
Science of Computer Programming 55 (2005) 3–52

www.elsevier.com/locate/scico

Abstract Behavior Types: a foundation model for
components and their composition

FarhadArbab∗

Centre for Mathematics and Computer Science (CWI), Kruislaan 413,1098 SJ Amsterdam, The Netherlands

Received 31 August 2003; received in revised form 15 April 2004; accepted 30 May 2004
Available online 5 November 2004

Abstract

The notion of Abstract Data Type (ADT) has served as a foundation model for structured and
object oriented programming for some thirty years. The current trend in software engineering toward
component based systems requires a foundation model as well. The most basic inherent property
of an ADT, i.e., that it provides a set of operations, subverts some highly desirable properties in
emerging formal models for components that are based on the object oriented paradigm.

We introduce the notion of Abstract Behavior Type (ABT) as a higher-level alternative to ADT
and propose it as a proper foundation model for both components and their composition. An ABT
defines an abstract behavior as a relation among a set of timed-data-streams, without specifying any
detail about the operations that may be used to implement such behavior or the data types it may
manipulate for its realization. The ABT model supports a much looser coupling than is possible with
the ADT’s operational interface, and is inherently amenable to exogenous coordination. We propose
that both of these are highly desirable, if not essential, properties for models of components and their
composition.

To demonstrate theutility of the ABT model, we describe Reo: an exogenous coordination
language for compositional construction of componentconnectors based on a calculus of channels.
Weshow the expressive power of Reo, and the applicability of ABT, throughanumber of examples.
© 2004 Elsevier B.V. All rights reserved.

MSC:68Q85; 68Q70; 81P05; 68N99;68Q65; 18C50; 68Q10; 68Q65

∗ Tel.: +31 20 592 4056; fax: +31 20 592 4199.
E-mail address:farhad@cwi.nl.
URL: http://www.cwi.nl/∼farhad.

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.05.010

http://www.elsevier.com/locate/scico
http://www.cwi.nl/~farhad

4 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Keywords: Coordination; Components; Composition; AbstractBehavior Types; Reo; Coalgebraic semantics;
Streams

1. Introduction

An Abstract Data Type (ADT) defines an algebra of operations with mathematically
well-defined semantics, without specifying any detail about the implementation of those
operations or the data structures they operate on to realize them. As such, ADT is a
powerful abstraction and encapsulation mechanism that groups data together with their
related operations into logically coherent and loosely-dependent entities, such as objects,
yielding better structured programs. ADT has served as a foundation model for structured
and object oriented programming for some thirty years.

The immense success of object oriented techniques has distracted proper attention away
from critical evaluation of some of its underpinning concepts from the perspective of their
utility for components. We propose that the most basic inherent property of an ADT, i.e.,
that it provides a set of operations in its interface, subverts some highly desirable properties
in emerging models for component based systems. This is already evident in the current
attempts at extending the object oriented models into the realm of components (see, e.g.,
Sections 3and5).

We introduce the notion of Abstract Behavior Type (ABT) as a higher-level alternative
to ADT and propose it as a proper foundation model for both components and their
composition. The ABT model is not meant as a substitute for ADT. Instead, it is meant as a
foundation forprogramming with componentsas opposed toprogramming of components
which is what the ADT model and object oriented programming have proved to be suitable
and effective for. An ABT defines an abstract behavior as a relation among a set oftimed-
data-streams, without specifying any detail about the operations that may be used to
implement such behavior or thedata types it may manipulate for its realization. In contrast
with the algebraic underpinnings of the ADT model, the (generally) infinite streams that
are the elements of behavior in the ABT model naturally lend themselves to the coalgebraic
techniques and the coinduction reasoning principle that have recently been developed as a
general theory to describe the behaviorof dynamic systems. The ABT model supports a
much looser coupling than is possible with ADT and is inherently amenable to exogenous
coordination. We propose that both of these are highly desirable, if not essential, properties
for components and their composition.

In our view, a component based system consists of component instances and their
connectors (i.e., the “glue code”), both of which are uniformly modeled as ABTs. Indeed,
the only distinction between a component and a connector is just that a component is
an atomic ABT whose internal structure is unknown, whereas a connector is known
to be an ABT that is itself composed out of other ABTs. As a concrete instance of
the application of the ABT model, we describe Reo: an exogenous coordination model
wherein complex coordinators, called “connectors” are compositionally built out of simpler
ones [3,4]. Reo can be used as a glue language for compositional construction of connectors

F. Arbab / Science of Computer Programming 55 (2005) 3–52 5

that orchestrate component instances in a component based system. We demonstrate
the surprisingly expressive power of ABT composition in Reo through a number of
examples.

The rest of this paper is organized as follows. InSection 2we motivateour view of
components and their composition as a conceptual model at a higher level of abstraction
than objects and their composition.Section 3contains a brief overview of some related
work. We review theformal notion of abstract data types inSection 4, and elaborate on
its links with and implications onobject oriented programming inSection 5. We argue
that some of these implications impede the ability of component models based on the
object oriented paradigm to support flexible composition and exogenous coordination,
both of which, we propose, are highly desirable properties in component based systems.
Section 6is an informal description of our component model, and inSection 7we describe
its accompanying model of behavior.Section 8is an introduction to Abstract Behavior
Types and their composition. InSection 9we show how channels, connectors, and their
composition in Reo are easily expressed as ABTs and their composition. Finally, we close
with our concluding remarks inSection 10.

2. A component manifesto

The abundance of the various (primarilyinformal) definitions of what a component
is makes it difficult to assess the effectiveness of different models for component-
based software development. Some differences are often purely technological. Others are
more fundamental and sometimes render a side-by-side comparison of model features
uninformative, if not meaningless. In this section we present a pre-formal analysis of the
concepts and ideas behind the cornucopia of contemporary component models to identify
the commonalities of motivations that can in turn be seen as essential requirements of a
component model.

The bulk of the work on component based systems is primarily focused on what
components are and how they are to be constructed. Relatively little attention has been
paid to alternative models and languages forcomposingcomponents into (sub)systems,
which is typically considered tobe the purpose of the so-calledglue code, assumed to
be written in some scripting language. Clearly, components and their composition are not
independent of one another: explicitly emphasizing one defines or at least constrains the
other as well, if only implicitly.

A conspicuous driving force behind the upsurge of interest and activity in component
based software is the recognition that the object oriented paradigm is not the silver-bullet
that some of its over-zealous advocates purported it to be. Nevertheless, presently, the
dominant view of what components are or should be reflects a prominent object oriented
legacy: components are fortified collections of classes and/or objects, with very similar
interfaces. It follows that the interactionsamong and the composition of components must
use mechanisms very similar to those for interactions among and composition of classes
and objects. Thus, the method invocation semantics of message passing in object oriented
programming becomes the crux of the component composition mechanisms in scripting
languages.

6 F. Arbab / Science of Computer Programming 55 (2005) 3–52

This approach to components “solves” some of the problems that are rooted in the
inadequacies of the object oriented paradigm simply by shifting them elsewhere. For
instance, the relatively tight coupling that must be established between a caller and a callee
pair of objects indeed disappears as a concern at the intra-component level when the two
objects reside in different component instances, but becomes an issue to be addressed in the
glue code and its underlying middleware used to compose those components. As long as
components and their interfaces are essentiallythe same as objects and their interfaces, the
(scripting) programs that constitute the glue code end up to be inherently no different than
other object oriented software. In complex systems, the body of such specialized glue code
can itself grow in size, complexity, intricacy, fragility, and rigidity, rendering the system
hard to evolve and maintain, in spite of the fact that this inflexible code wraps and connects
otherwise reusable, upgradeable, and replaceable components.

An alternative view of components emerges if we momentarily ignore how they are
made or even what they are made of, emphasizing instead what we want to do with them.
Beyond fashionable jargon, hype, and merely technical idiosyncrasies, if there is to be
any conceptual substance behind the term “component” deserving its minting, it must be
that components are less interdependent and are easier and more flexible to compose than
objects and classes. The definition of a class or an object specifies the methods it offers to
other entities, and the method calls within the code of its methods determine the services
and entities it requires to work. This results in a rather tight semantic interdependence
among objects/classes and grants each individual a significant degree of control over
precisely how it is composed with other classes or objects.

In contrast to objects and classes, it is highly desirable for components to be
semantically independent of one another and internally impose no restrictions on the
other components they compose with. This yields a level of composition flexibility that
is not possible with objects and classes1 and which is a prerequisite for another highly
desirable property in component based systems: we would like for the whole (system) to
be more than the mere sum of its (component) parts. This implies that it should be not only
generally possible to produce different systems by composing the same set of components
in different ways, but also that the difference between two systems composed out of the
same set of components (i.e., the difference between the “more” than the “sum of the
parts” in each system) must arise out of the actual rules that comprise their two different
compositions, i.e., their glue code. The significance of the latter point is that it requires
the glue code to contribute to the semantics of the whole system well beyond the mere
so-called “wiring-standard-level” support provided by the current popular middleware
and component based technologies. On the other hand, we intuitively expect glue code
to be void of any application-domain specific functionality: its job is merely to connect
components, facilitating their communication and coordinating their interactions, not to
perform any application-domain specific computation.

This leads to a subtlety regarding the interaction between glue code and components
which fundamentally impacts both. If the contribution of the glue code to the behavior

1 Observe that generally speaking, it is the code for themethods of an object that determines the other objects
it “composes with” to function properly. Thus, objects/classes “decide for themselves” how they compose with
each other and their composition generally cannot be determined or influenced from outside.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 7

of a composed system is no more than connecting its components, facilitating their
communication and coordinating their interactions, then the difference between the
behavior of two systems composed out of the same set of components can arise not out
of any application-domain specific computation (and certainly not out of the components),
but only out of how the glue code connects and coordinates these components to interact
with one another. Since glue code is external to the components it connects, this implies
that (1) the components must be amenable to external coordination control and (2) the glue
code must contain constructs to provide such external coordination. The first implication
constrains the mechanisms through which components can interact with their environment.
The second implication means that the glue code language must incorporate anexogenous
coordination model [2].

Finally, if glue code is to have its own non-trivial semantics in a composed system, it
is highly desirable both for the glue code itself to be piece-wise explicitly identifiable,
and for the semantics of each of its pieces to be independent of the semantics of the
specific components that it composes. This promotes the recognition of the glue code as
an identifiable, valuable software commodity, emphasizes the importance of its reusability,
and advocates glue code construction through composition of reusable glue code pieces.

The notion of compositional construction of glue code out of smaller, reusable pieces
of glue code all but eliminates the conceptual distinctions between components and glue
code. This behooves us to find conceptual models and formal methods for component
based systems wherein the same rules for compositional construction indiscriminately
apply to both components as well as their glue code connectors. In such a model, the
(perhaps somewhat subjective) distinction between components andtheir (pieces of glue
code) connectors still makes practical sense: although they are indistinguishable when
used as primitives to compose more complex constructs, components and connectors are
still different in that components are black-boxprimitives whose internal structures are
invisible, whereas the internal structure of a connector shows that it, in turn, is constructed
out of other (connectorand/or component) primitives according to the same rules of
composition.

Although connectors contain coordination constructs that do not exist in purely
computational components, the ability to use acomposition of connectors and components
exactly as a (black-box) component in other compositions is crucial. The fact that
such (non-purely-computational) components may include connectors whose coordinating
effects can be discernible in the externally observable behavior of the components, blurs
an absolute distinction between components and connectors and makes it somewhat
subjective. It takes an encapsulation mechanism with the power of full abstraction to
allow components and connectors to be used indistinguishably. Examples presented in
Section 9.7.2and throughoutSection 9.8demonstrate the practical usefulness of the
interchangeability of components and connectors.

3. Background and related work

In popular models of components (e.g., Enterprise Java Beans [47,24], CORBA [70,20],
and DCOM [27]) component instances are fortified (collections of) objects. Consequently,

8 F. Arbab / Science of Computer Programming 55 (2005) 3–52

they typically use variants of message passing with the semantics of method invocation
for inter-component communication. The tight coupling inherent in the method call
semantics is more appropriate for intra-component communication. In contrast, inter-
component communication invariably requires a minimum level of “control from the
outside” of the participating components. In order to break the tight coupling induced by
the method call semantics and reduce the interdependence of components on each other,
theunderlying middleware that supports these component models provides mechanisms or
entities (such as the ORB in CORBA) to intercept inter-component messages. Messages
may be intercepted to, for instance, provide services (e.g., binding and name servers),
enforce imposed constraints (e.g., suppress certain messages in certain states), ensure
protocols, and/or enact assigned roles. One way or the other, the middleware’s intervention
loosens the otherwise tight coupling that would be imposed by targeted active messages
(i.e., messages with method-invocation semantics) and furthermore, enforces a certain
restricted form of coordination from outside the components.

Intercepting and manipulating messages before they perform the methods that their
sender objects intend to invoke is also at the core of one of the most effective
contemporary approaches to Aspect Oriented Programming. The so-called Composition
Filters superimpose declarative rules for intercepting, filtering, re-routing, and changing
the message traffic among objects to support certain inter- and intra-class cross-cutting
concerns [13]. Composition Filters are most effective for imposing cross-cutting concerns
that can be related to individual message contents. Protocol-related concerns that
involve coordination of flows of groups of messages,e.g., synchronization at transaction
boundaries, are more difficult, if not impossible, to enforce through Composition Filters.
Nevertheless, this and similar approaches to Aspect Oriented Programming underline the
wider recognition of the inadequacy of the rigid semantic tie between messages and method
invocation even in the world of object oriented programming. They clearly show the
advantage of a paradigm based on a more abstract notion of messages aspassive data
over theactive messagesof object oriented programming whose immediate consequences
are strictly to invoke the designated methods of their target objects.

Coordination languages [25,58] offer an alternative for inter-component communica-
tion, as exemplified by JavaSpaces in the Jini architecture [37,56,45]. They impose a
stricter sense of temporal and spatial decoupling that supports a looser inter-component
semantic dependency, compared with the method invocation semantics of message passing
in object oriented paradigms.

Most common component models define components as reusable binary units of
software with interfaces that have no morethan a syntactic content. This view of
components enforces information hiding in only a rather primitive way: the good practice
discipline of using questionably suggestive symbolic names in component interfaces non-
withstanding, such an interfacedoes not reveal any of the externally relevant semantics
of the contents of its component. Such component models cannot support (semi-)formal
specification/verification of their external behavior.

A broader definition of components is offered by the Eiffel language [49,50,26]:
components are client-oriented software with the desirable property that a component,x,
can be used by other programs that do not need to be known tox. This property is supported
in Eiffel through formal specification techniques which include pre- and post-conditions

F. Arbab / Science of Computer Programming 55 (2005) 3–52 9

and invariants. In general, this notion of components requires enhanced specification and
verification techniques, as also observed by Hennicker and Wirsing [73,30].

Our notion of components [7,8,22] uses channels as the basic inter-component
communication mechanism. A channel is a point-to-point medium of communication with
its own unique identity and two distinct ends. A channel supports transfer of passive
data only; no transfer of control (e.g., procedure calls, exchange of pointers to internal
objects/entities) can take place through a channel. Using channels as the only means
of inter-component communication allows a clean, flexible, and expressive model for
construction of the glue code for component composition which also supports exogenous
coordination.

Synchronous channels are the basic primitives inπ-calculus [51,52]. Some of the
variants ofπ-calculus and its asynchronous versions [69] have been used in models
proposed for component interaction and composition. Notably, Piccola [55] is an
experimental component composition language based on a higher-order version of the
asynchronousπ-calculus, extended with explicit name-spaces calledforms. Forms in
Piccola provide a unified mechanism to address such aspects of component composition as
styles, scripts, and glue code. The agents and channels provided by Piccola’s underlying
calculus support the coordination aspect of component composition.

In contrast to such calculi, our notion of channel is very general and we specifically
allow a variety of different channel types (even user-defined ones) to be used
simultaneously and composed together. This differentiates our model from the way
channels are used in virtually all other channel-based models, which typically allow
only one or at most a small number of simple predefined channel types. Specifically,
our liberal notion of channels, the potency that our model derives from mixing and
composing channels of different types, and their consequent harmonious combination of
synchrony and asynchrony are unique. For instance, these features of our model are in
sharp contrast with the use of channels in the Ptolemy project [18,40,41] which ascribes a
single interpretation for its connecting channels in each context.

Asynchronous channels form the basis of the dataflow architecture for networks of
components as proposed and formally investigated by Broy and his group [15,31]. In
this architectural model, large systems can be realized, allowing programmers to easily
understand the input/output behavior of a system as the composition of thebehavior of
its individual components. They also use data streams containing temporal markers for
component composition. Our model of componentcomposition is fundamentally different
than (even dynamic) dataflow models because it (1) supports a much wider and more
general notion of channels and different channel types; and (2) introduces the notion
of channel composition as the construct through which channels of arbitrary types are
connected to other channels, forming higher level and more sophisticated connectors for
component composition. Unlike Broy’s streams,the twin pairs of timed-data streams (see
Section 8.1) that we use to model and compose component behavior cleanly separate
the flows of time and data, yielding simple, succinct expressions for combining both
synchronous and asynchronous behavior, which together with our relational (in contrast
to Broy’s functional) composition, empower exogenous coordination.

Inspired by both ADTs and imperative programming, a common approach to model
externally observable behavior, particularly in object oriented settings, amounts to

10 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Stack Queue

S: stack,data,boolean S: queue, data,boolean

O: top(s) → d O: first(q) → d

pop(s) → s deq(q) → q

push(s,d) → s enq(q, d) → q

empty(s) → b empty(q) → b

A: empty(λ) = true A: empty(λ) = true

empty(push(s,d)) = false empty(enq(q,d)) = false

top(push(s, d) = d first(enq(λ,d)) = d

pop(push(s, d) = s first(enq(enq(q, d1),d2)) = first(enq(q, d1))

pop(λ) = ε1 deq(enq(λ, d)) = λ

pop(ε1) = ε1 deq(enq(enq(q, d1),d2)) = enq(deq(enq(q, d1),d2)

top(λ) = ε2 deq(λ) = ε1

top(ε1) = ε3 deq(ε1) = ε1

empty(ε1) = ε4 first(λ) = ε2

first(ε1) = ε3

empty(ε1) = ε4

Fig. 1. Abstract Data Types for stack and queue.

characterizing behavior in terms of messagesequences, where a message represents an
(ADT) operation or a method call, as exemplified, e.g., by the notion of behavior used for
composition with contracts [29] andbehavioral subtyping [46]. In contrast, our notion of
behavior is more abstract and dataflow-like,where the externally observable behavior of
an entity is characterized in terms of its input/output sequences of passive data. The fact
that passive data can be interpreted as messages that invoke methods or operations means
that our notion of behavior is at least as expressiveas those based on operation sequences.
Our model is more abstract because our sequences contain only atomic, uninterpreted,
untargeted data that can interchangeably be sent to and received from any source or target.
Method invocation sequences, on the other hand, contain typed messages and the structure
and type of a message determine the operation it invokes. Each receiver must specify (at
least) the set of message types it accepts in its signature. Regardless of how much of the
semantics of the operations is reflected in this signature and to what extent it is used in
composition, as we argue inSection 5, the operational view of behavior stifles exogenous
coordination and composition.

4. Abstract Data Types

Formally, an ADT is a triplet〈S,O,A〉, whereS is a set ofsortsdenoting the required
types,O is a set ofoperatorsoverS, andA is a set ofaxiomswritten as algebraic equations
defining the results of various combinations of operations inO on data items of various
types inS.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 11

For example,Fig. 1 shows the formal ADT definitions for the two common data types
stack and queue, in separate columns. The setScontainsstack, data, andbooleantypes for
stack, andqueue, data, andbooleantypes for queue. We uses, q, d, andb to represent items
of typesstack, queue, data, andboolean, respectively. Furthermore, in the stack column
in this figureλ is an item of typestackrepresenting the empty stack, and likewise in the
queue columnλ is an item of typequeuerepresenting the empty queue. Similarly, in each
columnε1 andε2 are special error values of their respective types.

The setO in each column defines the signature of four operations. For the case of the
stack,top(s) is expected to produce the data item at the top of the stacks; pop(s) is expected
to produce the stack obtained by removing the data item at the top of the stacks; push(s,d)
is expected to produce a stack obtained by pushing the data itemd on top of the stacks; and
empty(s) is expected to produce a boolean indicating whether or not the stacks is empty.
For thecase of the queue,first(q) is expected to produce the first data item at the head of the
queueq; deq(q) is expected to produce the queue obtained by removing the first data item
at the head of the queueq (dequeue); enq(q,d) is expected to produce a queue obtained by
adding the data itemd to the tail endof the queueq (enqueue); andempty(q) is expected
to produce a boolean indicating whether or not the queueq is empty. Of course, the setO
contains only the signatures of these operations and as such it is void of any formal hint of
what they (are expected to) do.

It is the set of axioms,A, that formally defines the semantics of the operations inO
in terms of their mutual effects on each other. In the case of the stack, the two axioms
for the emptyoperation state that (1)empty(λ) = true, and (2)emptyapplied to a stack
obtained from apushoperation on any stack yieldsfalse. The top axioms state that (1)
top applied to the empty stack yields an error (ε2), and (2)top applied to a stack obtained
from pushing the data itemd onto some otherstack, yieldsd. Thepopaxioms state that
(1) popping a stack obtained from pushing a data item onto some other stack,s, yields s;
(2) popping an empty stack yields an error (ε1); and (3) popping this error value yields the
same error value. Any stack is canonically represented as a sequence ofpushoperations
that add data items on the result of their precedingpush, starting with the empty stack,
e.g.,push(push(push(push(λ,d1),d2),d3),d4). An expression that cannot be transformed
into such a canonical form, e.g.,push(push(pop(pop(push(λ,d1))),d2),d3), is not a legal
stack.

Many of the queue axioms are analogous to their respective stack axioms. The axioms
for first and deq are a bit more interesting. Any queue is canonically represented as a
sequence ofenqoperations that add data items on the result of their precedingenq, starting
with the empty queue; e.g.,enq(enq(enq(enq(λ,d1), d2), d3),d4). Thefirst axioms state
that to find the first element in a queue, we must “peel” it away until we reach the empty
queue, at which point we obtain the first data item at the head of the queue. Thus:

first(enq(enq(enq(enq(λ,d1),d2),d3),d4))

= first(enq(enq(enq(λ,d1),d2),d3))

= first(enq(enq(λ,d1),d2))

= first(enq(λ,d1))

= d1.

12 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Analogously, deq peels away the canonical representation of a queue, but it also
reconstructsit as it moves inside. For instance:

deq(enq(enq(enq(enq(λ,d1),d2),d3),d4))

= enq(deq(enq(enq(enq(λ,d1),d2),d3)),d4)

= enq(enq(deq(enq(enq(λ,d1),d2)),d3),d4)

= enq(enq(enq(deq(enq(λ,d1)),d2),d3),d4)

= enq(enq(enq(λ,d2),d3),d4).

These examples show that an ADT defines a data type in terms of the operations
on that data type and how they mutually affect each other by altering the structure
of some canonical representation. It abstracts away from the implementation of those
operations and the data structures they manipulate. The semantics of an ADT is given as
algebraic equations. The strong conceptual link between abstract data types and object
oriented programming stems from the common manner in which they associate data
and the operations that manipulate them together. The ADT for a type,T, defines all
operations applicable to entities of typeT. It encapsulates the representation ofT and the
implementation of its operations. This prevents manipulation of the entities of typeT in
any way other than through its own defined operations.

5. ADT and object oriented programming

Their common aspiration to (1) encapsulate data structures behind operations that
manipulate them, and (2) hide the details of those operations as well, has made ADT
a suitable foundation model for object oriented programming. An ADT can be seen as
a formal description of the interface of an object/class. This encapsulation significantly
loosens the coupling between the implementation of an ADT (or object/class) and other
code that can use it only through its prescribed operations. The operational interface of
an ADT (or object/class) also readily supportsextensibility in the form of polymorphism.
Extensibility in object oriented programmingtypically goes beyondmere polymorphism,
through some form of inheritance that gives rise to object/class hierarchies.

In contrast to the declarative, state-less nature of ADT definitions, popular object
oriented programming languages are imperative and carry the semantics of operations
of objects/classes in their states. Exposing their states exposes the object/class semantics
they carry, but it breaks their encapsulation. Hiding their states enforces encapsulation, but
it also obscures the semantics of operations by making their effects invisible. Exposing
the semantics of their operations without exposing object/class states becomes a non-
trivial issue in imperative object oriented languages. Although a formal semantics of its
operations is an integral part of the definition of an ADT, object/class interfaces in popular
object oriented languages are purely syntactic and contain no semantics. Moreover, the
explicit definition of the set of all sorts (both provided and required) by an ADT has
no correspondence in the object/class interface definitions in main-stream object oriented
languages: they do not mention what their respective objects/classes require, but specify
only the operations that they provide.

The differences between the ADT model and imperative object oriented programming
give rise to a number of problems that have already been discussed extensively in the

F. Arbab / Science of Computer Programming 55 (2005) 3–52 13

literature. Some counter-measures for problems such as the conflict between inheritance
and encapsulation [71], the purely syntactic nature of interfaces, and their asymmetric
specification of offered/required services, have been integrated in the design of certain
more advanced models for object oriented languages, systems, and components [49,50,19,
39,43,44,26,72]. They introduce annotations and features that incorporate some semantics
in the definitions of classes and objects and respect them in their inter-relationships
and use. A notion of behavior as sequences of operations underlies these features, e.g.,
behavioral subtyping [46] and contracts for object composition [29]. In their extreme,
welcome methods that expose and enforce (more of) the semantics of classes and objects
in their interfaces may demystify the semantics of these imperative pieces of software into
declarative formulas as succinct and directly susceptible to formal reasoning as ADTs.
What has not been explored so explicitly and extensively in the literature is how message
passing in the object oriented paradigm, i.e., the operational interface of the ADT model,
affects software composition and what alternative mechanisms can be used in its place for
components. We argue here that the elegance of the ADT model and the usefulness of
the object oriented languages non-withstanding, software construction using components,
their composition, and their coordination involve issues that are not only ill-served, but also
actually subverted by the operational nature of ADTs and its manifestation as the method
invocation semantics of message passing in the object oriented paradigm.

The method invocation semantics of object oriented message passing implies a rather
tight semantic coupling between the caller and callee pairs of objects. By this semantics, if
an objectc sends a messagem(p) to another objecte, thenc is invoking the methodmof e
with the actual parametersp. For this to happen:

• c must know (how to find)e;
• c must know the syntax and the semantics of the methodm of e;
• emust (pretend to) perform the activated methodmon parametersp, and return its result

to c upon its completion (the “pretense” refers to whenedelegates the actual execution
of m to a third object); and

• c typically suspends between its sending ofm and the receiving of its (perhaps null)
result.

Not only is this “rendezvous semantics” far from trivial, it is still susceptible to significantly
different and mutually incompatible variations (e.g., with synchronous vs. asynchronous
message passing, active vs. passive objects, etc.). Underneath the precise semantics of this
rendezvous and its various incarnations in different object oriented models, is a strong
conceptual link with ADT.

By its virtue of providing a set of operations, all that one cando with an ADT is to
performone of its operations. Similarly, the fact that an object provides a set of methods in
its interface means that one cando nothing with an object but toinvokethose methods. This
operational interface(of objects or ADTs) induces an asymmetric, unidirectional semantic
dependency of users (of operations) on providers (of those operations). On the one hand,
the operations provided by an ADT (or object) can be used by any other entity (that has
access to it). On the other hand, an ADT internally decides what operation of what other
ADT to perform. Thisputs users and providers in asymmetric roles. Users internallymake
the decisionson what operations are to be performed, and generallyrely on somespecific

14 F. Arbab / Science of Computer Programming 55 (2005) 3–52

semantics that they expect of these operations, while it is left to be the responsibility of the
providers tocarry out the decisionsmade by the users tosatisfytheir expectations.

Far from a universal pitfall, it can even be argued that the presumed level of intimacy
required among a set of objects composed together through message passing, is an
advantage in building individual components. However, at the inter-component level,
such intimacy subverts independence of components, contributes to breaking of their
encapsulation, and leads to a level of inter-dependence among components that is no
looser than that among objects within a component. This is not so much a shortcoming
or deficiency of the ADT model. Rather, it highlights the inappropriateness of using the
ADT model for purposes it was not meant to serve in the first place. To achieve the level
of independence that is desirable for inter-component communication, we need a different
model based on non-operational interfacesto avoid targeted active messages.

6. A bland notion of components

In a programming paradigm where (instances of) components are its primitive building
blocks, all decisions about what components are to be used and how they are to
be composed together to build an application must necessarily be made from outside
of the application’s constituent components themselves. This implies that generally, a
component cannot be allowed to internally decide on the components that it composes
and communicates with. This simple observation renders ADT unsuitable as a model for
components. If a component, like an ADT, provides a set of operations, then the only
way to communicate with a component is byinvokingits operations, and inter-component
communication becomes the same as inter-object communication. A formal model for
components must provide an inter-component communication mechanism that affords a
higher level of mutual independence to components than the ADT model does. In this
section, we consider an alternative (to the ADT-style method invocation) communication
mechanism as the crux of our definition of a component. The notion of component
introduced in this section is then further refined and formalized inSection 8as Abstract
Behavior Types.

Instead of relying on targeted active messages for inter-component communication,
our component model allows a component instance to exchange only untargeted, passive
messages with its environment. Passive messages contain only data and carry no control
information (e.g., imply no method invocation). Not implying the exchange of any control
information makes passive messages more abstract and more flexible than active messages.
For instance, because no form of “call” is implied, the receiver of a message need not
interpret the message as an operation that it must perform. The receiver of a message is not
even obligated to reply. Consequently, the sender does not necessarily suspend waiting for
a result either. Passive messages allow interception, filtering,redirection, and manipulation
of messages to be done, when necessary, all as legitimateoperations on dataas opposed to
active messages which require ad hoc transparent entities outside of or superimposed on a
programming model to perform such actions.

Untargeted messages break the asymmetry between senders and receivers that is
inherent in models based on targeted messages. With targeted messages, the knowledge

F. Arbab / Science of Computer Programming 55 (2005) 3–52 15

of who the receiver of a message is, or at least how it can be identified, must be contained
in its sender. The receiver of a message, on the other hand, is not required to know anything
about its sender beforehand: it is prepared toreceive messages “from its environment” not
from any specific sender. This asymmetry makes the sender of a message semantically
dependent on (the properties and the scheme used to identify) its receiver. This inherent
semantic dependency creates an obligation for the environment to fulfill on behalf of this
intended receiver that stifles exogenous coordination by severely restricting the ability of a
third party to, e.g., set up theinteraction of such a sender with a receiver of its own choosing
instead of the one prescribedby the sender. With untargeted messages, both senders and
receivers symmetrically exchange messages only with their environment, not with any pre-
specified entity.

In contrast to the more sophisticated mechanisms necessary for exchanging targeted
passive messages, or even more sophisticated ones to support (remote) method invocation
for active messages, the mechanism necessary for exchanging untargeted passive messages
essentially supports only the mundane I/O primitives: an untargeted message itself is
merely some passive data that an entity exchanges with its environment; “sending” such
a message is just a write operation; and “receiving” it is just a “read” operation. The I/O
operations read and write are performed by a component instance on “contact points” that
are recognized by its environment for the purpose of information exchange. We refer to
these contactpoints as theportsof a component instance. Without loss of generality, we
assume ports are unidirectional, i.e., the information flows through a port in one direction
only: either from the environment into its component instance (through read) or from its
component instance to the environment (through write). Each I/O operation inherently
synchronizes the entity that performs it with its environment: a write operation suspends
until the environment accepts the data it has to offer through its respective port; likewise,
a read operation suspends until the environment offers the suitable data it expects through
its respective port.

This view of component communication leads to a generic component model. In this
model,a component instance is a black box that contains one or more active entities.
An active entity is one that has its own independent thread of control. Examples of active
entities are processes, threads, active objects, agents, etc. No assumption is made in this
model about how the active entities inside a component instance communicate with each
other. However,simple I/O operations on passive data exchanged through its ports
are the only means of communication for the active entities inside a component
instance with any entity not in the same component instance. By this definition, a
Unix process, for instance, qualifies as a component instance: it contains one or more
threads of control which may even run in parallel on different physical processors, and its
file descriptors qualify as ports. A component instance may itself consist of a collection
of other component instances, perhaps running in a distributed environment. Thus, by
identifying their relevant ports through which they exchange data with their environment,
entire systems can be viewed and used as component instances, abstracting away their
internal details of operation, structure, geography, and implementation.

Such a simple model of components may at first appear rather banal. Nevertheless,
it leads to a simple yet useful notion of behavior and behavioral interface. One of the
strengths of this model is that it innatelyespouses anonymous communication: entities

16 F. Arbab / Science of Computer Programming 55 (2005) 3–52

that communicate with each other need not knoweach other. It makes the model inherently
amenable to exogenous coordination and supports highly flexible composition possibilities,
yielding a very powerful paradigm for component/behavior composition.

7. Elements of a behavioral interface

There are different ways in which one can represent behavior. Given our model of
components, the most direct and obvious way to represent the observable behavior of a
component instance is to model it as a relation on its observable input and output. Because
this input/output takes place through the ports of the component instance, sequences of data
items that pass through a port emerge as the key building blocks for describing behavior.

Relating sequences of data items that pass through different ports of a component
instance requires a sense of relative temporalorder to inter-relate otherwise independent
events. We need to state, for instance, that a certain data item passes through this port
before or after some other data item passes through that port. The assumption of a global
clock is stifling in distributed systems and is an overkill for our purpose. Indeed, what we
need is a very diluted notion of time that is much less restrictive than the notion of global
time. We need to accommodate for:

• ordering of events: stating that the occurrence of a certain event precedes or succeeds
that of another;

• atomicity of a set of events: stating that agiven set of events occur only atomically;
• temporal progression: stating that only a finite set of events can occur within any

bounded temporal interval.

Observe that we do not speak ofsimultaneity in our list of requirements here.
Simultaneity is a rather ambiguous notion in distributed systems. Instead, we speak of
atomicity. The atomicity of a set of events means that either none of them occurs, or else
they all occur before any other event (not in that set) occurs, i.e., the occurrence of an
atomic set of events cannot be interleaved with the occurrence of any other event. Stating
that a set of events must occur atomically allows but does not require (any subset of)
those events to occur simultaneously. It also allows for those events to occur in any non-
deterministic order, so long as either they all occur or none occurs at all. Atomicity can
be seen as a relaxing generalization of simultaneity. It is as if an atomic set of events all
happen “simultaneously”, except that we elongate the moment of their occurrence into a
temporal interval. The provision that no other event may interleave with the occurrence of
those in the set ensures that our “elongation of the time moment into an interval” is not
detectable by other entities in the system.

Requiring that only a finite set of events can occur within any bounded temporal interval
precludes anomalies such as Zeno’s paradox.

A partial order over a dense set satisfies the requirements of our diluted notion of time,
characterized above. As such, in the terminology of [42], we are primarily interested in
anuntimedmodel of computation. Imposing the stricter requirement of total order yields
a timedversion ofour model, which is not our concern in this paper. Nevertheless, we
use positive real numbers to represent our time streams, because of their familiarity and

F. Arbab / Science of Computer Programming 55 (2005) 3–52 17

simplicity, with the proviso that it is not the actual numeric values of the time moments,
nor the total order on the real numbers, but only their relative ordering that is significant.
The numerical less-than relation represents the ordering of events. The numeric equal-to
relation represents atomicity,not simultaneity. Temporal progression can be enforced by
requiring that in every temporal sequencea, for anynumberN ≥ 0 there exists ani ≥ 0
such that theith element ina exceedsN.

8. Abstract Behavior Types

An ABT defines an abstract behavior as a relation among the observable input/output
that occurs through a set of “contact points” (e.g., ports of a component instance) without
specifying any detail about: (1) the operations that may be used to implement such
behavior; or (2) the data types those operations may manipulate for the realization of
that behavior.2 This definition parallels that of an ADT, which abstracts away from the
instructions and the data structures that may be used to implement the operational interface
it defines for a data type. In contrast, an ABT defines what a behavior is in terms of
a relation (i.e., constraint) on the observable input/output of anentity, without saying
anything about how it can be realized.

There are several different ways to formalize the concept of ABT. For instance, process
calculi, Petri nets, logic expressions, automata, or labeled transition systems can be used to
describe transformations of input to output sequences of observables. Process calculi tend
to emphasize processes rather than explicit expression of their input/output behavior. Petri
nets are too low level to directly represent the rich set of behavioral relations involving non-
determinism, combination of synchrony and asynchrony, and compositionality that we are
interested in. Automata can characterize the relation among the observable input/output
sequences of an ABT in an operational style. Indeed,constraint automata[10] constitute
an appropriate formalization of the ABT model, precisely because they were devised
to represent theoperational semantics of Reo connector circuits for model checking.
Constraint automata can be considered generalizations of probabilistic automata, where
data constraints, instead of probabilities, label state transitions and influence their firing.
Timed-data-streams, which constitute the foundation of the coalgebraic semantics of
Reo [6,68], are also the referents in the language of constraint automata. Constraint
automata seem to be more useful than labeled transition systems for modeling of systems
composed of both synchronous and asynchronouscomponents, because in practice, their
composition tends to yield smaller models [48].

In this paper, we do not further elaborate on labeled transition systems or constraint
automata. Instead, we formally define an ABT to be a (maximal) relation among a set of
timed-data-streams. We preferthis particular formalization here because it emphasizes the
relational aspect of the ABT model explicitly, and abstracts away anyhint of an underlying
operational semantics of its implementation. This helps to focus on behavior specifications
and their composition, rather than on operations that may be used to implement entities
that exhibit such behavior and their interactions.

2 The term “Abstract Behavior Type” is a variation of the term “Abstract Behavioral Type” proposed by
F. de Boer for a related concept.

18 F. Arbab / Science of Computer Programming 55 (2005) 3–52

The notion of timed-data-streams as well as most of the technical content in this section
comes from the work of J. Rutten on coalgebras [61,35], stream calculus [66], and a
coalgebraic semantics for Reo [6,68]. Coalgebraic methods have been used for signal
flow graphs, dynamical systems, automata and formal languages, modal logic, transition
systems, hybrid systems, infinite data types, the control of discrete event systems, formal
power series, etc. (see for instance [57,67,65,53,54,62–64,28,32]). Coalgebras have also
been used as models for various programming paradigms, notably for objects and classes
(see, e.g., [60,34], and [33]). One of the first applications of coalgebras to components
appears in [11]. Analogous to the way in which algebraic methods constitute suitable
models for the syntactic structure of systems, from its inception, the coalgebraic approach
was implicitly recognized as a promising mathematical foundation for modeling the
dynamic behavior of (concurrent) systems. The coalgebraic formulation of the ABT model
presented here shows this contrast between structure and behavior in comparison with the
algebraic formulation of the ADT model inSection 4.

Defining observable behavior in terms of input/output implants a dataflow essence
within ABTs akin to such dataflow-like networks and calculi as [21,38], and
especially [17]. The coalgebraic model of ABT presented here differs from all of the
above-mentioned work in a number of respects. Most importantly, the ABT model is
compositional. Its explicit modeling of ordering/timing of events in terms of separate
time streams provides a simple foundation for defining complex synchronization and
coordination protocols using a surprisingly expressive small set of primitives. The use
of coinduction as the main definition and proof principle to reason about both data
and time streams allows simple compositional construction of ABTs representing many
different generic coordination schemes involving combinations of various synchronous
and asynchronous primitives that are not present (and not even expressible) in any of the
aforementioned models.

8.1. Streams and coinduction

A stream(over A) is an infinite sequence of elements of some setA. The set of all
streams overA is denoted asAω. Streams inDS = Dω over a set of (uninterpreted) data
items D are calleddata streamsand are typically denoted asα, β, γ , etc. Zero-based
indices are used to denote the individual elements of a stream, e.g.,α(0), α(1), α(2), . . .
denote the first, second, third, etc., elements of the streamα. We use the infix “dot” as the
stream constructor:x.α denotes a stream whose first element isx and whose second, third,
etc. elements are, respectively, the first andits successive elements of the streamα.

Following the conventions of stream calculus [66], the well-known operations of head
and tail on streams are calledinitial value and derivative: the initial value of a stream
α (i.e., its head) isα(0), and its (first) derivative (i.e., its tail) is denoted asα′. The
kth derivative ofα is denoted asα(k) and is the stream that results from taking the first
derivative ofα and repeating this operation on the resulting stream for a total ofk times.
Relationaloperators on streams apply pairwise to their respective elements, e.g.,α ≥ β

meansα(0) ≥ β(0), α(1) ≥ β(1), α(2) ≥ β(2),
Constrained streams inTS = R

ω+ over positive realnumbers representing moments in
time are calledtime streamsand are typically denoted asa, b, c, etc. Toqualify as atime

F. Arbab / Science of Computer Programming 55 (2005) 3–52 19

stream, a stream of real numbersa must be (1) strictly increasing, i.e., the constrainta< a′
must hold; and (2) progressive, i.e., for everyN ≥ 0 there must exist an indexn ≥ 0 such
thata(n) > N.

We use positive real numbers instead of natural numbers to represent time because,
as observed in the world of temporal logic [12], real numbers induce the more abstract
sense ofdense timeinstead of the notion ofdiscrete time imposed by natural numbers.
Specifically, we sometimes need finitely many steps within any bounded time interval for
certain ABT equivalence proofs (see, e.g., [6]). This is clearly not possible with a discrete
model of time. Recall that the actual values of “time moments” are irrelevant in our ABT
model; only their relative order is significant and must be preserved. Using dense time
allows us to locally break strict numerical equality (i.e., simultaneity) arbitrarily while
preserving the atomicity of events.

A Timed Data Streamis a twin pair of streams〈α,a〉 in TDS = DS× TSconsisting
of a data streamα ∈ DS and a time streama ∈ TS, with the interpretation that
for all i ≥ 0, the input/output of data itemα(i) occurs at “time moment”a(i). Two
timed data streams〈α,a〉 and〈β,b〉 are equal if their respective elements are equal, i.e.,
〈α,a〉 = 〈β,b〉 ≡ α = β ∧ a = b.

An Abstract Behavior Type(ABT) is a (maximal) relation over timed data streams.
Every timed data stream involved in an ABT is tagged either as itsinput or its output.
The input/output tags of the timed data streams involved in an ABT are meaningless in
the relation that defines the ABT. However, these tags are crucial in ABT composition
described inSection 8.3.

Generally, we use the prefix notationR(I1, I2, . . . , Im; O1,O2, . . . ,On) and the
separator “;” to designate the ABT defined by the(m+n)-ary relationRover them ≥ 0 sets
of input timed data streamsIi,0 < i ≤ m and then ≥ 0 sets ofoutput timed data streams
Oj,0< j ≤ n. As usual,m+ n is called thearity of Rand we refer tomandn individually
as theinput arity and theoutput arity of R. In the special case wherem = n = 1 it
is sometimes convenient to use the infix notationI R O instead of the standardR(I ; O).
To distinguish the set of timed data streams that appears in a position in the relation that
defines an ABT (i.e., a column in the relation) from a specific timed data stream in that set
(i.e., which may appear in a row of the relation in that position) we refer toIi andOj as,
respectively, theith input and thejth outputportals of the ABT.

Formally, a component, as defined inSection 6, with m ≥ 0 input andn ≥ 0 output ports
is an ABT withm input andn output portals. The set of all possible streams of data items
that can pass through each port of the component, together with their respective timing,
comprise the set of timed data streams of the ABT’s portal that corresponds to that port.

8.2. ABT examples

In this section we show the utility of the ABT model through a number of examples.

8.2.1. Basic channels

Following is a list of some useful simple binary abstract behavior types. Each has a
single input and a single output portal.

20 F. Arbab / Science of Computer Programming 55 (2005) 3–52

(1) The behavior of asynchronous channelis captured by theSync ABT, defined as

〈α,a〉 Sync 〈β,b〉 ≡ 〈α,a〉 = 〈β,b〉.
Because〈α,a〉 = 〈β,b〉 ≡ α = β ∧ a = b, theSync ABT represents thebehavior
of any entity that (1) produces an output datastream identical to its input data stream
(α = β), and (2) produces every element in its output at the same time as its respective
input element is consumed (a = b). Recall that “at the same time” means only that the
two events of consumption and production of each data item by aSync channel occur
atomically.

(2) The behavior of an asynchronous unboundedFIFO channelis captured by theFIFO
ABT, defined as

〈α,a〉 FIFO 〈β,b〉 ≡ α = β ∧ a< b.

TheFIFO ABT represents the behavior of any entity that (1) produces an output data
stream identical to its input data stream (α = β), and (2) produces every element in its
output some time after its respective input element is observed (a< b).

(3) The behavior of an asynchronous channel with the bounded capacity of 1 is captured
by theFIFO1 ABT, defined as

〈α,a〉 FIFO1 〈β,b〉 ≡ α = β ∧ a< b< a′.

TheFIFO1 ABT represents the behavior of any entity that (1) produces an output data
stream identical to its input data stream (α = β), and (2) produces every element in its
output some time after its respective input element is observed (a < b) but before its
next input element is observed (b< a′ which meansb(i) < a(i + 1) for all i ≥ 0).

(4) The behavior of an asynchronous channel with the bounded capacity of 1 filled to
contain the data itemD as its initial value is captured by theFIFO1(D) ABT, defined
as

〈α,a〉 FIFO1(D) 〈β,b〉 ≡ β = D .α ∧ b< a< b′.

TheFIFO1(D) ABT represents the behavior of any entity that (1) produces an output
data streamβ = D .α consisting of the initial data itemD followed by the input data
streamα of the ABT, and (2) fori ≥ 0 performs its ith input operation some time
between itsith andi + 1st output operations (b< a< b′).

(5) The behavior of an asynchronous channel with the bounded capacity ofk > 0 is
captured by theFIFOk ABT, defined as

〈α,a〉 FIFOk 〈β,b〉 ≡ α = β ∧ a< b< a(k).

Recall thea(k) is thekth-derivative (i.e., thekth-tail) of the streama. TheFIFOk ABT
represents the behavior of any entity that (1) produces an output data stream identical
to its input data stream (α = β), and (2) produces every element in its output some
time after its respective input element is observed (a< b) butbefore itskth-next input
element is observed (b< a(k) which meansb(i) < a(i + k) for all i ≥ 0). Observe that
FIFO1 is indeed a special case ofFIFOk with k = 1.

It is illuminating to compare theFIFO ABT defined above with the definition of the
queue ADT inFig. 1. They areboth mathematically well-defined constructs that describe

F. Arbab / Science of Computer Programming 55 (2005) 3–52 21

the same thing: an unbounded FIFO queue. The ADT defines a queue in terms of a set
of operations and a set of axioms that constrain the observable mutual effect of those
operations on each other. It abstracts away theactual instructions for the implementation
of those operations and the data structures that they manipulate. The ABT defines a queue
in terms of what data items it exchanges with its environment, when it consumes and
produces them, and a set of axioms that constrain their interrelationships. It abstracts away
the operations for the realization (or enforcement) of those relationships and the data types
that they may utilize to do so.

8.2.2. Merge and replicate
We now define two other ABTs that, as we see inSection 9, form a foundation for an

interesting and expressive calculus: mergerand replicator. The merger ABT is defined as:

Mrg(〈α,a〉, 〈β,b〉;〈γ, c〉) ≡
α(0) = γ (0) ∧ a(0) = c(0) ∧ Mrg(〈α′,a′〉, 〈β,b〉;〈γ ′, c′〉) if a(0) < b(0)

∃t:a(0) < t < min(a(1),b(1))∧ ∃r, s ∈ {a(0), t} ∧ r
= s∧ if a(0) = b(0)

Mrg(〈α, r .a′〉, 〈β, s.b′〉;〈γ, c〉)
β(0) = γ (0) ∧ b(0) = c(0) ∧ Mrg(〈α,a〉, 〈β ′,b′〉;〈γ ′, c′〉) if a(0) > b(0).

Intuitively, the Mrg ABT produces an output that is a merge of its two input streams.
If α(0) arrives beforeβ(0), i.e., a(0) < b(0), then the ABT producesγ (0) = α(0) as
its output at c(0) = a(0) and proceeds with the tails ofthe streams in its first input
timed data stream. Ifα(0) arrives afterβ(0), i.e., a(0) > b(0), then the ABT produces
γ (0) = β(0) as its output atc(0) = b(0) and proceeds with the tails of the streams
in its second input timed data stream. If theα(0) and β(0) arrive “at the same time”
(i.e., a(0) = b(0)), then in this formulationMrg picks an arbitrary numbert in the
open time interval(a(0),min(a(1),b(1))) and uses it to non-deterministically break the
tie. The assumption of dense time guarantees the existence of an appropriatet. Recall
that the constructr .a′ is a stream whose derivative (tail) isa′ and whose initial value
(head) isr. Thus, fora(0) = b(0) Mrg non-deterministically changes the head of one
of the two time streams,a or b, thereby “delaying” the arrival of its corresponding data
item to break the tie. The finite delay introduced byMrg in this case is justified because
although it breaks simultaneity, its value is constrained to preserve atomicity. Observe that
Mrg(〈α,a〉, 〈β,b〉;〈γ, c〉) = Mrg(〈β,b〉, 〈α,a〉;〈γ, c〉).

The replicator ABT is defined as:

Rpl(〈α,a〉;〈β,b〉, 〈γ, c〉) ≡ β = α ∧ γ = α ∧ b = a ∧ c = a.

It is easy to see that this ABT captures the behavior of any entity that
synchronously replicates its input stream into its two identical output streams. Observe
thatRpl(〈α,a〉;〈β,b〉, 〈γ, c〉) = Rpl(〈α,a〉;〈γ, c〉, 〈β,b〉).
8.2.3. Sum

As an example of an ABT that performs some computation, consider a simple dataflow
adder. The behavior of such a component is captured by theSumABT defined as

22 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Sum(〈α,a〉, 〈β,b〉;〈γ, c〉) ≡
γ (0) = α(0)+ β(0)∧
∃t:max(a(0),b(0)) < t < min(a(1),b(1))∧ c(0) = t∧
Sum(〈α′,a′〉, 〈β ′,b′〉;〈γ ′, c′〉).

Sumdefines the behavior of a component that repeatedly reads a pair of input values
from its two input ports, adds them up, and writes the result out on its output port. As such,
its output data stream is the pairwise sum of its two input data streams. This component
behaves asynchronously in the sense that it can produce each of its output data items
with some arbitrary delay after it has read both of its corresponding input data items
(c(0) = t ∧ t > max(a(0),b(0))). However, it is obligated to produce each of its output
data items before it reads in its next input data item (t < min(a(1),b(1))).

8.2.4. Philosophers and chopsticks
The classical dining philosophers problem can be described in terms ofn > 1 pairs

of instances of two components: philosopher instances ofPhil and chopstick instances
of Chop. We define the externally observable behavior of each of these components as
an ABT. We show inSection 9how instances of these components can be composed
into different component based systems both to exhibit and to solve the famous deadlock
problem.

We assume that a chopstick component has two input ports,t (for take) andf (for free),
through which it reads in the timed data streams〈αt,at〉 and〈αf ,af 〉, respectively. The data
items inαt andαf are tokens whose actual values are not of interest to us. In practice, it is
a good idea for these tokens to contain the identifier of the entity (e.g., philosopher) who
uses the chopstick, but as long as such informative requirements do not affect behavior,
they are irrelevant forour ABT definition.

When a chopstick is free (its initial state) it is ready to accept atakerequest and thus
reads from itst port the next take request token out of〈αt,at〉. Once taken, a chopstick is
ready to accept afree request and thus reads from itsf port the free request token out of
〈αf ,af 〉. For the user of the chopstick, the success of its I/O operation on portt or f means
the chopstick has accepted its (takeor free) request. This simple behavior is captured by
theChopABT defined as

Chop(〈αt,at〉, 〈αf ,af 〉;) ≡ at < af < a′
t.

Because we are not interested in the actual value of the take/free tokens, theChop ABT
has nothing to say about the data streamsαt andαf ; it is only the timing that is relevant
here. Thetiming equation simply states that initially, there must be a take, followed by a
free, and this sequence repeats.

We assume that a philosopher component has four output ports,lt (for left-take), lf (for
left-free), rt (for right-take), andrf (for right-free), through which it writes the timed data
streams〈αlt ,alt〉, 〈αlf ,alf 〉, 〈αrt ,art〉, and〈αrf ,arf 〉, respectively. The two portslt andlf are
“on the left” and the two portsrt andrf are “on the right” of the philosopher component,
soto speak. The philosopher’s requests to take and free the chopsticks on its left and right
are issued through their respective ports.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 23

The externally observable behavior of a philosopher component is as follows. After
some period of “thinking” it decides to eat, at which point it attempts to obtain its two
chopsticks by issuing take requests on itslt and rt ports. We assume it always issues
a request for its left chopstick before requesting the one on its right. The philosopher
component interprets the success of its write operation as the acceptance of its request
(e.g., for exclusive access to the chopstick). Once, and if, both of its take requests are
granted, it proceeds to “eat” for some time, at the end of which it then issues requests to
free its left and right chopsticks by writing tokens to itslf andrf ports. The philosopher
component then repeats the cycle by entering its thinking period again. This behavior is
captured by thePhil ABT defined as

Phil(;〈αlt ,alt〉, 〈αlf ,alf 〉, 〈αrt ,art〉, 〈αrf ,arf 〉) ≡ alt < art < alf < arf < a′
lt .

Again, because we are not interested in theactual values of the take/free tokens that
this component produces, thePhil ABT says nothing about the data streams. All we are
interested in is the timing constraints: an arbitrary “thinking” delay; followed by a request
to take the left chopstick; once granted, followed by a request to take the right chopstick;
once granted, followed by an arbitrary “eating” delay; followed by the requests to free the
left and the right chopsticks; and the cycle repeats.

8.3. ABT composition

Abstract behavior types can be composed to yield other abstract behavior types through
a composition similar to the relational join operation in relational databases. Two ABTs
can be composed over a common timed data stream if one is the producer and the other
the consumer of that timed data stream. The same two ABTs can be composed over zero
or more common timed data streams, each ABT playing the role of the producer or the
consumer of one of the timed data streams, independent of its role regarding the others.
Observe that the producer and the consumer of a timed data stream,〈α,a〉, necessarily
synchronize their I/O operations on their respective portals for the mutual exchange of the
dataitems in its data streamα, according to the schedule in its twin time streama. This is
accomplished simply by “fusing” their respectiveportals together such that the timed data
stream observed on one is identical to the one observed on the other.

Consider two ABTsB1 with arity p = pi + po andB2 with arity q = qi + qo, wherepi

andpo are, respectively, the input arity and the output arity ofB1, andqi andqo, those for
B2. B1 andB2 can be composed with 0≤ k ≤ min(pi,qo)+ min(po,qi) pairs of mutually
fused portals, where the data items produced through an output portal,O, of one ABT are
fed for consumption by the other ABT through its input portal that is fused withO.

We define thek-dyadcompositionof the two ABTsB1(I11, I12, . . . , I1pi ;O11,O12, . . . ,

O1po) and B2(I21, I22, . . . , I2qi ;O21,O22, . . . ,O2qo) as a special form of the join of
the two relationsB1 and B2 where k distinct portals (i.e., relational columns) ofB1
are paired each with a distinct portal ofB2 into k dyads such that (1) the two por-
tals in each dyad have opposite input/output tags, and (2) the two timed data streams
of the portals in each dyad are equal. Thek-dyad composition of B1 and B2 yields a
new ABT, B(I1, I2, . . . , Im;O1,O2, . . . ,On), with arity m + n = p + q − 2 × k, de-
fined as a relationover thoseportals of B1 and B2 that are not involved in a dyad

24 F. Arbab / Science of Computer Programming 55 (2005) 3–52

(i.e., the fused portals disappear from the resulting relation). The listI1, I2, . . . , Im is
obtained from the listI11, I12, . . . , I1pi , I21, I22, . . . , I2qi by eliminating every one of
its elements involved in a dyad. Similarly, the listO1,O2, . . . ,On is obtained from the
list O11,O12, . . . ,O1po,O21,O22, . . . ,O2qo by eliminating every one of its elements in-
volvedin a dyad.

We use the dyad indices 1≤ l ≤ k as superscripts to mark the corresponding portals
of B1 andB2 in their k-dyad composition. For example,B = B1(〈α,a〉, 〈β,b〉1;〈γ, c〉) ◦
B2(〈δ,d〉;〈µ,m〉1) denotes the 1-dyad composition of the two abstract behavior types
B1 and B2 where theoutput (portal) ofB2 is identical to the second input (portal) of
B1. The resulting ABT is defined through the relationB ≡ {〈〈α,a〉, 〈δ,d〉;〈γ, c〉〉 |
〈〈α,a〉, 〈β,b〉;〈γ, c〉〉 ∈ B1 ∧ 〈〈δ,d〉;〈µ,m〉〉 ∈ B2 ∧ 〈β,b〉 = 〈µ,m〉}. Another example
is the ABTB = B1(〈α,a〉, 〈β,b〉1;〈γ, c〉2) ◦ B2(〈δ,d〉2;〈µ,m〉1, 〈ν,n〉), whichdenotes the
2-dyad composition of the two abstract behavior typesB1 andB2 where the first output of
B2 is identical to the second input ofB1 and the output ofB1 is identical to the input ofB2.
The resulting ABT is defined as the relationB ≡ {〈〈α,a〉;〈ν,n〉〉 | 〈〈α,a〉, 〈β,b〉;〈γ, c〉〉 ∈
B1 ∧ 〈〈δ,d〉;〈µ,m〉, 〈ν,n〉〉 ∈ B2 ∧ 〈β,b〉 = 〈µ,m〉 ∧ 〈γ, c〉 = 〈δ,d〉}.

The common case of the 1-dyad composition ofB1 andB2 where the single output of
B1 is identical to the single input ofB2 is abbreviated asB1(. . . ;〈α,a〉) ◦ B2(〈β,b〉; . . .)
instead ofB1(. . . ;〈α,a〉1) ◦ B2(〈β,b〉1; . . .). This abbreviation is particularly convenient
together with the infix notation for binary abstract behavior types. For instance,B =
〈α,a〉B1〈β,b〉◦〈γ, c〉B2〈δ,d〉 denotes the 1-dyad composition of the two abstract behavior
typesB1 and B2 where theoutput of B1 is identical to the input ofB2. Of course, the
resulting ABT is defined as the relation〈α,a〉B〈δ,d〉 ≡ {〈〈α,a〉;〈δ,d〉〉 | 〈〈α,a〉;〈β,b〉〉 ∈
B1 ∧ 〈〈γ, c〉;〈δ,d〉〉 ∈ B2 ∧ 〈β,b〉 = 〈γ, c〉}.

For example, consider the binary ABTs defining the basic channels presented in
Section 8.2. It isnot difficult to see that the (1-dyad) composition of these ABTs produces
results that correspond to our intuition.For instance, the composition of twoSync ABTs
produces aSync ABT. Indeed, composition of aSync ABT with any other ABT (on its
left or right) yields the same ABT. More interestingly, the composition of twoFIFO ABTs
produces aFIFO ABT. Composing twoFIFO1 ABTs produces aFIFO2 ABT. The formal
proof of this latter equivalence relies on our notion of dense time (as opposed to discrete
time) and is given in [6], together with the formal treatment of many other interesting
examples.

9. Reo

The ABT model provides a simple formalfoundation for definition and composition
of components. Thek-dyad composition of ABTs supports a very flexible mechanism
for software composition in component based systems. This furnishes the desired level of
composition flexibility we expect in a componentmodel. However, composing components
directly with one another in this way reduces the glue code to essentially nothing more
than repeated applications of thek-dyad composition operator. More importantly, it all but
extinguishes the possibility of wielding exogenous coordination through the glue code.
The ABT model is too low-level to directly provide any form of non-trivial coordination

F. Arbab / Science of Computer Programming 55 (2005) 3–52 25

(beyond the simple synchronization implied by its timed data streams); for that, we need
an effective exogenous coordination model.

Reo is achannel-based exogenous coordination model wherein complex coordinators,
called connectorsare compositionally built out of simpler ones [5,4,6]. The simplest
connectors in Reo are a set ofchannelswith well-definedbehavior supplied by users. Reo
can be used as a language for coordination of concurrent processes, or as a “glue language”
for compositional construction of connectors that orchestrate component instances in a
component based system. The emphasis in Reo is on connectors and their composition
only, not on the entities that connect to, communicate, and cooperate through these
connectors. Each connector in Reo imposes a specific coordination pattern on the entities
(e.g., component instances) that perform I/O operations through that connector, without
the knowledge of those entities.

Channel composition in Reo is a very powerful mechanism for construction of
connectors. The expressive power of connector composition in Reo has been demonstrated
through many examples in [3,4,6]. For instance, exogenous coordination patterns that
can be expressed as (meta-level) regular expressions over I/O operations performed by
component instances can be composed in Reo out of a small set of only five primitive
channel types.

A mobile channelallows (physical or logical) relocation of one of its ends without the
knowledge or the involvement of the entity at its other end. Logical mobility changes the
topology of the interconnections of communicating entities, while physical mobility can
have other implications, e.g., on an entity’s (efficiency of) access to various resources.
An efficient distributed implementation of channels supporting this notion of mobility
is described in [9]. Both component instances and channels are mobile in Reo. Logical
mobility of channel ends in Reo allows dynamic reconfiguration of connectors, even while
they are being used by component instances. In this respect, Reo resembles dynamically
reconfigurable generalized Kahn networks, as in IWIM [1] and Manifold [14], and its
dataflow nature is also related to Broy’s timed dataflow model, although Reo is more
general and more expressive than these and similar models. Much as Reo supports physical
mobility through itsmove operation to allow more efficient flow of data, it ascribes no
semantic significance to it. Themove operation does not semantically affect connector
topologies, flow of data, or connectivity of components to connectors. In this sense, Reo is
orthogonal to the concerns involving the physical mobility of code, e.g., in models such as
that of [59].

An important aspect of Reo which is not covered in this paper is that the topology
of connectors in Reo is inherently dynamic. This means that the configuration of a
component-based system can dynamically change not only due to dynamic construction
and connection/disconnection of connectors and component instances, but also – and
more interestingly – due to dynamic reconfiguration of instantiated connectors even as
they are actively in use. Moreover, Reo supports a very liberal notion of channels. As
such, Reo is more general than dataflow models, Kahn-networks, and Petri-nets, all of
which can be viewed as specialized channel-based models that incorporate certain specific
primitive coordination constructs. Broy’s work on timed dataflow channels [16,17] is
perhaps closest to Reo. Nevertheless, Reo’s more general notion of channels, its inherent
dynamic topology, its powerful exogenous coordination that uses a clear separation of

26 F. Arbab / Science of Computer Programming 55 (2005) 3–52

flows of data and time, and the fundamentalnotion of channel/connector composition that
allows, among other things, compositions involving an expressive mix of synchrony and
asynchrony, distinguish it from this model as well.

It turns out that the ABT model is quite adequate for defining the channel and connector
composition operation which is the crux of exogenous coordination in Reo. In the rest of
this section we show how connector construction in Reo can be seen as an application of
the ABT model.

9.1. Channels and connectors

Channels are the only primitive medium of communication between two components in
Reo. Thenotion of channel in Reo is far more general than its common interpretation. A
channel in Reo has its own unique identity and always has exactly two directed ends, each
with its own unique identity. Based on their direction, there are two types of channel ends:
sourceandsinkends. Data enters through a source channel end into its respective channel,
and it leaves through a sink channel end from its respective channel. (Channels themselves
have no direction in Reo, only their ends do.)

Beyond a small set of mild obvious requirements, such as enabling I/O operations
to read/write data items from/to their ends, Reo places no restrictions on the behavior
of channels. This allows an open-ended set of different channel types to be used
simultaneously together in Reo, each with its own policy for synchronization, buffering,
ordering, computation, data retention/loss, etc. Some typical examples of conventional
channels are, e.g., the ones defined inSection 8.2. These channels happen to each have
a source end and a sink end. More unconventional channels are also possible in Reo,
especially because a channel can also haveonly two source ends or only two sink ends. A
few examples of some such exotic channels appear inSection 9.3; even more examples are
presented in [3,5,4].

Strictly speaking, Reo itself neither provides nor assumes the availability of any specific
set of channel types; it simply assumes that an appropriate assortment of channel types,
each with its properly well-defined semantics, is provided by users for it to operate on.
Nevertheless, it is reasonable to expect that in practice certain most primitive channel types,
e.g., synchronous channels, will always be made available in all cases.

Reo defines aconnector as a set of channel ends and their connecting channels
organized in a graph ofnodes andedgessuch that:

• Zero or more channel ends coincide on every node.

• Every channel end coincides on exactly one node.

• There is an edge between two (not necessarily distinct) nodes if and only if there is a
channel one end of which coincides on each of those nodes.

We usex �→ N to denote that the channel endx coincides on the nodeN, and̂x to denote
the unique node on which the channel endx coincides. For a nodeN, we definethe set of
all channel ends coincident onN as[N] = {x | x �→ N}, and disjointly partition it into the
setsSrc(N) andSnk(N), denoting the sets ofsource and sink channel ends that coincide
onN, respectively.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 27

Observe that nodes are neither components nor locations. Although some nodes are
attached to component instances to allow their exchange of information, nodes and
components are different notions and not every node can be associated with or attached to
a component instance. A node is a fundamental concept in Reo representing an important
topological property: all channel endsx ∈ [N] coincide on the same nodeN. This property
entails specific implications in Reo regarding the flow of data among the channel ends
x ∈ [N], irrespective of concern for the location of those channel ends orN, or thepossible
attachment ofN to a component instance.

A nodeN is called asource node if Src(N)
= ∅ ∧ Snk(N) = ∅. Analogously,N is
called asink node if Src(N) = ∅ ∧ Snk(N)
= ∅. A nodeN is called amixed node if
Src(N)
= ∅ ∧ Snk(N)
= ∅.

By the above definition, every channel represents a (simple) connector with two nodes.
From the point of view of Reo a port of a component instance is just anode that (initially)
contains a single channel end. An input port is (initiallya singleton) source node, and an
output port is (initially a singleton) sinknode. From the point of view of a component
instance, each of its ports is merely a simple connector corresponding to a synchronous
channel (the node of) one end of which is made publicly accessible for I/O by its
environment, while (the node of) its other end is hidden for exclusive use by the component
instance itself. An output port of a component instance has the sink node of its synchronous
channel public while its source node is available only for I/O operations performed by that
component instance. Likewise, an input port has the source node of its synchronous channel
public while its sink node is hidden for exclusive use by its component instance.

Reo provides I/O operations on source and sink nodes only; components cannot read
from or write to mixed nodes. A component instance can write to a source node or read
from a sink node using node I/O operations of Reo only if it isconnectedto that node.
Connection of a node to a component instance gives the latter the exclusive right to
perform I/O operations on that node. Reo provides operations to change the connection
of nodes to component instances dynamically, but a node can be connected to at most a
single component instance at any given time. This is a prerequisite for the formal notion of
compositionality presented in [7].

The graph representing a connector isnotdirected. However, for each channel endxc of
a channelc, we use the directionality ofxc to assign alocal direction in the neighborhood
of x̂c to the edge that representsc. The local direction of the edge representing a channelc
in the neighborhood of the node of its sourcexc is presented as an arrow emanating from
x̂c. Likewise, the local direction of theedge representing a channelc in the neighborhood
of the node of its sinkxc is presented as an arrow pointing tôxc. SeeFigs. 2and3 for
examples.

Complex connectors are constructed in Reo out of simpler ones using itsjoin
operation. Thejoin operation in Reo is defined only on nodes. Joining two nodesN1
and N2 destroys both nodes and produces a new nodeN with the property that[N] =
[N1] ∪ [N2]. This single operation allows construction of arbitrarily complex connector
graphs involving any combination of channels picked from an open-ended set of channel
types. The semantics of a connector is defined as a composition of the semantics of its
(1) constituent channels, and (2) nodes. Because Reo does not provide any channels, it
does not define their semantics either. What Reo defines is the composition of channels

28 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 2. Representation of nodes in Reo.

into connectors and the semantics of this composition through the semantics of its (three
types of) nodes.

Intuitively, a source node replicates every data item written to it as soon as all of its
coincident source channel ends can consume that data item. Reading from a sink node
non-deterministically selects one of the data items available through its coincident sink
channel ends. A mixed node is a self-contained “pumping station” that combines the
behavior of a sink node and a source node in an atomic iteration of an infinite loop: in each
atomic iteration it non-deterministically selects an appropriate data item available through
its coincident sink channel ends and replicates that data item into all of its coincident
source channel ends. A data item is appropriate for selection in an iteration only if it can
be consumed by all source channel ends that coincide on that node.

9.2. ABT models of nodes and connectors

Consider a sink nodeN with [N] = {x, y}, as inFig. 2a. The read operations performed
on this node induce an output timed data stream,〈αN,aN〉, for this sink node. We use
〈αx,ax〉 and 〈αy,ay〉 to designate the timed data streams corresponding to the channel
ends x and y, respectively. The semantics of this sink node is defined by the ABT
Mrg(〈αx,ax〉, 〈αy,ay〉;〈αN,aN〉).

The semantics of a sink nodeN where[N] = {x, y, z}, as inFig. 2b, is defined as the
1-dyad composition

Mrg3(〈αx,ax〉, 〈αy,ay〉, 〈αz,az〉;〈αN,aN〉)) ≡
Mrg(〈αx,ax〉, 〈αy,ay〉;〈ψ,p〉1) ◦ Mrg(〈ξ,q〉1, 〈αz,az〉;〈αN,aN〉)

where〈αN,aN〉 is theoutput timed data stream of the node, as before, and〈ψ,p〉 and〈ξ,q〉
are internal timed data streams.

BecauseMrg is associative with respect to its input portals, merging the intermediate
result of the merge ofx andy with z is the same as mergingx with the intermediate result
of the merge ofy andz; i.e., Mrg3 is associative with respect to its input portals. As such,
the simple graphical notation of Reo (e.g., inFig. 2a and b) is quite appropriate because
it does not suggest any precedence for theMrg operations. Clearly this scheme can be
used to define the semantics of sink nodes withmore coincident channel ends in general
as the ABTMrgk with k > 0 input and one output portals. For completeness, we define
Mrg1(〈αx,ax〉;〈αN,aN〉)) ≡ 〈αx,ax〉 = 〈αN,aN〉 and considerMrg2 to be apseudonym
for Mrg.

The write operations performed on a source nodeN with [N] = {x, y}, as inFig. 2c,
induce an input timed data stream,〈αN,aN〉, for N. The semantics of N in this case is

F. Arbab / Science of Computer Programming 55 (2005) 3–52 29

defined by the ABTRpl(〈αN,aN〉;〈αx,ax〉, 〈αy,ay〉. The semantics of a source nodeN
with [N] = {x, y, z}, as inFig. 2d, is defined as the 1-dyad composition

Rpl3(〈αN,aN〉;〈αx,ax〉, 〈αy,ay〉, 〈αz,az〉) ≡
Rpl(〈αN,aN〉;〈αx,ax〉, 〈ψ,p〉1) ◦ Rpl(〈ξ,q〉1;〈αy,ay〉, 〈αz,az〉)

where〈αN,aN〉 is the input timed data stream of the node, as before, and〈ψ,p〉 and〈ξ,q〉
are internal timed data streams. BecauseRpl is associative with respect to its output portals,
the precedence of theRpl operations is irrelevant andRpl3 is also associative with respect
to its output portals. Similarly, the general ABTRplk with one input andk > 0 output
portals defines the semantics of a source node withk coincident channel ends. Again, for
completeness, we defineRpl1(〈αN,aN〉;〈αx,ax〉)) ≡ 〈αx,ax〉 = 〈αN,aN〉 and consider
Rpl2 to be a pseudonym forRpl.

A mixed node, as inFig. 2e, is a composition of two “half-nodes”, a source and a
sink. Because no component is allowed to perform an I/O operation on a mixed node,
no input/output timed data stream can be defined for a mixed node. A mixed node is a
closed entity that does not interact with any component; instead it internally pumps data
items from its sink channel ends to its source channel ends. The semantics of a mixed node
N with m > 0 sink andn > 0 source channel ends is given by the ABTNodem×n defined
as the 1-dyad composition of the two ABTs describing the behavior of each of its half
nodes:Mrgm(I1, I2, . . . , Im;〈ψ,p〉) andRpln(〈ξ,q〉;O1,O2, . . . ,On). Theportals Ii andOj

designate the timed data streams observed at them sink and the n source channel ends
coincident onN, respectively, and〈ψ,p〉 and〈ξ,q〉 are internal timed data streams.

Nodem×n(I1, I2, . . . , Im;O1,O2, . . . ,On)

≡ Mrgm(I1, I2, . . . , Im;〈ψ,p〉) ◦ Rpln(〈ξ,q〉;O1,O2, . . . ,On).

For instance, the behavior of the mixed node inFig. 2e iscaptured by the ABT defined as
the relationNode3×2(I1, I2, I3;O1,O2) over the timeddata streams of its respective 3 sink
and 2 source channel ends. For consistency, we useNodem×0 andNode0×n to represent
the ABTs for a sink node withm and a source node withn coincident channel ends,
respectively:

Nodem×0 ≡ Mrgm(I1, I2, . . . , Im;〈α,a〉)
Node0×n ≡ Rpln(〈α,a〉;O1,O2, . . . ,On)

whereIi andOj designate the timed data streams observed at them sink and then source
channel ends coincident on the node and〈α,a〉 represents its output or input timed data
stream.

Every edge of a connector corresponds to a channel whose semantics is defined as an
ABT. Since a connector consists of (three types of) nodes and edges, all of whose semantics
are now defined as ABTs, the semantics of every connector in Reo can be derived as a
composition of the ABTs of its constituent nodes and edges.

9.3. A cogent set of primitive channels

To demonstrate the utility of Reo we must supply it with a set of primitive channels.
The fact that Reo accepts and the ABT model allows definition of an open-ended set

30 F. Arbab / Science of Computer Programming 55 (2005) 3–52

of arbitrarily complex channels is interesting. What is more interesting, however, is that
connector composition in Reo is itself powerful enough to yield surprisingly expressive
complex connectors out of a very small set of trivially simple channels.

A useful set ofprimitive channels for Reo consists of 7 channel types:Sync, FIFO,
FIFO1, FIFO1(D), Filter(P), LossySync, andSyncDrain. This is not a minimal set, in
the sense that some of the channel types in this set can themselves be composed in Reo
outof others; however, minimality is not our concern here and these channel types turn out
to be both simple and frequently useful enough todeserve their own explicit mention. The
first four channel types were defined as ABTs inSection 8.2. We define the ABTs for the
rest below.

The common characteristics of the last three channels, above, are that they are all (1)
synchronous, and (2)lossy. Neither channel has a buffer to store data and if necessary,
delays the I/O operation on either one of its ends until it is matched with an I/O operation
on its other end. A channel is lossy if it doesnot deliver through its sink end every data
item it consumes through its source end. The difference between these three channels is in
their loss policy.

(1) A Filter(P) channel is a synchronous channel with a source and a sink end that takes
a pattern P parameter upon its creation. It behaves like aSync channel, except that
only those data items that match the patternP can actually pass through it; others are
always accepted by its source, but are immediately lost. The behavior of such a channel
is captured by theFilter(P) ABT defined as

〈α,a〉 Filter(P) 〈β,b〉 ≡{
β(0) = α(0) ∧ b(0) = a(0)∧ 〈α′,a′〉 Filter(P) 〈β ′,b′〉 if α(0) � P

〈α′,a′〉 Filter(P) 〈β,b〉 otherwise.

The infix operatorα(0) � P denotes whether or not the data itemα(0) matches with
the patternP. If so, α(0) passes through, otherwise it is lost, and the ABT proceeds
with the rest of its timed data streams.

(2) A LossySync channel is also like aSync channel except that it is always ready to
consume every data item written to its source end. If a matching read operation is
pendingat its sink, the data item written to its source is actually transferred; otherwise,
the written data item is lost. The behavior of this channel is captured by theLossySync
ABT defined as

〈α,a〉 LossySync 〈β,b〉 ≡
〈α,a〉 LossySync 〈β,a(0).b′〉 if a(0) > b(0)

β(0) = α(0) ∧ 〈α′,a′〉 LossySync 〈β ′,b′〉 if a(0) = b(0)

〈α′,a′〉 LossySync 〈β,b〉 otherwise.

(3) A SyncDrain is a channel with two source ends. Because it has no sink end, it has no
way to ever produce any data items. Consequently, every data item written to its source
ends is simply lost.SyncDrain is synchronous because a write operation on one of
its ends remains pending until a write is performed on its other end as well; only then

F. Arbab / Science of Computer Programming 55 (2005) 3–52 31

Fig. 3. Examples of connectors in Reo.

both write operations succeed together. The behavior of this channel is captured by the
SyncDrain ABT defined as

SyncDrain(〈α,a〉, 〈β,b〉;) ≡ a = b.

9.4. Coordinating glue code

To demonstrate the expressive power of connector composition, in this section we
describe a number of examples in Reo. More examples are presented elsewhere [3,5,6,4].

9.4.1. Write-cue regulator
Consider the connector inFig. 3a, composed out of the three channelsab, cd, andef.

Channelsab andcd are of typeSync andef is of typeSyncDrain. This connector shows
one of the most basic forms of exogenous coordination: the number of data items that flow
from â to d̂ is the same as the number of write operations that succeeds onf̂. (Recall
that â designates the unique node on which the channel enda coincides.) The analogy
between the behavior of this connector and a transistor in the world of electronic circuits
is conspicuous.

A component instance with a port connected tof̂ can count and regulate the flow of
data between the two nodeŝa and d̂ by thetiming and the number of write operations it
performs on̂f. The entity that regulates and/or counts the number of data items througĥf
need not know anything about the entities that write toâ and/ortake from d̂, nor that its
write actions actually regulate this flow. The two entities that communicate througĥa and
d̂ need not know anything about the fact that theyare communicating with each other, nor
that the volume of their communication is regulated and/or measured by a third entity atf̂.

9.4.2. Barrier synchronizers
We can build on our write-cue regulator to construct a barrier synchronization

connector, as inFig. 3b. The four channelsab, cd, gh, andij are all of typeSync. The
SyncDrain channelef ensures that a data item passes fromâ to d̂ only simultaneously
with the passing of a data item from̂g to ĵ (and vice versa). This simple barrier
synchronization connector can be trivially extended to any number of pairs, as shown in
Fig. 3c.

32 F. Arbab / Science of Computer Programming 55 (2005) 3–52

9.4.3. Ordering

The connector inFig. 3d consists of three channels:ab, ac, andbc. The channelsab and
ac areSyncDrain andSync, respectively. The channelbc is of typeFIFO1. Thebehavior
of this connector can be seen as imposing an order on the flow of the data items written to
â and̂b, through tôc: thedata items obtained by successive read operations onĉ consist of
the first data item written tôa, followed by the first data item written tôb, followed by the
second data item written tôa, followed by the second data item written tôb, etc. See [3,4]
for more detail and [6] for a formal treatment of this connector.

The coordination pattern imposed by our connector can be summarized asc = (ab)∗,
meaning the sequence of values that appear throughĉ consist of zero or more repetitions
of the pairs of values written tôa andb̂, in that order.

9.4.4. Sequencer

Consider the connector inFig. 3e. The enclosing box represents the fact that the details
of this connector are abstracted away and it provides only the four nodesâ, b̂, ĉ, and
d̂ for other entities (connectors and/or component instances) to (in this case) read from.
Inside this connector, we have fourSync, aFIFO1(o), and threeFIFO1 channels connected
together. TheFIFO1(o) channel is the leftmost one and is initialized to have a data item
in its buffer, as indicated by the presence of the symbol “o” in the box representing its
buffer. The actual value of this data item is irrelevant. The read operations on the nodesâ,
b̂, ĉ, andd̂ can succeed only in the strict left to rightorder. This connector implements a
generic sequencing protocol: we can parameterize this connector to have as many nodes as
we want, simply by inserting more (or fewer)Sync andFIFO1 channel pairs, as required.

Fig. 3f shows a simple example of the utility ofour sequencer. The connector in this
figure consists of a two-node sequencer, plus a pair ofSync channels and aSyncDrain
channel connecting each of the nodes of the sequencer to the nodesâ and ĉ, andb̂ and
ĉ, respectively. The connector inFig. 3f is another connector for the coordination pattern
c = (ab)∗, although there is a subtle difference between the behavior of this connector and
the one inFig. 3d. See [3,4] for moredetail.

It takes little effort to see that the connector inFig. 3g corresponds to the meta-regular
expressionc = (aab)∗. Fig. 3f and g show how easily wecan construct connectors that
exogenously impose coordination patterns corresponding to the Kleene-closure of any
“meta-word” made up of atoms that stand forI/O operations, using a sequencer of the
appropriate size.

9.5. Constant replacer

Fig. 4 shows aReo connector (encapsulated in the outermost thick box, hiding mixed
nodes N1 and N2) with one exposed input (i.e., source node A) and one exposed output
(i.e., sink node B) nodes. This connector is composed out of four channels: aSyncDrain
(A-N1), a Sync (N1-B), aFIFO1 (N1-N2), and a filledFIFO1(T) (N2-N1) that contains
an initial valueT. Of course, the constructor of this connector can be parameterized to
initialize thisFIFO1 channel with any supplied value, instead ofT, everytime it creates a
new instance of this circuit.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 33

Fig. 4. Constant replacer.

Using the ABT definitions of these channels and those of its nodes, we can find the
relationship between the two timed data streams〈α,a〉 and 〈β,b〉 that pass through the
nodes A and B, respectively. As a side note, it is interesting to observe that this relationship
and other insights we gain, below, through a formal treatment of the behavioral equations of
this connector, all correspond to and confirm the intuitive impression that we get through
an informal reasoning using the schematic of this connector inFig. 4. This observation
underscores the usefulness and the significance of visual representation of Reo connectors.

From the definition of theSyncDrain channel inSection 9.3, we have:

SyncDrain(〈α,a〉, 〈χ, c〉;) ≡ a = c. (1)

By lettingm = 1 andn = 3 in the ABT equation of mixed nodes inSection 9.2, we derive
for N1:

Node1×3(〈ε,e〉;〈χ, c〉, 〈φ, f 〉, 〈δ,d〉) ≡
Mrg1(〈ε,e〉;〈ψ,p〉) ◦ Rpl3(〈ξ,q〉;〈χ, c〉, 〈φ, f 〉, 〈δ,d〉) ≡
{〈〈ε,e〉;〈χ, c〉, 〈φ, f 〉, 〈δ, d〉〉 | 〈〈ε,e〉;〈ψ,p〉〉 ∈ Mrg1∧

〈〈ξ,q〉;〈χ, c〉, 〈φ, f 〉, 〈δ, d〉〉 ∈ Rpl3 ∧ 〈ψ,p〉 = 〈ξ,q〉}.
(2)

From the definition ofMrg1 in Section 9.2, we get〈〈ε,e〉;〈ψ,p〉〉 ∈ Mrg1 ≡ 〈ε,e〉 =
〈ψ,p〉 and from the definition ofRpl3 in the same section, we have〈〈ξ,q〉;〈χ, c〉, 〈φ, f 〉,
〈δ,d〉〉 ∈ Rpl3 ≡ 〈ξ,q〉 = 〈χ, c〉 = 〈φ, f 〉 = 〈δ,d〉. Substituting these back in Eq. (2) and
simplifying the result yields:

Node1×3(〈ε,e〉;〈χ, c〉, 〈φ, f 〉, 〈δ,d〉) ≡
{〈〈ε,e〉;〈χ, c〉, 〈φ, f 〉, 〈δ, d〉〉 | 〈ε,e〉 = 〈χ, c〉 = 〈φ, f 〉 = 〈δ,d〉}, (3)

34 F. Arbab / Science of Computer Programming 55 (2005) 3–52

or

Node1×3(〈ε,e〉;〈χ, c〉, 〈φ, f 〉, 〈δ,d〉) ≡
{〈〈ε,e〉;〈χ, c〉, 〈φ, f 〉, 〈δ, d〉〉 | ε = χ = φ = δ ∧ e = c = f = d}. (4)

Similarly, for the node N2, we derive:

Node1×1(〈γ,g〉;〈η,h〉) ≡ {〈〈γ,g〉;〈η,h〉〉 | γ = η ∧ g = h}. (5)

From the definition of theFIFO1 channel inSection 8.2.1, we have:

〈δ,d〉 FIFO1 〈γ,g〉 ≡ δ = γ ∧ d < g< d′, (6)

and the definition of the initializedFIFO1 channel in the same section yields:

〈η,h〉 FIFO1(T) 〈ε,e〉 ≡ ε(0) = T ∧ η = ε′ ∧ e< h< e′. (7)

The definition of theSync channel inSection 8.2.1gives:

〈φ, f 〉 Sync 〈β,b〉 ≡ 〈φ, f 〉 = 〈β,b〉 ≡ φ = β ∧ f = b. (8)

From Eqs. (1) and (4) we getd = a, which together with Eq. (6) yields:

a< g< a′. (9)

From Eq. (8) we havef = b, which together with Eqs. (4) and (1), yields:

b = a. (10)

From Eq. (7) we haveε(0) = T ∧ η = ε′ and from Eqs. (4) and (8) we haveε = φ = β.
This gives us:

β(0) = T ∧ β ′ = η. (11)

From Eq. (5) we haveη = γ and from Eq. (6) we haveγ = δ. But from Eq. (4) we have
δ = φ and from Eq. (8) we haveφ = β, thereforeη = β, which simplifies Eq. (11) into:

β(0) = T ∧ β ′ = β. (12)

Observe that the stream equationβ ′ = β is just a shorthand for the infinite set of equations
β(1) = β(0)∧ β(2) = β(1)∧ β(3) = β(2)∧ β(4) = β(3)∧ This simplifies Eq. (12)
into β(0) = T ∧ β(1) = β(0) ∧ β(2) = β(1) ∧ β(3) = β(2) ∧ β(4) = β(3) ∧ . . . , or:

∀i ∈ N+ β(i) = T. (13)

Eq. (13) clearly shows that there is no relationship between the stream of input values,α,
and the stream of output values,β, of this connector: whatever value comes through the
node A, its corresponding output value through the node B is the constant valueT. On the
other hand, Eq. (10) relates the input/output“timings” of this connector: passage of each
pair of values through the nodes A and B is atomic.

Eq. (9) shows an internal subtlety of the behavior of this connector. Fori > 0, the value
α(i) (and its corresponding valueβ(i)) can pass through A (and B) only afterg(i − 1). In
other words, the constant valueT must cycle through the node N2 once before the next

F. Arbab / Science of Computer Programming 55 (2005) 3–52 35

Fig. 5. Computing the Fibonacci series.

pair of values passes through the nodes A and B. In theory, it is always possible to use
“fast enough” internal channels such that this cycling of value through the node N2 does
not “slow down” the passing of values through A and B. On the other hand, the relational
nature of our behavioral equations implies that, in practice, the internal cycling ofT will
delay value transfers through A and B, if necessary, such that Eq. (9) holds.

9.6. Fibonacci series

A simple example of how a composition of a set of components yields a system that
delivers more than the sum of its parts is the computation of the classical Fibonacci series.
To assemble a component based application to deliver this series we actually need only
one (instance of one) component plus a number of channels. The component we need is a
realization of theSumABT that we already saw inSection 8.2.

Fig. 5 shows a component (the outermost thick enclosing box) with only one output
port (the only exposed node on the right border of the box). This is our component based
application for computing the Fibonacci series. Peeking inside this component, we see
how it is made out of an instance ofSum, aFIFO1(1), aFIFO1(0), aFIFO1, and fiveSync
channels.

As long as theFIFO1(0) channel is full, nothing can happen: there is no way for the
value inFIFO1(1) to move out. At some point in time, the value inFIFO1(0) moves into
theFIFO1 channel. Thereafter, theFIFO1(0) channel becomes empty and the two values in
theFIFO1(1) and theFIFO1 channels become available forSumto consume. The intake of
the value inFIFO1(1) by Suminserts a copy of the same value into theFIFO1(0) channel.
WhenSumis ready to write its computed value out, it suspends waiting for some entity in
the environment to accept this value. Transfer of this value to the entity in the environment
also inserts a copy of the same value into the now emptyFIFO1(1) channel. At this point
we are back to the initial state, but with different values in the buffers of theFIFO1(1) and
theFIFO1(0) channels.

The ABT models of the componentSum, channels, and Reo nodes that we presented
earlier suffice for a formal analysis of the behavior of their composition in this example.
Observe that all entities involved in this composed application are completely generic
and, of course, neither knows anything about the Fibonacci series, nor the fact that it
is “cooperating” with other entities to compute it. It is the specific glue code of this
application, made by composing 8 simple generic channels in a specific topology in Reo,

36 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 6. Dining philosophers in Reo.

that coordinates the communication of the components (in this case, only one) with one
another (in this case, with itself) and the environment to compute this series.

9.7. Dining philosophers

We can vividly demonstrate the significance of exogenous coordination in component
based system composition through the classical dining philosophers problem. In this
section we use instances of two components, eachof which is a realization of one of the
two ABTs Phil andChopdefined inSection 8.2.4, to (1) compose a dining philosophers
application that exhibits the famous deadlock problem; and (2) compose another dining
philosophers application that prevents the deadlock.

Fig. 6a shows 4 philosophers and 4 chopsticks around a virtual round table. Each
philosopher has 4 output ports, corresponding to thelt, lf , rt, andrf portals of thePhil
ABT in Section 8.2.4. In this figure, philosophers face the table, thus their sense of left and
right is obvious. Each chopstick has two input ports, corresponding to thet and f input
portals of theChopABT in Section 8.2.4. In Fig. 6a, chopstick ports on the outer-edge of
the table are theirt ports and the ones closer to the center of the table are theirf ports. The
t (take) port of each chopstick is connected to the take ports of its adjacent philosophers,
and itsf port to their respective free ports. All channels are of typeSync.

Consider what happens in the node at the three-way junction connected to thet port of
Chop1. If Chop1 is free and is ready to accept a token through itst port, as it initially is,
whichever one of the two philosophersPhil1 andPhil4 happens to writeits take request
token first will succeed to takeChop1. Of course, it is possible forPhil1 and Phil4 to
attempt to takeChop1 at the same time. In this case, the semantics of this mixed node
(by the definition of the ABT Mrg) guarantees that only one of them succeeds, non-
deterministically; the write operation of the other remains pending untilChop1 is free
again. Because the definition of the ABTPhil states that a philosopher frees a chopstick

F. Arbab / Science of Computer Programming 55 (2005) 3–52 37

only after it has taken it, there is never any contention at the three-way junction connected
to thef port of a chopstick.

The composition of channels in this Reo application enables philosophers to repeatedly
go through their “eat” and “think” cycles at their leisure, resolving their contentions for
taking the same chopsticks non-deterministically. The possibility of starvation is ruled out
because the non-determinism inMrg is assumed to be fair. Thissimple glue code composed
of nothing but common genericSync channels directly renders a faithful implementation of
the dining philosophers problem; all the way down to its possibilityof deadlock. Because
all philosophers are instances of the same component, they all attempt to fetch their
chopsticks in the same order. ThePhil ABT defines this to be left-first. If all chopsticks are
free and all philosophers attempt to take their left chopsticks at the same time, of course,
they will all succeed. However, this leaves no free chopstick for any philosopher to take
before it can eat. No philosopher will relinquish its chopstick before it finishes its eating
cycle. Therefore, this application deadlocks, as expected.

9.7.1. Avoiding the deadlock
Interestingly, with Reo, solving the deadlock problem requires no extra code, central

authority, or modification to any of the components. In order to prevent the possibility of
a deadlock, all we need to do is to change the way in which we compose our application
out of the very same components.Fig. 6b shows a slightly different composition topology
of the same set ofSync channels comprising the glue code that connects the exact same
instances ofPhil and Chop as before. We have flipped one philosopher’s left and right
connections to its adjacent chopsticks(in this particular case, those ofPhil2) without its
knowledge. None of the components in the system are aware of this change, nor is any of
them modified in any way to accommodate it. Our flipping of these connections is purely
external to all components.

It is not difficult to see why this new topology prevents deadlock. If all philosophers
attempt to take their left chopsticks now at the same time, one of them, namelyPhil2, will
actually reach for the one on its right-hand-side. Of course,Phil2 is unaware of the fact
that as it reaches out through its left port to take its first chopstick, it is actually the one on
its right-hand-side it competes to take. In this case it competes withPhil3, which is also
attempting to take its first chopstick. It makes no difference which one of the two wins this
competition, one will be denied access to its first chopstick. This ensures that at least one
chopstick will remain free (no philosopher attempts to takeChop2 as its first chopstick)
to enable at least one philosopher to obtain its second chopstick as well and complete its
eating cycle.

Comparing the composition topologies inFig. 6a andb, we see that in Reo (1) different
glue code connecting the same components produces different system behavior; and (2)
coordination protocols are imposed by glue code on components that cooperate with one
another through the glue code, without being aware of each other or their cooperation. The
two fundamental notions that underpin this pair of highly desirable provisions are:

• The underlying notion of component (Section 6) in the ABT model prevents a
component from distinguishing individual entities within its environment directly.
Components can exchange only passive data with their environment through

38 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 7. Inside of a chopstick.

communication primitives that (1) do not allow them to discern specific targets
as communication partners, and (2) do not entail any further obligation on behalf
of the environment. The ABT model of components, thus, grants the environment
great flexibility in making late, evendynamic, decisions about how components
are composed. This makes ABT components highly susceptible to exogenous
coordination, although the ABT model itself offers no non-trivial coordination
primitives.

• Reo is a coordination model that takes full advantage of the composition flexibility
inherent in the ABT model and offers a calculus of connector composition based on a
user-defined set of primitive channels, alldefined as ABTs. The crux of this calculus
is thejoin operator in Reo for composing channel ends into composite nodes, and
the specific semantics it defines for these nodes as ABTs (Section 9.2). Connector
composition in Reo offers a simple yet surprisingly expressive exogenous coordination
model that effectively exploits the flexibility of behavior specification in the ABT
model.

The two systems inFig. 6a and b are madeof the same number of constituent parts of
the same types: the same number of component instances of the same kinds, and the same
number of primitive connectors (Sync channels). The only difference between the two is
in the topologyof their inter-connections. This topological difference is the only cause of
the difference between the “more than sum of the parts” in these two systems.

9.7.2. Making of a chopstick
A moment of reflection reveals that, especially since there is no computation involved

in the behavior of a chopstick, it should be easy to realize the behavior defined by the
ABT Chop through channel composition. The behavior defined asChop is indeed all
coordination: it must alternate enabling the write operations on one (t) then on theother
(f) of its two input ports. Indeed, we can easily use a two-port sequencer (Fig. 3e) plus two
SyncDrain channels to realize this behavior. But a much simpler construction is possible
as well.

The connector hidden inside the enclosing box inFig. 7 is a simplified two-port
sequencer which exactly implements the behavior of the ABTChop. This connector
consists of two channels: aFIFO1 and aSyncDrain. Initially, theFIFO1 is empty, therefore
enabling the first write to its portt to succeed immediately. While this channel is empty, a
write to itsf port suspends because there is no data item to be “simultaneously” consumed
by the opposite (source) end of theSyncDrain. Once awrite to t succeeds, theFIFO1
channel becomes full and the next write operation on portt will suspend until this channel
becomes empty again. When theFIFO1 channel is full, a write tof succeeds, causing the
SyncDrain channel to consume the contents of theFIFO1 channel as well. This returns
the connector to its original state allowing it to cyclically repeat the same behavior.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 39

Fig. 8. AdaptingPhilos to appear asPhil.

9.7.3. Adaptation of a philosopher
As a simple example of the usefulness ofFilter(P) channels, suppose the interface of

the philosopher component we acquire for our application does not exactly match that of
ourPhil ABT. The component we obtain,Philoshas only one output port and it writes all
its tokens to the same port.Fig. 8 shows howPhiloscan be adapted to fit the interface of
Phil, using four filter channels.

The wiggly segment in the representation of a filter channel suggests a “resistor” that
inhibits the transmission of values that do not match its filter pattern. The text above the
wiggly line is the filter pattern. BecausePhiloswrites all of its tokens to the same port, it
must distinguish them by their values. We assume it writes the four valueslt, lf, rt, and
rf to identify these tokens. Every value written to the output port ofPhilosis automatically
replicated into the source ends of the four channel filters that coincide on this node. This
copying happens whenever all four source channel ends are ready to consume the replicated
value. Whatever the value is, three of the fourchannels will always be ready to accept it
unconditionally, because it will not match theirfilters and they will immediately lose the
value. The fourth channel, the one whose pattern matches the written value, is the one
whose acceptance triggers the actual replication/transfer. This happens only when the node
at the sink end of this filter channel can synchronously dispose of the value, which is
possible only when there is a read on that node.

9.8. Microwave oven interface

In this section we present a number of generally useful connectors and show how they
can be combined with a number of equally generic – plus some application specific –
components to compose the user interface of a simple microwave oven. Of course, any of
these connectors can be programmed as a black-box component as well, but in order to
show the expressive power of Reo in practice, we construct them here out of the set of
primitive channels ofSection 9.3. In the sequel, we use the terms “input node” and “output
node” of a connector or component as synonyms for, respectively, “source node” and “sink
node” through which that component or connector consumes and produces data. For a
component, its input and output nodes are its input and output ports, respectively.

9.8.1. Exclusive router
Fig. 9a shows a very useful generic connector, calledexclusive router. The dashed

arrows are our graphical symbols representingLossySync channels. A data item arriving

40 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 9. An exclusive router and a selector.

at the input node A flows through to only one of the output nodes B or C, depending on
which one is ready to consume it. If both output nodes are prepared to consume a data
item, then one is selected non-deterministically (by the merger ABT inherent in the mixed
node in the middle of this connector). The input data is never lost nor replicated to more
than one of the output nodes.

The behavior of this connector is the counterpart of the primitive non-deterministic
selection inherent in the merge that a Reo (sink or mixed) node performs on its multiple
input. In [10] we show this by deriving the constraint automaton for this connector through
composition of the constraint automata of its constituent channels.

9.8.2. Selector
Fig. 9b shows another generically useful connector, calledselector, which uses an

exclusive router ofSection 9.8.1. Availability of a value at its input node E “enables” this
connector to select a value available on one of the input nodes B1 or B2 for transfer through
its respective output node S1 or S2. The prerequisite for a transfer of a value from B1 to
S1 is the availability of a value at E and another at B1, plus the readiness of a consumer at
S1. Likewise, the prerequisite for a transfer of a value from B2 to S2 is the availability of
a valueat E and another at B2, plus the readiness of a consumer at S2. As long as no value
is available on E, all input values on B1 and B2 are lost, while consumers at S1 and S2, if
any, wait. If a value is available on E while a value and a ready consumer are available for
only one of the two pairs Bi–Si, then a value transfer takes place for that pair and the value
on the other Bi node, if any, is lost. If both pairs have available values and ready consumers
(when a value is available on E), then the exclusive router non-deterministically enables
the value transfer forone of the two pairs and the value on the other Bi node is lost.

9.8.3. Shift-lossyFIFO1

Fig. 10a (due to J. Rutten) shows a connector that is often used as a simple channel in
the construction of other connectors. It is calledshift-lossyFIFO1 because its behavior is

F. Arbab / Science of Computer Programming 55 (2005) 3–52 41

Fig. 10. Shift-lossyFIFO1 channel.

Fig. 11. Overflow-lossyFIFO1 channel.

very similar to ourFIFO1 primitive channel ofSection 9.3, except that it loses its current
value if its buffer is full to accept a new input value instead. Thus, unlike the case of a
FIFO1, no write to thein node of this connector/channel is ever delayed: as far as the
writer is concerned, a shift-lossyFIFO1 channel behaves the same as an unboundedFIFO.
However, this channel keeps only the last of its input values for transfer through itsout
node.

The connector inFig. 10a is composed out of an exclusive router, aFIFO1 channel
initialized to contain a token value (o), aFIFO2 channel, aSyncDrain channel, and 4Sync
channels. We derive the constraint automaton describing the behavior of this connector
in [10] by composing the constraint automata of its constituent channels.

Because this connector is so commonly useful, we treat it as a channel and use the
graphical symbol shown inFig. 10b to represent it. This symbol is intentionally similar
to that of aFIFO1 primitive channel. The dashed half of the box representing its buffer
suggests data loss. The fact that the sink-side of the box is dashed suggests that older
valuesin the buffer are lost in favor of newer values, i.e., the buffer contents shift to the
sink side, losing older values, to make room for newer arrivals.

9.8.4. Overflow-lossyFIFO1

The counterpart of the shift-lossyFIFO1 channel ofSection 9.8.3is the connector in
Fig. 11a. Recall that the dashed arrow used in this connector represents theLossySync
primitive channel ofSection 9.3. Although we do not use this connector to compose our
microwave oven interface presented inSection 9.8.9, it is generally useful, interesting, and
so complementary to the shift-lossyFIFO1 channel, that it deserves to be mentioned here.

The connector inFig. 11a is composed out of aLossySync channel and aFIFO1
channel. It, too, behaves as a lossyFIFO1 channel, but contrary to the shift-lossyFIFO1

42 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 12. A sequencer with reset.

channel ofSection 9.8.3, its data-loss policy favors retaining older buffer values over newer
arrivals. We call this connector/channeloverflow-lossyFIFO1 and use the graphical symbol
in Fig. 11b to representit. The dashed source-side half of the box representing the buffer
of this channel symbol suggests that when its buffer is full, the newer arrivals simply
“overflow” and are lost.

9.8.5. Sequencer with reset
Fig. 12 shows yetanother generally useful connector that uses the exclusive router of

Section 9.8.1. This connector behaves almost the same as our sequencer ofSection 9.4.4.
As long as no input value is available on itsreset node, the exclusive router following the
FIFO1 channel that contains the token has no choice but to “decide” to forward the token
through its upper output node down the chain, as if it were a simpleSync channel. This
makes the transfer of the token conditional only on the availability of a ready consumer
on the respective output node of the sequencer connector, exactly as in the case of the
sequencer ofSection 9.4.4.

When an input value is available on thereset node of this connector, the exclusive
router following the token can allow it to “escape” the sequence chain through its lower
output node back to the leftmostFIFO1 channel, regardless of whether or not a ready
consumer is available on its corresponding output node of the sequencer connector. This
“resets” the sequencer to restart its sequence from the left. Observe that a race condition
between reset and a ready sequenced output is non-deterministically resolved by the
exclusive router.

The sequencer inFig. 12 has 4 output nodes and thus repeats a sequence of length 4.
Clearly, just as the case for the sequencer ofSection 9.4.4, the constructor of this connector
can be parameterized to instantiate a sequencerthat repeats a sequence of any (finite) size.

9.8.6. Cycler
The connector inFig. 13 is calledcycler. It uses three instances of the constant replacer

connector ofSection 9.5, in this case, initialized with constant valuesHigh, Med andLow,
respectively. It also uses an exclusive router, aternary version of the sequencer with reset
of Section 9.8.5, and a shift-lossyFIFO1 channel (ofSection 9.8.3). The exclusive router
here has three output nodes. This ternary router is obtained by a simple composition of two
(binary) exclusive routers ofFig. 9a, where one of the output nodes of one is connected
with a Sync channel to the input node of the other.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 43

Fig. 13. A cycler connector.

The cycler connector behaves as follows. The first input value through its node B places
the valueHigh in its shift-lossyFIFO1 channel, ready for output through the V node of the
cycler connector. Successive input values through B “cycle” through the remaining values
in the sequence,Med andLow, restarting the cycle again fromHigh, and make each value
available, in turn, for output through V, by overriding the previous contents of the shift-
lossyFIFO1 channel. Whenever a value is consumed through V, the sequencer resets the
connector to restart the cycle from its leftmost,High, value.

Clearly, the constructor of this connector can be parameterized such that it takes a
(finite) list of values to create a cycler instance of the proper size, initialized with exactly
those values.

9.8.7. Valves
Fig. 14a shows a connector that behaves as a valve.3 It uses two exclusive routers and

threeFIFO1 channels, two of which are initialized to contain token valuesX andO. As long
as there is no value available on the input nodei of this valve connector, values can flow
from its nodec to noded; the “valve” is initially open. The first input value throughi,
say a token valueY, causes the upperSyncDrain channel in this connector to consume
theX token, asY moves to fill the (upper) emptyFIFO1 channel. As long as the twoFIFO1
channels on the left of this connector are full, no data can flow betweenc andd: the valve
is closed. A second input value through the nodei allows the lowerSyncDrain channel
to consume theY token, while this second value itself fills the buffer of theFIFO1 channel
on the right. Now the connector configuration is back to its original state and the valve is
open again. In this way, successive values through the input nodei alternately close and
open the valve, enabling and disabling the flow of data fromc to d, without any data loss.

The valve inFig. 14b is the sameas the one inFig. 14a, except that it is initially closed.
Successive values through its input nodei alternately open and close this valve.

3 Different valve connectors are presented in [3]. This particular, more elegant connector circuit is due to
Andrei Popescu of Nokia Research Center who is also a Ph.D. student at the Computer Science Department of
the University of Helsinki.

44 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 14. Valve connectors.

Fig. 15. A value menu connector.

9.8.8. Value menu
The connector inFig. 15 uses an initially closed valve and a cycler initialized with the

parameter vectorHigh, Med, Low. Initially, values on node B are lost, because the valve
is closed, until an input value through A, saya, “activates” this connector. The tokena first
opens the valve, and then passes through the valve to kick the cycler, causing it to make
High available as the output value of the connector. Arrival of another value on A before
an input value on D is unacceptable for this connector; the environment must ensure that
input to the nodes A and D alternate. Once thus activated, input tokens through B bump
the cycler to make thesequence of values in its list available as the output of the connector.
The actual output of the “current value” of the connector through the node V is possible
only when a token, sayd, arrives through the node D. The tokend allows the output of
the connector’s current value and simultaneously closes the valve, disabling the connector.
Observe that the output of its value also resets the cycler to start again with the first item
in its list.

A race condition is possible when two tokens are simultaneously available on the
nodes A and B. In this case, the mixed node at the sink of theLossySync channel non-
deterministically resolves the race condition. However, this resolution is not symmetric:

F. Arbab / Science of Computer Programming 55 (2005) 3–52 45

if the A token is selected, then the B tokenis lost and the value menu connector will
haveHigh as its current value. On the other hand, if the B token is selected, then the
A token isnot lost and it will subsequently bump the cycler to set the current value of
the valuemenu connector toMed. While this asymmetric behavior may be a “bug” or
a “feature” of this connector when used in different environments, in the context of our
intended application, itcauses no problem (seeSection 9.8.9). It is, of course, possible to
eliminate this asymmetric aspect of the behavior of our connector, at the cost of a few more
channels (essentially, an exclusive router, aSyncDrain and someSync channels), but we
prefer our simpler connector here because it is sufficient for our purpose.

9.8.9. Composing the microwave interface

Fig. 16shows the composition of the interface of a simple microwave oven. Physically,
this interface consists of four special-purpose buttons, plus a numeric input device. The
four buttons areTime, Defrost, Power, andStart. Theoutput of this interface is a pair
of values indicating the radiation-time (Time node) and the power-setting (Power node)
that are to be fed to the microwave engine. This interface allows an end-user to first press
one of the two buttonsTime or Defrost (if both are pressed, the interface selects one
non-deterministically). Pressing theTime button indicates that both radiation-time and
power-setting will be specified explicitly. Pressing theDefrost button, on the other hand,
indicates that the microwave oven is to operate in its defrost mode. In this case, the end-
user is expected to enter the weight of the item that is to be defrosted and the microwave
oven is expected to calculate the proper radiation-time and power-setting automatically.
When required, the same numeric input device is used to explicitly enter time as well as
weight. Explicit power setting, when required, must be selected from a menu of the three
alternative valuesHigh, Med, andLow, by successively pressing the power button to cycle
through them. Once the proper selections are made and the values are entered, the end-user
presses theStart button to confirm them and start the microwave engine.

Our interface inFig. 16 uses four generic button components, a defrost calculator
component, and a weight/time input component. These components are shown as solid-
color boxes inFig. 16. A button component is expected to interact with its corresponding
physical button and produce a single token through its output node every time its button is
pressed. The defrost calculator component has one input and two output nodes. Whenever
a value is available on its input node, it consumes it and interprets it as a weight value. It
then proceeds to compute the appropriate radiation-time and power-setting for defrosting
this weight and makes them available through its respective output nodes. The weight/time
input component has two inputand a single output nodes. Availability of a token on one
of its input nodes (the upper one inFig. 16) activates this component to interact with the
end-user and obtain a weight (e.g., in 100 g incremental units). A token through the other
input node (the lower one in the figure) activates the component to interact with the end-
user to obtain a radiation-time (e.g., in minutes and seconds). If tokens are available on
both of its input nodes (a case that does not arise in our context) then the component non-
deterministically consumes one and acts accordingly. The component eventually makes
the value it obtains through its interaction with the end-user available through its output
node.

46 F. Arbab / Science of Computer Programming 55 (2005) 3–52

Fig. 16. The interface for a simple microwave oven.

The core of the interface inFig. 16 is a four-step sequencer connector that produces
tokens on its output nodes from top to bottom. In its first step, it enables the selector
connector to let the user press one of the two buttonsDefrost or Time. Its second step,
allows the user to press theStart button. The last two steps of the sequencer allow
the consumption of the two output values produced by this interface, in any order. To
accomplish this, theTime andPower output nodes are connected to the last two nodes of
the sequencer by a variant of the write-cue regulator connector ofSection 9.4.1.

In the first step of the sequencer, pressing theDefrost button enables the weight/time
input component to produce a weight, and places a token in the topFIFO1 channel to allow
the proper disposition of the eventual (weight) output of this component as the input for the
defrost calculator component. Similarly, pressing theTime button enables the weight/time
input component to produce a time, and places a token in the bottomFIFO1 channel to
allow the activation of the power value menu connector after the (time) output of the
weight/time input component is available. Observe the use of the barrier synchronization
construct ofSection 9.4.2in the coordination of theoutput of the weight/time input
component.

Pressing theStart button has no effect unless the sequencer is in its second step and
the lower exclusive router inthe figure can dispose of its token one way or the other. If
Defrost was pressed in the first step, this exclusiverouter can dispose of its token as

F. Arbab / Science of Computer Programming 55 (2005) 3–52 47

soon as the (weight) output of the weight/time input component is available. On the other
hand, ifTime was pressed in the first step, this exclusive router can dispose of its (Start)
token only by deactivating the power value menu connector, which implies some value is
available through its value output node. In the interval between the pressing of the two
buttonsTime andStart, the end-user has the option of pressing thePower button to cycle
through the three settings of the power value menu. Observe that a default value (ofHigh)
is available foroutput by this value menu connector as soon as it is activated.

An aspect of the interface that is not reflected in our connector shown inFig. 16
is its display. One can assume that there is a built-in display under the control of the
weight/time input component, and connect a separate display to show the current setting
of the power menu connector. The race condition mentioned inSection 9.8.8is possible
in this environment only if the end-user presses thePower button exactly when the (time)
output of the weight/time input component is available. Assuming that the power setting
display shows a value only while the menu connector is enabled, it is reasonable to expect
that, normally, theuser presses thepower button only after this time-output is available (to
enable the menu connector). When thePower button is pressed at the same time that the
time-output is available, the non-deterministic resolution of the race condition in the menu
connector either ignores the pressing of thePower button (as if the menu connector is not
activated yet) or behaves as if thePower button was pressed immediately after the menu
connector was activated (bumping the power setting toMed). Both of these alternatives are
acceptable in this situation.

This example shows the ease with which a coordinator for such non-trivial concurrent
behavior can be composed out of “ignorant” components and connectors in Reo. While the
generality of the value menu connector ofSection 9.8.8may be somewhat questionable,
there is no question that the connectors described inSection 9.8.1through9.8.7are generic
and useful in a wide variety of applications. The button components used here are also
generic. The only application specific entities in this example are the defrost calculator and
to a lesser extent, the weight/time input component. Although they are clearly application
specific, these components are “ignorant” of the environment in which they cooperate
with each other and other entities to enact the coordinated protocol of their collective
behavior.

10. Conclusion

The operational interface that is inherent in the Abstract Data Type model and object
oriented programming introduces two very different concepts for (1) entities, and (2) the
mechanism of their composition. To their outside world, entities are what their interfaces
advertise them to be: a set of operations. The mechanism that composes entities is based on
performingthe operations of other entities. This makes composition endogenous (i.e., an
entity internally decides what operations of which other entities to perform) and relies on
rather strong assumptions about the environment (i.e., the actual availability of appropriate
other entities to support those operations withtheir expected semantics). Unlike the ADT
model, main-stream object oriented models do not offer any formal semantics in their
object/class interfaces. The purely syntactic nature of their interfaces becomes the weakest

48 F. Arbab / Science of Computer Programming 55 (2005) 3–52

link in the reliability of the assumptions that underlie the validity of each composition:
unless the entity that invokes the operation knows the entity whose operation it invokes
rather intimately, the semantics that one assumes may be different than what the other
guarantees; even subtle differences here can sabotage a composition. Furthermore, the
composition of two objects doesnot produce another object.

Components are expected to beindependent commodities, viable in their binary forms
in the (not necessarily commercial) marketplace,developed, offered, exploited, deployed,
integrated, maintained, and evolved by separate autonomous organizations in mutually
unknown and unknowable contexts, over very long spans of time. The level of intimacy that
is implicitly required of objects that compose by invoking each other’s methods, is simply
too unrealistic in the world of such components. Component models that rely on (variations
of) object oriented programming (e.g., components as fortified collections of objects) and
its composition mechanism of method invocation must, on the one hand, ameliorate its
inherent endogenous rigidity (e.g., by intercepting, interpreting, retargeting, or suppressing
messages), and on the other hand yield quite brittle compositions. Composition of two
components, in such models, does not by itself yield another component.

Abstract Behavior Types presented in this paper offer a simpler and far more flexible
model of components—and of their composition. An ABT is a mathematical construct
that defines and/or constrains the behavior of an entity without any mention of operations
or data types that may be used to realize that behavior. This puts the ABT model at a
higher-level of abstraction than ADTs and makes it more suitable for components. The
endogenous nature of their composition means that it isnot possible for a third party, e.g.,
an entity in the environment, to compose two objects (or two ADTs) “against their own
will” so to speak. In contrast, the composition of any two ABTs is always well-defined and
yields another ABT.

The building blocks in the mathematical construction of the ABT model are the
(generally) infinite streams that represent the externally observable sequences of I/O events
that occur at an entity’sinteraction points (e.g., ports) through which it exchanges data
with its environment. Such infinite structures, and thus the ABT model, naturally lend
themselves to coalgebraic techniques and the coinduction reasoning principle. The ABT
model supports a much looser coupling than is possible with ADT and is inherently
amenable to exogenous coordination. We advocate both of these as highly desirable, if
not essential, properties for component based systems.

The ABT model provides a simple formalfoundation for definition and composition of
components. However, direct composition of component ABTs does not generally provide
much of an opportunity to systematically wield exogenous coordination. Reo is a channel-
based exogenous coordination model that canbe used as a glue language for dynamic
compositional construction of component connectors in (non-)distributed and/or mobile
systems. Connector construction in Reo can be seen as an application of the ABT model.
A channel in Reo is just a special kind of an atomic connector (i.e., component): whereas
components and connectors offer one or more ports to exchange information with their
environment, a channel is an ABT that offers exactly two ports (i.e., its channel-ends) for
interaction with its environment. Because all Reo connectors are ABTs, the semantics of
channel composition in Reo can be defined in terms of ABT composition.

F. Arbab / Science of Computer Programming 55 (2005) 3–52 49

Acknowledgements

I am thankful for the fruitful discussions and the collaboration of all my colleagues
at CWI, especially Jan Rutten, Marcello Bonsangue, and Frank de Boer, who have
contributed to the ideas behind abstract behavior types. I am grateful for the attention
and the creative influence of the participants in the ACG seminar series of Jaco de Bakker
at CWI, where various aspects of Reo were presented and discussed in 2001 and 2002.
I immensely appreciate the work of my colleagues involved in the development and
implementation of Reo. I am particularly grateful for Jan Rutten’s keen interest in Reo and
his inspiring work on a coalgebraic formal semantics for it; and for his and Christel Baier’s
stimulating collaborations onthe development of constraint automata for the operational
semantics and model-checking of Reo—and more.

References

[1] F. Arbab, The IWIM model for coordination of concurrent activities, in: P. Ciancarini, C. Hankin (Eds.),
Coordination Languages and Models, Lecture Notes inComputer Science, vol. 1061, Springer-Verlag, 1996,
pp. 34–56.

[2] F. Arbab, What do you mean, coordination?, Bulletinof the Dutch Association for Theoretical Computer
Science NVTI (1998) 11–22. URL:http://www.cwi.nl/NVTI/Nieuwsbrief/nieuwsbrief.html.

[3] F. Arbab, A channel-based coordination model for component composition, Tech. Rep. SEN-R0203,
Centrum voor Wiskunde en Informatica, Kruislaan 413,1098 SJ Amsterdam, The Netherlands, February
2002.

[4] F. Arbab, Reo: A channel-based coordination model for component composition, Mathematical Structures
in Computer Science 14 (3) (2004) 1–38.

[5] F. Arbab, F. Mavaddat, Coordination through channel composition, in: F. Arbab, C. Talcott (Eds.),
Coordination Languages and Models: Proc. Coordination 2002, Lecture Notes in Computer Science,
vol. 2315, Springer-Verlag, 2002, pp. 21–38.

[6] F. Arbab, J. Rutten, A coinductive calculus of component connectors, in: D.P.M. Wirsing, R. Hennicker
(Eds.), Recent Trends in Algebraic Development Techniques, Proceedings of 16th International Workshop
on Algebraic Development Techniques, WADT 2002, Lecture Notes in Computer Science, vol. 2755,
Springer-Verlag, 2003, pp. 35–56. URL:http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf.

[7] F. Arbab, F. de Boer, M. Bonsangue, A logical interface description language for components, in: A. Porto,
G.-C. Roman (Eds.), Coordination Languages and Models: Proc. Coordination 2000, Lecture Notes in
Computer Science, vol. 1906, Springer-Verlag, 2000, pp. 249–266.

[8] F. Arbab, F. de Boer, M. Bonsangue, A coordination language for mobile components, Proc. ACM SAC’00,
2000, pp. 166–173.

[9] F. Arbab, F. de Boer, M. Bonsangue, J.G. Scholten, MoCha: A framework for coordination using mobile
channels, Tech. Rep. SEN-R0128, Centrum voorWiskunde en Informatica, Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands, December 2001.

[10] F. Arbab, C. Baier, J.J.M.M.Rutten, M. Sirjani, Modeling component connectors in Reo by Constraint
Automata, Electronic Notes in Theoretical Computer Science (ENTCS), vol. 97, Elsevier, 2004, pp. 25–46.
URLs:http://www.elsevier.com/locate/entcs, http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0304.pdf.

[11] L. Barbosa, Components as coalgebras, Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2001.
[12] H. Barringer, R. Kuiper, A. Pnueli, A really abstract current model and its temporal logic, in: Proceedings of

Thirteenth Annual ACM Symposium on Principles of Programming Languages, ACM, 1986, pp. 173–183.
[13] L. Bergmans, M. Aksit, Composing crosscutting concerns using composition filters, Communications of the

ACM 17 (10) (2001) 51–57.
[14] M. Bonsangue, F. Arbab, J. de Bakker, J. Rutten, A. Scutellá, G. Zavattaro, A transition system semantics

for the control-driven coordination language Manifold, Theoretical Computer Science 240 (2000) 3–47.

http://www.cwi.nl/NVTI/Nieuwsbrief/nieuwsbrief.html
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf
http://www.elsevier.com/locate/entcs
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0304.pdf

50 F. Arbab / Science of Computer Programming 55 (2005) 3–52

[15] M. Broy, A logical basis for component-based systemengineering, Tech. Rep., Technische Universität
München, November 2000.

[16] M. Broy, G. Stefanescu, The algebra of stream processing functions, Theoretical Computer Science 258.
[17] M. Broy, K. Stolen, Specification and development of interactive systems, Monographs in Computer

Science, vol. 62, Springer, 2001.
[18] J. Buck, S. Ha, E. Lee, D. Messerschmitt, Ptolemy: a framework for simulating and prototyping

heterogeneous systems, Simulation Software Development (3), International Journal of Computer
Simulation (special issue), January 1990.

[19] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, E. Poll, An overview of JML
tools and applications, in: T. Arts, W. Fokkink (Eds.), Eighth International Workshop on Formal Methods
for Industrial Critical Systems, FMICS 03, Electronic Notes in Theoretical Computer Science (ENTCS),
vol. 80, Elsevier, 2003, pp. 73–89. URL:http://www.elsevier.com/locate/entcs.

[20] CORBA, URL:http://www.omg.org.
[21] J. de Bakker, J. Kok, Towards a uniform topological treatment of streams and functions on streams,

in: W. Brauer (Ed.), Proceedings of the 12th International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science,vol. 194, Springer-Verlag, Nafplion, 1985, pp. 140–148.

[22] F. de Boer, M. Bonsangue, A compositional model for confluent dynamic data-flow networks,
in: M. Nielsen, B. Rovan (Eds.), Proc. International Symposium of the Mathematical Foundations
of Computer Science, MFCS, Lecture Notes in Computer Science, vol. 1893, Springer-Verlag, 2000,
pp. 212–221.

[23] F. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever (Eds.), Formal Methods for Components and Objects,
Lecture Notes in Computer Science, vol. 2852, Springer, 2003.

[24] Enterprise JavaBeans, URL:http://java.sun.com/products/ejb.
[25] D. Gelernter, N. Carriero, Coordination languages and their significance, Communication of the ACM 35

(2) (1992) 97–107.
[26] J. Gore, Object Structures: Building Object-Oriented Software Components, Addison Wesley, 1996.
[27] R. Grimes, Professional DCOM Programming, Wrox Press, 1997.
[28] H. Gumm, T. Schröder, Covarieties and complete covarieties, in [36], 1998.
[29] R. Helm, I. Holland, D. Gangopadhyay, Contracts: Specifying behavioural compositions in object-oriented

systems, in: Proceedings OOPSLA/ECOOP ’90, vol. 25, 1990, pp. 169–180.
[30] R. Hennicker, M. Wirsing, A formal method for the systematic reuse of specification components,

in: Methods of Programming, LNCS, vol. 544, Springer-Verlag, 1991, pp. 49–75.
[31] F. Huber, A. Rausch, B. Rumpe, Modeling dynamic component interfaces, in: M. Singh, B. Meyer, J. Gil,

R. Mitchell (Eds.), Proc. Technology of Object-Oriented Languages and Systems, TOOLS ’98, IEEE
Computer Society, 1998, pp. 58–70.

[32] B. Jacobs, Coalgebraic specifications and models ofdeterministic hybrid systems, in: M. Wirsing, M. Nivat
(Eds.), Algebraic Methods and Software Technology,Lecture Notes in Computer Science, 1101, Springer-
Verlag, 1996, pp. 520–535.

[33] B. Jacobs, Behaviour-refinement of object-oriented specifications with coinductive correctness proofs,
Report CSI-R9618, Computing Science Institute, University of Nijmegen. Also in the Proceedings of
TAPSOFT ’97, 1996.

[34] B. Jacobs, Inheritance and cofree constructions, in: P. Cointe (Ed.), European Conference on Object-
Oriented Programming, Lecture Notes in Computer Science, 1098, Springer-Verlag, 1996, pp. 210–231.

[35] B. Jacobs, J. Rutten, A tutorial on (co)algebras and (co)induction, Bulletin of EATCS 62 (1997) 222–259.
URL: http://www.cs.kun.nl/~bart/PAPERS/JR.ps.Z.

[36] B. Jacobs, L. Moss, H. Reichel, J. Rutten (Eds.),Proceedings of the First International Workshop on
Coalgebraic Methods in Computer Science, CMCS ’98,Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 11, Elsevier, 1998. URL:www.elsevier.com/locate/entcs.

[37] Jini, URL: http://www.sun.com/jini.
[38] J. Kok, Semantic models for parallel computation in data flow, logic- and object-oriented programming,

Ph.D. Thesis, Vrije Universiteit, Amsterdam, May 1989.
[39] G.T. Leavens, K.R.M. Leino, E. Poll, C. Ruby, B.Jacobs, JML: notations and tools supporting detailed

design in Java, in: OOPSLA 2000 Companion, ACM, Minneapolis, MN, 2000, pp. 105–106. URL:
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/TR.ps.gz.

http://www.elsevier.com/locate/entcs
http://www.omg.org
http://java.sun.com/products/ejb
http://www.cs.kun.nl/~bart/PAPERS/JR.ps.Z
http://www.elsevier.com/locate/entcs
http://www.sun.com/jini
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/TR.ps.gz

F. Arbab / Science of Computer Programming 55 (2005) 3–52 51

[40] E. Lee, D. Messerschmitt, An overview of the ptolemy project, Tech. Rep., Dept. of Electrical Engineering
and Computer Sciences, University of California at Berkeley, 1993.

[41] E. Lee, T. Parks, Dataflow process networks, Proceedings of the IEEE 83 (5) (1995) 773–799. URL:
http://ptolemy.eecs.berkeley.edu/publications/papers/95/processNets.

[42] E. Lee, A. Sangiovanni-Vincentelli, A framework for comparing models of computation, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 17 (12) (1998) 1217–1229.

[43] K.R.M. Leino, G. Nelson, An extended static checker for modula-3, in: K. Koskimies (Ed.), Compiler
Construction CC’98, Springer LNCS, vol. 1383, Lisbon, 1998, pp. 302–305.

[44] K.R.M. Leino, G. Nelson, J.B. Saxe, ESC/javauser’s manual, Tech. Rep. SRC-TN-2000-002, Hewlett
Packard Laboratories, October 15, 2000.
URL: http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-2000-002.html.

[45] S. Li et al., Professional Jini, Mass Market Paperback, 2000.
[46] B. Liskov, J. Wing, A behavioral notion of subtyping, ACM Transactions onProgramming Languages and

Systems 16 (6) (1994) 1811–1841.
URL: http://www.acm.org/pubs/articles/journals/toplas/1994-16-6/p1811-liskov/p1811-liskov.pdf.

[47] V. Matena, B. Stearns, ApplyingEnterprise JavaBeans: Component-Based Development for the J2EE
Platform, Java Series, EnterpriseEdition, Addison-Wesley, 2000.

[48] N. Mehta, M. Sirjani, F. Arbab, Effective modeling of software architectural assemblies using Constraint
Automata, Tech. Rep. SEN-R0309, Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Ams-
terdam, The Netherlands, October 2003. URL:http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0309.pdf.

[49] B. Meyer, Eiffel: TheLanguage, Prentice Hall, 1992.
[50] B. Meyer, Reusable Software: The Base Object-Oriented Component Libraries, Prentice Hall, 1994.
[51] R. Milner, Elements of interaction,Communications of the ACM 36 (1) (1993) 78–89.
[52] R. Milner, J. Parrow, D.Walker, Acalculus of mobile processes, parts I and II, Information and Computation

100 (1) (1992) 1–77.
[53] L. Moss, Coalgebraic logic, Annalsof Pure and Applied Logic 96 (1–3) (1999) 277–317.
[54] L. Moss, N. Danner, On the foundations of corecursion, Logic Journal of the IGPL 5 (2) (1997) 231–257.

URL: http://www.math.indiana.edu/home/moss/papers/corecursion-final.ps.gz.
[55] O. Nierstrasz, F. Achermann, A calculus for modeling software components, in [23], pp. 339–360.
[56] S. Oaks, H. Wong, Jini in a Nutshell, O’Reilly & Associates, 2000.
[57] P. Panangaden, F. van Breugel (Eds.), MathematicalTechniques for Analyzing Concurrent and Probabilistic

Systems, CRM Monograph Series, AmericanMathematical Society, ISSN: 1065-8599, 2004.
[58] G. Papadopoulos, F. Arbab, Coordination models and languages, in: M. Zelkowitz (Ed.), Advances in

Computers—The Engineering of Large Systems, vol. 46, Academic Press, 1998, pp. 329–400.
[59] D. Pattinson, M. Wirsing, Making components move: A separation of concerns approach, in [23], pp.

487–507.
[60] H. Reichel, An approach to object semantics basedon terminal coalgebras, Mathematical Structures in

Computer Science 5 (1995) 129–152.
[61] J. Rutten, Universal coalgebra: A theory of systems, Tech. Rep. CS-R9652, Centrum voor Wiskunde en

Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1996.
URL: http://www.cwi.nl/ftp/CWIreports/AP/CS-R9652.ps.Z.

[62] J. Rutten, Automata and coinduction (an exercisein coalgebra), Report SEN-R9803, CWI. Available at
URL: http://www.cwi.nl; Also in the Proceedings of CONCUR ’98, LNCS 1466, 1998, pp. 194–218.

[63] J. Rutten, Automata, power series, and coinduction: taking input derivatives seriously (extended abstract),
Report SEN-R9901, CWI. Available at URL:http://www.cwi.nl. Also in the Proceedings of ICALP ’99,
LNCS 1644, 1999, pp. 645–654 (1999).

[64] J. Rutten, Coalgebra, concurrency, and control, Report SEN-R9921, CWI. Available at URL:
http://www.cwi.nl. Extended abstract in: R. Boel, G. Stremersch (Eds.), Discrete Event Systems, Kluwer,
2000 (1999).

[65] J. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (1) (2000) 3–80.
[66] J. Rutten, Elements of stream calculus (an extensive exercise in coinduction), in: S. Brookes, M. Mislove

(Eds.), Proc. of 17th Conf. on Mathematical Foundations of Programming Semantics, Aarhus, Denmark,
23–26 May 2001, Electronic Notes in Theoretical Computer Science, vol. 45, Elsevier, Amsterdam, 2001.

http://ptolemy.eecs.berkeley.edu/publications/papers/95/processNets
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-2000-002.html
http://www.acm.org/pubs/articles/journals/toplas/1994-16-6/p1811-liskov/p1811-liskov.pdf
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0309.pdf
http://www.math.indiana.edu/home/moss/papers/corecursion-final.ps.gz
http://www.cwi.nl/ftp/CWIreports/AP/CS-R9652.ps.Z
http://www.cwi.nl
http://www.cwi.nl
http://www.cwi.nl

52 F. Arbab / Science of Computer Programming 55 (2005) 3–52

[67] J. Rutten, An application of coinductive streamcalculus to signal flow graphs, Tech. Rep. SEN-E0305,
Centrum voor Wiskunde en Informatica, Kruislaan413, 1098 SJ Amsterdam, The Netherlands, October
2003. URL:http://www.cwi.nl/ftp/CWIreports/SEN/SEN-E0305.pdf.

[68] J. Rutten, Component connectors, in [57], pp. 73–87 (Chapter 5).
[69] D. Sangiorgi, Asynchronous process calculi: the first-order and higher-order paradigms (tutorial),

Theoretical Computer Science 253.
URL: http://www-sop.inria.fr/meije/personnel/Davide.Sangiorgi/mypapers.html.

[70] J. Siegel, CORBA: Fundamentals and Programming, 1st edition, John Wiley & Sons Inc., New York, 1996.
[71] A. Snyder, Encapsulation and inheritance in object-oriented programming languages, OOPSLA ’86, 1986,

pp. 38–45.
[72] C. Szyperski, Component Software—Beyond Object-Oriented Programming, Addison-Wesley, 1998.
[73] M. Wirsing, R. Hennicker, R. Breu, Reusable specification components, Tech. Rep. MIP-8817, Passau

University, 1988.

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-E0305.pdf
http://www-sop.inria.fr/meije/personnel/Davide.Sangiorgi/mypapers.html

	Abstract Behavior Types: a foundation model for components and their composition
	Introduction
	A component manifesto
	Background and related work
	Abstract Data Types
	ADT and object oriented programming
	A bland notion of components
	Elements of a behavioral interface
	Abstract Behavior Types
	Streams and coinduction
	ABT examples
	Basic channels
	Merge and replicate
	Sum
	Philosophers and chopsticks

	ABT composition

	Reo
	Channels and connectors
	ABT models of nodes and connectors
	A cogent set of primitive channels
	Coordinating glue code
	Write-cue regulator
	Barrier synchronizers
	Ordering
	Sequencer

	Constant replacer
	Fibonacci series
	Dining philosophers
	Avoiding the deadlock
	Making of a chopstick
	Adaptation of a philosopher

	Microwave oven interface
	Exclusive router
	Selector
	Shift-lossy FIFO1
	Overflow-lossy FIFO1
	Sequencer with reset
	Cycler
	Valves
	Value menu
	Composing the microwave interface

	Conclusion
	Acknowledgements
	References

