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Abstract

In this paper we introduce constraint automata and propose them as an operational model
for Reo, an exogenous coordination language for compositional construction of compo-
nent connectors based on a calculus of channels. By providing composition operators for
constraint automata and defining notions of equivalence and refinement relations for them,
this paper covers the foundations for building tools to address such concerns as the au-
tomated construction of the automaton for a given component connector, equivalence- or
containment-checking of the behavior of two given connectors, and verification of coordi-
nation mechanisms.
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1 Introduction

Coordination models and languages emerged in the 1990’s as the linguistic counter-
part of the so-called middle-ware layer of software that consisted of ad-hoc libraries
of functions providing higher-level inter-process communication support in parallel
and especially distributed applications. Coordination models and languages close
the conceptual gap between the cooperation model used by the constituent parts
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of an application and the lower-level communication model used in its implemen-
tation. They provide a clean separation between individual software components
and their interactions within their overall software organization. This separation,
together with the higher-level abstractions offered by coordination models and lan-
guages, improve software productivity, enhance maintainability, advocate modu-
larity, promote reusability, and lead to software organizations and architectures that
are more tractable and more amenable to verification and global analysis.

The current interest in constructing applications out of independent software com-
ponents necessitates attention to the so-called glue-code. The purpose of glue-code
is to compose a set of components by filling the significant interface gaps that nat-
urally arise among them, simply because they are not (supposed to be) tailor-made
to work with one another. Using components, thus, means understanding how they
individually interact with their environment, and specifying how they should en-
gage in mutual, cooperative interactions in order for their composition to behave as
a coordinated whole. Many of the core issues involved in component composition
have already been identified and studied as key concerns in work on coordina-
tion. Coordination models and languages address such key issues in Component
Based Software Engineering as specification, interaction, and dynamic composi-
tion of components. Specifically, exogenous coordination models and languages,
which enable third-party entities to wield coordination control over the interaction
behavior of mutually anonymous entities involved in a collaboration from outside
of its participants, provide a very promising basis for the development of effective
glue-code languages.

In this paper, we introduce constraint automata as a formalism to describe the “be-
havior” and possible data flow in coordination models that connect anonymous
components to enable their coordinated interaction. The theory of constraint au-
tomata, thus, yields a basis for formal verification of coordination mechanisms
(e.g., model checking against temporal-logical specifications or equivalence check-
ing). Constraint automata can be thought of as conceptual generalizations of prob-
abilistic automata where data constraints, instead of probabilities, influence appli-
cable state transitions.

We show that constraint automata can serve as an operational model for the coordi-
nation language Reo introduced in [1]. Reo is a channel-based exogenous coordina-
tion model wherein complex coordinators, called connectors, are compositionally
built out of simpler ones. The simplest connectors in Reo are a set of channels with
well-defined behavior supplied by users. The emphasis in Reo is on connectors,
their behavior, and their composition, not on the entities that connect, communi-
cate, and cooperate through them. The behavior of every connector in Reo imposes
a specific coordination pattern on the entities that perform normal I/O operations
through that connector, without the knowledge of those entities. This makes Reo
a powerful “glue language” for compositional construction of connectors to com-
bine component instances into a software system and exogenously orchestrate their
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mutual interactions.

Using constraint automata as an operational model for Reo connectors, the automata-
states stand for the possible configurations (e.g., the contents of the FIFO-channels
of a Reo-connector) while the automata-transitions represent the possible data flow
and its effect on these configurations. In fact, the operational semantics for Reo
presented in [1] can be reformulated in terms of constraint automata. However, in
this paper we follow a different approach and define the constraint automaton of a
given Reo connector in a compositional way. For this, we introduce composition
operators for constraint automata corresponding to the Reo connector primitives,
and thus, provide the basis for the algorithmic construction of constraint automata
for Reo connectors.

The paper [2] presents a coalgebraic formal semantics for Reo connectors that as-
signs to any Reo connector a relation over infinite timed data streams (called TDS-
languages in this paper). In fact, many interesting properties of Reo connectors as
well as notions of equivalence or refinement for Reo connectors can be formulated
in terms of TDS-languages. To reason about TDS-languages, we may regard con-
straint automata as acceptors for timed data streams. The rough idea behind the use
of constraint automata as language-acceptors is that such an automaton observes
the data occurring at certain input/output ports of components and either changes
its state according to the observed data or rejects it if there is no corresponding
transition in the automaton. From this point of view, constraint automata serve as a
formalism to describe TDS-languages; in a similar way as ordinary finite automata
(or, alternatively, ω-automata) can be used as a formalism to describe languages of
finite (respectively, infinite) words (see e.g., [13,22]). In particular, they can serve
as a specification formalism for a coordination mechanism that is yet to be de-
signed, or as interface specifications for the component instances that are (to be)
glued together.

To solve typical verification problems, e.g., checking whether a given Reo connec-
tor meets its automata-specification or whether two Reo connectors are language-
equivalent (in the sense that they induce the same TDS-language), the fact that
constraint automata are close to both, ordinary finite or ω-automata and labeled
transition systems, allows us to modify known methods for the analysis of reactive
systems (modeled by labeled transition systems) or formal languages (represented
by finite or ω-automata) to work with constraint automata. As checking language-
equivalence or language-inclusion for nondeterministic automata is computation-
ally hard, we introduce notions of bisimulation equivalence and a simulation rela-
tion for constraint automata. Being refinements of the language relations with sim-
pler decision algorithms, these branching time relations provide sound (but incom-
plete) proof methods for checking language-equivalence or language-inclusion.

Related models. Of course, the use of automata-based models (including variants
of labeled transition systems) as operational models for coordination principles is
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not new. Our notion of constraint automata is most in the spirit of I/O-automata
[16], timed port automata [10] and interface automata [7]. We briefly summarize
the major differences and similarities:

• While transitions in I/O-automata are labeled with action names, transitions in
timed port and constraint automata are data-dependent. However, timed port au-
tomata label the transitions with specific data values whereas we use a symbolic
representation by means of data constraints (boolean expressions for the data
values).

• Unlike I/O- or timed port automata, we do not follow a strictly time-synchronous
approach, which becomes important when we compose constraint automata. The
composition of constraint automata A1 and A2 allows transitions when data occur
at the input/output ports that the resulting automaton inherits from only one of the
automata Ai, without involving the transitions or states that it inherits from the
other automaton (because at that point in time, there is no suitable data on any
of its corresponding ports). Such transitions do not exist in the “one-to-many-
composition” of timed port automata.

• As for interface automata, we do not assume input enabledness as it is the case for
I/O- or timed port automata. In fact, in our setting, there is no need to distinguish
between input and output ports, unlike in interface automata.

• Constraint automata, like I/O-automata, are based on transition systems. Inter-
face automata are based on game theory and their main purpose is to allow auto-
matic checking of compatibility between interfaces.

Used as acceptors for TDS-languages (e.g., to specify the “legal” data flow of a
coordination mechanism that is yet to be designed or for an interface specification
of a component), constraint automata are in the spirit of ordinary finite automata
and ω-automata. For the purposes of this paper where we do not consider finite
behavior – that may, e.g., occur if configurations are reached where data flow at
certain ports is blocked – there is no need for final states. Thus, acceptance of
a timed data stream by a constraint automata requires only the existence of an
infinite run in the automata. However, this difference between standard-automata
and constraint automata cannot be understood as an advantage of the latter as it
can be explained by our decision not to consider finite behavior. To reason about
finite timed data streams or assuming fairness for certain Reo-connector primitives,
constraint automata would have to be extended by final states, leading to a different
notion of acceptance. To keep the presentation of the basic concepts of constraint
automata simple and clear and to avoid an overloading with notations, we decided
to restrict ourself in this paper to infinite behavior, without fairness assumptions.

Organization of the paper. The rest of this paper is organized as follows. In Sec-
tion 2 we recall the definition of timed data streams and introduce some notation. In
Section 3, we present the definition of constraint automata and their accepted TDS-
languages. The use of constraint automata as an operational semantics for Reo con-
nectors is explained in Section 4. This section starts with a brief overview of Reo.
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We then provide the definition of composition operators (join and hiding) on con-
straint automata corresponding to the Reo connector primitives and demonstrate
the compositional construction of constraint automata for given Reo connectors
through a series of examples. In Section 5 we introduce notions of bisimulation and
simulation for constraint automata, discuss their relationship to the language-based
relations and provide congruence results for the composition operators defined in
Section 4. Section 6 is concerned with algorithms for checking the equivalence of
two constraint automata and whether one automaton can be viewed as a refinement
of another. We conclude in Section 7, hinting at our current and future work on
model checking and automated tools for reasoning about constraint automata and
Reo connectors.

2 Timed data streams

In this section, we recall the definition of timed data streams (TDS for short) and
explain our notations.

Let V be any set. We define the set V ω of all streams (infinite sequences) over V
as V ω = {α | α : {0,1,2, . . .} → V }. For convenience, we consider only infinite
behavior and infinite streams which correspond to infinite “runs” of our automata,
omitting final states including deadlocks. We denote individual streams as α =
α(0),α(1),α(2), . . . (or a = a(0),a(1),a(2), . . .). We call α(0) the initial value of
α. The (stream) derivative α′ of a stream α is defined as α′ = α(1),α(2),α(3), . . ..
We write α(i) for the i-th derivative of α which is defined by α(0) = α and α(i+1) =
(α(i))′. Note that α′(k) = α(k +1) and α(i)(k) = α(i+ k), for all k, i ≥ 0.

We now recall the definition of timed data streams from [2]. In the sequel, Data is a
fixed, non-empty and finite set of data that can be sent (and received) via channels. 1

The set of all (infinite) timed data streams over Data is given by:

TDS =
{
〈α,a〉 ∈ Dataω × IRω

+ | ∀k ≥ 0 : a(k)<a(k +1) and lim
k→∞

a(k) = ∞
}

Thus, a timed data stream 〈α,a〉 consists of a data stream α ∈ Dataω and a time
stream a ∈ IRω

+ consisting of increasing positive real numbers that go to infinity.
The time stream a indicates for each data item α(k) the moment a(k) at which it is
being input or output.

To formalize the input/output behavior of a coordination model by means of timed
data streams, we use names, say A1, . . . ,An, for the input or output ports that connect
the component instances with other component instances or the environment of the

1 The finiteness of Data is irrelevant in most of this paper. In a few examples, we also
consider infinite data domains.
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whole system. With each port Ai, we associate a timed data stream. That is, for a
given name-set N ames = {A1, . . . ,An}, we define

TDSN ames =
{
(〈α1,a1〉, . . . ,〈αn,an〉) : 〈αi,ai〉 ∈ TDS, i = 1, . . . ,n

}

as the set of all TDS-tuples consisting of one timed data stream for each port. When
writing the elements of TDSN ames as tuples of timed data streams, we assume a
fixed enumeration of the port names in N ames, say A1, . . . ,An, such that the i-th
timed data stream of the TDS-tuple θ stands for the timed data stream of the i-th
port Ai. If no enumeration of the port names is given then we use a family-notation
θ = (θ|A)A∈N ames for the elements of TDSN ames where θ|A stands for the timed
data stream for port A.

By a data-assignment we mean a function δ : N → Data where /0 6= N ⊆ N ames.
We use notations like

δ =
[
A 7→ δA : A ∈ N

]

to describe the data-assignment that assigns to any TDS-name A ∈ N the value
δA ∈ Data.

If θ = (〈α1,a1〉, . . . ,〈αn,an〉) ∈ TDSN ames then we write θ.time to denote the time
stream obtained by merging the timed data streams a1, . . . ,an in increasing order.
That is,

θ.time(0) = min
{

ai(0) : i = 1, . . . ,n
}
,

θ.time(1) = min
{

ai(k) : ai(k) > θ.time(0), i = 1, . . . ,n, k = 0,1,2, . . .
}
,

θ.time(2) = min
{

ai(k) : ai(k) > θ.time(1), i = 1, . . . ,n, k = 0,1,2, . . .
}
,

...

Next we define θ.N = θ.N(0),θ.N(1),θ.N(2), . . . as a stream over 2N ames, by

θ.N(k) =
{

Ai ∈ N ames : ai(`) = θ.time(k) for some ` ∈ {0,1,2, . . .}
}

Intuitively, θ.N(k) is the name-set consisting of the ports A ∈ N ames at which a
data item is observed at time point θ.time(k). Moreover, we define θ.δ = θ.δ(0),
θ.δ(1), θ.δ(2), . . . as a stream over the set of data assignments where θ.δ(k) repre-
sents the observed data flow at time point θ.time(k). Formally,

θ.δ(k) = [Ai 7→ αi(`i) : Ai ∈ θ.N(k)]

where `i ∈ {0,1,2, . . .} is the unique index with ai(`i) = θ.time(k).

We write θ′ for the TDS-tuple that is obtained by the first derivatives of the timed
data streams θ|A for A ∈ θ.N(0) together with the timed data streams θ|A for A /∈
θ.N(0). For instance, if θ.N(0) = {A1,A2} then

θ′ = (〈α′
1,a

′
1〉,〈α

′
2,a

′
2〉,〈α3,a3〉, . . . ,〈αn,an〉).
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The (i+1)-st derivative is given by θ(i+1) = (θ(i))′.

Remark 2.1 The requirement that all timed data streams 〈αi,ai〉 in a TDS-tuple
θ =(〈α1,a1〉, . . . ,〈αn,an〉) are infinite (together with the assumption on time streams
a that limk→∞ a(k) = ∞) implies that for any port A ∈ N ames, there are infinitely
many indices k with A ∈ θ.N(k). Hence, we assume that at any port A there is an
infinite data flow. This assumption simplifies the notations but, on the other hand,
lacks the possibility to describe, e.g., deadlock situations where a certain coordina-
tion mechanism blocks the data flow at port A. �

Remark 2.2 Timed data streams as defined here do not distinguish between input
and output actions, instead they merely report the “observed” data at a port A,
but not whether it is write or read operations that occur at A. However, we can
assume a fixed classification of the ports into input or output ports and using this
classification, derive the information whether an observed data item d at port A
stands for “reading d” or “writing d”. 2 Alternatively, we can deal with a data
domain that distinguishes between written and read values. �

A TDS-language (for N ames) denotes any subset of TDSN ames. Following the ap-
proach of [2] where a compositional semantics for Reo circuits is provided using
coinductive reasoning with timed data streams, we shall use TDS-languages as a
formalism to describe the possible data flow of a coordination model. For instance,
the language for a 1-bounded FIFO-channel (viewed as a connector that sends val-
ues from input port A to output port B) equals the TDS-language

{
(〈α,a〉,〈β,b〉) ∈ TDS×TDS | α = β ∧ a<b<a′

}
.

3 Constraint automata

Constraint automata use a finite set N of names, e.g., N = {A1, . . . ,An} where Ai
stands for the i-th input/output port of a connector or component. The transitions
of constraint automata are labeled with pairs consisting of a non-empty subset N of
{A1, . . . ,An} and a data constraint g. Data constraints can be viewed as a symbolic
representation of sets of data-assignments. Formally, data constraints are proposi-
tional formulae built from the atoms “dA = d” where data item d is assigned to port
A. Data constraints are given by the following grammar:

g ::= true

∣
∣
∣ dA = d

∣
∣
∣ g1 ∨g2

∣
∣
∣ ¬g

2 In the context of Reo, some input and output ports can also be internal to a component
instance. Any data flow at such an internal port A stands for the transmission of data inside
the corresponding component instance via port A. Thus, observing data item d at A has the
meaning of “writing d” and “reading d”.
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where A, B are names and d ∈ Data. In the sequel, we write DC(N,Data), for a
non-empty subset N of N , to denote the set of data constraints using only atoms
“dA = d” for A ∈ N. We use DC as an abbreviation for DC(N ,Data). The boolean
connectors ∧ (conjunction), ⊕ (exclusive or), → (implication), ↔ (equivalence),
and so on, can be derived as usual. We often use derived data constraints such as
dA 6= d or dA = dB which stand for the data constraints

∨

d′∈Data\{d}

(dA = d′) and
∨

d∈Data

(
(dA = d) ∧ (dB = d)

)
,

respectively.

Remark 3.1 We assume a global data domain Data for all names. Alternatively,
we can assign a data domain DataA to every name A and require type-consistency
in the definition of data constraints.

The assumption that Data is finite allows us to derive data constraints as “dA = dB”
or “dA ∈ D” or “(dA,dB) ∈ E” for D ⊆ Data and E ⊆ Data×Data. However, as
long as we do not speak about algorithmic aspects, we can allow for an infinite data
domain as well. In this case, to derive data constraints as above we enrich the syntax
of data constraints by infinite disjunctions/conjunctions, or simply add “dA = dB”,
“dA ∈ D” etc., as atomic data constraints. �

The symbol |= stands for the obvious satisfaction relation which results from inter-
preting data constraints over data-assignments (which were introduced in Section
2). For instance,

[
A 7→ d1,B 7→ d2,C 7→ d1

]
|= dA = dC,

[
A 7→ d1,B 7→ d2,C 7→ d1

]
6|= dA = dB

if d1 6= d2. With this satisfaction relation, we may identify any data constraint g
with the set δ of all data-assignments where δ |= g holds.

Satisfiability and validity, logical equivalence ≡, and logical implication ≤ of data
constraints are defined as usual, e.g.:

g1 ≡ g2 iff for all data-assignments δ: δ |= g1 ⇐⇒ δ |= g2

g1 ≤ g2 iff for all data-assignments δ: δ |= g1 =⇒ δ |= g2

3.1 Definition of constraint automata

We now present the definition of constraint automata which can be viewed as ac-
ceptors for TDS-tuples (see Section 3.2) and which can serve as an operational
model for channel-based coordination languages (see Section 4).
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Definition 3.2 [Constraint automata] A constraint automaton (over the data do-
main Data) is a tuple A = (Q,N ames,−→,Q0) where

• Q is a set of states,
• N ames is a finite set of names,
• −→ is a subset of Q×2N ames ×DC×Q, called the transition relation of A ,
• Q0 ⊆ Q is the set of initial states.

We write q
N,g
−→ p instead of (q,N,g, p) ∈−→. We call N the name-set and g the

guard of the transition. For every transition

q
N,g
−→ p

we require that: (1) N 6= /0, and (2) g ∈ DC(N,Data). A is called finite iff Q, −→
and the underlying data domain Data are finite.

�

We do not generally assume that A is finite because modeling connectors that use
channels with unbounded capacity leads to constraint automata with an infinite
state-space. In fact, except for algorithmic aspects (see Section 6), assuming that A
is finite is not important. (Even the requirement that N is finite can be relaxed.)

The intuitive meaning of a constraint automaton as an operational model for con-
nectors of a coordination language is similar to the interpretation of labeled transi-
tion systems as formal models for reactive systems. The states represent the config-
urations of the connector, the transitions the possible one-step behavior where the
meaning of

q
N,g
−→ p

is that in configuration q the ports Ai ∈ N have the possibility to perform I/O-
operations that meet the guard g and that lead from configuration q to p, while
the other ports A j ∈ N ames\N do not perform any I/O-operation.

Example 3.3 (1-bounded FIFO channel) Figure 1 shows a constraint automaton
for a 1-bounded FIFO channel with input port A and output port B. Here, we assume
that the data domain consists of two data items 0 and 1.

Intuitively, the initial state q0 stands for the configuration where the buffer is empty,
while the states p0 and p1 represent the configurations where the buffer is filled with
one of the data items. �

The intuitive behavior of a constraint automaton viewed as an acceptor for TDS-
tuples is as follows. We assume that the automaton gets a TDS-tuple θ ∈ TDSN ames

as input and tries to find out whether θ describes a possible data flow of A viewed
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{A}
d_A=0

{B}
d_B=0

{A}
d_A=1

{B}
d_B=1

q0

p0

p1

Fig. 1. Constraint automaton for a 1-bounded FIFO channel

as an operational model, in a similar way as a finite automaton (or ω-automaton)
obtains a finite (infinite) word as input and tries to find an accepting run. (However,
as constraint automata do not have final states, accepting runs are always infinite.)
That is, A starts in one of its initial states q0. If the current state is q, then A waits
until data items occur at some of the input/output ports Ai ∈ N ames. Suppose data
item d1 occurs at A1 and data item d2 at A2 while (at this moment) no data is
observed at the other ports A3, . . . ,An. This triggers the automaton to check the data
constraints of the outgoing {A1,A2}-transitions of state q to choose a transition

q
{A1,A2},g
−−−−→ p

where
[
A1 7→ d1,A2 7→ d2

]
|= g and move to state p. If there is no {A1,A2}-transition

from q whose data constraint is fulfilled then A rejects. In general, if data occur ex-
actly at the input/output ports Ai ∈ N then only N-transitions (but no N ′-transitions
where N ′ is a subset or superset of N) where the data constraint is fulfilled can fire.

Having this behavior in mind, the intuitive meaning of conditions (1) and (2) in
Definition 3.2 is as follows. Condition (1) stands for the requirement that automata-
transitions can fire only if some data occurs at one or more of the ports A1, . . . ,An,
while condition (2) formalizes that the behavior of an automaton may depend only
on its observed data (and not on data that will occur sometime in the future).

The constraint automaton for the FIFO1 channel (Example 3.3) is deterministic
in the sense that (1) there is a unique initial state and (2) for every state q, every
non-empty subset N of N ames and every data-assignment δ there is at most one
transition

q
N,g
−→ q′

such that δ |= g. As for ordinary finite or ω-automata, deterministic constraint au-
tomata have a “unique” behavior (formalized as a “run” in the next section) for
a given input stream θ. However, Definition 3.2 allows for nondeterministic con-
straint automata since for a fixed state q, a non-empty subset N of N ames, and a
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given data-assignment δ, there may be several transitions

q
N,g1
−→ q1, q

N,g2
−→ q2, . . . with δ |= gi, i = 1,2, . . . .

Later, in Remark 3.9, we see that (as for ordinary finite automata) for any constraint
automaton there exists a language-equivalent deterministic constraint automaton.

Example 3.4 (Nondeterministic behavior of constraint automata) The constraint au-
tomaton in Figure 2 can be viewed as an operational model for a connector with
ports A and B that allows A first to consume an arbitrary (but finite) number of data
items without any effect for the current configuration (represented by the self-loop
with name-set {A} at the initial state q0), followed by an I/O-operation at A that
leads to configuration q1 in which A and B are forced to synchronize (e.g., in a
handshaking mechanism via a synchronous channel). Here and in the sequel, valid
guards are skipped in the pictures for constraint automata.

q0 q1
{A}

{A} {A,B}
d_A=d_B

Fig. 2. A nondeterministic constraint automaton

We now consider the same automaton as an acceptor for TDS-pairs θ ∈ TDS{A,B}.
The automaton starts in the initial state q0 and waits there until data flow at A
and/or B is observed. If there is only some data value at A then the automaton has
the nondeterministic choice to move to state q1 or to stay in its initial state. If A is
in q0 and data flow is observed simultaneously at A and B, the automaton finds no
matching transition and rejects. The same holds for the case where, in state q0, data
flow occurs only at B and, for state q1, when data flow at only one of the ports A or
B, or different data values are observed at A and B.

As for ordinary nondeterministic finite automata or ω-automata, the accepted lan-
guage – which is formally defined in Section 3.2 – covers all input streams that
have at least one ‘successful’ (non-rejecting) run in the automaton. Hence, the ex-
istence of a rejecting run does not mean that the input stream is not included in the
accepted language. Thus, for the above automaton in a situation where the current
state is q0 and data flow is observed at A, the “correct choice” for an input stream
θ = (〈α,a〉,〈β,b〉) with 〈β,b〉 = 〈α(i),a(i)〉 for some i ≥ 1 requires an oracle that
knows the index i in advance. �
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3.2 From automata to streams

In this section we give the formal definition of the accepted TDS-language of a
constraint automaton which was informally described in the previous section. In
the sequel, we consider constraint automata as acceptors for TDS-tuple that get
an “input-stream” θ ∈ TDSN ames and (try to) generate an infinite run for θ, i.e.,
a sequence q0,q1,q2, . . . of automaton-states that can be obtained via transitions
whose name-sets and guards match θ.

We first look at a simple yet representative example. We consider a constraint au-
tomaton A = (Q,N ames,→,Q0) that models the behavior of connector or compo-
nent instance through which data elements flow from input port A to output port B.
Thus, we set N ames = {A,B} and we associate with A and B timed data streams
〈α,a〉 and 〈β,b〉 in TDS. We define the language accepted by A as follows:

LTDS(A) =
⋃

q∈Q0

LTDS(A ,q)

where LTDS(A ,q) denotes the language accepted by the state q (viewed as starting
state) of automaton A which is defined as the set of all TDS-tuples (〈α,a〉,〈β,b〉)
that have an infinite run in A starting in state q. Intuitively, the data streams α and β
in the input-stream θ = (〈α,a〉,〈β,b〉) contain the data elements that are being input
and output by the ports A and B. The time streams a and b contain for each of them
the time moments at which these input and output actions take place. The relevance
of this timing information is restricted to the particular connector at hand: what mat-
ters is only the relative order of the initial values a(0) and b(0), which determines
which channel ends will be active next. Then, (〈α,a〉,〈β,b〉) ∈ LTDS(A ,q) if at any
moment θ.time(k) both the set of names of active ports (the name-set θ.N(k)) and
the values of their incoming and outgoing data items (given by the data-assignment
θ.δ(k)) “match” the name-sets and constraints of the subsequent transitions of q.

The formal definition of LTDS(A ,q) can be given by means of a recursive equation
system. LTDS(A ,q) consists of all TDS-pairs θ = (〈α,a〉,〈β,b〉) such that there
exists a transition

q
N,g
−→ q̄

satisfying the following condition:

a(0)<b(0) ∧ N = {A}∧ [A 7→ α(0)] |= g∧ (〈α′,a′〉,〈β,b〉) ∈ LTDS(A , q̄),

or b(0)<a(0) ∧ N = {B}∧ [B 7→ β(0)] |= g∧ (〈α,a〉,〈β′,b′〉) ∈ LTDS(A , q̄),

or a(0) = b(0) ∧ N = {A,B}∧ [A 7→ α(0),B 7→ β(0)] |= g∧

(〈α′,a′〉,〈β′,b′〉) ∈ LTDS(A , q̄)

Although the above definition of LTDS(A ,q) is circular (i.e., q̄ may be equal to q)
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it can be formally defined by means of the greatest-fixed-point of a suitably chosen
monotone operator.

Definition 3.5 [Fixed-point definition of the accepted TDS-language] For a given
constraint automaton A = (Q,N ames,−→,Q0), we define the operator

ΩA :
(

Q → 2TDSN ames
)

→
(

Q → 2TDSN ames
)

as follows. Let L : Q→ TDSN ames be a function and q∈Q. Then, ΩA(L)(q) consists
of all TDS-tuples θ ∈ TDSN ames for which there exists a transition

q
N,g
−→ q̄

with θ′ ∈ L(q̄), θ.N(0) = N and θ.δ(0) |= g. We then define LTDS(A , ·) as the
greatest-fixed-point of ΩA . As before, LTDS(A) denotes the union of the TDS-
languages LTDS(A ,q0) for the initial states q0 ∈ Q0. �

The above fixed-point definition of the accepted TDS-language is often useful to
provide simple proofs for language-based properties of automata. However, in some
cases, it is easier to reason with the accepted language characterized by means of
the (standard) notion of runs:

Definition 3.6 [Runs in constraint automata] Given a TDS-tuple θ ∈ TDSN ames,
the set of infinite q-runs for θ in A is the greatest set of streams q = q0,q1, . . . over
Q such that q0 = q and there is a transition

q0
N,g
−→ q1

with N = θ.N(0), θ.δ(0) |= g and q′ is an infinite q1-run for θ′ in A . By a rejecting
q-run for θ in A we mean a finite sequence of automaton-states q0, . . . ,qn such that

• q0 = q,
• if n ≥ 1, then there is a transition q0

N,g
−→ q1 with N = θ.N(0), θ.δ(0) |= g and

q1, . . . ,qn is a rejecting q1-run for θ′,
• if n = 0 then there is no transition q0

N,g
−→ q1 with N = θ.N(0), θ.δ(0) |= g.

By an accepting run for θ in A we mean an infinite q0-run for θ where q0 is an
initial state. Similarly, a rejecting run for θ in A denotes a rejecting q-run for θ in
A where q ∈ Q0. �

It is easy to see that

LTDS(A ,q) =
{

θ ∈ TDSN ames : there exists an infinite q-run for θ in A
}
.
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Example 3.7 (Accepted TDS-language) The language accepted by the constraint
automaton for a 1-bounded FIFO-channel (Example 3.3) equals the set

{
(〈α,a〉,〈β,b〉) ∈ TDS×TDS | α = β ∧ a<b<a′

}
.

Because this automaton is deterministic, any TDS-pair has a unique (accepting or
rejecting) run. However, this is not the case for nondeterministic constraint au-
tomata. For instance, the nondeterministic constraint automaton in Example 3.4
whose accepted TDS-language is

{
(〈α,a〉,〈α(i),a(i)〉) : 〈α,a〉 ∈ TDS, i ≥ 1

}
,

has infinitely many rejecting runs for any input stream (〈α,a〉,〈α(i),a(i)〉) (namely,
the runs qi+k

0 , for k ≥ 1, where the automaton stays too long in its initial state) and
exactly one accepting run (namely qi

0,q
ω
1 ). �

We now show that any nondeterministic constraint automaton can be transformed
into a language-equivalent deterministic constraint automaton. For the construc-
tion, we need the following notation:

Notation 3.8 For a constraint automaton A as before, q a state in A , N ⊆ N ames
and P ⊆ Q, we define

dcA(q,N,P) =
∨ {

g : q
N,g
−→ p for some p ∈ P

}
.

If A is understood from the context, we simply write dc(q,N,P). Intuitively, dc(q,N,P)
is the weakest data constraint which ensures the existence of an N-transition from
state q to P. Note that dc(q,N,P) = false if there is no N-transition from q to
a P-state. We use dc(q,N) as an abbreviation for dc(q,N,Q) and dc(N,P) for
∨

q∈Q
dc(q,N,P). �

Remark 3.9 [Deriving deterministic constraint automata] As for standard finite
automata, deterministic constraint automata are as powerful as their nondetermin-
istic variants, if we are interested only in their accepted stream-languages. 3 More
precisely, given a nondeterministic constraint automaton A =(Q,N ames,−→,Q0),
one can use the standard powerset construction to obtain a deterministic constraint
automaton

det(A) =
(
2Q \{ /0},N ames,−→det,Q0

)

where the transition relation −→det is defined as follows. 4 For P, P′ ⊆ 2Q with

3 Nevertheless, as for ordinary finite automata, using nondeterministic automata has the
advantage that they may be exponentially smaller than their deterministic equivalents.
4 Of course, we can use the same ideas as for standard finite automata and apply an on-
the-fly construction of the reachable part of det(A). This may lead to a smaller state space,
but cannot avoid the exponential blowup in the worst-case.
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P 6= /0 and P′ 6= /0 and N ⊆ N ames:

P
N,g
−→det P′ iff g =

∨

p∈P

dc(p,N,P′).

Using similar arguments as in the correctness proof of the powerset construction in
ordinary finite automata, it can be shown that LTDS(A) = LTDS(det(A)). Figure 3
shows an example. �

{A,B}

q1

q2 q3

q4

{A,B} {A,B}

{B} {A}

nondeterministic
 automaton

d_A=d_B

{A,B}

{q1}

{q2} {q2,q3}

{q4}

{A,B}

{A,B}

{B}

 deterministic
 automaton

d_A=d_B

d_A<>d_B

{A,B}

{q3}

{A}

{B}

  powerset 
construction

Fig. 3. Example for the powerset construction

4 Constraint automata as operational model for Reo circuits

In this section, we show how constraint automata can serve as an operational se-
mantics for the coordination language Reo [1]. We start with a brief introduction
to Reo (Section 4.1) and then define composition operators for constraint automata
that correspond to the Reo connector primitives (Sections 4.2, 4.3, and 4.4). Sec-
tion 4.5 illustrates the compositional construction of the constraint automaton for a
given Reo connector through a few examples.

4.1 A Reo primer

Reo is a channel-based exogenous coordination model wherein complex coordina-
tors, called connectors, are compositionally built out of simpler ones. The simplest
connectors in Reo are a set of channels with well-defined behavior supplied by
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users [1]. The emphasis in Reo is on connectors, their behavior, and their compo-
sition, not on the entities that connect, communicate, and cooperate through them.
The behavior of every connector in Reo imposes a specific coordination pattern
on the entities that perform normal I/O operations through that connector, without
the knowledge of those entities. This makes Reo a powerful “glue language” for
compositional construction of connectors to combine component instances into a
software system and exogenously orchestrate their mutual interactions.

Reo’s notion of components and connectors is depicted in Figure 4, where com-
ponent instances are represented as boxes, channels as straight lines, and connec-
tors are delineated by dashed lines. Each connector in Reo is, in turn, constructed
compositionally out of simpler connectors, which are ultimately composed out of
primitive channels.

For instance, the connector in Figure 4.a may in fact be a flow-regulator (if its three
constituent channels are of the right type, as described in [1]). Figure 4.a would
then represent a system composed out of two writer component instances (C1 and
C3), plus a reader component instance (C2), glued together by our flow-regulator
connector. Every component instance performs its I/O operations following its own
timing and logic, independently of the others. None of these component instances
is aware of the existence of the others, the specific connector used to glue it with
the rest, or even of its own role in the composite system. Nevertheless, the protocol
imposed by our flow-regulator glue code (see [1] and [2]) ensures that a data item
passes from C1 to C2 only whenever C3 writes a data item (whose actual value is
ignored): the “tokens” written by C3, thus, serve as cues to regulate the flow of data
items from C1 to C2. The behavior of the connector, in turn, is independent of the
components it connects: without their knowledge, it imposes a coordination pattern
among C1, C2, and C3 that regulates the precise timing and/or the volume of the
data items that pass from C1 to C2, according to the timing and/or the volume of
tokens produced by C3. The other connectors in Figure 4 implement more complex
coordination patterns.

C4

C5

C6C2

C3

C1C4

C5

C6C3

C2

C1C2

C3

C1

(c) two 3−way connectors and a 6−way connector(a) a 3−way connector (b) a 6−way connector

Fig. 4. components and connectors

Reo defines a number of operations for components to (dynamically) compose,
connect to, and perform I/O through connectors. Atomic connectors are channels.
The notion of channel in Reo is far more general than its common interpretation.

A channel is a primitive communication medium with exactly two ends, each with
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a c d eb

Fig. 5. Nodes in Reo

its own unique identity. There are two types of channel ends: source end through
which data enters and sink end through which data leaves a channel. A channel
must support a certain set of primitive operations, such as I/O, on its ends; beyond
that, Reo places no restriction on the behavior of a channel. This allows an open-
ended set of different channel types to be used simultaneously together in Reo,
each with its own policy for synchronization, buffering, ordering, computation, data
retention/loss, etc.

A connector is a set of channel ends organized in a graph of nodes and edges such
that:

• Zero or more channel ends coincide on every node.
• Every channel end coincides on exactly one node.
• There is an edge between two (not necessarily distinct) nodes iff there is a chan-

nel one end of which coincides on each of those nodes.

A node is an important concept in Reo. Not to be confused with a location or a
component, a node is a logical construct representing the fundamental topological
property of coincidence of a set of channel ends, which has specific implications
on the flow of data among and through those channel ends.

The set of channel ends coincident on a node A is disjointly partitioned into the sets
Src(A) and Snk(A), denoting the sets of source and sink channel ends that coincide
on A, respectively. A node A is called a source node if Src(A) 6= /0∧Snk(A) = /0.
Analogously, A is called a sink node if Src(A) = /0∧Snk(A) 6= /0. A node A is called
a mixed node if Src(A) 6= /0∧Snk(A) 6= /0. Figures 5.a and b show sink nodes with,
respectively, two and three coincident channel ends. Figures 5.c and d show source
nodes with, respectively, two and three coincident channel ends. Figure 5.e shows
a mixed node where three sink and two source channel ends coincide.

Reo provides operations that enable components to connect to and perform I/O on
source and sink nodes only; components cannot connect to, read from, or write to
mixed nodes. At most one component can be connected to a (source or sink) node
at a time. A component can write data items to a source node that it is connected
to. The write operation succeeds only if all (source) channel ends coincident on the
node accept the data item, in which case the data item is transparently written to
every source end coincident on the node. A source node, thus, acts as a replicator.
A component can obtain data items from a sink node that it is connected to through
destructive (take) and non-destructive (read) input operations. A take operation suc-
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Fig. 6. Exclusive router and shift-lossy FIFO1

ceeds only if at least one of the (sink) channel ends coincident on the node offers
a suitable data item; if more than one coincident channel end offers suitable data
items, one is selected nondeterministically. A sink node, thus, acts as a nondeter-
ministic merger. A mixed node is a self-contained “pumping station” that combines
the behavior of a sink node (merger) and a source node (replicator) in an atomic
iteration of an endless loop: in every iteration a mixed node nondeterministically
selects and takes a suitable data item offered by one of its coincident sink channel
ends and replicates it into all of its coincident source channel ends. A data item is
suitable for selection in an iteration only if it can be accepted by all source channel
ends that coincide on the mixed node.

It follows that every channel represents a (simple) connector with two nodes. More
complex connectors are constructed in Reo out of simpler ones using its join op-
eration. Joining two nodes destroys both nodes and produces a new node on which
all of their coincident channel ends coincide. This single operation allows con-
struction of arbitrarily complex connectors involving any combination of channels
picked from an open-ended assortment of user-defined channel types. The seman-
tics of a connector is defined as a composition of the semantics of its (1) constituent
channels, and (2) nodes. The semantics of each channel is defined by the user who
provides it. Reo defines the semantics of its three types of nodes, mentioned above.

Figures 6.a and b show two Reo connectors. We consider these connectors in more
detail in Examples 4.6 and 4.7, respectively, in Section 4.3. Here, we use them to in-
troduce our visual syntax for presenting Reo connector graphs and some frequently
useful channel types. The enclosing thick boxes in these figures represent hiding:
the topologies of the nodes (and their edges) inside the box are hidden and cannot
be modified, yielding a connector with a number of input/output ports, represented
as nodes on the border of the bounding box, which can be used by other entities
outside the box to interact with and through the connector.
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The simplest channels used in these connectors are synchronous (Sync) channels,
represented as simple solid arrows. A Sync channel has a source and a sink end,
and no buffer. It accepts a data item through its source end iff it can simultaneously
dispense it through its sink. A lossy synchronous (LossySync) channel is similar to
a Sync channel, except that it always accepts all data items through its source end.
If it is possible for it to simultaneously dispense the data item through its sink (e.g.,
there is a take operation pending on its sink) the channel transfers the data item;
otherwise the data item is lost. LossySync channels are depicted as dashed arrows,
e.g., in Figure 6.a. The edge BD in Figure 6.b represents an asynchronous channel
with the bounded capacity of 1 (FIFO1), with the small box in the middle of the
arrow representing its buffer. This channel can have an initially empty buffer, or as
in Figure 6.b, contain an initial data value (in this case, the “o” in the box represent-
ing its buffer). Analogously, the edge AF in Figure 6.b represents an asynchronous
FIFO channel with the bounded capacity of 2 (FIFO2), with its obvious semantics.

An example of the more exotic channels permitted in Reo is the synchronous drain
channel (SyncDrain), whose visual symbol appears as the edges XZ and AC in Fig-
ures 6.a and b, respectively. A SyncDrain channel has two source ends. Because it
has no sink end, no data value can ever be obtained from this channel. It accepts a
data item through one of its ends iff a data item is also available for it to simulta-
neously accept through its other end as well. All data accepted by this channel are
lost. A close kin of SyncDrain is the asynchronous drain (AsyncDrain) channel (not
shown in Figure 6): it has two source ends through which it accepts and loses data
items, but never simultaneously. SyncSpout and AsyncSpout are dual to the drain
channel types as they have two sink ends.

In this paper, as in [2], we do not consider the dynamic behavior of components in
creating and composing connectors. Our focus is on the Reo circuits, built from ba-
sic connectors (channels and merger) via join and hide operations, without consid-
ering the split-operation which may abolish the effect of previous join-operations
and can be followed by further join-operations (yielding a network of Reo-circuits).

We now explain how constraint automata can be used to model the possible data
flow of a given Reo circuit. The nodes of a Reo-circuit play the role of the ports in
the constraint automata.

The operational semantics presented in [1] describes the configurations in which a
set of I/O-operations for certain nodes can take place and which successor-configu-
rations can be reached. Hence, we can reformulate the semantics presented in [1]
in terms of a constraint automaton whose states are the configurations and whose
transitions correspond to the possible I/O-operations. Instead, we follow another
approach in this paper and provide a compositional semantics for Reo circuits.
Thus, we need constraint automata for each of the basic channel connectors and
automata-operations to mimic the behavior of the Reo-operations for join and hid-
ing.
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4.2 Constraint automata for the basic channels

Figure 7 shows the constraint automata for some of the standard basic channel
types: synchronous channels with source A and sink B (or vice versa), (a)synchronous
drain with the sources A, B, (a)synchronous spout with the sinks A, B and lossy
synchronous channels with source A and sink B. In every case, one single state is
sufficient. Moreover, the automata are deterministic.

      {A,B}
    d_A = d_B

synchronous channel
  

      {A,B}

synchronous drain
or synchronous spout

 

      {A,B}
    d_A = d_B

lossy synchronous channel
  

{A}

     asynchronous drain
    or asynchronous spout 
  

{A} {B}

Fig. 7. Deterministic constraint automata for some basic connectors

A constraint automaton for the FIFO1 channel was shown in Example 3.3. For
FIFO channels with capacity ≥ 2, similar constraint automata can be used. How-
ever, the number of states grows exponentially with the capacity. For instance, for a
FIFO2 channel with the data domain {0,1} we need 7 states representing the con-
figurations where the buffer is empty or the buffer contains one element (0 or 1)
or is full (00, 01, 10 or 11). For unbounded FIFO channels we even get constraint
automata with an infinite state space.

Of course, for compositional reasoning, we must assume that other user-defined
basic channel types are also specified by appropriate constraint automata.

4.3 Join: merge and product

As constraint automata do not distinguish between input ports (source nodes in
Reo) and output ports (sink nodes in Reo), we cannot expect a general join operator
on constraint automata that covers both the replicator semantics of joining source
nodes and the merge semantics of joining sink nodes.

Since we restrict our attention to (static) Reo-circuits, we may assume that a given
Reo-circuit is built out of some basic channels via the join and hiding operations
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where the join operations are performed in an order such that any mixed node of
the final circuit arises through first joining certain sink nodes, and then, joining
the resulting node with certain source nodes. On the automata-level, the join of a
source node with another (sink, source or mixed) node will be realized by a product
construction, while joining sink nodes will be modeled with the help of a merger.

We first consider the join operation for node-pairs 〈B, B̄〉 where in each pair at most
one of the nodes is a sink or mixed node (while the other is a source node). In this
case, the effect of join is that all data flow at the nodes B and B̄ agree.

In the sequel, suppose that we are given two Reo-circuits with node-sets N1 and N2
for which we want to perform a join operation for node-pairs 〈Bi, B̄i〉 ∈ N1 ×N2,
i = 1, . . . ,k, where for any i at least one of nodes Bi or B̄i is a source node. We may
assume that the constraint automata A1 and A2 for both circuits have already been
constructed.

To simplify the notation, we assume that the names of the nodes are renamed in
such a way that B1 = B̄1, . . . ,Bk = B̄k and that the two circuits/automata do not
contain other common nodes. That is, we have to join all common nodes B ∈ N1 ∩
N2. On the language-level, join (under the above conditions) can be viewed as an
analogue to the natural join (denoted ./) for relational data bases. For instance,
given two TDS-languages L1 = L1(A,B) and L2 = L2(B,C) 5 the TDS-language
(L1 ./ L2)(A,B,C) is given by

L1 ./ L2 =
{
(〈α,a〉,〈β,b〉,〈γ,c〉) : (〈α,a〉,〈β,b〉) ∈ L1 and (〈β,b〉,〈γ,c〉) ∈ L2

}
.

In a similar way, we may define the natural join for TDS-languages with other
name-sets. Thus, join as an operator for TDS-languages can be regarded as a gener-
alization of intersection. It is realized on the automata-level by a product-construction.

Definition 4.1 [Product-automaton] The product-automaton of the two constraint
automata A1 = (Q1,N ames1, −→1, Q0,1) and A2 = (Q2,N ames2,−→2,Q0,2), is:

A1 ./ A2 = (Q1 ×Q2,N ames1 ∪N ames2,−→,Q0,1 ×Q0,2)

where −→ is defined by the following rules:

q1
N1,g1
−→1 p1, q2

N2,g2
−→2 p2, N1 ∩N ames2 = N2 ∩N ames1

〈q1,q2〉
N1∪N2,g1∧g2
−−−−−−−→ 〈p1, p2〉

and
q1

N,g
−→1 p1, N ∩N ames2 = /0

〈q1,q2〉
N,g
−→ 〈p1,q2〉

and latter’s symmetric rule. �
5 The notation L(A,B) suggests that L is a TDS-language for the name-set N = {A,B}.
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The following lemma shows the correctness of the product construction in the sense
that the product-automaton realizes the (natural) join of the TDS-languages of its
arguments:

Lemma 4.2 [Correctness of the product] Let A1 and A2 be two constraint au-
tomata as above. Then:

(a) LTDS(A1 ./ A2) = LTDS(A1) ./ LTDS(A2).
(b) If N ames1 = N ames2 then LTDS(A1 ./ A2) = LTDS(A1)∩LTDS(A2). �

Proof. (b) follows by (a). We provide the proof for (a). In the sequel, let N ames =
N ames1 ∪N ames2.

“⊇”: We show that for all states q1 ∈Q1, q2 ∈Q2, the function Q1×Q2 → 2TDSN ames
,

〈q1,q2〉 7→ L(q1,q2) where

L(q1,q2) = LTDS(A1,q1) ./ LTDS(A2,q2)

is a post-fixed-point of ΩA1./A2 (as defined in Definition 3.5), i.e.,

L(q1,q2) ⊆ ΩA1./A2(L)(q1,q2).

Recall that the greatest-fixed-point of a monotonic operator in a lattice is the great-
est post-fixed-point. See, e.g., [6].

Let θ ∈ L(q1,q2), that is θ is the “join” of two timed data streams θi ∈ LTDS(Ai,qi),
i = 1,2, with θ1|A = θ2|A for all A ∈ N1∩N2. (By the “join” of θ1 and θ2 we mean
the unique TDS-tuple for the name-set N with θ|A = θi|A if A ∈ Ni).

• If θ.time(0) = θ1.time(0)<θ2.time(0) then there exists a transition q1
N,g
−→1 p1 in

A1 such that
N = θ.N(0) = θ1.N(0), θ.δ(0) = θ1.δ(0) |= g and θ′1 ∈ LTDS(A1, p1).

Hence, N ⊆ N1 \N2 and the above transition can be lifted to a transition

〈q1,q2〉
N,g
−→ 〈p1,q2〉.

Moreover, we have θ′ = (θ′1,θ2) ∈ L(p1,q2), and hence, θ ∈ ΩA1./A2(L)(q1,q2).
• The case θ.time(0) = θ2.time(0)〈θ1.time(0) is symmetric.

• If θ.time(0) = θ1.time(0) = θ2.time(0) then there exist transitions qi
Ni,gi
−−→i pi in

Ai, i = 1,2, such that
Ni = θi.N(0), θi.δ(0) |= gi and θ′i ∈ LTDS(Ai, pi).

Hence, the above transitions can be lifted to a transition 〈q1,q2〉
N,g
−→ 〈p1, p2〉

where N = N1 ∪N2 and g = g1 ∧g2. We then have:

N = θ.N(0), θ.δ(0) |= g and θ′ = (θ′1,θ
′
2) ∈ L(p1, p2).
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We conclude that θ ∈ ΩA1./A2(L)(q1,q2).

“⊆”: If θ ∈ LTDS(A1 ./ A2,〈q1,q2〉) then θi = (θ|A)A∈Ni
∈ LTDS(Ai,qi) because for

any accepting run
〈q0,1,q0,2〉,〈q1,1,q1,2〉,〈q2,1,q2,2〉, . . .

for θ in A1 ./ A2 the projection to the Ai-states yields an accepting run for θi in
Ai when the states q j+1,i are removed where j is any index such that for the taken
transition

〈q j,1,q j,2〉
N j,g j
−−→ 〈q j+1,i,q j+1,2〉

the name-set N j has an empty intersection with Ni. �

It remains to explain how the join of two sink nodes, say A and B, is realized with
constraint automata. To capture the merge semantics of the resulting (new) node
C, we use a merger as shown in Figure 8 6 which we then join (via the product-
operator ./) with the constraint automata that contain A and B respectively. We then
can again apply the product-construction to join the resulting constraint automaton
(that contains C in its name-set) with another constraint automaton that contains C
as a source node.

      {A,C}
     d_A = d_C

  constraint automata
    for the merger
  

      {B,C}
     d_B = d_C

A

B
C is viewed as 

A

B
Cmerger

Fig. 8. The merger

Examples for realizing join via merge and product appear in Section 4.5.

4.4 Hiding

The effect of hiding a node that is internal to some connector in a Reo-circuit is that
data flow at that node is no longer observable from outside. To obtain this effect for
TDS-languages, hiding of a name (node) C in a TDS-language L(C,A1, . . . ,An) is
realized by existential quantification over the C-component; e.g., for L = L(C,A,B):

∃C[L] =
{
(α,a〉,〈β,b〉) : ∃ TDS 〈γ,c〉 with (〈γ,c〉,〈α,a〉,〈β,b〉) ∈ L

}
.

In constraint automata, the hiding operator removes all information about C.
6 In a similar way, a merger can be defined as a connector with three or more “input”
nodes.
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Definition 4.3 [Hiding on constraint automata] Let A = (Q,N ames,−→,Q0) be
a constraint automaton and C ∈ N ames. The constraint automaton

∃C[A ] =
(
Q,N ames\{C},−→C,Q0,C

)

is defined as follows. Let ∗ be the (transition) relation such that q ∗ p iff there
exists a finite path

q
{C},g1
−→ q1

{C},g2
−→ q2

{C},g3
−→ . . .

{C},gn
−→ qn

where qn = p and g1, . . . ,gn are satisfiable (i.e., gi 6≡ false). (Note that the gi’s de-
pend only on C.) The set Q0,C of initial states is

Q0,C = Q0 ∪
{

p ∈ Q : q0 
∗ p for some q0 ∈ Q0

}
.

The transition relation −→C is given by:

q ∗ p, p
N,g
−→ r, N̄ = N \{C} 6= /0, ḡ = ∃C[g]

q
N̄,ḡ

−→C r

where ∃C[g] =
∨

d∈Data
g[dC/d]. 7

�

For instance, if Amerger denotes the merger automaton in Figure 8 then ∃C
[
Amerger

]

is the same as the automaton for the asynchronous drain shown in Figure 7.

Unfortunately, the equality LTDS(∃C[A ]) = ∃C[LTDS(A)] does not hold in gen-
eral (only the “⊆” relation as shown in part (a) of Lemma 4.4, below, holds). For
instance, hiding B in the merger automaton in Figure 8 yields a constraint automa-
ton shown in Figure 9, with a single state, one {A,C}-transition, and one {C}-
transition.

      {A,C}
     d_A = d_C

      {B,C}
     d_B = d_C

      {A,C}
     d_A = d_C

      {C}
  

hiding B

Fig. 9. Hiding a node of the merger

Hence, any TDS-pair (〈α,a〉,〈γ,c〉) with α = γ and a = c belongs to the accepted
language of ∃B[Amerger]. On the other hand, none of the pairs (〈α,a〉,〈γ,c〉) with
a = c is in the language ∃B[LTDS(Amerger)] because in every TDS-tuple accepted

7 g[dC/d] denotes the data constraint obtained by syntactically replacing all occurrences
of dC in g with d. More precisely, we replace the atoms dC = d′ with true if d = d′ and with
false if d 6= d′.
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by Amerger it infinitely often happens that data simultaneously occur on B and C but
not A. To remedy the situation in general, we need to add fairness conditions that
declare which automata-transitions must be taken infinitely often (similar to Büchi
or other ω-automata). Instead we show here the correctness of hiding under certain
conditions:

Lemma 4.4 [Correctness of hiding]

(a) ∃C
[
LTDS(A)

]
⊆ LTDS(∃C[A ])

(b) If A is finite and does not contain a cycle q0
N1,g1
−−→ q1

N2,g2
−−→ . . .

Nk,gk−−→ qk where
g1, . . . ,gk are satisfiable and C /∈ N1 ∪ . . .∪Nk then

∃C
[
LTDS(A)

]
= LTDS(∃C[A ]).

In part (b), we may also assume an infinite constraint automaton without infinite
paths built by transitions that do not contain C in their name-set and that have
satisfiable guards.

Proof. Part (a). With arguments that are similar to those used in the proof of Lemma
4.2 we can show that the function

L : Q → 2TDSN ames
where L(q) = ∃C

[
LTDS(A ,q)

]

is a post-fixed-point of the operator Ω∃C[A ]. From this, we conclude that for any
state q, ∃C

[
LTDS(A ,q)

]
⊆ LTDS(∃C[A ],q).

Part (b). Let θ∈ TDSN \{C} be a TDS-tuple in LTDS(∃C[A ]) and let q = q0,q1,q2, . . .
be an infinite run for θ in ∃C[A ] with q0 ∈ Q0,C. By our assumption, there are
infinitely many transitions taken in that run which are obtained from transitions in
A that contain C in their name-set.

We now extend q by inserting states and define a timed data stream 〈γ,c〉 such that
the extended run is an infinite run for the TDS-tuple (θ,〈γ,c〉) ∈ TDSN in A .

• As q0 ∈ Q0,C we have q′0 
∗ q0 for some q′0 ∈ Q0. Hence, there exists a sequence

of C-transitions with satisfiable data constraints in A that leads from q′0 to q0, say

q′0
{C},g1
−−−→ p1

{C},g2
−−−→ . . .

{C},gn
−−−→ pn = q0.

Then, we replace q by q0 = q′0, p1, . . . , pn,q1,q2, . . .. We choose real values c(k)
with

0< c(0)< c(1)<.. .< c(n−1)<θ.time(0)

and data values γ(k) such that [C 7→ γ(k)] |= gk, k = 0,1, . . . ,n−1.
• We now assume that q j ∈ Qω and γ(0), . . . ,γ(`) ∈ Data, an increasing sequence

c(0), . . . ,c(`) of time points are defined (such that c(`) < θ.time( j)). We then
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consider the transition
q j

N̄,h̄
−→C q j+1

which was taken in the given run q for θ in ∃C[A ]. That is, we have
θ.N( j) = N̄, θ.δ( j) |= ḡ

and there are transitions

q j
{C},h1
−−−→ r1

{C},h2
−−−→ . . .

{C},hm
−−−→ rm

N,h
−→ q j+1

in A where h1, . . . ,hm 6≡ false and N̄ = N \{C}, h̄ = ∃C[h]. Hence, we may choose
real numbers c(k) for k = `+1, . . . , `+m+1, with

c(`)< c(`+1)<.. .< c(`+m+1)<θ.time( j +1)

and data values γ(k) ∈ Data with [C 7→ γ(`+ i)] |= hi and δ |= h where δ is a data-
assignment for the name-set N that agrees with θ.δ( j) for all A ∈ N̄ and possibly
contains a suitable data-assignment for C.

In this way, we obtain an infinite run q for (θ,〈γ,c〉) in A . (Here, it is important to
notice that, by our assumption, γ and c are infinite.) Hence, (θ,〈γ,c〉) ∈ LTDS(A)
and thus, θ ∈ ∃C

[
LTDS(A)

]
. �

4.5 Examples for the construction of constraint automata via join and hiding

We now provide some simple examples to demonstrate how the constraint automa-
ton of a Reo-circuit can be obtained in a compositional way.

Example 4.5 [Composition of two 1-bounded FIFO channels] Figure 10 shows
how a 2-bounded FIFO channel can be obtained from two 1-bounded FIFO chan-
nels AFIFO1(A,C) and AFIFO1(C,B) via product and hiding:

AFIFO2(A,B) = ∃C
[
AFIFO1(A,C) ./ AFIFO1(C,B)

]

For simplicity, we deal with a singleton data domain Data = {d} which allows
us to skip the data constraints of the transitions. Note that the state 〈q1, p2〉 is not
reachable in AFIFO2(A,B). The reason is that 〈q1, p2〉 is entered through C when the
data element moves from the buffer of the first channel to that of the second. As we
abstract away from the activities of C, state 〈q1, p2〉 can be skipped in AFIFO2(A,B)
(or alternatively, it can be identified with the state 〈p1,q2〉). �

Example 4.6 [Exclusive router] Figure 6.a shows the Reo network for an exclu-
sive router connector. A data item arriving at the input port F flows through to only
one of the output ports B or E, depending on which one is ready to consume it. If
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q1 p1 q2 p2

{A}

{C}

{C}

{B}

q1 q2 p1 q2

q1 p2 p1 p2

product automata

hiding

{B} {B}

{A}

{A}

{A,B}

q1 q2 p1 q2

q1 p2 p1 p2

{B} {B}

{A}

{A}

{B}

{A,B}

{C}

{A}

{A,B}

Fig. 10. Composition of two FIFO1 channels

both output ports are prepared to consume a data item, then one is selected non-
deterministically. The input data is never replicated to more than one of the output
ports. 8

Figure 6.a shows that the exclusive router is obtained by composing two LossySync
channels (XM, XN), a SyncDrain (XZ) channel, a merger (inherent in the mixed
node of Z), and five Sync channels (FX, MW, NU, ME, NB):

AXRouter(F,E,B) = ∃M,N,U,W,X ,Z
[
ALossySync(X ,M) ./ ALossySync(X ,N) ./

ASyncDrain(X ,Z) ./ Amerger(U,W,Z) ./ ASync(F,X) ./

ASync(N,U) ./ ASync(M,W ) ./ ASync(M,E) ./ ASync(N,B)
]

Figure 11 shows how the constraint automaton for our exclusive router is obtained
as the product of the constraint automata of its constituent channels followed by
hiding of its internal transitions. �

8 The behavior of this connector is the counterpart of the primitive nondeterministic selec-
tion inherent in the merge that a Reo (sink or mixed) node performs on its multiple input,
modeled by the merger in Figure 7.
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{X,M}

product automata

hiding

{X,N} {U,Z} {W,Z}

{F,E} {F,B}

{F,X} {N,B}

lossy sync lossy sync sync drain merger

sync sync

exclusive router

{X} {X}

sync

{N,U} {M,W}

sync sync

{M,E}

{F,X,Z,M,W,E} {F,X,Z,N,U,B}

{X,Z}

d_F=d_X
d_Z=d_W
d_X=d_M
d_M=d_W
d_M=d_E

d_F=d_E d_F=d_B

d_F=d_X
d_Z=d_U
d_X=d_N
d_N=d_U
d_N=d_B

d_X=d_M d_X=d_N

d_F=d_X d_N=d_U d_M=d_W

d_Z=d_U d_Z=d_W

d_M=d_E d_N=d_B

Fig. 11. Exclusive router obtained through composition of basic Reo channels

Example 4.7 [Shift-lossy FIFO1 channel] Figure 6.b shows a Reo network for a
connector that behaves as a lossy FIFO1 channel with a shift loss-policy. This chan-
nel is called shift-lossy FIFO1 (ShiftFIFO1). It behaves as a normal FIFO1 channel,
except that if its buffer is full then the arrival of a new data item deletes the exist-
ing data item in its buffer, making room for the new arrival. As such, this channel
implements a “shift loss-policy” losing the oldest contents in its buffer in favor of
the latest arrivals. This is in contrast to the behavior of an overflow-lossy FIFO1
channel, whose “overflow loss-policy” loses the new arrivals when its buffer is full.

The connector in Figure 6.b is composed of an exclusive router, XRouter(F,E,B)
(shown in Figure 6.a and explained in Example 4.6), a merger (inherent in the
mixed node of C), a SyncDrain (AC), an initially full FIFO1 channel (BD), and an
initially empty FIFO2 channel (AF):

AShiftFIFO1(A,B) = ∃C,D,E,F
[
AXRouter(F,E,B) ./ Amerger(E,D,C) ./

ASyncDrain(A,C) ./ AFIFO1(B,D) ./ AFIFO2(A,F)
]

Figure 12 shows how the constraint automaton for our ShiftFIFO1 channel is ob-
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tained from the constraint automata of its constituents through product and hiding.
�

product automata

hiding

{F,E} {F,B}

{B} {A,C}

{F}

{A}

{A,C,E,F}

{A}

{F,B}

{A}

ex−router

syncdrain

shift lossy FIFO1 channel

{D,C}{E,C}

merger

{A,F}

FIFO2

{A}
{F}

{A,C,D}

{B}

FIFO1 {D}

d_E=d_C d_D=d_C d_F=d_E d_F=d_B

d_D=d_C

d_F=d_B d_F=d_E
d_C=d_E

Fig. 12. Shift-lossy FIFO1 channel obtained through composition of other Reo channels

4.6 Parameterized Constraint Automata

In the previous examples, we concentrated on data-abstract coordination mecha-
nism. In many applications, the data-abstract view is too coarse, e.g., for reasoning
about the functionality of the components that are glued together. Because data-
dependencies often lead to rather complex constraint automata, we propose a pa-
rameterized notation which can simplify the picture of constraint automata with
non-trivial guards. For instance, the 1-bounded FIFO channel with arbitrary data
domain can be depicted as in Figure 13.

The automaton in Figure 13 is not a constraint automaton, but an intuitive symbolic
representation of the constraint automaton with state-space Q = {q0}∪{q(d) : d ∈
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q(x)q_0

{A}
x := d_A

{B}

d_B=x

Fig. 13. Parameterized constraint automaton for a 1-bounded FIFO channel

Data}, Q0 = {q0}, N ames = {A,B} and the transitions

q0
{A},dA=d
−−−−−→ q(d), q(d)

{B},dB=d
−−−−−→ q0

for any data item d ∈ Data. Formally, to reason about data-dependent coordination
mechanisms, we define a parameterized constraint automaton as a tuple

P = (Loc,Var,v,N ames, ,Loc0, init)

where

• Loc is a set of locations,
• Loc0 ⊆ Loc is a set of initial locations,
• Var a set of variables,
• v : Loc → 2Var assigns to any location ` a (possibly empty) set of variables,
• init is a function that assigns to any initial location ` ∈ Loc0 a condition for the

variables.

v(`) can be viewed as the parameter list of location `. For instance, in Figure 13 we
use q(x) to denote that q is a location with parameter list v(q) = {x}, while q0 is a
location with an empty parameter list. The initial condition for q0 is omitted which
denotes that init(q0) = true.

The transition relation  of a parameterized constraint automaton is a (finite) set
of tuples (`,N,h,X , `′), written in the form

`
N,h
 X ¯̀.

Here,

• ` and ¯̀ are locations.
• N is a non-empty name-set.
• h a (parameterized) data constraint for N, built out of atoms of the form “dA =

expr”. The expression expr is built from constants d ∈ Data, the symbols dB
for B ∈ N, variables x ∈ v(`) and operators for the chosen data domain, e.g.,
boolean operator ∨, ∧, etc. for Data = {0,1} and arithmetic operators +, ∗,
etc. for Data = IN.
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• The subscript X of the above transition stands for a function that assigns a name
A ∈ N to each variable x̄ ∈ v( ¯̀) \ v(`) and possibly to some of the variables in
v( ¯̀)∩ v(`). The intuitive meaning of X(x̄) = A is the assignment “x̄ := dA”.

We use parameterized constraint automata as a symbolic representation of (non-
parameterized) constraint automata. The states of the latter are obtained by aug-
menting the locations with values for the variables of their parameter list. Formally,
given P as above, the induced constraint automaton AP = (Q,N ames,−→,Q0) is
defined as follows. The state-space Q ofAP consists of the pairs 〈`,η〉 where `∈ Loc
is a location and η a variable evaluation for the variables x ∈ v(`), i.e., η is a func-
tion from v(`) to Data. The states 〈`,η〉 with `∈ Loc0 and η |= init(`) are the initial
states of AP . The transition relation −→ is derived from by the following rule:

`
N,h
 X ¯̀, η̄ = η[X ,δ]|v( ¯̀), g = h[x/η(x) : x ∈ v(`)]∧g[δ]

〈`,η〉 N,g
−→ 〈 ¯̀, η̄〉

where δ = [A 7→ δA : A∈NX ] is an arbitrary data assignment for NX , the set of names
A ∈ N where X contains an assignment “x̄ := dA” and g[δ] is the data constraint

g[δ] =
∧

A∈NX

(dA = δA).

The construct h[x/η(x)] stands for the data constraint obtained from h by syntacti-
cally replacing variable x with the value η(x)∈ Data. The construct η[X ,δ] denotes
the evaluation for the variables in v(`)∪ v( ¯̀) that is obtained from η by executing
the assignments of X . For instance,

η[x̄ := dA
︸ ︷︷ ︸

X

,A 7→ d
︸ ︷︷ ︸

δ

](y) =







η(y) : if y ∈ v(`)\{x̄}

d : if y = x̄.

The construct η[X ,δ]|v( ¯̀) denotes the restriction of η[X ,δ] to the variables in v( ¯̀).

Note that constraint automata are special instances of their parameterized version
with empty parameter lists for all their locations. (In this case, there is no difference
between locations and states, and we have AA = A .)

The product construction (Definition 4.1) can easily be modified for parameterized
constraint automata P1 and P2 with disjoint variable sets such that the unfolding of
the product P1 ./ P2 into a (non-parameterized) constraint automaton AP1./P2 gen-
erates the same TDS-language as the product AP1 ./ AP2 of the constraint automata
for P1 and P2.

Example 4.8 (A component-connector for the Fibonacci-numbers) We consider the
Reo circuit in Figure 14, which uses a component, Sum, in the context of certain
channels to generate the stream of numbers in the Fibonacci series. Sum has two
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input ports A and B and one output port C through which the sum of the input values
is produced.

A

C

B
1

0

Sum

Fig. 14. Reo circuit for Fibonacci series

Figure 15 shows a parameterized constraint automaton PSum that can be viewed as
an interface specification for Sum. (Here, we assume Data = IN.)

q(x,y)q_0

{A,B}
x := d_A
y := d_B

{C}

d_C=x+y

Fig. 15. Parameterized constraint automaton for Sum

Joining PSum with the constraint automaton for the Reo circuit in Figure 14 “around”
Sum (which can be obtained in a compositional way as in the previous examples),
we obtain the parameterized constraint automaton PFib in Figure 16.

p(x,y)r(x,y)

{A,B}

d_A=x
d_B=y
x:= y

{C}

d_C=x+y

x=0
y=1

y := d_C

Fig. 16. Parameterized constraint automaton for Fibonacci series

We may now unfold PFib into a (non-parameterized) constraint automaton, hide the
names A and B to obtain an infinite-state constraint automaton A (with the singleton
name-set {C}) whose accepted TDS-language is the set of timed data streams 〈γ,c〉
where the data stream γ stands for the infinite sequence of Fibonacci numbers and
c is an arbitrary time stream. �
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4.7 Remarks on the constraint automata semantics for Reo

We conclude our presentation of the constraint automata semantics for Reo with a
few remarks.

Deterministic constraint automata. The product of two deterministic constraint au-
tomata is always a deterministic automaton, while hiding can turn a deterministic
constraint automaton into a nondeterministic one. In particular, the constraint au-
tomaton for a Reo-circuit without hidden nodes is always deterministic, provided
that the user-defined basic channels are specified by deterministic constraint au-
tomata. (Recall that the automaton for the standard basic channels such as syn-
chronous channels, drains, spouts and FIFO channels are deterministic.) For mod-
eling circuits with hidden nodes, the hiding operator may yield a nondeterministic
automaton, as illustrated by the left transformation in Figure 17.

... ... ... ...

q

p r

{A} {A,C}

... ... ... ...

q

p r

{A} {A}
hiding C

   deterministic
constraint automaton

 non-deterministic
constraint automaton

...

......
...

{q}

{p,r}

{A}

 powerset 
construction

   deterministic
constraint automaton

Fig. 17. Transformation of deterministic and nondeterministic constraint automata

However, one can derive from ∃C[A ] a language-equivalent deterministic automa-
ton det(∃C[A ]); see Remark 3.9. Intuitively, the states of det(∃C[A ]) stand for sets
of configurations in the given Reo circuit, as depicted by the right transformation
in Figure 17.

Composition operators in related models. Our product operator relies on the stan-
dard construction for building finite automata for intersection and has similarities
with composition operators in similar models, e.g., TCSP-like parallel composi-
tion of labeled transition systems with synchronization over common actions and
interleaving for the other actions [4] or the one-to-many composition of port au-
tomata [10]. On the other hand, the hiding operator for timed port automata is
totally different from our construction. The former does not change the structure
of the automata but makes certain output ports invisible. In contrast, our construc-
tion removes all information about the hidden names (similar to the deletion of
ε-transitions in ordinary nondeterministic finite automata). In interface automata,
composition is complex because it requires compatibility check first. Two interface
automata are compatible if errors can be avoided.
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Other semantics for Reo. Essentially, our compositional constraint automata se-
mantics of Reo in this paper is consistent with the operational semantics presented
in [1] (and its derived constraint automata semantics), and with the timed data
stream semantics of [2], in the sense that the diagram in Figure 18 commutes.

Reo-circuit

 operational semantics
        [Arb04]

constraint automaton

TDS-semantics
   [AR02]

coinductive,
compositional

compositional
(section 4)

Fig. 18. Relationships among various semantics for Reo

Because the semantics we consider in this paper is a simplification of the full op-
erational semantics of Reo, e.g., as informally described in [1], the left-hand-side
of the diagram in Figure 18 commutes only modulo certain details. The primary
simplifications involve (1) the context-sensitive behavior of certain channels (most
prominently, that of our lossy synchronous channel), and (2) the fairness of merge.
The specification of the behavior of the lossy synchronous channel requires it not
to lose the data item written to its source end, if this data item can be consumed at
its sink end. This type of context-sensitive behavior can be dealt with in constraint
automata by introducing the notion of priorities for their transitions. The details of
this scheme are beyond the scope of this paper.

Strictly speaking, Reo itself does not require fairness: Reo is oblivious to (the fair-
ness or other aspects of) the behavior of the channels it composes, and its internal
consistency does not depend on assuming that the nondeterministic merge inherent
in the semantics of its sink and mixed nodes is fair. Nevertheless, the expressive
power of channel composition in Reo and the correspondence of the formal se-
mantics of Reo connector circuits with the intuitive interpretation of their behavior
break down if this nondeterministic merge is not assumed to be fair. We do not ad-
dress a formal treatment of fairness in our constraint automata semantics for Reo in
this paper because on the one hand, the fairness assumption can be formally incor-
porated in our basic model analogously to the way it is treated in other models. On
the other hand, while it involves no real novelty, the additional formal complexity
introduced by fairness becomes somewhat distracting.

The right-hand-side of the diagram in Figure 18 commutes in the sense that for any
Reo circuit R we have

LTDS(AR) = L [AR02]
TDS (R) (*)
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where AR denotes the constraint automaton for R obtained by the compositional se-
mantics presented in this paper and R 7→ L [AR02]

TDS (R) the timed-data-stream seman-
tics in [2]. The argument uses the greatest-fixed-point definition of the accepted
TDS-language, and requires showing that the equation (*) holds for the basic chan-
nels and that

LTDS(A1 ./ A2) = LTDS(A1) ./[AR02] LTDS(A2)

where ./[AR02] is the semantic join operator used in [2]. The argument is the same
for hiding.

5 Bisimulation and simulation

As for standard labeled transition systems, branching time relations like bisimula-
tion and simulation à la Milner and Park (see e.g., [18]) can be defined for constraint
automata. In the context of Reo, we are interested only in the TDS-languages in-
duced by Reo circuits (or constraint automata) rather than their branching behavior.
Nevertheless, branching time relations are important because they yield an alterna-
tive characterization of language equivalence/inclusion, and a simple(r) way to ver-
ify if two automata are language equivalent, or if the language of one is contained
in the language of the other.

5.1 Bisimulation

Recall the definition of dc(q,N,P) introduced in Notation 3.8 in Section 3.2, which
we need to define our notion of bisimulation equivalence:

Definition 5.1 [Bisimulation] Let A = (Q,N ames,−→,Q0) be a constraint au-
tomaton and R an equivalence relation on Q. R is called a bisimulation for A if for
all pairs (q1,q2) ∈ R , all R -equivalence classes P ∈ Q/R , and every N ⊆ N ames:

dc(q1,N,P) ≡ dc(q2,N,P).

States q1 and q2 are called bisimulation equivalent (denoted q1 ∼ q2) iff there
exists a bisimulation R with (q1,q2) ∈ R . �

As usual, two constraint automata A1 and A2 with the same set of names are called
bisimulation equivalent (denoted A1 ∼ A2) iff for every initial state q0,1 of A1 there
is an initial state q0,2 of A2 such that q0,1 and q0,2 are bisimulation equivalent, and
vice versa. Here, A1 and A2 must be combined into a “large” automaton obtained
through the disjoint union of (the state spaces of) A1 and A2.
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Example 5.2 In the constraint automata of Figure 19, states q1 and q2 are bisimilar
while q1,q2 6∼ q3.

{A} {A}

q1

p1 r1

{B}
{C}

{A}
{A}

q2

p2 r2

{B} {C}

   d_A=d

p2’

{B}

{A}

   d_A<>d

{A}

q3

u3

{B} {C}

Fig. 19. Similarity and bisimilarity

To see why q1 and q2 are bisimilar it suffices to establish a bisimulation which
contains (q1,q2). In fact, the equivalence R induced by the partition

Q/R =
{
{q1,q2},{q3},{p1, p2, p′2},{r1,r2},{u3}

}

can be shown to be a bisimulation. Note that, for instance,

dc(q1,{A},{p1, p2, p′2}) = true ≡ dc(q2,{A},{p1, p2, p′2}).

On the other hand, q1 and q2 are not bisimilar to q3. The reason is that there is
no state reachable from q1 or q2 that is bisimilar to u3, because dc(u3,{B}) =
dc(u3,{C}) = true, while dc(r1,{B}) = dc(r2,{B}) = false and dc(p1,{C}) =
dc(p2,{C}) = false. �

In Figure 19, states q1, q2, and q3 are language equivalent (i.e., LTDS(A ,q1) =
LTDS(A ,q2) = LTDS(A ,q3)) but not bisimulation equivalent. For nondeterministic
constraint automata bisimulation is strictly finer than language equivalence. How-
ever, for deterministic constraint automata, bisimulation and language equivalence
coincide as shown in part (b) of the following theorem.

Theorem 5.3 [Bisimulation versus language equivalence] Let A1 and A2 be two
constraint automata with the same name set N ames.

(a) If A1 ∼ A2 then LTDS(A1) = LTDS(A2).
(b) If A1 and A2 are deterministic and LTDS(Ai,q) 6= /0 for all states q in Ai (i =

1,2) then
A1 ∼ A2 iff LTDS(A1) = LTDS(A2).

Proof. (a) follows from the observation that, if q1 ∼ q2 then for any θ∈LTDS(A1,q1)
and any infinite q1-run q1 = q0,1,q1,1,q2,1, . . . for θ in A1 there exists a q2-run
q2 = q0,2,q1,2,q2,2, . . . for θ in A2 such that qi,1 ∼ qi,2 for all indices i. To see this,
we may use an inductive argument to define the run q2. Assume that i ≥ 0 and
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qi,1 ∼ qi,2 (where, for i = 0, we put qi,2 = q2). Let

qi,1
N,g
−→ qi+1,1

be the (i+1)-st taken transition in q1 (that is, N = θ.N(i) and θ.δ(i) |= g). Then,

θ.δ(i) |= g ≤ dc(qi,1,N, [qi+1,1]) ≡ dc(qi,2,N, [qi+1,1]).

Here, we write [p] to denote the bisimulation equivalence class of p. Hence, there
exists a transition

qi,2
N,h
−→ qi+1,2

where qi+1,2 ∈ [qi+1,1] (i.e., where qi+1,1 ∼ qi+1,2) and θ.δ(i) |= h.

Part (b). Let A = (Q,N ames,−→,Q0) be a deterministic constraint automaton
where LTDS(A ,q) 6= /0 for all states q ∈ Q. We show that the relation

R =
{
(q1,q2) ∈ Q×Q : LTDS(A ,q1) = LTDS(A ,q2)

}

is a bisimulation. Let (q1,q2) ∈ R , N a non-empty subset of N ames and P an R -
equivalence class. To prove the logical equivalence of dc(q1,N,P) and dc(q2,N,P)
it suffices to show that for any data-assignment δ for N with δ |= dc(q1,N,P) there
exists a transition

q2
N,h
−→ p2

in A with δ |= h and p2 ∈ P.

If δ |= dc(q1,N,P) then there is a transition q2
N,g
−→ p1 with δ |= g and p1 ∈ P. We

now choose an arbitrary TDS-tuple θ ∈ LTDS(A1, p1) and real number t with

0< t <θ.time(0).

We define θ̄ = (θ̄|A)A∈N ames as the TDS-tuple with

θ̄.time(0) = t, θ̄.N(0) = N, θ̄.δ(0) = δ

and where θ̄|A = θA if A ∈ N ames \N and, for A ∈ N ames, the first derivative of
θ̄|A is θ|A. Then,

θ̄ ∈ LTDS(A1,q1) = LTDS(A2,q2).

Hence, there exists a transition q2
N,h
−→ p2 with δ = θ̄.δ(0) |= h and θ = θ̄′ ∈LTDS(A , p2).

As A is deterministic, we have

LTDS(A , pi) =
{

θ̃′ : θ̃ ∈ LTDS(A ,qi), θ̃.N(0) = N, θ̃.δ(0) = δ
}
, i = 1,2.

As LTDS(A ,q1) and LTDS(A ,q2) agree we obtain LTDS(A1, p1) = LTDS(A2, p2),
and hence, the R -equivalence of p1 and p2. Thus, p2 ∈ P. �
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To see why in part (b) of Theorem 5.3 the assumption LTDS(Ai,q) 6= /0 is neces-
sary for all states q, consider the deterministic constraint automata A1 and A2 in
Figure 20, with initial states q1 and q2, respectively.

q1

r

{A}

{A,B}

{A}

q2

{A,B}

Fig. 20. Language equivalence and bisimilarity

We have LTDS(A1,r) = /0 because of the time-divergence assumption which forces
A and B to have infinite data flow. Thus, A1 and A2 are language-equivalent as both
accept the TDS-language

{
(〈α,a〉,〈β,b〉) : a = b

}
. On the other hand, A1 and A2

are not bisimulation equivalent, because dc(q1,{A}) = true while dc(q2,{A}) =
false.

Example 5.4 (Alternating Bit Protocol) The alternating bit protocol (ABP), is a
method to ensure successful transmission of data through a faulty communication
medium. We follow here the description of ABP as suggested in [9]. The trans-
mission success is based on the assumption that data can be resent an unlimited
number of times, if necessary. Figure 21 shows the components that are involved in
this protocol. Data elements from a set Msg are communicated between a Sender
and a Receiver. Once the Sender reads a message from its port A, it sends this datum
through the communication medium M1 to the Receiver, which sends the message
out through its port C. The communication medium M1 is faulty, thus a message
sent through this medium can turn up as an error message (represented as !). Every
time the Receiver receives a message via M1, it sends an acknowledgment to the
Sender via the communication medium M2. The communication medium M2 is
also faulty and may change the datum it conveys.
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Receiver

B1 B2

D1 D2

B3 B4

D3 D4

Sender
A

CM1

M2

Fig. 21. ABP: Components involved

The ABP protocol is applied to establish correct communication between the Sender
and the Receiver over the faulty communication media M1 and M2. The Sender at-
taches a 0 or 1 bit (alternately) to the message, when it sends it through M1. Thus,
the data sent by the Sender, or received by the Receiver are pairs (d,0) or (d,1)
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Sender

Receiver

wait(d,0)send(d,0)

wait(d,1)

rec(0)

ack(1) out(d,1) rec(1)

ack(0)

in(1)

in(0)

communication medium M1 communication medium M2

send(d,1)

out(d,0)

synchronous channels

M1 M2

{D1},d_D1=1

{B1},d_B1=(d,1)

{B1},d_B1=(d,0)

{D1},d_D1=0

{D4},d_D4=0

{C},d_C=d

{C},d_C=d

{D4},d_D4=1

{B2,B3} {D2,D3}

{D1}

d_D1=1 or d_D1=!

d_D1=0 or d_D1=!
{D1}

{A},d:=d_A

{A},d:=d_A

{B4},d_B4 in Msg*{0}
d:=msg(d_B4)

{B4}
d_B4=!

{B4},d_B4 in Msg*{1}
d:=msg(d_B4)

d_B4=!

d_B2 in Msg * {0,1} and
((d_B2=d_B3) or d_B3=!)

d_D3 in{0,1} and
((d_D2=d_D3) or d_D2=!)

d_D1=d_D2 d_D3=d_D4d_B3=d_B4d_B1=d_B2

{B1,B2} {B3,B4} {D1,D2} {D3,D4}

{B4}

Fig. 22. ABP: Constraint automata of Components

with d ∈ Msg. The Receiver sends back the attached bit via M2, to acknowledge
the reception. If the Receiver receives a corrupted message, then it sends the pre-
vious acknowledgment to the Sender once more. As long as the Sender receives a
corrupted (i.e., !) or wrong acknowledgment (i.e., one whose value it is not expect-
ing), it repeats sending the previous message-bit pair. Alternation of the attached
bit enables the Receiver to determine whether the received datum is really new,
and alternation of the acknowledgment enables the Sender to determine whether it
acknowledges reception of a datum or that of a corrupted message.
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in(0)rec(0) wait−out(d,0) wait(d,0)ack(0)

send(d,1)rec(1)
wait(d,1)ack(1)

wait(d,0)ack(1)

wait(d,1)ack(0)

send(d,0)rec(0)

send(d,0)rec(1)

send(d,1)rec(0)

in(1)rec(1)wait−out(d,1)

Hiding

in(0)rec(0)

wait−out(d,1)

{D1,D2,D3,D4}

{D1,D2,D3,D4}

{D1,D2,D3,D4}

{D1,D2,D3,D4}

d_D1=d_D2=d_D3=d_D4=1
or
d_D3=d_D4=1, d_D1=d_D2=!

{C},d_C=d

d_B3=d_B4=(d,0)

d_D1=d_D2=1
d_D3=d_D4=1

d_B1=d_B2=(d,0)

d_D1=d_D2=0
d_D3=d_D4=0

d_B1=d_B2=(d,1)
d_B3=d_B4=(d,1)

{C},d_C=d

d_D1=d_D2=d_D3=d_D4=0
or
d_D3=d_D4=1, d_D1=d_D2=!

{C},d_C=d

d_B1=d_B2=(d,0),d_B3=d_B4=!

{D1,D2,D3,D4}

d_D3=d_D4=0, d_D1=d_D2=!

{D1,D2,D3,D4}

d_D3=d_D4=1, d_D1=d_D2=!

d_B1=d_B2=(d,1), d_B3=d_B4=!
or
d_B1=d_B2=d_B3=d_B4=(d,1)

Product

wait−out(d,0)

in(1)rec(1)

{A},d:=d_A

{A},d:=d_A

{C},d_C=d

{A},d:=d_A

{B1,B2,B3,B4}

d_B1=d_B2=d_B3=d_B4=(d,0)
or
d_B1=d_B2=(d,0), d_B3=d_B4=!

{A},d:=d_A

{B1,B2,B3,B4}

d_B1=d_B2=(d,1),d_B3=d_B4=!{B1,B2,B3,B4}

{B1,B2,B3,B4}

{B1,B2,B3,B4}

{B1,B2,B3,B4}

Fig. 23. ABP: Product of automata

The parameterized constraint automata showing the behavior of the Sender, the
Receiver, the two communication media M1 and M2, and the synchronous channels
connecting these components, namely B1B2, B3B4, D1D2, and D3D4, are shown
in Figure 22. Our ABP problem involves the following data domain:

Data = Msg∪ (Msg×{0,1})∪{!}∪{0,1}.

For (d,b) ∈ Msg×{0,1} we define msg(d,b) = d. At ports A and C we allow
only data items from Msg. At ports B1, B2, B3, and B4, all data items are from
Msg×{0,1}∪{!}, while the channels connecting D1 to D2 can transmit data items
in {0,1, !} and channels connecting D3 and D4 can transmit data items in {0,1}
only. These assumptions can be formalized by data constraints. For simplicity in
the figures, we skip these data constraints.
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Specification

{A}, d:=d_A

{C},d_C=d

receive(d)send

Fig. 24. ABP: Specification of the protocol

The parameterized product automata, which is the result of applying the join and
hide operations to all the components in ABP, is shown in Figure 23. As men-
tioned earlier, the specification of the protocol requires that the data received by the
Sender through its port A is correctly sent out through the port C of the Receiver.
This specification is shown in Figure 24. By comparing the unfoldings of the two
parameterized automata in Figures 23 and 24 into proper constraint automata, it can
be seen that the constraint automaton that results from applying product and hiding
operations to the constraint automata of the components in the ABP is bisimilar to
the constraint automaton for the specification of the ABP.

�

5.2 Simulation

We now provide an alternative characterization of language inclusion by means
of the simulation preorder which can be viewed as a uni-directional version of
bisimulation:

Definition 5.5 (Simulation) Let A = (Q,N ames,−→,Q0) be a constraint automa-
ton and R a binary relation on Q. R is called a simulation for A if for all pairs
(q1,q2) ∈ R , all R -upward closed sets P ⊆ Q, and every N ⊆ N ames:

dc(q1,N,P) ≤ dc(q2,N,P).

P is called R -upward closed iff for all states p ∈ P and (p, p′) ∈ R we have p′ ∈ P.
A state q1 is simulated by another state q2 (and q2 simulates q1), denoted as q1 �
q2, iff there exists a simulation R with (q1,q2) ∈ R . A constraint automaton A2
simulates another constraint automaton A1 (denoted as A1 � A2) iff every initial
state of A1 is simulated by an initial state of A2. 9

�

As the logical or (∨) is idempotent, we have that R is a simulation iff dc(q1,N, p) ≤
dc(q2,N, p ↑R ) for all pairs (q1,q2)∈R , states p∈Q, and N ⊆N ames. Here, p ↑R

9 Here, we assume that A1 and A2 rely on the same set of names.
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denotes the R -upward closure of {p}, i.e., the set {p′ ∈ Q : (p, p′) ∈ R }.

Example 5.6 State q3 in Figure 19 simulates states q1 and q2 in the same figure.
Other examples include, in Figure 7:

• the automaton for the synchronous drain which simulates the automaton for the
synchronous channel,

• the automaton for the asynchronous drain which simulates the automaton for the
1-bounded channel (Example 3.3), and

• the automaton for the synchronous channel which is simulated by the automaton
for the lossy synchronous channel.

�

As for ordinary transition systems, simulation is the key notion for any abstraction
method. For instance, simulation covers data abstraction in a quite simple way.
We will explain this by the example of the constraint automaton AFIFOn for an
n-bounded FIFO-channel. Recall that AFIFOn has a state space whose size is expo-
nential in n when the data domain Data contains two or more elements. When we
abstract away from the data values, all states (configurations) where the buffer con-
tains k elements (for some k with 0 ≤ k ≤ n) can be collapsed into a single state. In
this way we obtain a constraint automaton that has n+1 reachable states and sim-
ulates the original constraint automaton AFIFOn. For instance, for n = 2, Figure 25
shows the data-abstract constraint automaton for 2-bounded FIFO channels (with
an arbitrary data domain).

{A}

{B}

{A}

{B}

{A,B}

Fig. 25. Data-abstract constraint automaton for a 2-bounded FIFO channel

Using analogous arguments as in the proof of Theorem 5.3, we obtain that the
simulation preorder is finer than language-inclusion:

Theorem 5.7 [Simulation versus language inclusion] Let A1 and A2 be two con-
straint automata with the same name set N ames.

(a) If A1 � A2 then LTDS(A1) ⊆ LTDS(A2).
(b) If A1 and A2 are deterministic such that LTDS(A1,q) 6= /0 for all states q in A1

then
A1 � A2 iff LTDS(A1) ⊆ LTDS(A2).
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As for ordinary labeled transition systems, bisimulation equivalence is finer than
simulation equivalence �∩�−1. They agree for deterministic automata. Given de-
terministic constraint automata with non-empty TDS-languages for all their states,
the latter follows from the observation that simulation equivalence agrees with
language-equivalence (part (b) of Theorem 5.7) which, in turn, agrees with bisim-
ulation equivalence (part (b) of Theorem 5.3). In the second part of Lemma 5.8 we
provide the proof for the general case.

Lemma 5.8 [Bisimulation versus simulation equivalence]

(a) If A1 ∼ A2 then A1 � A2 (and A2 � A1).
(b) If A1 and A2 are deterministic then

A1 � A2 and A2 � A1 iff A1 ∼ A2.

Proof. (a) follows from the fact that any bisimulation is a simulation. We prove (b)
by showing that for a given deterministic automaton A , simulation equivalence is a
bisimulation.

Let q1, q2 be two states with q1 � q2 and q2 � q1 and let N be a non-empty name-set
and P be a simulation equivalence class. To show the logical equivalence of the data
constraints dc(q1,N,P) and dc(q2,N,P) it suffices to prove that for any transition

q1
N,g
−→ p1

where p1 ∈ P and any data assignment δ with δ |= g there exists a transition

q2
N,h
−→ p2

with p2 ∈ P and δ |= h. (This argument shows that dc(q1,N,P) ≤ dc(q2,N,P). The
symmetry yields the logical equivalence.)

Let q1
N,g
−→ p1 be a transition with p1 ∈ P and δ a data assignment with δ |= g. As

q1 � q2 we have
g ≤ dc(q1,N, p1) ≤ dc(q2,N, p1 ↑).

(Here, we write p ↑ for the set of states p̄ with p � p̄.) Hence, δ |= dc(q2,N, p1 ↑).
That is, there exists a transition

q2
N,h
−→ p2

with p2 ∈ p1 ↑ and δ |= h. We now use the fact that q1 simulates q2. Hence,

h ≤ dc(q2,N, p2) ≤ dc(q1,N, p2 ↑).

Thus, there exists a transition

q1
N,ḡ
−→ p̄1
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with δ |= ḡ and p2 � p̄1. The assumption that A is deterministic yields ḡ = g and
p̄1 = p1. Hence,

p1 � p2 � p̄1 = p1,

i.e., p1 and p2 belong to the same simulation equivalence class, namely P. �

5.3 Compositionality

The following lemma provides a congruence result for bisimulation equivalence
and the simulation preorder for the operators hiding and join (product). This result
allows to replace a “large” constraint automaton by a “small” bisimulation equiv-
alent automaton during the construction of constraint automaton with the help of
join and hiding without affecting the accepted TDS-language.

Lemma 5.9 [Compositionality of join and hiding]

(a) If A1 � A ′
1 and A2 � A ′

2 then A1 ./ A2 � A ′
1 ./ A ′

2.
(b) If A1 ∼ A ′

1 and A2 ∼ A ′
2 then A1 ./ A2 ∼ A ′

1 ./ A ′
2.

(c) If A1 � A2 then ∃C[A1] � ∃C[A2].
(d) If A1 ∼ A2 then ∃C[A1] ∼ ∃C[A2].

Proof. To prove (a) and (b), consider the relations

Rsim =
{
(〈q1,q2〉,〈q′1,q

′
2〉) : q1 � q′1,q2 � q′2

}
,

Rbis =
{
(〈q1,q2〉,〈q′1,q

′
2〉) : q1 ∼ q′1,q2 ∼ q′2

}
.

Then, Rsim can shown to be a simulation and Rbis a bisimulation on the product-
automata.

We provide the proof for (c) and observe that the proof for (d) is similar. To prove
(c) it suffices to show that given a constraint automaton A = (Q,N ames,−→
,q0), any simulation R for A is a simulation for ∃C[A ]. By considering the {C}-
transitions in A , we obtain:

(*) (q1,q2) ∈ R ∧ q1 
∗ q′1 =⇒ q2 

∗ q′2 for some state q′2 with (q′1,q
′
2) ∈ R .

Let (q1,q2) ∈ R , N a non-empty subset of N ames \ {C}, and P an R -upward
closed subset of Q. Then, for all states q ∈ Q:

dc∃C[A ](q,N,P) =
∨

q′∈q∗

(
dcA(q′,N,P)∨dcA(q′,N ∪{C},P)

)
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where q∗ =
{

q′ ∈ Q : q ∗ q′
}

. From (*), we obtain that for every state q′1 ∈ q∗1
there exists a state q′2 ∈ q∗2 with (q′1,q

′
2) ∈ R . Because

dcA(q′1,N,P) ≤ dcA(q′2,N,P),

dcA(q′1,N ∪{C},P) ≤ dcA(q′2,N ∪{C},P),

we get dc∃C[A ](q1,N,P) ≤ dc∃C[A ](q2,N,P). �

6 Equivalence and refinement checking

Problems like the question of whether two constraint automata have the same ob-
servable behavior or whether one’s behavior is a refinement of the other one arise
naturally and frequently. For instance:

• The replacement of a quite complex Reo circuit by a simpler one (e.g., which
uses fewer and/or cheaper connectors) can be justified by showing that their in-
duced constraint automata accept the same TDS-language.

• Having a certain coordination mechanism in mind, it is often quite easy to de-
pict a constraint automaton A that describes the allowed behavior (i.e., which
rejects all timed data streams that should not occur). In this sense, A can serve
as specification for a Reo circuit that is to be designed. Correctness of a design
can then be defined by language inclusion: a Reo circuit G is viewed to be cor-
rect (w.r.t. specification A) iff all timed data streams that are accepted by the
constraint automaton AG for G are also accepted by A .

For ordinary labeled transition systems, checking language equivalence or language
inclusion is computationally hard (P-space-complete in the case of labeled tran-
sition systems [15]), while checking bisimilarity or checking whether one system
simulates another can be done in polynomial time [15,20,12]. For deterministic sys-
tems, the branching time relations (bisimulation equivalence, simulation preorder)
coincide with the linear time relations (language equivalence, language inclusion);
hence, any algorithm for the bisimulation (simulation) problem simultaneously also
solves the language equivalence (inclusion) problem. For nondeterministic systems,
the branching time relations are strictly finer than the language relations. However,
the bisimulation/simulation algorithms can be used as correct, though incomplete,
techniques to prove language equivalence or language inclusion.

In this section, we show that the situation for constraint automata is similar. In
the sequel, let Ai = (Qi,N ames,−→i,Q0,i), i = 1,2, be two constraint automata
with the same set of TDS-names. Throughout this section, the state-spaces Qi, the
data domain and the transition relations are assumed to be finite. We now discuss
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the algorithmic aspects of the questions whether A1 and A2 are bisimilar, whether
A1 is simulated by A2, whether the TDS-language of A1 is contained in the TDS-
language of A2 and whether A1 and A2 are language equivalent. For all these ques-
tions, standard algorithms for labeled transition systems (and finite automata) can
be modified. (We briefly sketch the main ideas in Sections 6.1 and 6.2.) However,
as we must deal with logical equivalence and implication, the algorithmic treatment
of the branching time relations (bisimulation and simulation) is more difficult than
for ordinary labeled transition systems where only the existence of transitions with
certain target states is important.

Theorem 6.1 [Complexity (lower bounds)] Let A1 and A2 be two finite constraint
automata with the same name-set N ames.

(a) The problem of checking whether A1 ∼ A2 is coNP-hard.
(b) The problem of checking whether A1 � A2 is coNP-hard.
(c) The problem of checking whether LTDS(A1) = LTDS(A2) is P-space-hard.

Proof. (a) and (b) follow by a polynomial reduction from VALID (the validity
problem for propositional logical formulae). Let f be a propositional logical for-
mula with atoms x1, . . . ,xn. We now define two constraint automata A1 and A2 with
the names A1, . . . ,An as follows. We use the boolean data domain Data = {0,1}
and identify the positive literal xi with the atomic data constraint dAi = 1 and the
negative literal ¬xi with the data constraint dAi = 0. Let g f be the resulting data
constraint, and consider the constraint automata A1 and A2 in Figure 26.

q1

p1

{A1,...,An}

q2

p2

{A1,...,An}

g_ftrue
{A1,...,An} {A1,...,An}

Fig. 26. CoNP constraint automata

We have: f is valid iff g f is valid iff true ≡ g f iff A1 ∼ A2. Similarly, f is valid iff
true ≤ g f iff A1 � A2.

The proof of (c) follows by a polynomial reduction from the language equivalence
problem for ordinary nondeterministic finite automata (NFA) where all states are
accepting. This problem is known to be P-space-complete [15].

Let M be a NFA with the alphabet Σ and where all states are accepting. Let L(M )
denote the accepted language of finite words over Σ, i.e., L(M ) is the set of finite
words σ ∈ Σ∗ that have a run in M starting in an initial state of M . Similarly, we
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define Lω(M ) to be the set of infinite words σ ∈ Σω that have a run in M starting
in an initial state of M . As mentioned above, the problem of whether L(M1) =
L(M2) for NFAs (over the same alphabet) without non-accepting states is P-space-
hard [15]. We now show that:

(i) the problem of whether Lω(M1) = Lω(M2) for NFAs M1, M2 with the same
alphabet is P-space-hard, by a polynomial reduction from the language equiv-
alence problem for NFAs without non-accepting states; and

(ii) the problem of whether LTDS(A1) = LTDS(A2) for constraint automata A1 and
A2 with the same node-set is P-space-hard, by a polynomial reduction from
(i).

Part (i). Given an NFA M where all states are accepting, we define M̂ as the NFA
that results from M by adding a new state q̂, a new input symbol δ, and transitions

q δ
−→ q̂

for every state q in M and q = q̂. Then, we have

L(M ) =
{

σ ∈ Σ∗ : σδω ∈ Lω(M̂ )
}
, Lω(M̂ ) =

{
σδω : σ ∈ L(M )

}
.

Hence, L(M1) = L(M2) iff Lω(M̂1) = Lω(M̂2).

Part (ii). Given two NFAs M1 and M2 over the same alphabet Σ, we construct two
constraint automata A1 and A2 with a single name, say A, and the data domain
Data = Σ as follows. Ai arises from Mi by replacing every edge

q a
−→ p in Mi by the edge q

{A},dA=a
−−−−−→ p in Ai.

Then, we have LTDS(A1) = LTDS(A2) iff Lω(M1) = Lω(M2). �

In the following two subsections, we sketch how standard algorithms for solving
the bisimulation/simulation and language equivalence/inclusion problems in ordi-
nary finite-state labeled transition systems can be modified to deal with constraint
automata.

6.1 Checking bisimilarity and similarity

Essentially, we can use the well-known partitioning-splitter technique for ordinary
labeled transition systems [15,3,20,12,21,5].

For the comparison of two constraint automaton A1 and A2 via bisimulation equiv-
alence or the simulation preorder, we first build the “large” constraint automaton
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A = A1 ]A2 which arises through the disjoint union of the state spaces of A1 and
A2. (The initial states of A are irrelevant.) Then, we calculate the bisimulation
equivalence classes [q] = {q′ : q ∼ q′}, or respectively, the simulator sets q ↑= {q′ :
q � q′} of A . Finally, we check whether A1 ∼ A2, or respectively, A1 � A2 by
investigating the initial states of A1 and A2. Note that A1 ∼ A2 iff for any bisimu-
lation equivalence class P in A we have either (P∩Q0,1 6= /0)∧ (P∩Q0,2 6= /0) or
(P∩Q0,1 = /0)∧ (P∩Q0,2 = /0). Here, Q0,i denotes the set of initial states in Ai. To
check whether A1 is simulated by A2 we can use the observation that A1 � A2 iff
for any initial state q ∈ Q0,1 of A1 we have q ↑ ∩Q0,2 6= /0.

6.1.1 Computing the bisimulation quotient

In the following, let A = (Q,N ames,−→,Q0) be a constraint automaton. The idea
of computing the bisimulation equivalence classes of A is to generate a sequence

Π0,Π1,Π2, . . . ,Πk

of partitions of the state space Q such that Πi is strictly coarser than Πi+1 and finer
than the bisimulation quotient Q/∼. As we assume Q to be finite we get Πk = Q/∼
for some k ≤ |Q|.

Notation 6.2 [Partition, (super-)block, splitter] A partition for Q denotes a set Π =
{P1, . . . ,Pn} of pairwise disjoint, non-empty subsets of Q such that Q = P1∪ . . .∪Pn.
The elements of a partition are called blocks. By a super-block of Π, we mean any
(non-empty) union of blocks in Π. A splitter for Π denotes a pair (N,P) consisting
of a non-empty subset N of N ames and a super-block P for Π. �

Note that there is a one-to-one correspondence between partitions for Q and equiv-
alences on Q. Given an equivalence R , the quotient space Q/R is a partition. Vice
versa, if Π is a partition then RΠ =

{
(q1,q2) : q1, q2 belong to the same block of Π

}

is an equivalence with Π = Q/RΠ.

The initial partition identifies all states (i.e., Π0 = {Q}). Given the partition Πi, the
next partition Πi+1 is obtained by refining Πi according to a splitter (N,P) of Πi,
which means that we identify exactly those states of each block B ∈ Π where the
data constraints dc(q,N,P) coincide up to logical equivalence.

Notation 6.3 [Refine, stability] Let Π be a partition for Q, (N,P) a splitter for Π
and B be a block of Q. Then, we define

Refine(B,N,C) = B/ ≡(N,P)

where the equivalence ≡(N,P) is defined such that q1 ≡(N,P) q2 iff dc(q1,N,P) ≡
dc(q2,N,P). B is called stable w.r.t. (N,P) if Refine(B,N,P) = {B}, i.e., if the data
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constraints dc(q,N,P), q ∈ P, fall into the same logical equivalence class. We put

Refine(Π,N,P) =
⋃

B∈Π
Refine(B,N,P).

Π is called stable w.r.t. (N,P) if Refine(Π,N,P) = Π. Π is called stable if Π is
stable w.r.t. any splitter for Π. �

Note that Refine(B,N,P) is a partition for block B while Refine(Π,N,P) is a par-
tition for the whole state space Q which is finer than Π (i.e., any block B′ of
Refine(Π,N,P) can be written as a disjoint union of blocks in Π) and which is
stable w.r.t. (N,P). For instance, refinement of Π0 = {Q} according to the splitter
(N,Q) yields the partition Π1 = Q/ ≡(N,Q) where ≡(N,Q) is as in Notation 6.3.

The idea of the bisimulation algorithm (sketched in Algorithm 1) is to stabilize the
current partition Π with respect to a splitter (N,P). (In Algorithm 1, we use the
notations dc(q,N) and dc(N,P) which stand for dc(q,N,Q) and

∨

q∈Q
dc(q,N,P),

respectively.)

The correctness of the algorithm follows from the following observations:

• The initial partition Π0 = {Q} is coarser than the bisimulation quotient Q/ ∼.
• Whenever Π is coarser than Q/ ∼ then Refine(Π,N,P) is coarser than Q/ ∼ and

finer than Π for any splitter (N,P) of Π.
• Π is stable iff the induced equivalence is a bisimulation. Hence, if Π is strictly

coarser than Q/ ∼ then there is a splitter (N,P) such that Π is strictly coarser
than Refine(Π,N,P). Moreover, such a pair (N,P) is contained in Splitters.

• Whenever Π is a stable partition that is coarser than Q/ ∼ then Π = Q/ ∼.

Hence, our algorithm generates a “decreasing” sequence of partitions Π0,Π1,Π2, . . .
that are all coarser than Q/ ∼. As we assume Q to be finite we get Πk = Q/ ∼ for
some index k.

As for labeled transition systems, with appropriate data structures that support the
choice and organization of the splitter candidates (and the blocks in the current
partition), the schema sketched in Algorithm 1 can be implemented such that the
number of iterations of the WHILE-loop is polynomial bounded in the size (number
of states and transitions) of A . More precisely, ignoring the cost to calculate the
logical equivalence classes, the time complexity is bounded by O(|Q| · | −→ |) as
in the Kanellakis/Smolka algorithm [15]. 10

10 It seems to be hard to meet the bounded O(| −→ | · log |Q|) of the Paige Tarjan algo-
rithm [20]. The reason is that if P̃ ⊆ P and dc(q1,N,P) ≡ dc(q2,N,P) and dc(q1,N, P̃) ≡
dc(q2,N, P̃) then we cannot conclude that dc(q1,N,P\ P̃) ≡ dc(q2,N,P\ P̃). Hence, in our
setting all new sub-blocks (rather than “all but one”) must be considered as splitter candi-
dates.
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Algorithm 1 Partitioning splitter algorithm

Π := Q; Splitters :=
{
(N,Q) : N ⊆ N ames,

∨

q∈Q
dc(q,N) 6≡ false

}
;

WHILE Splitters 6= /0 DO
choose (N,P) ∈ Splitters and remove (N,P) from Splitters;

(* Π := Refine(Π,N,P) *)
FOR ALL B ∈ Π DO

calculate the logical equivalence classes D1, . . . ,Dr of the data constraints
dc(q,N,P), q ∈ B;

(* If r = 1 then B is stable w.r.t. (N,P) and Refine(B,N,P) := {B}. *)

IF there is more than one logical equivalence class (i.e., if r ≥ 2) THEN

Refine(B,N,P) := {B1, . . . ,Br} where Bi = {q ∈ Q : dc(q,N,P) ∈ Di};
Π := (Π\{B}) ∪ Refine(B,N,C);
insert all pairs (Ñ,Bi) where /0 6= Ñ ⊆ N ames and dc(Ñ,Bi) 6≡ false into
Splitters;

FI
OD

END WHILE
return Π (* Π is stable, and hence, Π = Q/ ∼ *)

The critical part of Algorithm 1 is the calculation of the logical equivalence classes
of data constraints. 11 A naïve possibility is to consider all data assignments and the
truth-values of the data constraints dc(q,N,P), and then to identify exactly those
states that yield the same truth-values for all data assignments. Of course, this meth-
ods is extremely inefficient, because |N ames||Data| data-assignments have to be
considered. For large data domains, the running time of our algorithm would be ex-
tremely long. A better possibility is to use a BDD-based technique as in [19,11,8,23].
The idea here is to construct BDD-representations for the data constraints dc(q,N,P)
as nodes of a shared binary decision diagram (SOBDD) and then collapse all au-
tomata states q and q̃ for which dc(q,N,P) and dc(q̃,N,P) correspond to the same
SOBDD-node. More precisely, the atomic data constraints dA = d are treated as
boolean variables. Then, using standard BDD-algorithm, we construct the BDD-
representation of the propositional formulae

prop(q,N,P) = dc(q,N,P) ∧ f

as nodes of a SOBDD where

11 Recall that the problem of logical equivalence for propositional logical formulae is
coNP-complete.
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f =
∧

A∈N

∨

d∈Data



 (dA = d) ∧
∧

d′∈Data\{d}

¬(dA = d′)



 .

(Note that the formula f guarantees that for any name A ∈ N exactly one of the
atomic data constraints dA = d evaluates to true.) Then, two formulae dc(q1,N,P)
and dc(q2,N,P) fall into the same logical equivalence class iff the corresponding
formulae prop(q1,N,P) and prop(q2,N,P) are represented by the same node of the
SOBDD. Hence, the time complexity of this technique is determined by the time
for the construction of the BDDs for prop(q,N,P).

Several improvements of this technique are possible. For instance, to support the
construction of the BDD for the sub-formulae prop(q,N,P), the SOBDD-nodes for
f and dc(q,N, p) can be constructed a-priori. Another possible improvement is the
use of other DD-variants (e.g., MDD [14]).

6.1.2 Calculating the simulator preorder

We can use essentially the same schema as for the computation of the simulator
sets q ↑= {q′ : q � q} in labeled transition systems. Algorithm 2 shows the main
ideas which comprise the computation of a “decreasing” sequence of sets

Sim0(q) ⊇ Sim1(q) ⊇ . . . ⊇ Simk(q) = q ↑ .

Here also, several improvements are possible, e.g., following the techniques sug-
gested in [12]. Using appropriate data structures, the number of iterations can be
contained within the bound of O(poly(size(A))). However, the major difficulty is
the treatment of logical implication. As for bisimilarity checking, the use of BDDs
or other DDs seems to be promising.
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Algorithm 2 Schema to calculate the simulation preorder
FOR ALL state q ∈ Q DO

Sim(q) :=
{

q′ ∈ Q : dc(q,N) ≤ dc(q′,N)
}

OD
Splitters :=

{
(N, p) ∈ 2N ames ×Q :

∨

q∈Q
dc(q,N, p) 6≡ false

}
;

WHILE Splitters 6= /0 DO
choose a pair (N, p) ∈ Splitters and remove (N, p) from Splitters;
FOR ALL states q ∈ Q with dc(q,N, p) 6≡ false DO

FOR ALL states q′ ∈ Sim(q) with dc(q,N, p) 6≤ dc(q′,N,Sim(p)) DO
Sim(q) := Sim(q)\{q′};
Splitters := Splitters∪

{
(N′,q′) : N′ ⊆ N ames,q′ ∈ Q,

∨

r∈Q
dc(r,N ′,q′) 6≡

false
}

OD
OD

END WHILE
(* Sim(q) = q ↑ for all states q *)

6.2 Language equivalence checking

Given two bounded constraint automata A1 and A2 over a fixed set N ames, the
question of whether A1 and A2 are language equivalent can be answered by check-
ing language inclusion in both directions. To check whether LTDS(A1) ⊆ LTDS(A2)
we may apply the same techniques as for regular languages (and finite automata)
using the observation that

LTDS(A1) ⊆ LTDS(A2) iff LTDS(A1)∩LTDS(A2) = /0.

The main steps are as follows. First, we turn A2 into an equivalent determinis-
tic constraint automaton det(A2) (see Remark 3.9). Then, we construct an au-
tomaton det(A2) for its complement-language, and build the product-automaton
A1 ./ det(A2) (which represents the intersection language LTDS(A1)∩LTDS(A2)
(see part (b) of Lemma 4.2). Finally, we check whether LTDS(A1 ./ det(A2)) is
empty.

6.2.1 Complementing

For the construction of a constraint automaton for the complement language, we
switch to a more general class of constraint automata with accepting states. For
constraint automaton A augmented with a set F of accepting states, let LTDS(A ,F)
denote the language consisting of all TDS-tuples that have infinite runs in A , each
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involving infinitely often visits to many states in F . (In other words, we use a vari-
ant of Büchi automata.) We now assume that we are given a deterministic constraint
automaton A = (Q,N ames,−→,q0) for which we aim to construct a constraint au-
tomaton with Büchi acceptance for the complement language of A . We first extend
the state space Q by a new state qaccept and add transitions

q
N,g
−→ qaccept if g = ¬dc(q,N), q ∈ Q and /0 6= N ⊆ N ames.

Moreover, we add transitions qaccept
N,true
−−−→ qaccept for each non-empty subset N of

N ames. Let A be the resulting constraint automaton. Then,

LTDS(A) = LTDS(A ,
{

qaccept
}
).

6.2.2 Checking emptiness

For the language inclusion problem we build the product Ã = A1 ./ det(A2) as in
Definition 4.1 which we augment with the set F =

{
〈q,qaccept〉 : q ∈ Q1

}
of ac-

cepting states. (Q1 denotes the state space of A1.) We need to explain how to check
whether LTDS(Ã ,F) is empty. For this, we first remove all transitions in Ã with
an unsatisfiable data constraint. Then, we check, using standard graph algorithms,
whether there is an initial state in Ã from which a cycle

p̃0
N1,g1
−→ p̃1

N2,g2
−→ . . .

Nr,gr
−→ p̃r = p̃0

is reachable such that {p̃0, p̃1, . . . , p̃r}∩F 6= /0 and N1 ∪ . . .∪Nr = N ames.

Note that the requirement {p̃0, p̃1, . . . , p̃r}∩F 6= /0 is needed to ensure that the Büchi
acceptance condition can be fulfilled. The requirement N1 ∪ . . .∪Nr = N ames is
needed for the time-divergence-condition for timed data streams.

The complexity of the language inclusion test is dominated by the construction of
det(A2) (which is exponential in the size of A2) and the time needed to solve the
satisfiability problem for the data constraints (which is NP-complete). The remain-
ing steps (complementing, construction of the product and checking emptiness) can
be performed in time polynomial in size(A1) and size(det(A2)).

7 Concluding remarks

In this paper, we introduced constraint automata, defined operators for their com-
position, and presented notions of bisimulation- and language-equivalence as well
as refinement relations (simulation and language inclusion). Constraint automata
allow us to model subtle timing and input/output constraints of Reo connectors,
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specifically their combined mix of synchronous and asynchronous transitions. This
is reflected in our definition of constraint automata and shown in our examples.

Connector construction in Reo is conceptually analogous to the design of asyn-
chronous electronic circuits. Among other things, this analogy emphasizes the im-
portance of visual environments for design, analysis, verification, and optimiza-
tion of Reo connectors, as counterparts of tools and facilities available in modern
electronic CAD systems. In this context, issues such as whether two Reo connec-
tors R1 and R2 have the same observable behavior (in the sense that their induced
TDS-languages agree) or R1 can be viewed as a refinement of R2 (in the sense of
TDS-language-containment) arise naturally and frequently. To treat such questions
in an algorithmic way, our compositional semantics can serve as basis for an algo-
rithm that automatically generates a constraint automaton AR for a given Reo cir-
cuit R. To solve the language-problems mentioned above (the questions of whether
LTDS(AR1) = LTDS(AR2) or LTDS(AR1) ⊆ LTDS(AR2) for given Reo circuits R1 and
R2), we suggest modifications to known methods for finite automata and labeled
transition systems to deal with constraint automata.

Given finite, deterministic constraint automata A1 and A2, the simplest way to
check language equivalence is based on the observation that language-equivalence
and bisimulation equivalence agree, provided that none of the states in Ai accepts
the empty TDS-language (Theorem 5.3). Thus, we may first remove all states with
an empty TDS-language (cf. Section 6.2.2) and then check the bisimulation equiv-
alence of the modified automata (cf. Section 6.1). Similarly, language inclusion
for two finite, deterministic constraint automata A1 and A2 can be checked on the
basis of a graph analysis, followed by an algorithm that calculates the simulation
preorder.

Although the deterministic version of constraint automata is as expressive as the
nondeterministic one, nondeterministic constraint automata offer a useful semantic
model for Reo circuits which, e.g., avoids the exponential blowup that may result
from applying the powerset construction to an automaton ∃C[A ]. The algorithms
for computing the bisimulation quotient or simulation preorder in nondeterministic
constraint automata can be applied here as a sound (but incomplete) verification
method to show language equivalence or inclusion.

In contrast to process algebras where notions of weak bisimulation (e.g., Mil-
ner’s observational equivalence or congruence [18]) are used to abstract from non-
observable computations, we use the hiding operator which modifies the given con-
straint automaton, similar to the deletion of ε-transitions in finite automata. Thus,
in context, there is no need for a notion of weak bisimulation.

In this paper, we restricted ourself to use constraint automata in the context of
the coordination language Reo. However, the use of constraint automata for an
operational semantics model is not restricted to Reo. For instance, a recent work
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demonstrates the usefulness of constraint automata for specifications of software
architectures in Alfa [17].

In our future activity, we will work out the details of a semantics that models Reo
circuits by constraint automata with final states (e.g., to handle deadlocks), fairness
to cover the meaning Reo’s fair merge semantics for sink and mixed nodes, and
priorities (to deal with synchronous lossy channels) as mentioned in the end of
section 4. Other directions for our future work include the development of temporal
logics and model checking algorithms based on constraint automata, optimization
algorithms for Reo circuits, and the automated generation of Reo circuits from
constraint automata specifications.
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