satisfying
for all and (ii) for each , the set of predecessors of is finite
and linearly ordered by .

(a) Prove that if is a tree then is a transitive tree.
(b) Prove that is a transitive tree iff is a tree, where is the immediate

successor relation given by iff and for no .
(c) Under which conditions does the converse of (a) hold?

1.1.5 Define the notion of a reflexive and transitive tree, such that if is a tree then
is a reflexive and transitive tree.

1.1.6 Show that the following formulas hold on square arrow frames:

(a) ,
(b) ,
(c) .

1.2 Modal Languages
It’s now time to meet the modal languages we will be working with. First, we
introduce the basic modal language. We then define modal languages of arbitrary
similarity type. Finally we examine the following extensions of the basic modal
language in more detail: the basic temporal language, the language of proposi-
tional dynamic logic, and a language of arrow logic.

Definition 1.9 The basic modal language is defined using a set of proposition let-
ters (or proposition symbols or propositional variables) whose elements are usu-
ally denoted , , , and so on, and a unary modal operator (‘diamond’). The
well-formed formulas of the basic modal language are given by the rule

where ranges over elements of . This definition means that a formula is either a
proposition letter, the propositional constant falsum (‘bottom’), a negated formula,
a disjunction of formulas, or a formula prefixed by a diamond.
Just as the familiar first-order existential and universal quantifiers are duals to

each other (in the sense that ), we have a dual operator (‘box’)
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for our diamond which is defined by . We also make use of the classi-
cal abbreviations for conjunction, implication, bi-implication and the constant true
(‘top’): , ,
and .

Although we generally assume that the set of proposition letters is a countably
infinite , occasionally we need to make other assumptions. For in-
stance, when we are after decidability results, it may be useful to stipulate that is
finite, while doing model theory or frame theory we may need uncountably infinite
languages. This is why we take as an explicit parameter when defining the set of
modal formulas.

Example 1.10 Three readings of diamond and box have been extremely influen-
tial. First, can be read as ‘it is possibly the case that .’ Under this reading,

means ‘it is not possible that not ,’ that is, ‘necessarily ,’ and examples
of formulas we would probably regard as correct principles include all instances
of (‘whatever is necessary is possible’) and all instances of
(‘whatever is, is possible’). The status of other formulas is harder to decide. Should

(‘whatever is, is necessarily possible’) be regarded as a general truth
about necessity and possibility? Should (‘whatever is possible, is
necessarily possible’)? Are any of these formulas linked by a modal notion of log-
ical consequence, or are they independent claims about necessity and possibility?
These are difficult (and historically important) questions. The relational semantics
defined in the following section offers a simple and intuitively compelling frame-
work in which to discuss them.
Second, in epistemic logic the basic modal language is used to reason about

knowledge, though instead of writing for ‘the agent knows that ’ it is usual to
write . Given that we are talking about knowledge (as opposed to, say, belief
or rumor), it seems natural to view all instances of as true: if the agent
really knows that , then must hold. On the other hand (assuming that the agent
is not omniscient) we would regard as false. But the legitimacy of other
principles is harder to judge (if an agent knows that , does she know that she
knows it?). Again, a precise semantics brings clarity.
Third, in provability logic is read as ‘it is provable (in some arithmetical

theory) that .’ A central theme in provability logic is the search for a complete
axiomatization of the provability principles that are valid for various arithmetical
theories (such as Peano Arithmetic). The Löb formula plays a
key role here. The arithmetical ramifications of this formula lie outside the scope
of the book, but in Chapters 3 and 4 we will explore its modal content.

That’s the basic modal language. Let’s now generalize it. There are two obvious
ways to do so. First, there seems no good reason to restrict ourselves to languages
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with only one diamond. Second, there seems no good reason to restrict ourselves
to modalities that take only a single formula as argument. Thus the general modal
languages we will now define may contain many modalities, of arbitrary arities.

Definition 1.11 A modal similarity type is a pair where is a non-
empty set, and is a function . The elements of are called modal
operators; we use (‘triangle’), , , . . . to denote elements of . The function
assigns to each operator a finite arity, indicating the number of arguments
can be applied to.
In line with Definition 1.9, we often refer to unary triangles as diamonds, and

denote them by or , where is taken from some index set. We often assume
that the arity of operators is known, and do not distinguish between and .

Definition 1.12 A modal language is built up using a modal similarity
type and a set of proposition letters . The set of modal
formulas over and is given by the rule

where ranges over elements of .

The similarity type of the basic modal language is called . In the sequel we
sometimes state results for modal languages of arbitrary similarity types, give the
proof for similarity types with diamonds only, and leave the general case as an ex-
ercise. For binary modal operators, we often use infix notation; that is, we usually
write instead of . One other thing: note that our definition permits
nullary modalities (or modal constants), triangles that take no arguments at all.
Such modalities can be useful — we will see a natural example when we discuss
arrow logic — but they play a relatively minor role in this book. Syntactically (and
indeed, semantically) they are rather like propositional variables; in fact, they are
best thought of as propositional constants.

Definition 1.13 We now define dual operators for non-nullary triangles. For each
the dual of is defined as . The

dual of a triangle of arity at least is called a nabla. As in the basic modal language,
the dual of a diamond is called a box, and is written or .

Three extensions of the basic modal language deserve special attention. Two of
these, the basic temporal language and the language of propositional dynamic logic
will be frequently used in subsequent chapters. The third is a simple language of
arrow logic; it will provide us with a natural example of a binary modality.

Example 1.14 (The Basic Temporal Language) The basic temporal language is
built using a set of unary operators . The intended interpretation
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of a formula is ‘ will be true at some Future time,’ and the intended inter-
pretation of is ‘ was true at some Past time.’ This language is called the
basic temporal language, and it is the core language underlying a branch of modal
logic called temporal logic. It is traditional to write as and as , and
their duals are written as and , respectively. (The mnemonics here are: ‘it is
always Going to be the case’ and ‘it always Has been the case.’)
We can express many interesting assertions about time with this language. For

example, , says ‘whatever has happened will always have happened,’
and this seems a plausible candidate for a general truth about time. On the other
hand, if we insist that must always be true, it shows that we are
thinking of time as dense: between any two instants there is always a third. And if
we insist that (the McKinsey formula) is true, for all propositional
symbols , we are insisting that atomic information true somewhere in the future
eventually settles down to being always true. (We might think of this as reflecting
a ‘thermodynamic’ view of information distribution.)
One final remark: computer scientists will have noticed that the binary until

modality is conspicuous by its absence. As we will see in the following chapter,
the basic temporal language is not strong enough to express until. We examine a
language containing the until operator in Section 7.2.

Example 1.15 (Propositional Dynamic Logic) Another important branch of mo-
dal logic, again involving only unary modalities, is propositional dynamic logic.
PDL, the language of propositional dynamic logic, has an infinite collection of
diamonds. Each of these diamonds has the form , where denotes a (non-
deterministic) program. The intended interpretation of is ‘some terminating
execution of from the present state leads to a state bearing the information .’
The dual assertion states that ‘every execution of from the present state leads
to a state bearing the information .’
So far, there’s nothing really new — but a simple idea is going to ensure that

PDL is highly expressive: we will make the inductive structure of the programs
explicit in PDL’s syntax. Complex programs are built out of basic programs using
some repertoire of program constructors. By using diamonds which reflect this
structure, we obtain a powerful and flexible language.
Let us examine the core language of PDL. Suppose we have fixed some set of

basic programs , , , and so on (thus we have basic modalities , , , . . .
at our disposal). Then we are allowed to define complex programs (and hence,
modal operators ) over this base as follows:

(choice) if and are programs, then so is .
The program (non-deterministically) executes or .
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(composition) if and are programs, then so is .
This program first executes and then .

(iteration) if is a program, then so is .
is a program that executes a finite (possibly zero) number of times.

For the collection of diamonds this means that if and are modal operators,
then so are , and . This notation makes it straightforward to
describe properties of program execution. Here is a fairly straightforward example.
The formula says that a state bearing the information can
be reached by executing a finite number of times if and only if either we already
have the information in the current state, or we can execute once and then find
a state bearing the information after finitely many more iterations of . Here’s a
far more demanding example:

This is Segerberg’s axiom (or the induction axiom) and the reader should try work-
ing out what exactly it is that this formula says. We discuss this formula further in
Chapter 3, cf. Example 3.10.
If we confine ourselves to these three constructors (and in this book for the most

part we do) we are working with a version of PDL called regular PDL. (This is
because the three constructors are the ones used in Kleene’s well-known analysis of
regular programs.) However, a wide range of other constructors have been studied.
Here are two:

(intersection) if and are programs, then so is .
The intended meaning of is: execute both and , in parallel.

(test) if is a formula, then is a program.
This program tests whether holds, and if so, continues; if not, it fails.

To flesh this out a little, the intended reading of is that if we execute
both and in the present state, then there is at least one state reachable by both
programs which bears the information . This is a natural constructor for a variety
of purposes, and we will make use of it in Section 6.5.
The key point to note about the test constructor is its unusual syntax: it allows us

to make a modality out of a formula. Intuitively, this modality accesses the current
state if the current state satisfies . On its own such a constructor is uninteresting
( simply means ). However, when other constructors are present, it can
be used to build interesting programs. For example, is ‘if
then else .’
Nothing prevents us from viewing the basic programs as deterministic, and we

will discuss a fragment of deterministic PDL (DPDL) in Section 6.5
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Example 1.16 (An Arrow Language) A similarity type with modal operators
other than diamonds, is the type of arrow logic. The language of arrow logic
is designed to talk about the objects in arrow structures (entities which can be
pictured as arrows). The well-formed formulas of the arrow language are given
by the rule

’

That is, ’ (‘identity’) is a nullary modality (a modal constant), the ‘converse’ oper-
ator is a diamond, and the ‘composition’ operator is a dyadic operator. Possible
readings of these operators are:

’ identity ‘skip’
converse ‘ conversely’
composition ‘first , then ’

Example 1.17 (Feature Logic and Description Logic) As we mentioned in the
Preface, researchers developing formalisms for describing graphs have sometimes
(without intending to) come up with notational variants of modal logic. For ex-
ample, computational linguists use Attribute-Value Matrices (AVMs) for describ-
ing feature structures (directed acyclic graphs that encode linguistic information).
Here’s a fairly typical AVM:

AGREEMENT
PERSON 1st
NUMBER plural

CASE dative

But this is just a two dimensional notation for the following modal formula

AGREEMENT PERSON 1st NUMBER plural
CASE dative

Similarly, researchers in AI needing a notation for describing and reasoning about
ontologies developed description logic. For example, the concept of ‘being a hired
killer for the mob’ is true of any individual who is a killer and is employed by a
gangster. In description logic we can define this concept as follows:

killer employer gangster

But this is simply the following modal formula lightly disguised:

killer employer gangster

It turns out that the links between modal logic on the one hand, and feature and
description logic on the other, are far more interesting than these rather simple ex-
amples might suggest. A modal perspective on feature or description logic capable
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of accounting for other important aspects of these systems (such as the ability to
talk about re-entrancy in feature structures, or to perform ABox reasoning in de-
scription logic) must make use of the kinds of extended modal logics discussed in
Chapter 7 (in particular, logics containing the global modality, and hybrid logics).
Furthermore, some versions of feature and description logic make use of ideas
from PDL, and description logic makes heavy use of counting modalities (which
say such things as ‘at most 3 transitions lead to a state’).

Substitution
Throughout this book we’ll be working with the syntactic notion of one formula
being a substitution instance of another. In order to define this notion we first
introduce the concept of a substitution as a function mapping proposition letters to
variables.

Definition 1.18 Suppose we’re working a modal similarity type and a set of
proposition letters. A substitution is a map .
Now such a substitution induces a map

which we can recursively define as follows:

This definition spells out exactly what is meant by carrying out uniform substitu-
tion. Finally, we say that is a substitution instance of if there is some substitu-
tion such that .

To give an example, if is the substitution that maps to , to
and leaves all other proposition letters untouched, then we have

Exercises for Section 1.2
1.2.1 Using to mean ‘the agent knows that ’ and to mean ‘it is consistent with
what the agent knows that ,’ represent the following statements.

(a) If is true, then it is consistent with what the agent knows that she knows that .
(b) If it is consistent with what the agent knows that , and it is consistent with what

the agent knows that , then it is consistent with what the agent knows that .
(c) If the agent knows that , then it is consistent with what the agent knows that .
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(d) If it is consistent with what the agent knows that it is consistent with what the agent
knows that , then it is consistent with what the agent knows that .

Which of these seem plausible principles concerning knowledge and consistency?

1.2.2 Suppose is interpreted as ‘ is permissible’; how should be understood?
List formulas which seem plausible under this interpretation. Should the Löb formula

be on your list? Why?

1.2.3 Explain how the program constructs ‘while do ’ and ‘repeat until ’
can be expressed in PDL.

1.2.4 Consider the following arrow formulas. Do you think they should be always true?

’

1.2.5 Show that ‘being-a-substitution-instance-of’ is a transitive concept. That is, show
that if is a substitution instance of , and is a substitution instance of , then is a
substitution instance of .

1.3 Models and Frames
Although our discussion has contained many semantically suggestive phrases such
as ‘true’ and ‘intended interpretation’, as yet we have given them no mathemat-
ical content. The purpose of this (key) section is to put that right. We do so by
interpreting our modal languages in relational structures. In fact, by the end of the
section we will have done this in two distinct ways: at the level of models and at
the level of frames. Both levels are important, though in different ways. The level
of models is important because this is where the fundamental notion of satisfaction
(or truth) is defined. The level of frames is important because it supports the key
logical notion of validity.

Models and satisfaction
We start by defining frames, models, and the satisfaction relation for the basic
modal language.

Definition 1.19 A frame for the basic modal language is a pair such
that

(i) is a non-empty set.
(ii) is a binary relation on .
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That is, a frame for the basic modal language is simply a relational structure bearing
a single binary relation. We remind the reader that we refer to the elements of
by many different names (see Definition 1.1).
A model for the basic modal language is a pair , where is a frame

for the basic modal language, and is a function assigning to each proposition
letter in a subset of . Informally we think of as the set of points
in our model where is true. The function is called a valuation. Given a model

, we say that is based on the frame , or that is the frame
underlying .

Note that models for the basic modal language can be viewed as relational struc-
tures in a natural way, namely as structures of the form:

That is, a model is a relational structure consisting of a domain, a single binary
relation , and the unary relations given to us by . Thus, viewed from a purely
structural perspective, a frame and a model based on , are simply two re-
lational models based on the same universe; indeed, a model is simply a frame
enriched by a collection of unary relations.
But in spite of their mathematical kinship, frames and models are used very dif-

ferently. Frames are essentially mathematical pictures of ontologies that we find
interesting. For example, we may view time as a collection of points ordered by
a strict partial order, or feel that a correct analysis of knowledge requires that we
postulate the existence of situations linked by a relation of ‘being an epistemic
alternative to.’ In short, we use the level of frames to make our fundamental as-
sumptions mathematically precise.
The unary relations provided by valuations, on the other hand, are there to dress

our frames with contingent information. Is it raining on Tuesday or not? Is the
system write-enabled at time ? Is a situation where Janet does not love him an
epistemic alternative for John? Such information is important, and we certainly
need to be able to work with it — nonetheless, statements only deserve the de-
scription ‘logical’ if they are invariant under changes of contingent information.
Because we have drawn a distinction between the fundamental information given
by frames, and the additional descriptive content provided by models, it will be
straightforward to define a modally reasonable notion of validity.
But this is jumping ahead. First we must learn how to interpret the basic modal

language in models. This we do by means of the following satisfaction definition.

Definition 1.20 Suppose is a state in a model . Then we induc-
tively define the notion of a formula being satisfied (or true) in at state as
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follows:

iff where
never

iff not
iff or
iff for some with we have (1.4)

It follows from this definition that if and only if for all such
that , we have . Finally, we say that a set of formulas is true at a
state of a model , notation: , if all members of are true at .

Note that this notion of satisfaction is intrinsically internal and local. We evaluate
formulas inside models, at some particular state (the current state). Moreover,
works locally: the final clause (1.4) treats as an instruction to scan states

in search of one where is satisfied. Crucially, only states -accessible from the
current one can be scanned by our operators. Much of the characteristic flavor of
modal logic springs from the perspective on relational structures embodied in the
satisfaction definition.
If does not satisfy at we often write , and say that is false or

refuted at . When is clear from the context, we write for and
for . It is convenient to extend the valuation from proposition

letters to arbitrary formulas so that always denotes the set of states at which
is true:

Definition 1.21 A formula is globally or universally true in a model (nota-
tion: ) if it is satisfied at all points in (that is, if , for all

). A formula is satisfiable in a model if there is some state in at
which is true; a formula is falsifiable or refutable in a model if its negation is
satisfiable.
A set of formulas is globally true (satisfiable, respectively) in a model if

for all states in (some state in , respectively).

Example 1.22 (i) Consider the frame , , , , , , where
iff :

If we choose a valuation on such that , , ,
, , , and , then in the model we have that
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, , , and
.

Furthermore, . Now, it is clear that is true at , , and , but
why is it true at ? Well, as has no successors at all (we often call such points
‘dead ends’ or ‘blind states’) it is vacuously true that is true at all -successors
of . Indeed, any ‘boxed’ formula is true at any dead end in any model.
(ii) As a second example, let be the SPO given in Figure 1.1, where ,
, , , , , , and means ‘ and are different, and can be divided
by .’ Choose a valuation on this frame such that , and

, and let . Then , , , and

(iii) Whereas a diamond corresponds to making a single -step in a model,
stacking diamonds one in front of the other corresponds to making a sequence
of -steps through the model. The following defined operators will sometimes
be useful: we write for preceded by occurrences of , and for
preceded by occurrences of . If we like, we can associate each of these defined
operators with its own accessibility relation. We do so inductively: is defined
to hold if , and is defined to hold if . Under this
definition, for any model and state in we have iff there exists
a such that and .
(iv) The use of the word ‘world’ (or ‘possible world’) for the entities in

derives from the reading of the basic modal language in which is taken to mean
‘possibly ,’ and to mean ‘necessarily .’ Given this reading, the machinery of
frames, models, and satisfaction which we have defined is essentially an attempt to
capture mathematically the view (often attributed to Leibniz) that necessity means
truth in all possible worlds, and that possibility means truth in some possible world.
The satisfaction definition stipulates that and check for truth not at all possi-

ble worlds (that is, at all elements of ) but only at -accessible possible worlds.
At first sight this may seem a weakness of the satisfaction definition — but in fact,
it’s its greatest source of strength. The point is this: varying is a mechanism
which gives us a firm mathematical grip on the pre-theoretical notion of access be-
tween possible worlds. For example, by stipulating that we can allow
all worlds access to each other; this corresponds to the Leibnizian idea in its purest
form. Going to the other extreme, we might stipulate that no world has access to
any other. Between these extremes there is a wide range of options to explore.
Should interworld access be reflexive? Should it be transitive? What impact do
these choices have on the notions of necessity and possibility? For example, if we
demand symmetry, does this justify certain principles, or rule others out?
(v) Recall from Example 1.10 that in epistemic logic is written as and

is interpreted as ‘the agent knows that .’ Under this interpretation, the intuitive
reading for the semantic clause governing is: the agent knows in a situation
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(that is, ) iff is true in all situations that are compatible with her
knowledge (that is, if for all such that ). Thus, under this interpre-
tation, is to be thought of as a collection of situations, is a relation which
models the idea of one situation being epistemically accessible from another, and
governs the distribution of primitive information across situations.

We now define frames, models and satisfaction for modal languages of arbitrary
similarity type.

Definition 1.23 Let be a modal similarity type. A -frame is a tuple consisting
of the following ingredients:

(i) a non-empty set ,
(ii) for each , and each -ary modal operator in the similarity type ,

an ( )-ary relation .

So, again, frames are simply relational structures. If contains just a finite number
of modal operators , . . . , , we write , . . . , ; otherwise we
write or . We turn such a frame into a
model in exactly the same way we did for the basic modal language: by adding a
valuation. That is, a -model is a pair where is a -frame, and is
a valuation with domain and range , where is the universe of .
The notion of a formula being satisfied (or true) at a state in a model

(notation: ) is defined inductively. The clauses
for the atomic and Boolean cases are the same as for the basic modal language (see
Definition 1.20). As for the modal case, when we define

iff for some , . . . , with
we have, for each ,

This is an obvious generalization of the way is handled in the basic modal lan-
guage. Before going any further, the reader should formulate the satisfaction clause
for .
On the other hand, when (that is, when is a nullary modality) then
is a unary relation and we define

iff

That is, unlike other modalities, nullary modalities do not access other states. In
fact, their semantics is identical to that of the propositional variables, save that the
unary relations used to interpret them are not given by the valuation — rather, they
are part of the underlying frame.
As before, we often write for where is clear from the

context. The concept of global truth (or universal truth) in a model is defined
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as for the basic modal language: it simply means truth at all states in the model.
And, as before, we sometimes extend the valuation supplied by to arbitrary
formulas.

Example 1.24 (i) Let be a similarity type with three unary operators , ,
and . Then a -frame has three binary relations , , and (that is, it is a
labeled transition system with three labels). To give an example, let , ,
and be as in Figure 1.2, and consider the formula . Informally,
this formula is true at a state, if it has an -successor satisfying only if it has
an -successor satisfying . Let be a valuation with . Then the
model has .
(ii) Let be a similarity type with a binary modal operator and a ternary

operator . Frames for this contain a ternary relation and a 4-ary rela-
tion . As an example, let , , and

as in Figure 1.6, and consider a valuation on this frame with
, and . Now, let be the formula

:

:

Fig. 1.6. A simple frame

. An informal reading of is ‘any triangle of which the
evaluation point is a vertex, and which has and true at the other two vertices,
can be expanded to a rectangle with a fourth point at which is true.’ The reader
should be able to verify that is true at , and indeed at all other points, and hence
that it is globally true in the model.

Example 1.25 (Bidirectional Frames and Models) Recall from Example 1.14
that the basic temporal language has two unary operators and . Thus, according
to Definition 1.23, models for this language consist of a set bearing two binary re-
lations, (the into-the-future relation) and (the into-the-past relation), which
are used to interpret and respectively. However, given the intended reading
of the operators, most such models are inappropriate: clearly we ought to insist on
working with models based on frames in which is the converse of (that is,
frames in which ).
Let us denote the converse of a relation by . We will call a frame of the
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form a bidirectional frame, and a model built over such a frame a bidi-
rectional model. From now on, we will only interpret the basic temporal language
in bidirectional models. That is, if is a bidirectional model
then:

iff
iff

But of course, once we’ve made this restriction, we don’t need to mention ex-
plicitly any more: once has been fixed, its converse is fixed too. That is, we are
free to interpret the basic temporal languages on frames for the basic modal
language using the clauses

iff
iff

These clauses clearly capture a crucial part of the intended semantics: looks
forward along , and looks backwards along . Of course, our models will
only start looking genuinely temporal when we insist that has further properties
(notably transitivity, to capture the flow of time), but at least we have pinned down
the fundamental interaction between the two modalities.

Example 1.26 (Regular Frames andModels) As explained in Example 1.15, the
language of PDL has an infinite collection of diamonds, each indexed by a program
built from basic programs using the constructors , , and . Now, according to

Definition 1.23, a model for this language has the form

is a program

That is, a model is a labeled transition system together with a valuation. However,
given our reading of the PDL operators, most of these models are uninteresting. As
with the basic temporal language, we must insist on working with a class of models
that does justice to our intentions.
Now, there is no problem with the interpretation of the basic programs: any

binary relation can be regarded as a transition relation for a non-deterministic pro-
gram. Of course, if we were particularly interested in deterministic programs we
would insist that each basic program be interpreted by a partial function, but let us
ignore this possibility and turn to the key question: which relations should interpret
the structured modalities? Given our readings of , and , as choice, composition,
and iteration, it is clear that we are only interested in relations constructed using
the following inductive clauses:

the reflexive transitive closure of
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These inductive clauses completely determine how each modality should be inter-
preted. Once the interpretation of the basic programs has been fixed, the relation
corresponding to each complex program is fixed too. This leads to the following
definition.
Suppose we have fixed a set of basic programs. Let be the smallest set of

programs containing the basic programs and all programs constructed over them
using the regular constructors , and . Then a regular frame for is a labeled
transition system such that is an arbitrary binary relation
for each basic program , and for all complex programs , is the binary relation
inductively constructed in accordance with the previous clauses. A regular model
for is a model built over a regular frame; that is, a regular model is regular
frame together with a valuation. When working with the language of PDL over the
programs in , we will only be interested in regular models for , for these are
the models that capture the intended interpretation.
What about the and constructors? Clearly the intended reading of demands

that . As for ?, it is clear that we want the following definition:

and

This is indeed the clause we want, but note that it is rather different from the others:
it is not a frame condition. Rather, in order to determine the relation , we need
information about the truth of the formula , and this can only be provided at the
level of models.

Example 1.27 (Arrow Models) Arrow frames were defined in Example 1.8 and
the arrow language in Example 1.16. Given these definitions, it is clear how the
language of arrow logic should be interpreted. First, an arrow model is a structure

such that is an arrow frame and is a valuation.
Then:

’ iff
iff for some with
iff and for some and with

When is a square frame (as defined in Example 1.8), this works out as
follows. now maps propositional variables to sets of pairs over ; that is, to
binary relations. The truth definition can be rephrased as follows:

’ iff
iff
iff and for some

Such situations can be represented pictorially in two ways. First, one could draw
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the graph-like structures as given in Example 1.8. Alternatively, one could draw
a square model two-dimensionally, as in the picture below. It will be obvious that
the modal constant ’ holds precisely at the diagonal points and that is true at a
point iff holds at its mirror image with respect to the diagonal. The formula
holds at a point iff we can draw a rectangle such that: lies on the vertical
line through , lies on the vertical line through ; and lies on the diagonal.

’

Frames and validity
It is time to define one of the key concepts in modal logic. So far we have been
viewing modal languages as tools for talking about models. But models are com-
posite entities consisting of a frame (our underlying ontology) and contingent in-
formation (the valuation). We often want to ignore the effects of the valuation and
get a grip on the more fundamental level of frames. The concept of validity lets
us do this. A formula is valid on a frame if it is true at every state in every model
that can be built over the frame. In effect, this concept interprets modal formulas
on frames by abstracting away from the effects of particular valuations.

Definition 1.28 A formula is valid at a state in a frame (notation: )
if is true at in every model based on ; is valid in a frame (notation:

) if it is valid at every state in . A formula is valid on a class of frames
(notation: ) if it is valid on every frame in ; and it is valid (notation:
) if it is valid on the class of all frames. The set of all formulas that are valid in

a class of frames is called the logic of (notation: ).

Our definition of the logic of a frame class (as the set of ‘all’ formulas that
are valid on ) is underspecified: we did not say which collection of proposition
letters should be used to build formulas. But usually the precise form of this
collection is irrelevant for our purposes. On the few occasions in this book where
more precision is required, we will explicitly deal with the issue. (If the reader is
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worried about this, he or she may just fix a countable set of proposition letters
and define to be .)
As will become abundantly clear in the course of the book, validity differs from
truth in many ways. Here’s a simple example. When a formula is true at a
point , this means that that either or is true at (the satisfaction definition
tells us so). On the other hand, if is valid on a frame , this does not mean
that either or is valid on ( is a simple counterexample).

Example 1.29 (i) The formula is valid on all frames. To
see this, take any frame and state in , and let be a valuation on . We have
to show that if , then . So assume that

. Then, by definition there is a state such that and
. But, if then either or . Hence either

or . Either way, .
(ii) The formula is not valid on all frames. To see this we need to

find a frame , a state in , and a valuation on that falsifies the formula at .
So let be a three-point frame with universe and relation .
Let be any valuation on such that . Then , but

since 0 is not related to 2.
(iii) But there is a class of frames on which is valid: the class

of transitive frames. To see this, take any transitive frame and state in ,
and let be a valuation on . We have to show that if , then

. So assume that . Then by definition there are
states and such that and and . But as is transitive, it
follows that , hence .
(iv) As the previous example suggests, when additional constraints are imposed

on frames, more formulas may become valid. For example, consider the frame
depicted in Figure 1.2. On this frame the formula is not valid; a coun-
termodel is obtained by putting . Now, consider a frame satisfying
the condition ; an example is depicted in Figure 1.7.

Fig. 1.7. A frame satisfying .

On this frame it is impossible to refute the formula at , because a
refutation would require the existence of a point with and true at , but
not ; but such points are forbidden when we insist that .
This is a completely general point: in every frame of the appropriate similarity

type, if satisfies the condition , then is valid in . More-
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over, the converse to this statement also holds: whenever is valid on
a given frame , then the frame must satisfy the condition . To use the
terminology we will introduce in Chapter 3, the formula defines the
property that .
(v) When interpreting the basic temporal language (see Example 1.25) we ob-

served that arbitrary frames of the form were uninteresting given the
intended interpretation of and , and we insisted on interpreting them using a
relation and its converse. Interestingly, there is a sense in which the basic tempo-
ral language itself is strong enough to enforce the condition that the relation is
the converse of the relation : such frames are precisely the ones which validate
both the formulas and ; see Exercise 3.1.1.
(vi) The formula is not valid on all frames. To see this we need

to find a frame , a state in , and a valuation on that falsifies
this formula at . So let , and let be the relation . Let
be a valuation such that . Then , but obviously

.
(vii) But there is a frame on which is valid. As the universe of the

frame take the set of all rational numbers , and let the frame relation be the usual
-ordering on . To show that is valid on this frame, take any point
in it, and any valuation such that ; we have to show that

. But this is easy: as , there exists a such that and .
Because we are working on the rationals, there must be an with and
(for example, ). As , it follows that .
(viii) The special conditions demanded of PDL models also give rise to validities.

For example, is valid on any frame such that
, and in fact the converse is also true. The reader is asked to prove this

in Exercise 3.1.2.
(ix) In our last example we consider arrow logic. We claim that in any square

arrow frame , the formula is valid. For, let be a
valuation on , and suppose that for some pair of points in , we have

. It follows that , and hence,
there must be a for which and .
But then we have and . This in turn
implies that .

Exercises for Section 1.3
1.3.1 Show that when evaluating a formula in a model, the only relevant information in
the valuation is the assignments it makes to the propositional letters actually occurring in
. More precisely, let be a frame, and and be two valuations on such that

for all proposition letters in . Show that iff . Work in the
basic modal language. Do this exercise by induction on the number of connectives in (or
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as we usually put it, by induction on ). (If you are unsure how to do this, glance ahead to
Proposition 2.3 where such a proof is given in detail.)

1.3.2 Let and be the following frames for a modal
similarity type with two diamonds and . Here is the set of natural numbers, is
the set of strings of s and s, and the relations are defined by

iff
iff
iff or
iff is a proper initial segment of

Which of the following formulas are valid on and , respectively?

(a) ,
(b) ,
(c) ,
(d) ,
(e) ,
(f) ,
(g) .

1.3.3 Consider the basic temporal language and the frames , and
(the integer, rational, and real numbers, respectively, all ordered by the usual less-than
relation ). In this exercise we use E to abbreviate , and A to abbreviate

. Which of the following formulas are valid on these frames?

(a) ,
(b) ,
(c) E E A A E .

1.3.4 Show that every formula that has the form of a propositional tautology is valid.
Further, show that is valid.

1.3.5 Show that each of the following formulas is not valid by constructing a frame
that refutes it.

(a) ,
(b) ,
(c) ,
(d) .

Find, for each of these formulas, a non-empty class of frames on which it is valid.

1.3.6 Show that the arrow formulas and ’ are valid in
any square.

1.4 General Frames
At the level of models the fundamental concept is satisfaction. This is a relatively
simple concept involving only a frame and a single valuation. By ascending to the
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level of frames we get a deeper grip on relational structures — but there is a price to
pay. Validity lacks the concrete character of satisfaction, for it is defined in terms of
all valuations on a frame. However there is an intermediate level: a general frame

is a frame together with a restricted, but suitably well-behaved collection
of admissible valuations.
General frames are useful for at least two reasons. First, there may be appli-

cation driven motivations to exclude certain valuations. For instance, if we were
using to model the temporal distribution of outputs from a computational
device, it would be unreasonable to let valuations assign non recursively enumer-
able sets to propositional variables. But perhaps the most important reason to work
with general frames is that they support a notion of validity that is mathematically
simpler than the frame-based one, without losing too many of the concrete prop-
erties that make models so easy to work with. This ‘simpler behavior’ will only
really become apparent when we discuss the algebraic perspective on complete-
ness theory in Chapter 5. It will turn out that there is a fundamental and universal
completeness result for general frame validity, something that the frame semantics
lacks. Moreover, we will discover that general frames are essentially a set-theoretic
representation of boolean algebras with operators. Thus, the in stands
not only for Admissible, but also for Algebra.
So what is a ‘suitably well-behaved collection of valuations’? It simply means a

collection of valuations closed under the set-theoretic operations corresponding to
our connectives and modal operators. Now, fairly obviously, the boolean connec-
tives correspond to the boolean operations of union, relative complement, and so
on — but what operations on sets do modalities correspond to? Here is the answer.
Let us first consider the basic modal similarity type with one diamond. Given a

frame , let be the following operation on the power set of :

for some

Think of as the set of states that ‘see’ a state in . This operation corre-
sponds to the diamond in the sense that for any valuation and any formula :

Moving to the general case, we obtain the following definition.

Definition 1.30 Let be a modal similarity type, and a -frame.
For we define the following function on the power set of :

there are , . . . , such that
and for all .

Example 1.31 Let be the converse operator of arrow logic, and consider a
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square frame . Note that is the following operation:

for some

But by the rather special nature of this boils down to

and for some

In other words, is nothing but the converse of the binary relation .

Definition 1.32 (General Frames) Let be a modal similarity type. A general -
frame is a pair where is a -frame, and is a non-empty
collection of subsets of closed under the following operations:

(i) union: if , then .
(ii) relative complement: if , then .
(iii) modal operations: if , . . . , , then for all

.

A model based on a general frame is a triple where is a general
frame and is a valuation satisfying the constraint that for each proposition letter
, is an element of . Valuations satisfying this constraint are called admis-
sible for .

It follows immediately from the first two clauses of the definition that both the
empty set and the universe of a general frame are always admissible. Note that
an ordinary frame can be regarded as a general frame where

(that is, a general frame in which all valuations are admissible). Also,
note that if a valuation is admissible for a general frame , then the closure
conditions listed in Definition 1.32 guarantee that , for all formulas
. In short, a set of admissible valuations is a ‘logically closed’ collection of
information assignments.

Definition 1.33 A formula is valid at a state in a general frame (no-
tation: ) if is true at in every admissible model on

; and is valid in a general frame (notation: ) if is true
at every state in every admissible model on .
A formula is valid on a class of general frames (notation: ) if it is

valid on every general frame in . Finally, if is valid on the class of all
general frames we say that it is g-valid and write . We will learn in Chapter 4
(see Exercise 4.1.1) that a formula is valid if and only if it is g-valid.
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Clearly, for any frame , if then for any collection of admissible assign-
ments on , we have too. The converse does not hold. Here is a
counterexample that will be useful in Chapter 4.

Example 1.34 Consider the McKinsey formula, . It is easy to see
that the McKinsey formula is not valid on the frame , for we obtain a coun-
termodel by choosing a valuation for that lets the truth value of alternate in-
finitely often (for instance, by letting be the collection of even numbers).
However there is a general frame based on in which the McKinsey for-

mula is valid. First some terminology: a set is co-finite if its complement is finite.
Now consider the general frame , where is the collection of all
finite and co-finite sets. We leave it as an exercise to show that satisfies all the
constraints of Definition 1.32; see Exercise 1.4.5.
To see that the McKinsey formula is indeed valid on , let be an admissible

valuation, and let . If , then must be co-finite (why?),
hence for some every state is in . But this means that ,
as required.

Although we will make an important comment about general frames in Section 3.2,
and use them to help prove an incompleteness result in Section 4.4, we will not re-
ally be in a position to grasp their significance until Chapter 5, when we introduce
boolean algebras with operators. Until then, we will concentrate on modal lan-
guages as tools for talking about models and frames.

Exercises for Section 1.4
1.4.1 Define, analogous to , an operation on the power set of a frame such that
for an arbitrary modal formula and an arbitrary valuation we have that

. Extend this definition to the dual of a polyadic modal operator.

1.4.2 Consider the basic modal formula .

(a) Construct a frame and a general frame such that
, but .

(b) Construct a general frame and a valuation on such that
, but .

1.4.3 Show that if is any collection of valuations over some frame , then there is a
smallest general frame such that . (‘Smallest’ means that for any general
frame such that , .)

1.4.4 Show that for square arrow frames, the operation is nothing but composition of
two binary relations. What is ’?

1.4.5 Consider the basic modal language, and the general frame , where
is the collection of all finite and co-finite sets. Show that is a general frame.
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1.4.6 Consider the structure where is the collection of finite and cofinite
subsets of , and is defined by

iff and and

If is the accessibility relation of a dyadic modal operator, show that is a general frame.

1.4.7 Let be some modal model. Prove that the structure

is a formula

is a general frame.

1.5 Modal Consequence Relations
While the idea of validity in frames (and indeed, validity in general frames) gives
rise to logically interesting formulas, so far we have said nothing about what logical
consequence might mean for modal languages. That is, we have not explained what
it means for a set of modal formulas to logically entail a modal formula .
This we will now do. In fact, we will introduce two families of consequence

relations: a local one and a global one. Both families will be defined semantically;
that is, in terms of classes of structures. We will define these relations for all three
kinds of structures we have introduced, though in practice we will be primarily
interested in semantic consequence over frames. Before going further, a piece of
terminology. If is a class of models, then a model from is simply a model in
. On the other hand, if is a class of frames (or a class of general frames) then a
model from is a model based on a frame (general frame) in .
What is a modally reasonable notion of logical consequence? Two things are

fairly clear. First, it seems sensible to hold on to the familiar idea that a relation
of semantic consequence holds when the truth of the premises guarantees the truth
of the conclusion. Second, it should be clear that the inferences we are entitled to
draw will depend on the class of structures we are working with. (For example,
different inferences will be legitimate on transitive and intransitive frames.) Thus
our definition of consequence will have to be parametric: it must make reference
to a class of structures S.
Here’s the standard way of meeting these requirements. Suppose we are working

with a class of structures S. Then, for a formula (the conclusion) to be a logical
consequence of (the premises) we should insist that whenever is true at some
point in some model from , then should also be true in that same model at the
same point. In short, this definition demands that the maintenance of truth should
be guaranteed point to point or locally.

Definition 1.35 (Local Semantic Consequence) Let be a similarity type, and
let be a class of structures of type (that is a class of models, a class of frames,
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or a class of general frames of this type). Let and be a set of formulas and
a single formula from a language of type . We say that is a local semantic
consequence of over (notation: ) if for all models from , and all
points in , if then

Example 1.36 Suppose that we are working with , the class of transitive
frames. Then:

On the other hand, is not a local semantic consequence of over the
class of all frames.

Local consequence is the notion of logical entailment explored in this book, but it
is by no means the only possibility. Here’s an obvious variant.

Definition 1.37 (Global Semantic Consequence) Let , , and be as in
Definition 1.35. We say that is a global semantic consequence of over
(notation: ) if and only if for all structures in , if then
(Here, depending on the kind of structures contains, denotes either validity in
a frame, validity in a general frame, or global truth in a model.)

Again, this definition hinges on the idea that premises guarantee conclusions, but
here the guarantee covers global notions of correctness.

Example 1.38 The local and global consequence relations are different. Consider
the formulas and . It is easy to see that does not locally imply — indeed,
that this entailment should not hold is pretty much the essence of locality. On the
other hand, suppose that we consider a model where is globally true. Then
certainly holds at all successors of all states, so , and so .

Nonetheless, there is a systematic connection between the two consequence rela-
tions, as the reader is asked to show in Exercise 1.5.3.

Exercises for Section 1.5
1.5.1 Let be a class of frames for the basic modal similarity type, and let denote
the class of models based on a frame in . Prove that iff
(every point has a predecessor).
Does this equivalence hold as well if we work with instead?

1.5.2 Let M denote the class of all models, and the class of all frames. Show that if
then , but that the converse is false.

1.5.3 Let be a set of formulas in the basic modal language, and let denote the class of
all frames. Show that iff .
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1.5.4 Again, let denote the class of all frames. Show that the local consequence relation
does have the deduction theorem: iff , but the global one does not.
However, show that on the class of transitive frames we have that iff

.

1.6 Normal Modal Logics
Till now our discussion has been largely semantic; but logic has an important syn-
tactic dimension, and our discussion raises some obvious questions. Suppose we
are interested in a certain class of frames F: are there syntactic mechanisms capable
of generating , the formulas valid on F? And are such mechanisms capable of
coping with the associated semantic consequence relation? The modal logician’s
response to such questions is embodied in the concept of a normal modal logic.
A normal modal logic is simply a set of formulas satisfying certain syntactic clo-

sure conditions. Which conditions? We will work towards the answer by defining a
Hilbert-style axiom system called K. K is the ‘minimal’ (or ‘weakest’) system for
reasoning about frames; stronger systems are obtained by adding extra axioms. We
discuss K in some detail, and then, at the end of the section, define normal modal
logics. By then, the reader will be in a position to see that the definition is a more-
or-less immediate abstraction from what is involved in Hilbert-style approaches to
modal proof theory. We will work in the basic modal language.

Definition 1.39 A K-proof is a finite sequence of formulas, each of which is an
axiom, or follows from one or more earlier items in the sequence by applying a
rule of proof . The axioms of K are all instances of propositional tautologies plus:

(K)
(Dual) .

The rules of proof of K are:

Modus ponens: given and , prove .
Uniform substitution: given , prove , where is obtained from by uniformly
replacing proposition letters in by arbitrary formulas.
Generalization: given , prove .

A formula is K-provable if it occurs as the last item of some K-proof, and if this
is the case we write .

Some comments. Tautologies may contain modalities (for example, is a
tautology, as it has the same form as ). As tautologies are valid on all frames
(Exercise 1.3.4), they are a safe starting point for modal reasoning. Our decision
to add all propositional tautologies as axioms is an example of axiomatic overkill;
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we could have chosen a small set of tautologies capable of generating the rest via
the rules of proof, but this refinement is of little interest for our purposes.
Modus ponens is probably familiar to all our readers, but there are two important

points we should make. First, modus ponens preserves validity. That is, if and
then . Given that we want to reason about frames, this property is

crucial. Note, however, that modus ponens also preserves two further properties,
namely global truth (if and then ) and satisfiability
(if and then ). That is, modus ponens is not
only a correct rule for reasoning about frames, it is also a correct rule for reasoning
about models, both globally and locally.
Uniform substitution should also be familiar. It mirrors the fact that validity ab-

stracts away from the effects of particular assignments: if a formula is valid, this
cannot be because of the particular value its propositional symbols have, thus we
should be free to uniformly replace these symbols with any other formula what-
soever. And indeed, as the reader should check, uniform substitution preserves
validity. Note, however, that it does not preserve either global truth or satisfiabil-
ity. (For example, is obtainable from by uniform substitution, but just because
is globally true in some model, it does not follow that is too!) In short, uniform

substitution is strictly a tool for generating new validities from old.
That’s the classical core of our Hilbert system, so let’s turn to the the genuinely

modal axioms and rules of proof. First the axioms. The K axiom is the fundamental
one. It is clearly valid (as the reader who has not done Exercise 1.3.4 should now
check) but why is it a useful addition to our Hilbert system?
K is sometimes called the distribution axiom, and is important because it lets us

transform (a boxed formula) into (an implication). This
box-over-arrow distribution enables further purely propositional reasoning to take
place. For example, suppose we are trying to prove , and have constructed a
proof sequence containing both and . If we could apply modus
ponens under the scope of the box, we would have proved . And this is what
distribution lets us do: as K contains the axiom ,
by uniform substitution we can prove . But then a
first application of modus ponens proves , and a second proves as
desired.
The Dual axiom obviously reflects the duality of and ; nonetheless, readers

familiar with other discussions of K (many of which have K as the sole modal
axiom) may be surprised at its inclusion. Do we really need it? Yes, we do. In this
book, is primitive and is an abbreviation. Thus our K axiom is really shorthand
for . We need a way to maneuver around
these negations, and this is the syntactic role that Dual plays. (Incidentally had we
chosen as our primitive operator, Dual would not have been required.) We prefer
working with a primitive (apart from anything else, it is more convenient for the
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algebraic work of Chapter 5) and do not mind adding Dual as an extra axiom. Dual,
of course, is valid.
It only remains to discuss the modal rule of proof: generalization (another com-

mon name for it is necessitation). Generalization ‘modalizes’ provable formulas by
stacking boxes in front. Roughly speaking, while the K axiom lets us apply classi-
cal reasoning inside modal contexts, necessitation creates new modal contexts for
us to work with; modal proofs arise from the interplay of these two mechanisms.
Note that generalization preserves validity: if it is impossible to falsify , then

obviously we will never be able to falsify at any accessible state! Similarly,
generalization preserves global truth. But it does not preserve satisfaction: just
because is true in some state, we cannot conclude that is true at all accessible
states.

is the minimal modal Hilbert system in the following sense. As we have
seen, its axioms are all valid, and all three rules of inference preserve validity,
hence all K-provable formulas are valid. (To use the terminology introduced in
Definition 4.9, K is sound with respect to the class of all frames.) Moreover, as we
will prove in Theorem 4.23, the converse is also true: if a basic modal formula is
valid, then it is K-provable. (That is, K is complete with respect to the class of all
frames.) In short, K generates precisely the valid formulas.

Example 1.40 The formula is valid on any frame, so
it should be K-provable. And indeed, it is. To see this, consider the following
sequence of formulas:

Tautology
Generalization: 1
K axiom

Uniform Substitution: 3
Modus Ponens: 2, 4
Uniform Substitution: 3
Propositional Logic: 5, 6
Propositional Logic: 7

Strictly speaking, this sequence is not aK-proof — it is a subsequence of the proof
consisting of the most important items. The annotations in the right-hand column
should be self-explanatory; for example ‘Modus Ponens: 2, 4’ labels the formula
obtained from the second and fourth formulas in the sequence by applying modus
ponens. To obtain the full proof, fill in the items that lead from line 6 to 8.

Remark 1.41 Warning: there is a pitfall that is very easy to fall into if you are used
to working with natural deduction systems: we cannot freely make and discharge



36 1 Basic Concepts

assumptions in the Hilbert system K. The following ‘proof’ shows what can go
wrong if we do:

Assumption
Generalization: 1
Discharge assumption

So we have ‘proved’ ! This is obviously wrong: this formula is not valid,
hence it is not K-provable. And it should be clear where we have gone wrong:
we cannot use assumptions as input to generalization, for, as we have already re-
marked, this rule does not preserve satisfiability. Generalization is there to enable
us to generate new validities from old. It is not a local rule of inference.

For many purposes, K is too weak. If we are interested in transitive frames, we
would like a proof system which reflects this. For example, we know that

is valid on all transitive frames, so we would want a proof system that generates
this formula; K does not do this, for is not valid on all frames.
But we can extend K to cope with many such restrictions by adding extra ax-

ioms. For example, if we enrich K by adding as an axiom, we obtain
the Hilbert-system called K4. As we will show in Theorem 4.27, K4 is sound and
complete with respect to the class of all transitive frames (that is, it generates pre-
cisely the formulas valid on transitive frames). More generally, given any set of
modal formulas , we are free to add them as extra axioms to K, thus forming the
axiom system . As we will learn in Chapter 4, in many important cases it is
possible to characterize such extensions in terms of frame validity.
One final issue remains to be discussed: do such axiomatic extensions of K give

us a grip on semantic consequence, and in particular, the local semantic conse-
quence relation over classes of frames (see Definition 1.35)?
In many important cases they do. Here’s the basic idea. Suppose we are inter-

ested in transitive frames, and are working withK4. We capture the notion of local
consequence over transitive frames in K4 as follows. Let be a set of formulas,
and a formula. Then we say that is a local syntactic consequence of in K4
(notation: ) if and only if there is some finite subset of
such that . In Theorem 4.27 we will show that

iff

where denotes local semantic consequence over transitive frames. In short,
we have reduced the local semantic consequence relation over transitive frames to
provability in K4.

Definition 1.42 (Normal Modal Logics) A normal modal logic is a set of for-
mulas that contains all tautologies, , and ,



1.6 Normal Modal Logics 37

and that is closed under modus ponens, uniform substitution and generalization.
We call the smallest normal modal logic K.

This definition is a direct abstraction from the ideas underlying modal Hilbert sys-
tems. It throws away all talk of proof sequences and concentrates on what is really
essential: the presence of axioms and closure under the rules of proof.
We will rarely mention Hilbert systems again: we prefer to work with the more

abstract notion of normal modal logics. For a start, although the two approaches
are equivalent (see Exercise 1.6.6), it is simpler to work with the set-theoretical
notion of membership than with proof sequences. More importantly, in Chapters 4
and 5 we will prove results that link the semantic and syntactic perspectives on
modal logic. These results will hold for any set of formulas fulfilling the normality
requirements. Such a set might be the formulas generated by a Hilbert-style proof
system — but it could just as well be the formulas provable in a natural-deduction
system, a sequent system, a tableaux system, or a display calculus. Finally, the
concept of a normal modal logic makes good semantic sense: for any class of
frames , we have that , the set of formulas valid on , is a normal modal logic;
see Exercise 1.6.7.

Exercises for Section 1.6
1.6.1 Give K-proofs of and .

1.6.2 Let be the ‘demodalized’ version of a modal formula ; that is, is obtained
from by simply erasing all diamonds. Prove that is a propositional tautology when-
ever is K-provable. Conclude that not every modal formula is K-provable.

1.6.3 The axiom system known as S4 is obtained by adding the axiom to K4.
Show that ; that is, show that S4 does not prove this formula. (Hint: find an
appropriate class of frames for which S4 is sound.) If we add this formula as an axiom to
S4 we obtain the system called . Give an S5-proof of .

1.6.4 Try adapting K to obtain a minimal Hilbert system for the basic temporal language.
Does your system cope with the fact that we only interpret this language on bidirectional
frames? Then try and define a minimal Hilbert system for the language of propositional
dynamic logic.

1.6.5 This exercise is only for readers who like syntactical manipulations and have a lot
of time to spare. KL is the axiomatization obtained by adding the Löb formula

as an extra axiom to K. Try and find a KL proof of . That is, show
that KL KL4.

1.6.6 In Chapter 4 we will use to denote the smallest normal modal logic containing
; the point of the present exercise is to relate this notation to our discussion of Hilbert

systems. So (as discussed above) suppose we form the axiom system by adding as
axioms all the formulas in to K. Show that the Hilbert system proves precisely the
formulas contained in the normal modal logic .
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1.6.7 Let be a class of frames. Show that is a normal modal logic.

1.7 Historical Overview
The ideas introduced in this chapter have a long history. They evolved as responses
to particular problems and challenges, and knowing something of the context in
which they arose will make it easier to appreciate why they are considered im-
portant, and the way they will be developed in subsequent chapters. Some of the
discussion that follows may not be completely accessible at this stage. If so, don’t
worry. Just note the main points, and try again once you have explored the chapters
that follow.
We find it useful to distinguish three phases in the development of modal logic:

the syntactic era, the classical era, and the modern era. Roughly speaking, most of
the ideas introduced in this chapter stem from the classical era, and the remainder
of the book will explore them from the point of view of the modern era.

The syntactic era (1918–1959)
We have opted for 1918, the year that C.I. Lewis published his Survey of Sym-
bolic Logic [306], as the birth of modal logic as a mathematical discipline. Lewis
was certainly not the first to consider modal reasoning, indeed he was not even the
first to construct symbolic systems for this purpose: Hugh MacColl, who explored
the consequences of enriching propositional logic with operators (‘it is certain
that’) and (‘it is impossible that’) seems to have been the first to do that (see his
book Symbolic Logic and its Applications [312], and for an overview of his work,
see [373]). But MacColl’s work is firmly rooted in the 19-th century algebraic
tradition of logic (well-known names in this tradition include Boole, De Morgan,
Jevons, Peirce, Schröder, and Venn), and linking MacColl’s contributions to con-
temporary concerns is a non-trivial scholarly task. The link between Lewis’s work
and contemporary modal logic is more straightforward.
In his 1918 book, Lewis extended propositional calculus with a unary modality

I (‘it is impossible that’) and defined the binary modality ( strictly implies
) to be I . Strict implication was meant to capture the notion of logical
entailment, and Lewis presented a -based axiom system. Lewis and Langford’s
joint book Symbolic Logic [307], published in 1932, contains a more detailed de-
velopment of Lewis’ ideas. Here (‘it is possible that’) is primitive and
is defined to be . Five axiom systems of ascending strength, S1–S5,
are discussed; S3 is equivalent to Lewis’ system of 1918, and only S4 and S5 are
normal modal logics. Lewis’ work sparked interest in the idea of ‘modalizing’
propositional logic, and there were many attempts to axiomatize such concepts as
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obligation, belief and knowledge. Von Wright’s monograph An Essay in Modal
Logic [456] is an important example of this type of work.
But in important respects, Lewis’ work seems strange to modern eyes. For a

start, his axiomatic systems are not modular. Instead of extending a base system of
propositional logic with specifically modal axioms (as we did in this chapter when
we defined K), Lewis defines his axioms directly in terms of . The modular
approach to modal Hilbert systems is due to Kurt Gödel. Gödel [181] showed
that (propositional) intuitionistic logic could be translated into S4 in a theorem-
preserving way. However instead of using the Lewis and Langford axiomatization,
Gödel took as primitive and formulated S4 in the way that has become standard:
he enriched a standard system for classical propositional logic with the rule of
generalization, the axiom, and the additional axioms ( and ).
But the fundamental difference between current modal logic and the work of

Lewis and his contemporaries is that the latter is essentially syntactic. Propositional
logic is enriched with some new modality. By considering various axioms, the
logician tries to pin down the logic of the intended interpretation. This simple view
of logical modeling has its attractions, but is open to serious objections. First, there
are technical difficulties. Suppose we have several rival axiomatizations of some
concept. Forget for now the problem of judging which is the best, for there is a
more basic difficulty: how can we tell if they are really different? If we only have
access to syntactic ideas, proving that two Hilbert-systems generate different sets
of formulas can be extremely difficult. Indeed, even showing syntactically that two
Hilbert systems generate the same set of formulas can be highly non-trivial (recall
Exercise 1.6.5).
Proving distinctness theorems was standard activity in the syntactic era; for in-

stance, Parry [359] showed that S2 and S3 are distinct, and papers addressing such
problems were common till the late 1950s. Algebraic methods were often used to
prove distinctness. The propositional symbols would be viewed as denoting the
elements of some algebra, and complex formulas interpreted using the algebraic
operations. Indeed, algebras were the key tool driving the technical development
of the period. For example, McKinsey [328] used them to analyze S2 and S4
and show their decidability; McKinsey and Tarski [330], McKinsey [329], and
McKinsey and Tarski [331] extended this work in a variety of directions (giving,
among other things, a topological interpretation of S4); while Dummett and Lem-
mon [125] built on this work to isolate and analyze S4.2 and S4.3, two important
normal logics between S4 and S5. But for all their technical utility, algebraic meth-
ods seemed of limited help in providing reliable intuitions about modal languages
and their associated logics. Sometimes algebraic elements were viewed as multiple
truth values. But Dugundji [124] showed that no logic between S1 and S5 could be
viewed as an -valued logic for finite , so the multi-valued perspective on modal
logic was not suited as a reliable source of insight.
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The lack of a natural semantics brings up a deeper problem facing the syntac-
tic approach: how do we know we have considered all the relevant possibilities?
Nowadays the normal logic T (that is, K enriched with the axiom ) would
be considered a fundamental logic of possibility; but Lewis overlooked T (it is in-
termediate between S2 and S4 and neither contains nor is contained by S3). More-
over, although Lewis did isolate two logics still considered important (namely S4
and S5), how could he claim that either system was, in any interesting sense, com-
plete? Perhaps there are important axioms missing from both systems? The exis-
tence of so many competing logics should make us skeptical of claims that it is easy
to find all the relevant axioms and rules; and without precise, intuitively acceptable,
criteria of what the the reasonable logics are (in short, the type of criteria a decent
semantics provides us with) we have no reasonable basis for claiming success.
For further discussion of the work of this period, the reader should consult the

historical section of Bull and Segerberg [73]). We close our discussion of the syn-
tactic era by noting three lines of work that anticipate later developments: Carnap’s
state-description semantics, Prior’s work on temporal logic, and the Jónsson and
Tarski Representation Theorem for boolean algebras with operators.
A state description is simply a collection of propositional letters. (Actually,

Carnap used state descriptions in his pioneering work on first-order modal logic,
so a state for Carnap could be a set of first-order formulas.) If is a collection of
state descriptions, and , then a propositional symbol is satisfied at if and
only . Boolean operators are interpreted in the obvious way. Finally, is
satisfied at if and only if there is some such that satisfies . (See,
for example, Carnap [83, 84].)
Carnap’s interpretation of in state descriptions is strikingly close to the idea

of satisfaction in models. However one crucial idea is missing: the use of an
explicit relation over state descriptions. In Carnap’s semantics, satisfaction for
is defined in terms of membership in (in effect, is taken to be ). This

implicit fixing of reduces the utility of his semantics: it yields a semantics for
one fixed interpretation of , but deprives us of the vital parameter needed to map
logical options.
Arthur Prior founded temporal logic (or as he called it, tense logic) in the early

1950s. He invented the basic temporal language and many other temporal lan-
guages, both modal and non-modal. Like most of his contemporaries, Prior viewed
the axiomatic exploration of concepts as one of the logician’s key tasks. But there
the similarity ends: his writings are packed with an extraordinary number of se-
mantic ideas and insights. By 1955 Prior had interpreted the basic modal lan-
guage in models based on (see Prior [368], and Chapter 2 of Prior [369]),
and used what would now be called soundness arguments to distinguish logics.
Moreover, the relative expressivity of modal and classical languages (such as the
Prior-Meredith U-calculus [333]) is a constant theme of his writings; indeed, much
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of his work anticipates later work in correspondence theory and extended modal
logic. His work is hard to categorize, and impossible to summarize, but one thing
is clear: because of his influence temporal logic was an essentially semantically
driven enterprise. The best way into his work is via Prior [369].
With the work of Jónsson and Tarski [260, 261] we reach the most important

(and puzzling) might-have-beens in the history of modal logic. Briefly, Jónsson
and Tarski investigated the representation theory of boolean algebras with operators
(that is, modal algebras). As we have remarked, while modal algebras were useful
tools, they seemed of little help in guiding logical intuitions. The representation
theory of Jónsson and Tarski should have swept this apparent shortcoming away for
good, for in essence they showed how to represent modal algebras as the structures
we now call models! In fact, they did a lot more than this. Their representation
technique is essentially a model building technique, hence their work gave the
technical tools needed to prove the completeness result that dominated the classical
era (indeed, their approach is an algebraic analog of the canonical model technique
that emerged 15 years later). Moreover, they provided all this for modal languages
of arbitrary similarity type, not simply the basic modal language.
Unfortunately, their work was overlooked for 20 years; not until the start of the

modern era was its significance appreciated. It is unclear to us why this happened.
Certainly it didn’t help matters that Jónsson and Tarski do not mention modal logic
in their classic article; this is curious since Tarski had already published joint pa-
pers with McKinsey on algebraic approaches to modal logic. Maybe Tarski didn’t
see the connection at all: Copeland [94, page 13] writes that Tarski heard Kripke
speak about relational semantics at a 1962 talk in Finland, a talk in which Kripke
stressed the importance of the work by Jónsson and Tarski. According to Kripke,
following the talk Tarski approached him and said he was unable to see any con-
nection between the two lines of work.
Even if we admit that a connection which nows seems obvious may not have

been so at the time, a puzzle remains. Tarski was based in California, which in
the 1960s was the leading center of research in modal logic, yet in all those years,
the connection was never made. For example, in 1966 Lemmon (also based in
California) published a two part paper on algebraic approaches to modal logic [302]
which reinvented (some of) the ideas in Jónsson and Tarski (Lemmon attributes
these ideas to Dana Scott), but only cites the earlier Tarski and McKinsey papers.
We present the work by Jónsson and Tarski in Chapter 5; their Representation

Theorem underpins the work of the entire chapter.

The classical era (1959–1972)
‘Revolutionary’ is an overused word, but no other word adequately describes the
impact relational semantics (that is, the concepts of frames, models, satisfaction,
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and validity presented in this chapter) had on the study of modal logic. Problems
which had previously been difficult (for example, distinguishing Hilbert-systems)
suddenly yielded to straightforward semantic arguments. Moreover, like all revolu-
tions worthy of the name, the new world view came bearing an ambitious research
program. Much of this program revolved around the concept of completeness: at
last is was possible to give a precise and natural meaning to claims that a logic gen-
erated everything it ought to. (For example, K4 could now be claimed complete
in a genuinely interesting sense: it generated all the formulas valid on transitive
frames.) Such semantic characterizations are both simple and beautiful (especially
when viewed against the complexities of the preceding era) and the hunt for such
results was to dominate technical work for the next 15 years. The two outstanding
monographs of the classical era — the existing fragment of Lemmon and Scott’s
Intensional Logic [303], and Segerberg’s An Essay in Classical Modal Logic [396]
— are largely devoted to completeness issues.
Some controversy attaches to the birth of the classical era. Briefly, relational

semantics is often called Kripke semantics, and Kripke [290] (in which S5-based
modal predicate logic is proved complete with respect to models with an implicit
global relation), Kripke [291] (which introduces an explicit accessibility relation
and gives semantic characterization of some propositional modal logics in terms of
this relation) and Kripke [292] (in which relational semantics for first-order modal
languages is defined) were crucial in establishing the relational approach: they are
clear, precise, and ever alert to the possibilities inherent in the new framework: for
example, Kripke [292] discusses provability interpretations of propositional modal
languages. Nonetheless, Hintikka had already made use of relational semantics to
analyze the concept of belief and distinguish logics, and Hintikka’s ideas played
an important role in establishing the new paradigm in philosophical circles; see,
for example, [230]. Furthermore, it has since emerged that Kanger, in a series of
papers and monographs published in 1957, had introduced the basic idea of rela-
tional semantics for propositional and first-order modal logic; see, for example,
Kanger [266, 267]. And a number of other authors (such as Arthur Prior, and
Richard Montague [341]) had either published or spoken about similiar ideas ear-
lier. Finally, the fact remains that Jónsson and Tarski had already presented and
generalized the mathematical ideas needed to analyze propositional modal logics
(though they do not discuss first-order modal languages).
But disputes over priority should not distract the reader from the essential point:

somewhere around 1960 modal logic was reborn as a new field, acquiring new
questions, methods, and perspectives. The magnitude of the shift, not who did
what when, is what is important here. (The reader interested in more detail on
who did what when, should consult Goldblatt [188]. Incidentally, after carefully
considering the evidence, Goldblatt concludes that Kripke’s contributions were the
most significant.)
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So by the early 1960s it was was clear that relational semantics was an important
tool for classifying modal logics. But how could its potential be unlocked? The
key tool required — the canonical models we discuss in Chapter 4 — emerged
with surprising speed. They seem to have first been used in Makinson [314] and
in Cresswell [97] (although Cresswell’s so-called subordination relation differs
slightly from the canonical relation), and in Lemmon and Scott [303] they appear
full-fledged in the form that has become standard.
Lemmon and Scott [303] is a fragment of an ambitious monograph that was in-

tended to cover all then current branches of modal logic. At the time of Lemmon’s
death in 1966, however, only the historical introduction and the chapter on the ba-
sic modal languages had been completed. Nonetheless, it’s a gem. Although for
the next decade it circulated only in manuscript form (it was not published until
1977) it was enormously influential, setting much of the agenda for subsequent
developments. It unequivocally established the power of the canonical model tech-
nique, using it to prove general results of a sort not hitherto seen. It also introduced
filtrations, an important technique for building finite models we will discuss in
Chapter 2, and used them to prove a number of decidability results.
While Lemmon and Scott showed how to exploit canonical models directly,

many important normal logics (notably, KL and the modal and temporal logic of
structures such as , , , and , and their reflexive counter-
parts) cannot be analyzed in this way. However, as Segerberg [396, 395] showed,
it is possible to use canonical models indirectly: one can transform the canonical
model into the required form and prove these (and a great many other) complete-
ness results. Segerberg-style transformation proofs are discussed in Section 4.5.
But although completeness and canonical models were the dominant issues of

the classical era, there is a small body of work which anticipates more recent
themes. For example, Robert Bull, swimming against the tide of fashion, used
algebraic arguments to prove a striking result: all normal extensions of S4.3 are
characterized by classes of finite models (see Bull [72]). Although model-theoretic
proofs of Bull’s Theorem were sought (see, for example, Segerberg [396, page
170]), not until Fine [136] did these efforts succeed. Kit Fine was shortly to play a
key role in the birth of the modern era, and the technical sophistication which was
to characterize his later work is already evident in this paper; we discuss Fine’s
proof in Theorem 4.96. As a second example, in his 1968 PhD thesis [263], Hans
Kamp proved one of the few (and certainly the most interesting) expressivity result
of the era. He defined two natural binary modalities, since and until (discussed in
Chapter 7), showed that the standard temporal language was not strong enough to
define them, and proved that over Dedekind continuous strict total orders (such as

) his new modalities offered full first-order expressive power.
Summing up, the classical era supplied many of the fundamental concepts and

methods used in contemporary modal logic. Nonetheless, viewed from a modern
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perspective, it is striking how differently these ideas were put to work then. For
a start, the classical era took over many of the goals of the syntactic era. Modal
investigations still revolved round much the same group of concepts: necessity,
belief, obligation and time. Moreover, although modal research in the classical era
was certainly not syntactical, it was, by and large, syntactically driven. That is —
with the notable exception of the temporal tradition — relational semantics seems
to have been largely viewed as a tool for analyzing logics: soundness results could
distinguish logics, and completeness results could give them nice characterizations.
Relational structures, in short, weren’t really there to be described — they were
there to fulfill an analytic role. (This goes a long way towards explaining the lack
of expressivity results for the basic modal language; Kamp’s result, significantly,
was grounded in the Priorean tradition of temporal logic.) Moreover, it was a self-
contained world in a way that modern modal logic is not. Modal languages and
relational semantics: the connection between them seemed clear, adequate, and
well understood. Surely nothing essential was missing from this paradise?

The modern era (1972–present)
Two forces gave rise to the modern era: the discovery of frame incompleteness re-
sults, and the adoption of modal languages in theoretical computer science. These
unleashed a wealth of activity which profoundly changed the course of modal logic
and continues to influence it till this day. The incompleteness results results forced
a fundamental reappraisal of what modal languages actually are, while the influ-
ence of theoretical computer science radically changed expectations of what they
could be used for, and how they were to be applied.
Frame-based analyses of modal logic were revealing and intoxicatingly success-

ful — but was every normal logic complete with respect to some class of frames?
Lemmon and Scott knew that this was a difficult question; they had shown, for
example that there were obstacles to adapting the canonical model method to ana-
lyze the logic yielded by McKinsey axiom. Nonetheless, they conjectured that the
answer was yes:

However, it seems reasonable to conjecture that, if a consistent normal K-
system S is closed with respect to substitution instances . . . then determines
a class of world systems such that iff . We have no proof of
this conjecture. But to prove it would be to make a considerable difference to
our theoretical understanding of the general situation. [303, page 76]

Other optimistic sentiments can be found in the literature of the period. Segerberg’s
thesis is more cautious, simply identifying it as ‘probably the outstanding question
in this area of modal logic at the present time’ [396, page 29].
The question was soon resolved — negatively. In 1972, S.K. Thomason [426]
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showed that there were incomplete normal logics in the basic temporal language,
and in 1974 Thomason [427] and Fine [137] both published examples of incom-
plete normal logics in the basic modal language. Moreover, in an important series
of papers Thomason showed that these results were ineradicable: as tools for talk-
ing about frames, modal languages were essentially monadic second-order logic in
disguise, and hence were intrinsically highly complex.
These results stimulated what remains some of the most interesting and innova-

tive work in the history of the subject. For a start, it was now clear that it no longer
sufficed to view modal logic as an isolated formal system; on the contrary, it was
evident that a full understanding of what modal languages were, required that their
position in the logical universe be located as accurately as possible. Over the next
few years, modal languages were to be extensively mapped from the perspective of
both universal algebra and classical model theory.
Thomason [426] had already adopted an algebraic perspective on the basic tem-

poral language. Moreover, this paper introduced general frames, showed that
they were equivalent to semantics based on boolean algebras with operators, and
showed that these semantics were complete in a way that the frame-based seman-
tics was not: every normal temporal logic was characterized by some algebra.
Goldblatt introduced the universal algebraic approach towards modal logic and
developed modal duality theory (the categorical study of the relation between rela-
tional structures endowed with topological structure on the one hand, and boolean
algebras with operators on the other). This led to a belated appreciation of the fun-
damental contributions made in Jónsson and Tarski’s pioneering work. Goldblatt
and Thomason showed that the concepts and results of universal algebra could be
applied to yield modally interesting results; the best known example of this is the
Goldblatt-Thomason theorem a model theoretic characterization of modally defin-
able frame classes obtained by applying the Birkhoff variety theorem to boolean
algebras with operators. We discuss such work in Chapter 5 (and in Chapter 3 we
discuss the Goldblatt-Thomason theorem from the perspective of first-order model
theory). Work by Blok made deeper use of algebras, and universal algebra became
a key tool in the exploration of completeness theory (we briefly discuss Blok’s
contribution in the Notes to Chapter 5). The revival of algebraic semantics — to-
gether with a genuine appreciation of why it was so important — is one of the most
enduring legacies of this period.
But the modern period also firmly linked modal languages with classical model

theory. One line of inquiry that led naturally in this direction was the following:
given that modal logic was essentially second-order in nature, why was it so often
first-order, and very simple first-order at that? That is, from the modern perspec-
tive, incomplete normal logics were to be expected — it was the elegant results of
the classical period that now seemed in need of explanation. One type of answer
was given in the work of Sahlqvist [388], who isolated a large set of axioms which
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guaranteed completeness with respect to first-order definable classes of frames.
(We define the Sahlqvist fragment in Section 3.6, where we discuss the Sahlqvist
Correspondence Theorem, an expressivity result. The twin Sahlqvist Complete-
ness Theorem is proved algebraically in Theorem 5.91.) Another type of answer
was developed in Fine [140] and van Benthem [39, 40]; we discuss this work (albeit
from an algebraic perspective) in Chapter 5.
A different line of work also linked modal and classical languages: an investi-

gation of modal languages viewed purely as description languages. As we have
mentioned, the classical era largely ignored expressivity in favor of completeness.
The Sahlqvist Correspondence Theorem showed the narrowness of this perspec-
tive: here was a beautiful result about the basic modal language that did not even
mention normal modal logics! Expressivity issues were subsequently explored by
van Benthem, who developed the subject now known as correspondence theory;
see [41, 42]. His work has two main branches. One views modal languages as
tools for describing frames (that is, as second-order description languages) and
probes their expressive power. This line of investigation, together with Sahlqvist’s
pioneering work, forms the basis of Chapter 3. The second branch explores modal
languages as tools for talking about models, an intrinsically first-order perspec-
tive. This lead van Benthem to isolate the concept of a bisimulation, and prove the
fundamental Characterization Theorem: viewed as a tool for talking about mod-
els, modal languages are the bisimulation invariant fragment of the corresponding
first-order language. Bisimulation driven investigations of modal expressivity are
now standard, and much of the following chapter is devoted to such issues.
The impact of theoretical computer science was less dramatic than the discov-

ery of the incompleteness results, but its influence has been equally profound.
Burstall [80] already suggests using modal logic to reason about programs, but the
birth of this line of work really dates from Pratt [367] (the paper which gave rise
to PDL) and Pnueli [363] (which suggested using temporal logic to reason about
execution-traces of programs). Computer scientists tended to develop powerful
modal languages; PDL in its many variants is an obvious example (see Harel [215]
for a detailed survey). Moreover, since the appearance of Gabbay et al. [167], the
temporal languages used by computer scientists typically contain the until opera-
tor, and often additional operators which are evaluated with respect to paths (see
Clarke and Emerson [92]). Gabbay also noted the significance of Rabin’s theo-
rem [372] for modal decidability (we discuss this in Chapter 6), and applied it to a
wide range of languages and logics; see Gabbay [155, 156, 154].
Computer scientists brought a new array of questions to the study of modal logic.

For a start, they initiated the study of the computational complexity of normal log-
ics. Already by 1977 Ladner [299] had showed that every normal logic between K
and S4 had a PSPACE-hard satisfiability problem, while the results of Fischer and
Ladner [143] and Pratt [366] together show that PDL has an EXPTIME-complete
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satisfiability problem. (These results are proved in Chapter 6.) Moreover, the in-
terest of the modal expressivity studies emerging in correspondence theory was
reinforced by several lines of work in computer science. To give one particularly
nice example, computer scientists studying concurrent systems independently iso-
lated the notion of bisimulation (see Park [358]). This paved the way for the work
of Hennessy and Milner [225] who showed that weak modal languages could be
used to classify various notions of process invariance.
But one of the most significant endowments from computer science has actu-

ally been something quite simple: it has helped remove a lingering tendency to see
modal languages as intrinsically ‘intensional’ formalisms, suitable only for analyz-
ing such concepts as knowledge, obligation and belief. During the 1990s this point
was strongly emphasized when connections were discovered between modal logic
and knowledge representation formalisms. In particular, description logics are a
family of languages that come equipped with effective reasoning methods, and a
special focus on balancing expressive power and computational and algorithmic
complexity; see Donini et al. [123]. The discovery of this connection has lead to
a renewed focus on efficient reasoning methods, dedicated languages that are fine-
tuned for specific modeling tasks, and a variety of novel uses of modal languages;
see Schild [392] for the first paper to make the connection between the two fields,
and De Giacomo [102] and Areces [12, 15] for work exploiting the connection.
And this is but one example. Links with computer science and other disciplines

have brought about an enormous richness and variety in modal languages. Com-
puter science has seen a shift of emphasis from isolated programs to complex enti-
ties collaborating in heterogeneous environments; this gives rise to new challenges
for the use of modal logic in theoretical computer science. For instance, agent-
based theories require flexible modeling facilities together with efficient reason-
ing mechanisms; see Wooldridge and Jennings [455] for a discussion of the agent
paradigm, and Bennet et al. [33] for the link with modal logic. More generally,
complex computational architectures call for a variety of combinations of modal
languages; see the proceedings of the Frontiers of Combining Systems workshop
series for references [16, 160, 273].
Similar developments took place in foundational research in economics. Game

theory (Osborne and Rubinstein [354]) also shows a nice interplay between the no-
tions of action and knowledge; recent years have witnessed an increasing tendency
to give a formal account of epistemic notions, cf. Battigalli and Bonanno [30] or
Kaneko and Nagashima [265]. For modal logics that combine dynamic and epis-
temic notions to model games we refer to Baltag [20] and van Ditmarsch [117].
Further examples abound. Database theory continues to be a fruitful source

of questions for logicians, modal or otherwise. For instance, developments in
temporal databases have given rise to new challenges for temporal logicians (see
Finger [142]), while decription logicians have found new applications for their
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modeling and reasoning methods in the area of semistructured data (see Calvanese
et al. [82]). In the related, but more philosophically oriented area of belief re-
vision, Fuhrmann [152] has given a modal formalization of one of the most in-
fluential approaches in the area, the AGM approach [4]. Authors such as Fried-
man and Halpern [150], Gerbrandy and Groeneveld [177], De Rijke [112], and
Segerberg [403] have discussed various alternative modal formalizations.
Cognitive phenomena have long been of interest to modal logicians. This is clear

from examples such as belief revision, but perhaps even more so from language-
related work in modal logic. The feature logic mentioned in Example 1.17 is but
one example; authors such as Blackburn, Gardent, Meyer Viol, and Spaan [59, 53],
Kasper and Rounds [271, 386], Kurtonina [294], Kracht [287], and Reape [378]
have offered a variety of modal logical perspectives on grammar formalisms, while
others have analyzed the semantics of natural language by modal means; see Fer-
nando [134] for a sample of modern work along these lines.
During the 1980s and 1990s a number of new themes on the interface of modal

logic and mathematics received considerable attention. One of these themes con-
cerns links between modal logic and non-wellfounded set theory; work that we
should certainly mention here includes Aczel [2], Barwise and Moss [26], and Bal-
tag [19, 21]; see the Notes to Chapter 2 for further discussion. Non-wellfounded
sets and many other notions, such as automata and labeled transition systems,
have been brought together under the umbrella of co-algebras (cf. Jacobs and Rut-
ten [248]), which form a natural and elegant way to model state-based dynamic sys-
tems. Since it was discovered that modal logic is as closely related to co-algebras
as equational logic is to algebras, there has been a wealth of results reporting on
this connection; we only mention Jacobs [247], Kurz [297] and Rößiger [385] here.
Another 1990s theme on the interface of modal logic and mathematics concerns

an old one: geometry. Work by Balbiani et al. [18], Stebletsova [416] and Ven-
ema [441] indicates that modal logic may have interesting things to say about ge-
ometry, while Aiello and van Benthem [3] and Lemon and Pratt [304] investigate
the potential of modal logic as a tool for reasoning about space.
As should now be clear to all our readers, the simple question posed by the modal
satisfaction definition — what happens at accessible states? — gives us a natural
way of working with any relational structure. This has opened up a host of new
applications for modal logic. Moreover, once the relational perspective has been
fully assimilated, it opens up rich new approaches to traditional subjects: see van
Benthem [44] and Fagin, Halpern, Moses, and Vardi [133] for thoroughly modern
discussions of temporal logic and epistemic logic respectively.

1.8 Summary of Chapter 1
Relational Structures: A relational structure is a set together with a collection
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of relations. Relational structures can be used to model key ideas from a wide
range of disciplines.
Description Languages: Modal languages are simple languages for describing
relational structures.
Similarity Types: The basic modal language contains a single primitive unary
operator . Modal languages of arbitrary similarity type may contain many
modalities of arbitrary arity.
Basic Temporal Language: The basic temporal language has two operators
and whose intended interpretations are ‘at some time in the future’ and ‘at
some time in the past.’
Propositional Dynamic Logic: The language of propositional dynamic logic
has an infinite collection of modal operators indexed by programs built up
from atomic programs using union , composition , and iteration ; additional
constructors such as intersection and test may also be used. The intended
interpretation of is ‘some terminating execution of program leads to a
state where holds.’
Arrow Logic: The language of arrow logic is designed to talk about any object
that may be represented by arrows; it has a modal constant ’ (‘skip’), a unary
operator (‘converse’), and a dyadic operator (‘composition’).
Satisfaction: The satisfaction definition is used to interpret formulas inside mod-
els. This satisfaction definition has an obvious local flavor: modalities are inter-
preted as scanning the states accessible from the current state.
Validity: A formula is valid on a frame when it is globally true, no matter what
valuation is used. This concept allows modal languages to be viewed as lan-
guages for describing frames.
General Frames: Modal languages can also be viewed as talking about general
frames. A general frame is a frame together with a set of admissible valuations.
General frames offer some of the advantages of both models and frames and are
an important technical tool.
Semantic Consequence: Semantic consequence relations for modal languages
need to be relativized to classes of structures. The classical idea that the truth
of the premises should guarantee the truth of the conclusion can be interpreted
either locally or globally. In this book we almost exclusively use the local inter-
pretation.
Normal Modal Logics: Normal modal logics are the unifying concept in modal
proof theory. Normal modal logics contain all tautologies, the K axiom and the
Dual axiom; in addition they should be closed under modus ponens, uniform
substitution and generalization.


