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Abstract

The notion of Abstract Data Type (ADT) has served as a foundation model for structured and
object oriented programming for some thirty years. The current trend in software engineering toward
component based systems requires a foundation hasdeell. The most basic inherent property
of an ADT, i.e., that it provides a set of operations, subverts some highly desirable properties in
emerging formal models for components that are based on the object oriented paradigm.

We introduce the notion of Abstract Behavior Type (ABT) as a higher-level alternative to ADT
and propose it as a proper foundation model fohbmmponents and their composition. An ABT
defines an abstract behavior as a relation among a set of timed-data-streams, without specifying any
detail about the operations that may be used to implement such behavior or the data types it may
manipulate for its realization. The ABT model supports a much looser coupling than is possible with
the ADT's operational interface, and is inherently amenable to exogenous coordination. We propose
that both of these are highly desirable, if not essential, properties for models of components and their
composition.

To demonstrate theitility of the ABT model, we descbie Reo: an exogenous coordination
language for compositional construction of componsorinectors based on a calculus of channels.

We show the expressive power of Reo, and theliappility of ABT, throughanumber of examples.
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1. Introduction

An Abstract Data Type (ADT) defines an algebra of operations with mathematically
well-defined semantics, without specifying any detail about the implementation of those
operations or the data structures they operate on to realize them. As such, ADT is a
powerful abstraction and encapsulation mechanism that groups data together with their
related operations into logically coherent and loosely-dependent entities, such as objects,
yielding better structured programs. ADT has served as a foundation model for structured
and object oriented programming for some thirty years.

The immense success of object oriented teghes has distracted proper attention away
from critical evaluation of some of its underpinning concepts from the perspective of their
utility for components. We propose that the most basherent property of an ADT, i.e.,
that it provides a set of operations in its inté€, subverts some highly desirable properties
in emerging models for component based systems. This is already evident in the current
attempts at extending the object oriented models into the realm of components (see, e.g.,
Sectbns 3andb).

We introduce the notion of Abstract Behavior Type (ABT) as a higher-level alternative
to ADT and propose it as a proper foundation model for both components and their
composition. The ABT model is not meant as a substitute for ADT. Instead, it is meantas a
foundation forprogramming with componenés opposed tprogramming of components
which is what the ADT mdel and object oriented programming have proved to be suitable
and effective for. An ABT defines an abstract behavior as a relation among ateeedf
data-streamswithout specifying any detail about the operations that may be used to
implement such behavior or tliata types it may manipulate for its realization. In contrast
with the dgebraic underpinnings of the ADT model, the (generally) infinite streams that
are the elements of behavior in the ABT model naturally lend themselves to the coalgebraic
techniques and the coinductiogasoning principle that have recently been developed as a
general theory to describe the behawbrdynamic systems. The ABT model supports a
much looser coupling than is possible with ADT and is inherently amenable to exogenous
coordination. We propose that both of these aghlyidesirable, if not essential, properties
for components and their composition.

In our view, a component based system consists of component instances and their
connectors (i.e., the “glue code”), both of which are uniformly modeled as ABTSs. Indeed,
the only distinction between a component and a connector is just that a component is
an atomic ABT whose internal structure is unknown, whereas a connector is known
to be an ABT that is itself @anposed out of other ABTs. As a concrete instance of
the goplication of the ABT model, we desbe Reo: an exogenous coordination model
wherein complexaordinators, called “connectors” are compositionally built out of simpler
ones B,4]. Reo can be used as a glue language for compositional construction of connectors
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that orchestrate component instances in a component based system. We demonstrate
the surprisingly expressive power of ABT composition in Reo through a number of
exampes.

The rest of this paper is organized as follows.Saction 2we motivateour view of
components and their composition as a conc@ptiodel at a higher level of abstraction
than objects and #ir composition Section 3contains a brief overview of some related
work. We review theformal notion of abstract data types 8ection 4 and edborate on
its links with and implications ombject oriented programming iBection 5 We ague
that some of these implications impede tébility of component models based on the
object oriented paradigm to support flelebcomposition and exogenous coordination,
both of which, we propose, are highly desirable properties in component based systems.
Section 6s an informal description of our component model, an8attion Ave descdbe
its accompanying model of behavi@ection 8is an introduction to Abstract Behavior
Types and their composition. IBection Swe show how hannels, connectors, and their
composition in Reo are easily expressed as ABTs and their composition. Finally, we close
with our concluding remarks ifsection 10

2. A component manifesto

The abundance of the various (primariformal) definitions of what a component
is makes it difficult to assess the effectiveness of different models for component-
based software development. Some differences are often purely technological. Others are
more fundamental and sometimes render a side-by-side comparison of model features
uninformative, if not meaningless. In this section we present a pre-formal analysis of the
concepts and ideas behind the cornucopia of contemporary component models to identify
the commonalities of motivations that can in turn be seen as essential requirements of a
component model.

The bulk of the work on component based systems is primarily focused on what
components are and how they are to be comstd. Relatively little attention has been
paid to alternative models and languagesdomposingcomponents into (sub)systems,
which is typically considered tbe the purpose of the so-callglue code assumed to
be written in some scripting language. Clgacomponents and their composition are not
independent of one another: explicitly emphasizing one defines or at least constrains the
other as well, if only implicitly.

A conspicuous driving force behind the upsurge of interest and activity in component
based software is the recognition that the object oriented paradigm is not the silver-bullet
that some of its over-zealous advocates purported it to be. Nevertheless, presently, the
dominant view of what components are or should be reflects a prominent object oriented
legacy: components are fortified collections of classes and/or objects, with very similar
interfaces. It follows that the interactioamong and the compositimf components must
use mechanisms very similar to those for interactions among and composition of classes
and objects. Thus, the method invocation semantics of message passing in object oriented
programming becomes the crux of the companemposition mechasms in scripting
languages.
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This approach to components “solves” some of the problems that are rooted in the
inadequacies of the objectiented paradigm simply by shifting them elsewhere. For
instance, the relatively tight coupling that mbs estalished between a caller and a callee
pair of objects indeed disappears as a concern at the intra-component level when the two
objects reside in different componentinstances, but becomes an issue to be addressed in the
glue code and its underlying middleware used to compose those components. As long as
components and their interfaces are essentibysame as objects and their interfaces, the
(scripting) programs that constitute the glue code end up to be inherently no different than
other object oriented software. In complex systems, the body of such specialized glue code
can itself grow in size, complexity, intricacy, fragility, and rigidity, rendering the system
hard to evolve and maintain, in spite of the fact that this inflexible code wraps and connects
otherwise reusable, upgradéatand replaceable components.

An alternative view of components emerges if we momentarily ignore how they are
made or even what they are made of, emphagiinstead what we want to do with them.
Beyond fashionable jargon, hype, and merelyhtgical idiosyncrasies, if there is to be
any conceptual substance behind the term “component” deserving its minting, it must be
that components are less interdependent and are easier and more flexible to compose than
objects and classes. The definition of a clasanobject specifies the methods it offers to
other entities, and the method calls withirttbde of its methods determine the services
and entities it requires to work. This results in a rather tight semantic interdependence
among objects/classes and grants each iddali a significant degree of control over
precisely how it is composed with other classes or objects.

In contrast to objects and classes, it is highly desirable for components to be
semantically indepadent of one another and internally impose no restrictions on the
other components they compose with. Thislgs a level of composition flexibility that
is not possible with objects and clasSesd which is a prerequisite for another highly
desirable property in component based systems: we would like for the whole (system) to
be more than the mere sum of its (component) parts. This implies that it should be not only
generally possible to produce different grsis by composing the same set of components
in different ways, but alsohiat the difference between two systems composed out of the
sane set of components (i.e., the difference between the “more” than the “sum of the
parts” in each system) must arise out of the alctukes that comprise their two different
compositions, i.e., their glue code. The significance of the latter point is that it requires
the due mode to contribute to the semantics of the whole system well beyond the mere
so-called “wiring-standard-level” support provided by the current popular middleware
and component based technologies. On the other hand, we intuitively expect glue code
to be void of any application-domain spfcifunctionality: its job is merely to connect
components, facilitating their communicationdacoordinating their interactions, not to
perform any application-domain specific computation.

This leads to a subtlety regarding the interaction between glue code and components
which fundamentally impacts both. If the contribution of the glue code to the behavior

1 observe that generally speaking, it is the code fomttethods of an object that determines the other objects
it “composes with” to function properly. Thus, objectsisses “decide for themselves” how they compose with
each other and their composition generally cannot be determined or influenced from outside.
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of a composed system is no more than @wmtmg its components, facilitating their
communication and coordinating their interactions, then the difference between the
behavior of two systems composed out of the same set of components can arise not out
of any application-domain specific computation (and certainly not out of the components),
but only out of how the glue code connects and coordinates these components to interact
with one another. Since glue code is external to the components it connects, this implies
that (1) the components must be amenable to external coordination control and (2) the glue
code must contain constructs to provide sugtemal coordination. The first implication
constrains the mechanisms through which components can interact with their environment.
The second implication means that the glue code language must incorpoeabgarus
coordination modelZ].

Finally, if glue code is to have its own non-trivial semantics in a composed system, it
is highly desirable both for the glue code itself to be piece-wise explicitly identifiable,
and for the semantics of each of its pieces to be independent of the semantics of the
specific components that it composes. Thismpuaies the recognition of the glue code as
an identifiable, valuable software commodity, emphasizes the importance of its reusability,
and advocates glue code constructiomtiyh composition of reusable glue code pieces.

The notion of compositional construction of glue code out of smaller, reusable pieces
of glue code all but eliminates the conceptual distinctions between components and glue
code. This behooves us to find conceptual models and formal methods for component
based systems wherein the same rules for compositional construction indiscriminately
apply to both components as well as their glue code connectors. In such a model, the
(perhaps somewhat subjective) distinatisetween components artideir (pieces of glue
code) connectors still makes practical ssnalthough they are indistinguishable when
used as primitives to compose more complex constructs, components and connectors are
till different in that components are black-bgximitives whose internal structures are
invisible, whereas the interhstructure of a ®nnector shows that it, in turn, is constructed
out of other (connectoand/or component) primitives according to the same rules of
composition.

Although connectors contain coordination constructs that do not exist in purely
computational components, the ability teetscomposition of connectors and components
exactly as a (black-box) component in other compositions is crucial. The fact that
sweh (non-purely-computational) components may include connectors whose coordinating
effects can be discernible in the externally observable behavior of the components, blurs
an absolute distinction between components and connectors and makes it somewhat
subjective. It takes an encapsulation medeanwith the power of full abstraction to
allow components and connectors to be used indistinguishably. Examples presented in
Section 9.7.2and throughoutSection 9.8demonstrate the practical usefulness of the
interchangeability of coponents and connectors.

3. Background and related work

In popular models of components (e.g., Enterprise Java Bdayz=l], CORBA [70,20],
and DCOM R7]) component instances are fortified (collections of) objects. Consequently,
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they typically use variants of message passing with the semantics of method invocation
for inter-component communication. The tight coupling inherent in the method call
sanantics is more appropriate for intra-cpoment communication. In contrast, inter-
component communication invariably requires a minimum level of “control from the
outside” of the participating components. In order to break the tight coupling induced by
the method call semantics and reduce therdgpendence of components on each other,
the underlying middleware that supports these component models provides mechanisms or
entities (such as the ORB in CORBA) to intercept inter-component messages. Messages
may be intercepted to, for instance, pravidervces (e.g., binding and name servers),
enforce imposed constraints (e.g., suppress certain messages in certain states), ensure
protocols, and/or enact assigned roles. One way or the other, the middleware’s intervention
loosens the otherwise tight coupling that would be imposed by targeted active messages
(i.e., messages with method-invocation semantics) and furthermore, enforces a certain
restricted form of coordination from outside the components.

Intercepting and manipulating messages before they perform the methods that their
sender objects intend to invoke is also at the core of one of the most effective
contemporary approaches to Aspect Oriented Programming. The so-called Composition
Filters superimpose declarative rules for intercepting, filtering, re-routing, and changing
the message traffic among objects to support oeitder- and intra-tass cross-cutting
concerns13]. Composition Filters are most effective for imposing cross-cutting concerns
that can be related tondividual message contents. Protocol-related concerns that
involve mordination of flows of groups of messagesj., synchronization at transaction
boundaries, are more difficult, if not impossbko enforce through Composition Filters.
Nevertheless, this and similar approaches to Aspect Oriented Programming underline the
wider recognition of the inadequacy of the rigid semantic tie between messages and method
invocation even in the wadl of object oriented programming. They clearly show the
advantage of a paradigm based on a more abstract notion of messgugessiae data
over theactive messagesf object oriented programming whose immediate consequences
are strictly to invoke the designated methods of their target objects.

Coordination language25,58 offer an alternative for inter-component communica-
tion, as exemplified by Java8ges in the Jini architecturg,56,45. They impose a
stricter sense of temporal and spatial decoupling that supports a looser inter-component
semantic dpendency, compared with the method invocation semantics of message passing
in object oriented paradigms.

Most common component models define components as reusable binary units of
sdtware with interfaces that have no motban a syntactic content. This view of
components enforces information hiding in only a rather primitive way: the good practice
discipline of using questionably suggestiymbolic names in component interfaces non-
withstanding, such an interfacmes not reveal any of the externally relevant semantics
of the contents of its component. Such component models cannot support (semi-)formal
specification/verification of their external behavior.

A broader definition of components is offered by the Eiffel languag@5p,26]:
components are client-oriented software with the desirable property that a compgnent,
can be used by other programs that do not need to be knaxwiilds property is supported
in Eiffel through formal specification techoues which include pre- and post-conditions
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and invariants. In general, this notion of components requires enhanced specification and
verification technigues, as also observed by Hennicker and Wirgiggd.

Our notion of components7]8,22] uses channels as the basic inter-component
communication mechanism. A channel is a point-to-point medium of communication with
its own unique identity and two distinctnds. A channel supports transfer of passive
data only; no transfer of control (e.g., pracee calls, exchange of pointers to internal
objects/entities) can take place through a channel. Using channels as the only means
of inter-component communication allows a clean, flexible, and expressive model for
construction of the glue code for compomeomposition which also supports exogenous
coordination.

Synchronous channels are the basic primitivestitalculus p1,52]. Some of the
variants ofr-calculus and its asynchronous versiogg][have keen used in models
proposed for component interactiomda composition. Notably, Piccola5}] is an
experimental component cgrosition language based on a higher-order version of the
asynchronousr-calculus, extended with explicit name-spaces cafleuins Forms in
Piccola provide a unified mechanism to addresh aspects of component composition as
styles, scripts, and glue code. The agents and channels provided by Piccola’s underlying
calculus support the coordinatiogmct of component composition.

In contrast to such calculi, our notion of aireel is very general and we specifically
allow a variety of different channel types (even user-defined ones) to be used
simultaneusly and composed together. This differentiates our model from the way
channels are used in virtually all other channel-based models, which typically allow
only one or at most a small number of simple predefined channel types. Specifically,
our liberal notion of channels, the potency that our model derives from mixing and
composing channels of different types, ahdit consequent harmonious combination of
synchrony and asynchrony are unique. For instance, these features of our model are in
sharp contrast with the use of channels in the Ptolemy praj&%(,41] which ascribes a
single interpretation for its connecting channels in each context.

Asynchronous channels form the basis of the dataflow architecture for networks of
components as proposed and formally investigated by Broy and his gi&gi]f In
this architectural model, large systems can be realized, allowing programmers to easily
understand the input/output tevior of a system as the eposition of thebehavior of
its individual components. They also use data streams containing temporal markers for
component composition. Our model of componarposition is fundamentally different
than (even dynamic) dataflow models because it (1) supports a much wider and more
general notion of channels and differentadnel types; and (2) introduces the notion
of channel composition as the construct through which channels of arbitrary types are
connected to other channels, forming higher level and more sophisticated connectors for
component composition. Unlike Broy’s strearttse twin pairs of timed-data streams (see
Section 8.) that we use to model and compose component behavior cleanly separate
the flows of time and data, yielding singlsuccinct expressions for combining both
synchronous and asynchronous behavior, whadrether with our relational (in contrast
to Broy's functional) composition, empower exogenous coordination.

Inspired by both ADTs and imperative programming, a common approach to model
externally observable behavior, particularly in object oriented settings, amounts to
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Stack Queue
S stack data boolean S  queuedata boolean
O: top(s) - d O: first(q) — d
pop(s) — s deqq) — g
pushs,d) — s endq, d) - q
emptys) - b emptyq) — b
A emptyr) = true A emptyxr) = true
emptypushs, d)) = false emptgenqq, d)) = false
top(pushs, d) = d firsttenqa, d)) = d
pop(pushs, d) =s firsttengenqq, dp), dp)) = first(enqq, dq))
pop(r) = €1 degengx, d)) = &
pop(eq) = €1 degengendd, dy), d2)) = enqdeqenqa, d), dp)
top(h) = € deqir) = €1
top(eg) = €3 deqeg) =€
emptye1) = €4 first(A) = €2
first(eq) = €3

emptyer) = e4

Fig. 1. Abstract Data Types for stack and queue.

characterizing behavior in terms of messagguences, where a message represents an
(ADT) operation or a method #aas exemplified, e.g., by the notion of behavior used for
composition with contract®2P] and behavioral subtyping46]. In contrast, our notion of
behavior is more abstract and dataflow-likéhere the externally olesvable behavior of

an entity is characterized in terms of its infoutput sequences of passive data. The fact
that passive data can be interpreted as messages that invoke methods or operations means
that our notion of behavior ist éeast as expressias those based on operation sequences.
Our model is more abstract because our segegrmontain only atoroj uninterpreted,
untargeted data that can interchangeably be sent to and received from any source or target.
Method invocation sequences, on the othardha&ontain typed messages and the structure
and type of a message determine the operation it invokes. Each receiver must specify (at
least) the set of message types it accepts in its signature. Regardless of how much of the
semantics of the operations is reflected iis thignature ath to what etent it is used in
composition, as we argue Bection 5the operational view of behavior stifles exogenous
coordination and composition.

4, Abstract Data Types

Formdly, an ADT is a triplet(S, O, A), whereSis a set ofsortsdenoting the required
types,Ois a set obperaorsoverS, andA is a set ofaxiomswritten as algebraic equations
defining the results of various combinations of operation® ion data items of various
types inS.
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For exampleFig. 1 shows the fanal ADT definitions for the two common data types
stack and queue, in separate columns. Th&seintainsstack data, andbooleantypes for
stack, andjueuedata andbooleantypes for queue. We useq, d, andb to represent items
of typesstack queue data andboolean respectively. Furthermore, in the stack column
in this figurea is an item of typestackrepresenting the empty stack, and likewise in the
queue columm is an item of typegueuerepresenting the empty queue. Similarly, in each
columne; ande; are special error values of their respective types.

The setO in each column defines the signature of four operations. For the case of the
stack,top(s) is expected to produce the data item at the top of the tgadp(s) is expected
to produce the stack obtained by removing the data item at the top of thessgact(s, d)
is expected to produce a stack obtained by pushing the datalitemtop of the stack; and
emptys) is expected to produce a boolean indicating whether or not the steckmpty.

For thecase of the queurst(q) is expected to produce the first data item at the head of the
queueq; deqq) is expected to produce the queue obtained by removing the first data item
at the head of the quewgdequeuk enqq, d) is expected to produce a queue obtained by
adding the data iterd to the tail endof the queuea (enqueuk andemptyq) is expected

to produce a boolean indicating whether or not the gueiseempty. Of ourse, the sed
contains only the signatures of these operatiand as such it is void of any formal hint of
what they (are expected to) do.

It is the set of axiomsA, that formally defines the semantics of the operation®in
in terms of their mutual effects on each ath the case of the stack, the two axioms
for the emptyoperation tate that (1)emptyr) = true, and (2)emptyapplied to a stack
obtained from goushoperation on any stack yieldalse Thetop axioms state that (1)
top applied to the empty stack yields an erref)( and (2)top applied to a stack obtained
from pushing the data itemt onto some othestack, yieldsd. The pop axioms state that
(1) popping a stack obtained from pushing a data item onto some other stgihds s;

(2) popping an empty stack yields an errer)( and (3) popping this error value yields the
same error value. Any stack is canonically represented as a sequepositdperations
that add data items on the result of their precegingh stating with the empty stack,
e.g.,pushpush(push pushx, di), d2), d3), d4). An expression that cannot be transformed
into such a canonical form, e.goush( push pop(pop(pushx, d1))), do), d3), isnot a legal
stack.

Many of the queue axioms are analogous to their respective stack axioms. The axioms
for first and degare a bit more interesting. Any queue is canonically represented as a
sequence okngoperations that add data items on the result of their precetfiggtating
with the empty queue; e.cengengengeng, di), dz), d3), ds). Thefirst axioms state
that to find the first element in a queue, wesh“peel” it away until we reach the empty
queue, at which point we obtain the first data item at the head of the queue. Thus:

firsttengengengengx, di), d2), d3), dg))
= first(engengeng, di), dz), ds))

= first(engenq, dy), dy))

= first(eng, di))

= dj.
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Analogously, deq peels away the canonical representation of a queue, but it also
reconstructd as it moves inside. For instance:

degengengengenqa, di), d2), ds), da))
= engdeqengengenga, dy), d2), d3)), da)
= engenqdeqgengenga, dy), d2)), ds), dag)
= engengenqdegeng, di1)), d2), d3), da)
= engengengx, d), d3), da).

These examples show that an ADT defines a data type in terms of the operations
on that data type and how they mutuallyfeatt each other by altering the structure
of some canonical representation. It abstracts away from the implementation of those
operations and the data structures they manipulate. The semantics of an ADT is given as
algebraic equations. The strong conceptual link between abstract data types and object
oriented programming stems from the common manner in which they associate data
and the operations that manipulate them together. The ADT for a fypdefines all
opeations applicable to entities of typk It encapsulates the representationfodnd the
implementation of its operations. This prevents manipulation of the entities ofTtype
any way other than through its own defined operations.

5. ADT and object oriented programming

Their common aspiration to (1) encapsulate data structures behind operations that
manipulate them, and (2) hide the details of those operations as well, has made ADT
a aitable foundation model for object oriented programming. An ADT can be seen as
a formal desription of the interface of an object/class. This encapsulation significantly
loosens the coupling between the implementation of an ADT (or object/class) and other
code that can use it only through its prescribed operations. The operational interface of
an ADT (or object/class) also readily suppogtgensibility in the form of polymorphism.
Extensibility in object oriented programmirygpically goes beyondnere polymorphism,
through some form of inheritance that gives rise to object/class hierarchies.

In contrast to the declarative, state-less nature of ADT definitions, popular object
oriented programming languages are impigmand carry the semantics of operations
of objects/classes in their states. Exposing their states exposes the object/class semantics
they carry, but it breaks their encapsulationdidp their states enforces encapsulation, but
it also obscures the semantics of operations by making their effects invisible. Exposing
the £mantics of their operations without exposing object/class states becomes a non-
trivial isste in imperative object oriented languages. Although a formal semantics of its
operations is an integral part of the definition of an ADT, object/class interfaces in popular
object oriented languages are purely syntactic and contain no semantics. Moreover, the
explicit definition of the set of all sorts (both provided and required) by an ADT has
no correspondence in the object/class irdteefdefinitions in main-stream object oriented
languages: they do not mention what their respective objects/classes require, but specify
only the operations that they provide.

The differences between the ADT model and imperative object oriented programming
give rise to a number of problems that have already been discussed extensively in the
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literature. Some counter-measures for proldexich as the conflict between inheritance

and encapsulation/[l], the purely syntactic nature of interfaces, and their asymmetric
specification of offered/required servicesaue keen integrated in the design of certain
more advanced models for object oriented languages, systems, and compé®601%9,
39,4344,26,72]. They introduce annotations and features that incorporate some semantics
in the definitions of classesnd objects and respect them in their inter-relationships
and use. A notion of behavior as sequences of operations underlies these features, e.g.,
behavioral subtyping46] and contracts for object compositior29]. In their extreme,
welcome methods that expose and enforce (more of) the semantics of classes and objects
in their interfaces may demystify the semantics of these imperative pieces of software into
declarative formulas as succinct andeditly susceptible to formal reasoning as ADTSs.
What has not been explored so explicitly and extensively in the literature is how message
passing in the object oriented paradigm, i.e., the operational interface of the ADT model,
affects software composition and what alternative mechanisms can be used in its place for
components. We argue here that the elegance of the ADT model and the usefulness of
the object oriented languages non-withstanding, software construction using components,
their composition, and their coordination involve issues that are not only ill-served, but also
actually subverted by the operational nature of ADTs and its manifestation as the method
invocation semantics of message pagsn the object oriented paradigm.

The method invocation semantics of object oriented message passing implies a rather
tight semantic coupling between the caller and callee pairs of objects. By this semantics, if
an objectt sends a message p) to another objece, thenc is invoking the methoan of e
with the actual parameteps For this to hgpen:

e c must know (how to find;

e c must know the syntax and the semantics of the methodle;

e emust (pretend to) perform the activated methoon parameteng, and réurn its result
to c upon its completion (the “pretense” refers to wleatelegates the actual execution
of mto a third object); and

e C typically susgnds between its sending of and the receiving of its (perhaps null)
restit.

Notonly is this “rendezvous semantics” far from trivial, it is still susceptible to significantly
different and mutually incompatible variations (e.g., with synchronous vs. asynchronous
message passing, active vs. passive objects, etc.). Underneath the precise semantics of this
rendezvous and its various incarnations in different object oriented models, is a strong
conceptual link with ADT.

By its virtue of providing a set of operations, all that one cinwith an ADT is to
performone of its operations. Similarly, the fact that an object provides a set of methods in
its interface means that one aagmnothing with an object but tiovokethose methods. This
operational interfacgof objects or ADTSs) induces an asynetric, unidiectional semantic
dependency of users (of operations) on pdevs (of those operations). On the one hand,
the operations provided by an ADT (or object) can be used by any other entity (that has
access to it). On the other hand, an ADT internally decides what operation of what other
ADT to perform. Ths puts users and providers in asymmetric roles. Users intermalke
the decision®n what operations are to be performed, and generiyon somespecific
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sanantics that they expect of these operatjavisle it is left to be the responsibility of the
providers tocarry out the decisiongnade by the users gatisfytheir expectations.

Farfrom a universal pitfall, it can even be argued that the presumed level of intimacy
required among a set of objects composed together through message passing, is an
advantage in building individual components. However, at the inter-component level,
sweh intimacy subverts independence of components, contributes to breaking of their
encapsulation, and leads to a level of inter-dependence among components that is no
looser than that among objects within a component. This is not so much a shortcoming
or deficiency of the ADT model. Rather, it highlights the inappropriateness of using the
ADT model for purposes it was not meant to serve in the first place. To achieve the level
of independence that is desirable for int@mponent communication, we need a different
model based on non-operational interfatteavoid targeted active messages.

6. A bland notion of components

In a programming paradigm where (instances of) components are its primitive building
blocks, all decisions about what components are to be used and how they are to
be composed together to build an application must necessarily be made from outside
of the application’s constituent componentsrtiselves. This implies that generally, a
component cannot be allowed to internally decide on the components that it composes
and communicates with. This simple observation renders ADT unsuitable as a model for
components. If a component, like an ADT, provides a set of operations, then the only
way to communicate with a component is byokingits operations, and inter-component
communication becomes the same as inter-object communication. A formal model for
components must provide an inter-component communication mechanism that affords a
higher level of mutual independence toneponents than the ADT model does. In this
section, we consider an alternative (to the ADT-style method invocation) communication
mechanism as the crux of our definition of a component. The notion of component
introduced in this section is then further refined and formalize8ention 8as Abstract
Behavior Types.

Instead of relying on targeted active messages for inter-component communication,
our component model allows a component instance to exchange only untargeted, passive
messages with its environment. Passive messages contain only data and carry no control
information (e.g., imply no method invocati). Not implying the exchange of any control
information makes passive s&ages mre abstract and more flexible than active messages.

For instance, because no form of “call”’ is joied, the receiver of a message need not
interpret the message as an operation that it must perform. The receiver of a message is not
even obligated to reply. Consequently, the sender does not necessarily suspend waiting for
a result &her. Passive messages allow interceptiderfing, redirection, and manipulation

of messages to be done, when necessary, all as legitopatations on datas opposed to

active messages which require ad hoc transparent entities outside of or superimposed on a
programming model to perform such actions.

Untargeted messages break the asymmetry between senders and receivers that is
inherent in models based on targeted messagith targeted mesgas, the knowledge
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of who the receiver of a message is, or at least how it can be identified, must be contained
in its sender. The receiver of a message, on the other hand, is not required to know anything
about its sender beforehand: it is preparereeive messages “from its environment” not
from any specific sender. This asymmetry makes the sender of a message semantically
dependent on (the properties and the schesed to identify) its receiver. This inherent
semantic dpendency creates an obligation for the environment to fulfill on behalf of this
intended receiver that stifles exogenous coordination by severely restricting the ability of a
third party to, e.g., set up theteraction of such a sender with a receiver of its own choosing
instead of the one prescrib&g the sender. With untargeted messages, both senders and
receivers symmetrically exchange messages only with their environment, not with any pre-
specified entity.

In contrast to the more sophisticated macisms necessary for exchanging targeted
passive messages, or even more sophisticated ones to support (remote) method invocation
for active messages, the mechanism necessary for exchanging untargeted passive messages
essentially supports only the mundane 1/0O primitives: an untargeted message itself is
merely some passive data that an entity exchanges with its environment; “sending” such
a message is just a write operation; and “reasj” it is just a “read” operation. The I/O
operations read and write are performed by a component instance on “contact points” that
are recognized by its environment for the purpose of information exchange. We refer to
these contagboints as theorts of a component instance. Without loss of generality, we
assume ports are unidirectional, i.e., the information flows through a port in one direction
only: either from the environment into its component instance (through read) or from its
component instance to the environment (through write). Each I/O operation inherently
synchronizes the entity that performs it with its environment: a write operation suspends
until the environment acceptsdltata it has to offer through its respective port; likewise,

a read operation suspends until the environment offers the suitable data it expects through
its respective port.

This view of component communication leads to a generic component model. In this
model,a component instanceis a black box that contains one or more active entities.

An active entity is one that has its own independent thread of control. Examples of active
entities are processes, threads, active objects, agents, etc. No assumption is made in this
model about how the active ines inside a componentstance communicate with each

other. Howeversimple I/O operations on passive data exchanged through its ports

are the only means of communication for the active entities inside a component

instance with any entity not in the same component instance. By this definition, a

Unix process, for instance, qualifies as a component instance: it contains one or more
threads of control which may even run in parallel on different physical processors, and its
file descriptors qualify as ports. A component instance may itself consist of a collection

of other component instances, perhaps running in a distributed environment. Thus, by
identifying their relevant ports through which they exchange data with their environment,
entire systems can be viewed and used as component instances, abstracting away their
internal details of operation, strurce, geography, and implementation.

Swh a simple model of components may at first appear rather banal. Nevertheless,
it leads to a simple yet useful notion of kmkor and behavioral interface. One of the
strengths of this model is that it innateBspouses anonymousmmunication: entities
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that communicate with each other need not keaeh other. It makes the model inherently
amenable to exogenous coordination and sugguoghly flexible conposition possibilities,
yielding a very powerful paradignof component/behavior composition.

7. Elementsof a behavioral interface

There are different ways in which one can represent behavior. Given our model of
components, the most direct and obvious way to represent the observable behavior of a
componentinstance is to model it as a tigla on its observable input and output. Because
thisinput/output takes place through the ports of the componentinstance, sequences of data
items that pass through a port emerge as the key building blocks for describing behavior.

Rdating sequences of data items that pass through different ports of a component
instance requires a sense of relative tempordeér to inter-relate otherwise independent
events. We need to state, for instance, that a certain data item passes through this port
before or after some other data item passes through that port. The assumption of a global
clock is stifling in distributed systems and is an overkill for our purpose. Indeed, what we
need is a very dilted notion of time that is much less restrictive than the notion of global
time. We need to accommodate for:

e ordering of events. stating that the occurrence of a t&in event precedes or succeeds
that of another;

e atomicity of a set of events: staing that agiven set of events occur only atomically;

e temporal progression: staing that only a finite set of events can occur within any
bounded temporal interval.

Observe that w do not speak ofsimultaneityin our list of requirements here.
Simultaneity is a rather ambiguous notion in distributed systems. Instead, we speak of
atomicity. The atomicity of a set of events means that either none of them occurs, or else
they all occur before any oth@vent fot in that set) occurs, i.e., the occurrence of an
atomic set of events cannot be interleaved with the occurrence of any other event. Stating
that a set of events must oacatomicdly allows but does not mguire (any subset of)
those events to occur simultaneously. It also allows for those events to occur in any non-
deterministic order, so long as either they all occur or none occurs at all. Atomicity can
be seen as a relaxing generalization of dtameity. It is as if an atomic set of events all
happen “simultaneously”, except that we elongate the moment of their occurrence into a
temporal interval. The provision that no other event may interleave with the occurrence of
those in the set ensures that our “elongation of the time moment into an interval” is not
detectable by other entities in the system.

Requiring that only a finite set of events can occur within any bounded temporal interval
precludes anomalies such as Zeno's paradox.

A pattial order over a dese set satisfies the requirements of our diluted notion of time,
characterized above. As such, in the terminology4d,[we are primaily interested in
anuntimedmodel of computation. Imposing the stricter requirement of total order yields
a timedversion ofour model, which is not our concern in this paper. Nevertheless, we
use postive real numbers to represent our timeesms, because of their familiarity and
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simplicity, with the proviso that it is not the actual numeric values of the time moments,
nor the total order on the real numbers, but only their relative ordering that is significant.
The numerical less-than relation represents the ordering of events. The numeric equal-to
relaion represents atomicityjot simultaneity. Temoral progression can be enforced by
requiring that in every temporal sequerscdor anynumberN > 0 there ejsts ani > 0

such ttat theith element ira exceeds\.

8. Abstract Behavior Types

An ABT defines an absdct behavior as a relation among the observable input/output
that occurs through a set of “contact points” (e.g., ports of a component instance) without
specifying any detail about: (1) the operations that may be used to implement such
behavior; or (2) the data types those operations may manipulate for the realization of
that béavior? This definition parallels that of an ADT, which abstracts away from the
instructions andhe data structures that may be used to implement the operational interface
it defines for a dataype. In contrast, an ABT defines what a behavior is in terms of
a relation (i.e., constraint) on the obsel@ input/output of arentity, without saying
anything about how it can be realized.

There are several different ways to formalihe oncept of ABT. For instance, process
calculi, Petri nets, logic expressions, automata, or labeled transition systems can be used to
describe transformations of input to output sequences of observables. Process calculi tend
to emphasize processes rathert explicit expression of their input/output behavior. Petri
nets are too low level to directly represent the rich set of behavioral relations involving non-
determinism, combination of synchrony and asynchrony, and compositionality that we are
interested in. Automata can characteribe telation among the observable input/output
saquences of an ABT in an operational style. Indemmhstraint automat§10] conditute
an appropriate formalization of the ABT adel, precisely because they were devised
to represent theperational semantics of Reo connector circuits for model checking.
Constraint automata can be considered generalizations of probabilistic automata, where
dda constraints, instead of probabilities, label state transitions and influence their firing.
Timed-data-streams, which constitute tlwuridation of the coalgebraic semantics of
Reo ,69], are also the referents in the language of constraint automata. Constraint
automata seem to be more useful than labeled transition systems for modeling of systems
composed of both synchronous and asynchromougponents, because in practice, their
composition tends to yield smaller modefs].

In this paper, we do not further elaborate on labeled transition systems or constraint
automata. Instead, we formally define an ABT to be a (maximal) relation among a set of
timed-data-streams. We pretéis particular formalizatio here because it emphasizes the
relational aspect of the ABT model explicithypd abstracts away amjnt of an underlying
operational semantics of its implementation. This helps to focus on behavior specifications
and their composition, rather than on operations that may be used to implement entities
that exhibit such behavior and their interactions.

2The term “Abstract Behavior Type” is a variation ofi¢ term “Abstract Behavioral Type” proposed by
F. de Boer fo a relded concept.
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The notion of timed-data-sams as well as most of the ketcal content in this section
comes from the work of J. Rutten on coalgebré$ 35, stream calculus€g6], and a
coalgebraic semantics for Re6,6§8]. Coalgebraic methods have been used for signal
flow graphs, dynamical systems, automata and formal languages, modal logic, transition
systems, hybrid systems, infinite data types, the control of discrete event systems, formal
power series, etc. (see for instan&d,67,65,53,54,62-64,2832]). Coalgebras have also
been used as models for various programming paradigms, notably for objects and classes
(see, e.g.,60,34], and [33]). One of the first applications of coalgebras to components
appears in 11]. Analogous to the way in which algedic methods constitute suitable
models for the syntactic structure of systems, from its inception, the coalgebraic approach
was implicitly recognized as a promising matatical foundation for modeling the
dynamic behavior of (concurrent) systems. The coalgebraic formulation of the ABT model
presented here shows this contrast between structure and behavior in comparison with the
algebraic formulation of the ADT model iBection 4

Defining observable behavior in terms of input/output implants a dataflow essence
within ABTs akin to such dataflow-like networks and calculi a21,88], and
especially 17]. The coalgebraic model of ABT prested here differs from all of the
above-mentioned work in a number of respects. Most importantly, the ABT model is
compositional. Its explicit modeling of ordering/timing of events in terms of separate
time dreams provides a simple foundation for defining complex synchronization and
coordination protocols using a surprisingly expressive small set of primitives. The use
of coinduction as the main definition andopf principle to reason about both data
and time streams allows simple compositional construction of ABTs representing many
different generic coordination schemes involving combinations of various synchronous
and asynchronous primitives that are not present (and not even expressible) in any of the
aforementioned models.

8.1. Streams and coinduction

A stream(over A) is an infnite sequence of elements of some AefThe set of all
streams oveR is denoted asA”®. Streams inDS = D® over a set of ninterpreted) data
items D are calleddata streamsand are typically denoted as 8, y, etc. Zep-based
indices are used to demothe hdividual elements of a stream, e.g(0), (1), x(2), ...
denote the first, second, third, etc., elements of the steede use the ink “dot” as the
stream constructox.« denotes a stream whose first elementésd whose second, third,
etc. elements are, respectively, thetfasdits successive elements of the stream

Fadlowing the conventins of stream calculu$f)], the well-known operations of head
and tail on streams are calléwitial value and derivative: the initial value of a stream
a (i.e., its head) isa(0), andits (first) derivative (i.e., its tail) is denoted as. The
kth derivative ofx is denoted asx® and is the stream that results from taking the first
derivative ofa and repeating this operation on the resulting stream for a totaliofes.
Relationaloperators on streams apply pairwise to their respective elementsy g4
meansy(0) > B(0), (1) > (D), a(2) = B(2), .. ..

Constrained streams ifiS= R¢ over positive reahumbers representing moments in
time are calledime streamsand are typically denoted asb, c, etc. Toqualify as atime
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stream, a seam of real numbemsmust be (1) stctly increasing, i.e., the constraiat< a’
must hold; and (2) progressive, i.e., for evéty> 0 there must €st an ndexn > 0 such
thata(n) > N.

We use positive real numbers instead of natural numbers to represent time because,
as observed in the world of temporal logitZ], real numbers induce the more abstract
sense ofdense timenstead of the notion ofliscree timeimposed by natural numbers.
Specifically, we sometimes need finitely many steps within any bounded time interval for
certain ABT equivalence proofs (see, e.§]).[This is clealy not possible with a discrete
model of time. Recall that the actual values of “time moments” are irrelevant in our ABT
model; only their relative order is significant and must be preserved. Using dense time
allows us to locally break strict numerical equality (i.e., simultaneity) arbitrarily while
preserving the atuicity of events.

A Timed Daa Streamis a twin pair of streamsx, @) in TDS = DS x TSconsisting
of a data streanw € DS and a time streana € TS with the interpretation that
for all i > 0, the input/output of data itema(i) occurs at “time momenta(i). Two
timed data stream&v, a) and (g, b) are equal if their respective elements are equal, i.e.,
(,a) = (B, by=a=BAra=h.

An Abstract Behavior Typ€ABT) is a (maximal) relatio overtimed data streams.
Every timed data stream involved in an ABT is tagged either agfist or its output
The input/output tags of the timed data streams involved in an ABT are meaningless in
the relation that defines the ABT. However, these tags are crucial in ABT composition
described irSection 8.3

Generally, we use the prefix notatioR(l1, l2,...,Im; O1,02,...,0n) and the
separator “;” to designate the ABT defined by thetn)-ary relationR over them > 0 sets
of input timed data streamg 0 < i < mand then > 0 sets ofoutput timed data streams
0, 0 < j < n. Asusualm+ nis called thearity of Rand we refer ton andn individually
as theinput arity and theoutput arity of R. In the sgcial case wheren = n = 1 it
is sometimes convenient to use the infix notatidR O instead of the standarg(l; O).

To distinguish the set of timed data strearhattappears in a position in the relation that
defines an ABT (i.e., a column in the relai) from a specific timed data stream in that set
(i.e., which may appear in a row of thelation in that position) we refer tp andQ; as,
respectively, théth input and théth outputportals of the ABT.

Formally, a component, as defined$ection 6 with m > 0 inputandch > 0 output ports
is an ABT withm input andn output portals. The set of all possible streams of data items
that can pass through each port of the compartegether with their respective timing,
comprise the set of timed data streams of the ABT’s portal that corresponds to that port.

8.2. ABT examples
In this section we show the utility of theBY model through a number of examples.

8.2.1. Basic channels

Folowing is a list of some useful simple kany abstract behavior types. Each has a
single input and a single output portal.
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(1) The behavior of aynchronous channés captured by th&ync ABT, defined as
(@, @) Sync (B, b) = (@, a) = (B, b).

Becaus€w,a) = (8,b) = @« = B A a = b, theSync ABT represerg thebehavior
of any entity that (1) produces an output dak@am identical to its input data stream
(e = B), and (2) produces every element in its output at the same time as its respective
input element is consumed & b). Recall that “at the same time” means only that the
two events of consumption and production of each data itemdyyna channel occur
atomically.

(2) The behavior of an asynchronous unbounBdeD channelis captured by th&IF0
ABT, defined as

(a,@) FIFO (B,b)=a =B Ara<h.

TheFIF0 ABT represents the behavior of any entity that (1) produces an output data
stream identical to its input data stream£ ), and (2) produces every element in its
output some time after its respective input element is obseevedk).

(3) The behavior of an asynchronous channel with the bounded capacity of 1 is captured
by theFIF0; ABT, defined as

(0, @) FIFO1 (B, b)=a =B Ara<b<ad.

TheFIF0; ABT represents the behavior of any entity that (1) produces an output data
stream identical to its input data stream+£ g), and (2) produces every element in its
output some time after its respective input element is observedlf) but before its
next input element is observel & & which meand(i) < a(i + 1) foralli > 0).

(4) The behavior of an asynchronous channel with the bounded capacity of 1 filled to
contain the data iter® as its initial value is captured by th/aF01(D) ABT, defined
as

(o, @) FIFO1(D) (8, by =B=D.anb<a<l.

TheFIF01(D) ABT represents the behavior of any entity that (1) produces an output
data streanB = D.« consisting of the initial data iter® followed by the input data
streama of the ABT, and (2) fori > 0 peforms itsith input operation some time
between itsith andi + 1st output operationd(< a < b).

(5) The behavior of an asynchronous channel with the bounded capadity=0f0 is
captured by th&€IF0x ABT, defined as

(¢, @) FIFOx (B, b)=a =B Ara<b<a®.

Recall thea® is thekth-derivative (i.e., théth-tail) of the streana. TheFIFOx ABT
represents the behavior afiyentity that (1) produces an quit data stream identical
to its input data streamx(= ), and (2) produces every element in its output some
time dter its respective input element is observad<{ b) but before itskth-next input
element is observed (< a® which meand(i) < a(i + k) foralli > 0). Observe that
FIFO0; is indeed a special case BIF0y with k = 1.

It is illuminating to compare th€IF0 ABT defined above with the definition of the
queue ADT inFig. L They areboth mathematically well-defined constructs that describe
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the same thing: an unbounded FIFO queue. The ADT defines a queue in terms of a set
of operations and a set of axioms that constrain the observable mutual effect of those
operations on each other. It abstracts awayattteial instructions for the implementation

of those operations and the data structures that they manipulate. The ABT defines a queue
in terms of what data items it exchanges with its environment, when it consumes and
produces them, and a set of axioms that constrain their interrelationships. It abstracts away
the operations for the realizatigor enfacement) of those relationships and the data types
that they may utilize to do so.

8.2.2. Merge and replicate
We now define two dher ABTSs that, as we see Bection 9 form a foundation for an
interesting and expressive calculus: meiad replicator. The merger ABT is defined as:

Mrg({e, @), (B, b);(y,c)) =
a(0) = y(0) A a(0) = c(0) A Mrg({/, ), (B, b);(y’, c)) if a(0) < b(0)

dt:a(0) <t < min(a(l), b(1)) A3dr,se {a(0),t} Ar £sA if a(0) = b(0)
Mrg({e, r.a’), (B,s.0');(y, c)
B(0) = y(0) A b(0) = c(0) A Mrg({e, @), (B, 0);(y’, ¢)) if a(0) > b(0).

Intuitively, the Mrg ABT produces an output that is a merge of its two input streams.
If «(0) arrives before8(0), i.e., a(0) < b(0), then he ABT produces/(0) = «(0) as
its ouput atc(0) = a(0) and proceeds with the tails d¢fie streams in its first input
timed data stream. l&(0) arrives after8(0), i.e.,, a(0) > b(0), then he ABT produces
y(0) = B(0) as its output at(0) = b(0) and proceeds with theails of the streams
in its second input timed data stream. If t€0) and 8(0) arrive “at the same time”
(i.e., a(0) = b(0)), thenin this formulationMrg picks an arbitrary numbet in the
open time intervala(0), min(a(1), b(1))) and uses it to non-deterministically break the
tie. The assumption of dense time guaeses the existence of an appropriaté&ecall
that the construct.a’ is a stream whose derivative (tail) & and whose initial value
(head) isr. Thus, fora(0) = b(0) Mrg non-deterministically changes the head of one
of the wo time streamsa or b, thereby “delaying” the arrival of its corresponding data
item to break the tie. The finite delay introducedMyg in this case is justified because
although it breaks simultaneity, its value is constrained to preserve atomicity. Observe that
Mrg({e, a), (B, b);(y, €)) = Mrg({B, b), (o, @);{y. C)).

The replicator ABT is defined as:

Rpl({x, @);(B,b), (y,cH) =B=aAny =aAb=anc=a

It is easy to see that this ABT captures the behavior of any entity that
synchronously replicates its input stream into its two identical output streams. Observe

thatRpl((c, a);(8, b), (. ¢)) = Rpl({e, @);{y. ¢}, (8, b)).

8.2.3. Sum
As an example of an ABT that performs sonmputation, consider a simple dataflow
adder. The behavior of such a componentis captured bgtin@ABT defined as
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Sunt{e, a), (B, b);(y, c) =
y(0) = a(0) + B(O)A
Jt:maxa(0), b(0)) <t < min(a(l), b(1)) A c(0) = tA
Suni(a’, &), (B, 0');(y’, ¢)).

Sumdefines the behavior of a component that repeatedly reads a pair of input values
from its two input ports, adds them up, and writes the result out on its output port. As such,
its output data stream is the pairwise sum of its two input data streams. This component
behaves asynchronously in the sense that it can produce each of its output data items
with some arbitrary delay after it has read both of its corresponding input data items
(c(0) =t At > maxa(0), b(0))). However, it is obligated to produce each of its output
data items before it reads in its next input data itéra (nin(a(1), b(1))).

8.2.4. Philosophers and chopsticks

The classical dining philosophers problem can be described in terms>0fl pairs
of instances of two components: philosopher instanceBhilf and chopstick instances
of Chop. We define the externally observable behavior of each of these components as
an ABT. We show inSection 9how instances of these components can be composed
into different component based systems both to exhibit and to solve the famous deadlock
problem.

We assume that a chopstick component has two input paffis; take andf (for free),
through which it reads in the timed data streaims a;) and({«s, af ), resgectively. The data
items ina; andg; are tokens whose actual values are not of interest to us. In practice, it is
agood idea for these tokens to contain the tifear of the entity (e.g., philosopher) who
uses the chopstick, but as long as such informative requirements do not affect behavior,
they are irreleant forour ABT definition.

When a chopstick is free (its initial state) it is ready to accefatk@request and thus
reads from itg port the next take request token out(af, a;). Once taken, a chopstick is
ready to accept freerequest and thus reads from ftport the free request token out of
(af, af). For the user of the chopstick, the success of its I/0 operation ort poftmeans
the chopstick has accepted itaKeor free) request. This simple behavior is captured by
theChopABT defined as

Chop((a, &), (of, a);) = a < & < a.

Because we are not interested in the actadue of the take/free tokens, tighop ABT

has nothing to say about the data streamandos; it is only the timing that is relevant
here. Thetiming equation simply states that initially, there must be a take, followed by a
free, and this sequence repeats.

We assume that a philosopher component has four output foffisy, left-takg, If (for
left-fred), rt (for right-takg, andrf (for right-freg, through which it writes the timed data
streams{oyi, ai), (o, &g ), {ont, art), and{of, agf ), respectively. The two portl andIf are
“on the left” and the two portst andrf are “on the right” of the philosopher component,
soto speak. The philosopher’s requests to take and free the chopsticks on its left and right
are issued through their respective ports.



F. Arbab / Science of Computer Programming 55 (2005) 3-52 23

The externally observable behavior of a philosopher component is as follows. After
some ped of “thinking” it decides to eat, at which point it attempts to obtain its two
chopsticks by issuing take requests onlitandrt ports. We assue it always issues
a request for its left chopstick before regting the one on its right. The philosopher
component interprets the success of itstevoperation as the acceptance of its request
(e.g., for exclusive access to the chopstick). Once, and if, both of its take requests are
granted, it proceeds to “eat” for some time, at the end of which it then issues requests to
free its left and right chopsticks by writing tokens tolitsandrf ports. The philosopher
component then repeats the cycle by entering its thinking period again. This behavior is
captured by th&hil ABT defined as

Phil(; (o, ai), (cur, @), (o, ), (onf, &) = a < art < & < af < ay,.

Again, because we are not interested in #wtual values of the take/free tokens that
this component produces, th#hil ABT says nothing about the data streams. All we are
interested in is the timing constraints: an arbitrary “thinking” delay; followed by a request
to take the left chopstick; once granted, followed by a request to take the right chopstick;
once granted, followed by an arbitrary “eating” delay; followed by the requests to free the
left and the right chopsticks; and the cycle repeats.

8.3. ABT composition

Abstract behavior types can be composed to yield other abstract behavior types through
a compostion similar to the relational join operation in relational databases. Two ABTs
can be composed over a common timed dateash if one is the producer and the other
the consumer of that timed data stream. The same two ABTs can be composed over zero
or more common timed data streams, eachlTAtkying the role of the producer or the
consumer of one of the timed data streamsgependent of its role regarding the others.
Observe thathte producer and the consumer of a timed data stréana), necessarily
synchronize their I/O operations on their respective portals for the mutual exchange of the
dataitems in its data streama, according to the schedule in its twin time streanT his is
accomplished simply by “fusing” their respediportals together such that the timed data
stream observed on one is identical to the one observed on the other.

Consider two ABT<B; with arity p = p; + po andBy with arity q = g + o, wherep;
andp, are, respectively, the input arity and the output aritBefandg; andqo, those for
B>. B1 andB; can be composed with8 k < min(p;, go) + min( po, gi) pairs of mutually
fused portals, where the data items produced through an output @@rtflopne ABT are
fed for consumption by the other ABT through its input portal that is fused @ith

We defire thek-dyad compositiorof the two ABTsB1 (111, 112, ..., 115,011, Olp, ... .,
Olp,) and Ba(121,12,, ...,124,021,02;, ...,02y,) as a special form of the join of
the two relationsB; and B, where k distinct portals (i.e., relational columns) &
are paired each with a distinct portal 8% into k dyads such that (1) the two por-
tals in each dyad have opposite input/output tags, and (2) the two timed data streams
of the portals in each dyad are equal. Thidyad compostion of B; and By yields a
new ABT, B(l1, 12, ...,1m;01,02,...,0p), with arity m+n = p+ g — 2 x k, de-
fined as a relatiorover thoseportals of By and By that are not involved in a dyad
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(i.e., the fused portals disappear from the resulting relation). Thdli$t, ..., Iy is
obtained from the list1y, 115, ...,11p,121,125,...,124 by diminating every one of
its elements involved in a dyad. Similarly, the Ii8t, O,, ..., O, is obtained from the
list 011, Olp, ..., Oly,, 021, 02, ..., 02y, by diminating every one of its elements in-
volvedin adyad.

We use e dyad indices Xk | < k as superscripts to mark the corresponding portals
of By andB; in their k-dyad composition. For examplB, = B1((«, a), (8, b)L;(y,c)) o
B2((8, d);(u, m1) denotes the 1-dyad composition of the two abstract behavior types
B1 and B, where theoutput (portal) ofB, is identical to the second input (portal) of
B;. The resulting ABT is defined through the relatih = {({«, @), (5, d);(y,C)) |
({, @), (B, b);(y,€)) € BLA ({8, d);{, m) € Ba A (B, b) = (u, m)}. Another example
is the ABTB = B1((a, a), (8, b)L;(y, ©)2) o Bo((8, d)2; (i, m)L, (v, n)), whichdenotes the
2-dyad compostion of the two abstract behavior typ8s andB, where the fist output of
B> is identical to the second input &j and the output oB; is identical to the input oB;.

The resulting ABT is defined as the relatiBn= {{{«, a);(v, N)) | {{«, @), (B, b);{(y,C)) €
B1 A ((8, d); (i, m), (v, n)) € B2 A (B, b) = (1, M) A (y,C) = (3, d)}.

The common case of the 1-dyad compositioBpfandB; where the sigle output of
B; is identical to the single input dB; is abbreviated aBi(...;{(«, a)) o B2((8, b);...)
instead ofB1(. .. (o, a1) o Bo((8, b)L;...). This abrevidion is particularly convenient
together with the infix notéoon for binary abstract behavior types. For instanBe=
(a, a)B1(8, b)o (y, c)B2(8, d) denotes the 1-dyad composition of the two abstract behavior
typesB; and By where theoutput of B; is identical to the input oB,. Of course, the
resulting ABT is defined as the relatiqn, a)B(s, d) = {{{«, a);(8, d)) | {{«, @);(B, b)) €
B1 A {{y,c);(8,d)) € Ban (B,b) = (y,C)}.

For example, onsiderthe binary ABTs defining the dsic channels presented in
Section 8.2It isnot difficult to see that the (1-dyad) composition of these ABTs produces
results that correspond to our intuitidfor instance, the composition of twgync ABTS
produces &ync ABT. Indeed, composition of 8ync ABT with any other ABT (on its
left or right) yields the same ABT. More interestingly, the composition of /B0 ABTs
produces &IF0 ABT. Composing twoFIF0; ABTs produces &IF0, ABT. The formal
proof of this latter equivalence relies on our notion of dense time (as opposed to discrete
time) and is given in ], together with the formal treatment of many other interesting
exampes.

9. Reo

The ABT model provides a simple form&dundation for definition and composition
of components. Th&-dyad composition of ABTs supports a very flexible mechanism
for software composition in component based systems. This furnishes the desired level of
composition flexibility we expectin a componenbodel. However, composing components
directly with one another in this way reduces the glue code to essentially nothing more
than repeated applications of tke&yad compostion operator. More importantly, it all but
extinguishes the possibility of wieldingxegenous coordination through the glue code.
The ABT model is too low-level to directly provide any form of non-trivial coordination
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(beyond the simple synchronization implied by its timed data streams); for that, we need
an effective exogenous coordination model.

Reo is achannel-based exogenous coordinatiardei wherein complex coordinators,
called connectorsare compositionally built out of simpler one§,4,6]. The simplest
connectors in Reo are a setafannelswith well-definedbehavior supplied by users. Reo
can be used as a language for coordination of smeat processes, or as a “glue language”
for compositional construction of connectors that orchestrate component instances in a
component based system. The emphasis in Reo is on connectors and their composition
only, not on the entitie that connect to, communicate, and cooperate through these
connectors. Each connector in Reo imposes a specific coordination pattern on the entities
(e.g., component instances) that perform I/O operations through that connector, without
the knowledge of those entities.

Channel composition in Reo is a very powerful mechanism for construction of
connectors. The expressive power of connector composition in Reo has been demonstrated
through many examples iB[4,6]. For instance, exogenous coordination patterns that
can be expressed as (meta-level) regular expressions over 1/O operations performed by
component instances can be composed in Reo out of a small set of only five primitive
channel types.

A mobile channehllows (physical or logical) relocation of one of its ends without the
knowledge or the involvement of the entity at its other end. Logical mobility changes the
topology of the interconnéions of communicating entitgg while physical mobility can
have other implications, e.g., on an entity’s (effasicy of) access to various resources.

An efficient distributed implementatioof channels supporting this notion of mobility

is descrbed in P]. Both component instances and channels are mobile in Reo. Logical
mobility of channel ends in Reo allows dynamméconfiguration of connectors, even while

they are being used by component instances. In this respect, Reo resembles dynamically
reconfigurable generalized Kahn networks, as in IWIl §nd Manifold [14], and its
dataflow nature is also related to Broy’s timed dataflow model, although Reo is more
general and more expressive than these and similar models. Much as Reo supports physical
mobility through itsmove operation to allow more efficient flow of data, it ascribes no
semantic significance to it. Theove operation does not semantically affect connector
topologies, flow of data, or connectivity of components to connectors. In this sense, Reo is
orthogonal to the concerns involving the plgaimobility of code, e.g., in models such as

that of [59].

An important aspect of Reo which is not covered in this paper is that the topology
of connectors in Reo is inherently dynamic. This means that the configuration of a
component-based system can dynamically change not only due to dynamic construction
and connection/disconnection of connectors and component instances, but also — and
more interestingly — due to dynamic reconfiguration of instantiated connectors even as
they are actively in use. Moreover, Reo supports a very liberal notion of channels. As
such, Reo is more general than dataflow models, Kahn-networks, and Petri-nets, all of
which can be viewed as specialized channedeobmodels that incporate certain specific
primitive coordination constructs. Broy’'s work on timed dataflow channg&l[] is
perhaps closest to Reo. Nevertheless, Reo’s more general notion of channels, its inherent
dynamic topology, its powerful exogenous comation that uses a clear separation of
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flows of data and time, and the fundamemtation of channel/connector composition that
allows, among other things, compositions involving an expressive mix of synchrony and
asynchrony, distinguish it from this model as well.

It turns out that the ABT model is quite adequate for defining the channel and connector
composition operation which is the crux of exogenous coordination in Reo. In the rest of
this section we show how comntor construction in Reo can be seen as an application of
the ABT model.

9.1. Channels and connectors

Channels are the only primitive medium of communication between two components in
Reo. Thenotion of channel in Reo is far more geakthan its common interpretation. A
channel in Reo has its own unique identity and always has exactly two directed ends, each
with its own unique identity. Based on their direction, there are two types of channel ends:
sourceandsinkends. Data enters through a source channel end into its respective channel,
and it leaves through a sink channel end from its respective channel. (Channels themselves
have no direction in Reo, only their ends do.)

Beyond a small set of mild obvious requirements, such as enabling 1/0 operations
to read/write data items from/to their endsedrplaces no restrictions on the behavior
of channels. This allows an open-ended set of different channel types to be used
simultaneously together in Reo, each with itsropolicy for synchronization, buffering,
ordering, computation, data retention/loss, etc. Some typical examples of conventional
channels are, e.g., the ones definedettion 8.2 These channels happen to each have
a urce end and a sink end. More unconventional channels are also possible in Reo,
especially because a channel can also o two source ends or only two sink ends. A
few examples of some such exotic channels appeaeation 9.3even more gamples are
presented in3,5,4].

Strictly speaking, Reo itself neither provides nor assumes the availability of any specific
set of chanel types; it simply assumes that an agpiate assortment of channel types,
each with its properly well-defined semantics, is provided by users for it to operate on.
Nevertheless, it is reasonable to expect that in practice certain most primitive channel types,
e.g., synchronous channels, will always be made available in all cases.

Reo defines aonnector as a set of channel ends and their connecting channels
organized in a graph afodes andedgessuch that:

e Zero or more channel ends coincide on every node.
e Every channel end coincides on exactly one node.

e There is an edge between two (not necessarily distinct) nodes if and only if there is a
channel one end of which caiides on each of those nodes.

We usex — N to denote that the channel enctoincides on the nodd, andX to denote
the unique node on which the channel endoincides. For a nod, we definethe set of

all channel ends coincident dhas[N] = {x | x — N}, and disjointly partition it into the
setsSraqN) andSnkN), dending the sets obource and sink channel ends that coincide
onN, respectively.
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Obseve that nodes are neither components nor locations. Although some nodes are
attached to component instances to allow their exchange of information, nodes and
components are different notions and not every node can be associated with or attached to
a omponent instance. A node is a fundamental concept in Reo representing an important
topological property: all channel engs [N] coincide on the same nodié This pioperty
entails specific implications in Reo regarding the flow of data among the channel ends
X € [N], irrespective of concern for the location of those channel enbs or thepossible
attachment oN to a component instance.

A nodeN is called asource node if SrqN) # @ A SnKN) = @. AnalogouslyN is
called asink node if SrqN) = @ A SnKN) # @. A nodeN is called amixed node if
SraN) # & A SnKN) #£ @.

By the above definition, every channel represents a (simple) connector with two nodes.
From the point of view of Reo a port of a compaoh@stance is just aode that (initially)
contains a single cimael end. An input port is (initiallya sngleton) source node, and an
output port is (initially a singleton) sinkode. From the point of view of a component
instance, each of its ports is merely a simple connector corresponding to a synchronous
channel (the node of) one end of which is made publicly accessible for I/O by its
environment, while (the node of) its other end is hidden for exclusive use by the component
instance itself. An output port of a component instance has the sink node of its synchronous
channel public while its source node is available only for I/O operations performed by that
componentinstance. Likewise, an input port has the source node of its synchronous channel
public while its sink node is hidden for exclusive use by its component instance.

Reo provides I/O operations on source and sink nodes only; components cannot read
from or write to mixed nodes. A component instance can write to a source node or read
from a sink node using node I/O operations of Reo only if it@nectedo that node.
Connection of a node to a component instance gives the latter the exclusive right to
perform 1/0O operations on that node. Reo pd®s operations to change the connection
of nodes to component instances dynamically, but a node can be connected to at most a
single component instance at any given time. This is a prerequisite for the formal notion of
compositionality presented ifT]

The graph representing a connectanégdirected. However, for each channel egaf
a chanelc, we use the directionality of; to assign docal direction in the neighborhood
of X; to the edge that represemtsThe Iacal direction of the edge representing a charnel
in the reighborhood of the node of its sourkegis presented as an arrow emanating from
%c. Likewise, the local direction of thedge representing a chanweh the reighborhood
of the node of its sink; is presented as an arrow pointings SeeFigs. 2and 3 for
exampes.

Complex onnectors are constructed in Reo out of simpler ones usingdis
operation. Thejoin operation in Reo is defined only on nodes. Joining two nddes
and N, destroys both nodes and produces a new rédeith the property thafN] =
[N1] U [N2]. This sihgle operation allows constructioof arkitrarily complex connector
graphs involing any combination of channels pett from an open-ended set of channel
types. The semantics of a connector is defined as a composition of the semantics of its
(1) constituent channels, and (2) nodes. Because Reo does not provide any channels, it
does not define their semantics either. What Reo defines is the composition of channels
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Fig. 2. Representation of nodes in Reo.

into connectors and the semantics of thesnposition through the semantics of its (three
types of) nodes.

Intuitively, a source node replicates every data item written to it as soon as all of its
coincident source channel ends can consume that data item. Reading from a sink node
non-deterministically selects one of the data items available through its coincident sink
channel ends. A mixed node is a self-contained “pumping station” that combines the
behavior of a sink node and a source node in an atomic iteration of an infinite loop: in each
atomic iteration it non-deterministically selects an appropriate data item available through
its coincident sink channel ends and replksathat data item into all of its coincident
source channel ends. A data item is appropriate for selection in an iteration only if it can
be consumed by all source channel ends that coincide on that node.

9.2. ABT models of nodes and connectors

Consider a sink nodd with [N] = {x, y}, as inFig. 2a. The read operations performed
on this node induce an output timed data stre&g,, an), for this sink node. We use
(o, @) and (ary, ay) to designate the timed data streams corresponding to the channel
endsx andy, respectively. The semantics of this sink node is defined by the ABT
Mrg({ax, ax), {ay, ay);{aN, an)).

The semantics of a sink nodéwhere[N] = {x, y, z}, as inFig. 2b, is defined as the
1-dyad compostion

Mrg3({ax, ax), (. @y), (az, 8z);(an, an))) =
Mrg({ax, &), (ay, ay); (¥, P)1) o Mrg((§, A, (az, a7);(an, an))

where{an, an) is the output timed data stream of the node, as before{gng) and(&, q)
are internal timed data streams.

BecauseMrg is associative with respect to its input portals, merging the intermediate
result of the merge of andy with zis the same as mergingwith the intermediate result
of the merge o andz i.e., Mrg3 is assaiative with respect to its input portals. As such,
the simple graphical notation of Reo (e.g.,Hig. 2a and b) is quite appropriate because
it does not suggest any precedence for Mg operations. Clearly this scheme can be
used to define the semantics of sink nodes wmittre coincident channel ends in general
as the ABTMrgk with k > 0 input and one output portals. For completeness, we define
Mrgl({ax, ax);{an, an))) = {(ax, ax) = {(an, an) and consideMrg2 to be apseudonym
for Mrg.

The write operations performed on a source nbideith [N] = {x, y}, as inFig. 2,
induce an input timed data streafay, an), for N. The sematics of N in this case is
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defined by the ABTRpl({an, an);{ox, ax), {ay, ay). The semantics of a source noble
with [N] = {x,y, z}, as inFig. 2d, is defined as the 1-dyad composition

RpB({an, an);{ax, ax), {ay, ay), (az, 8z)) =
RpI((an, an); o ), (¥, p)1) o RpI(E, a)i{ay, ay), (a7, &)

where(an, an) is the input timed data stream of the node, as before,(@ng) and(&, q)
are internal timed data streams. Becalptis associative with respect to its output portals,
the precedence of tHegpl operations is irrelevant ariRlpl3 is also associate with respect

to its output portals. Similarly, the general ABRpk with one input andk > 0 output
portals defines the semantics of a source node kvithincident channel ends. Again, for
completeness, we defifRpll((an, an);{ax, ax))) = {(ax, ax) = {(an, an) and consider
Rpl2 to be a paudonym forRpl.

A mixed node, as irFig. 2e, is a composition of two “half-nodes”, a source and a
sink. Because no component is allowed to perform an I/O operation on a mixed node,
no input/output timed data stream can be defined for a mixed node. A mixed node is a
closed entity that does not interact with argngponent; instead it internally pumps data
items from its sink channel ends to its source channel ends. The semantics of a mixed node
N with m > 0 sink andn > 0 source channel ends is given by the ABIbde,«, defined
as the 1-dyad composition of the two ABTs describing the behavior of each of its half
nodesMrgm(ly, I2, ..., Iu;{¥, p)) andRph((£, g);01, Oz, ..., Oy). Theportds I; andQ;
designate the timed data streams observed ai thiek ard then source channel ends
coincident orN, respectively, and(yr, p) and(&, q) are internal timed data streams.

Nodeyxn(l1, 12, ..., 14,01, 02, ..., 0pn)
= Mrgm(lg, I2, ..., In; (¥, p)) o Rph((§, 0);01, O2, ..., Op).

For instance, the behavior of the mixed nodé-ig. 2e iscaptured by the ABT defined as
the relatiorNodes«2(11, I2, 13;01, O2) over the timeddata streams of its respective 3 sink
and 2 source channel ends. For consistency, weNosk, o and Nodeyx, to represent
the ABTs for a sink node withm and a source node with coincident channel ends,
respectively:

Nodeg,xo = Mrgm(lq, I2, ..., In;{a, @)
Nod& xn = Rph({a, a);01, Oz, ..., Op)

wherel; andQ; designate the timed data streams observed at giek ard then source
channel ends coincident on the node amda) represents its output or input timed data
stream.

Every edge of a connector corresponds to a channel whose semantics is defined as an
ABT. Since a connector consists of (three types of) nodes and edges, all of whose semantics
are now defined as ABTS, the semantics of every connector in Reo can be derived as a
composition of the ABTs of its constituent nodes and edges.

9.3. A cogent set of primitive channels

To demonstrate thetility of Reo we must supply it with a set of primitive channels.
The fact that Reo accepts and the ABT model allows definition of an open-ended set
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of arbitraily complex channels is interesting. What is more interesting, however, is that
connector composition in Reo is itself posftd enough to yield surprisingly expressive
complex connectors out of a very small set of trivially simple channels.

A useful set ofprimitive channels for Reo consists of 7 channel ty@gasic, FIFO,

FIFO1, FIF01(D), Filter(P), LossySync, andSyncDrain. This isnot a miimal set, in

the sense that some of the an&l types in this set can themselves be composed in Reo
outof others; however, minimality is not our concern here and these channel types turn out
to be both simple and frequently useful enouglléserve their own explicit mention. The
first four channel types were defined as ABT<Siection 8.2We define the ABTSs for the
rest below.

The common characteristics of the last three channels, above, are that they are all (1)
synchronous, and (2pssy Nether channel has a buffer to store data and if necessary,
delays the 1/0O oprtion on either one of its ends until it is matched with an 1/0 operation
on its other end. A channel is lossy if it doest deliver through its sink end every data
item it consumes through its source end. The difference between these three channelsis in
their loss policy.

(1) AFilter(P) channelis a synchronous channel with a source and a sink end that takes
a pattern P parameter upon its creation. It behaves likeyac channel, except that
only those data items that match the pattércan actually pass through it; others are
always accepted by its source, but are immediately lost. The behavior of such a channel
is captured by theilter(P) ABT defined as

{(a,a) Filter(P) (8,b) =
B(0) = «(0) A b(0) = a(0) A («/, &) Filter(P) (B, 1) if a(0) > P
(', d) Filter(P) (8, b) otherwise

The infix operator(0) > P denotes whether or not the data itesf0) matche with
the patterrP. If so, «(0) passes through, otherwise it is lost, and the ABT proceeds
with the rest of its timed data streams.

(2) A LossySync channel is also like @ync channel except that it is always ready to
consume every data item written to its source end. If a matching read operation is
pendingat its sink, the data item written to its source is actually transferred; otherwise,
the written data item is lost. The behavior of this channel is captured y#/Sync
ABT defined as

(o, @) LossySync (8, b) =

{a, @) LossySync (8, a(0).b’) if a(0) > b(0)
B(0) = a(0) A (&', @) LossySync (B, 1) if a(0) = b(0)
(o', d) LossySync (B, b) otherwise

(3) A SyncDrain is a channel with two source ends. Because it has no sink end, it has no
way to ever produce any data items. Consequently, every data item written to its source
ends is simply lostSyncDrain is synchronous because a write operation on one of
its ends remains pending until a write isrfiemed on its other end as well; only then
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Fig. 3. Examples of connectors in Reo.

both write operations succeed together. Thedvwéor of this channel is captured by the
SyncDrain ABT defined as

SyncDrain({«, a), (8, b);) =a=Dh.
9.4. Coordinating glue code

To denonstrate the expressive power of connector composition, in this section we
describe a number of examples in Reo. More examples are presented els&ihers.[

9.4.1. Write-cue regulator

Consider tle connector inFig. 3a, composed out of the three channedscd, andef.
Channelsab andcd are of typeSync andef is of typeSyncDrain. This @mnnector shows
one of the most basic forms of exogenous coordination: the number of data items that flow
from 2 to d is the same as the number of write operations that succeeds (@ecall
thata designates the unigue node on which the channelaeodincides.) The analogy
between the behavior of this connector andamsistor in the world of electronic circuits
is conspicuous.

A component instance with a port connectedttoan count and regulate the flow of
data between the two nod&sandd by thetiming and the number of write operations it
performs ont. The entity that regulates and/or cositite number of data items through
need not know anything about the entities that writ@ nd/ortake fromd, nor that its
write actions actually regulate this flowh& two entities thatammunicate through and
d need not know anything about the fact thaylare communicating with each other, nor
that the volume of their communication is regulated and/or measured by a third eftity at

9.4.2. Barrier synchronizers

We can build on our write-cue regulator to construct a barrier synchronization
connector, as ifrig. 30. The bur channelsb, cd, gh, andij are all of typeSync. The
SyncDrain channelef ensures that a data item passes f@mo d only simultaneously
with the passing of a data item fro@ to j (and vice versa). This simple barrier
synchronization connector can be trivially extended to any number of pairs, as shown in
Fig. 3.
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9.4.3. Ordering

The connector ifrig. 3d consists of three channels, ac, andbc. The clannelsab and
ac areSyncDrain andSync, resgectively. The channeédc is of typeFIF0;. Thebehavior
of this connector can be seen as imposing an order on the flow of the data items written to
2 andb, through toc: thedata items obtained by successive read operatio@onsist of
the first data item written t@, followed by the first data item written 5, followed by the
second data item written & followed by the second data item writtentipetc. See3,4]
for more detail and€] for a formal treatment of this connector.

The coordination pattern imposed by our connector can be summarized gab)x,
meaning the sequence of values that appear thréugimsist of zero or more repetitions
of the pairs of values written @@ andb, in that order.

9.4.4. Sequencer

Consider tle connector inFig. 3e. The enclosing box repredsithe fact that the details
of this connector are abstracted away and it provides only the four rigdesc, and
d for other entities (connectsrand/or component instances) to (in this case) read from.
Inside this connector, we have faiync, aFIF0;1 (o), and thre&IF01 channels connected
together. TheFIF01(0) channel is the leftmost one and is initialized to have a data item
in its buffer, as indicated by thpresence ofiie symbol ©” in the box represnting its
buffer. The actual value of this data item is irrelevant. The read operations on theajodes
b, ¢, andd can succeed only in the strict left to rightder. This connector implements a
generic sequencing protocol: we can partanize this connector to have as many nodes as
we want, sinply by inserting more (or feweldync andFIF0; channel pairs, as required.

Fig. 3 shows a simple example of the utility @fur sequencer. The connector in this
figure consists of a two-node sequencer, plus a padyat channels and 8yncDrain
channel connecting each of the nodes of the sequencer to the RaaetE, andb and
c, resgectively. The connector iffig. ¥ is another connector for the coordination pattern
¢ = (ab)*, dthough there is a subtle difference between the behavior of this connector and
the one inFig. 3d. See B,4] for moredetal.

It takes little effort to see that the connectorHig. 3g corresponds to the meta-regular
expressionc = (aab)x. Fig. ¥ and g show how easily wean construct connectors that
exogenously impose coordination patterns corresponding to the Kleene-closure of any
“meta-word” made up of atoms that stand 14® operations, using a sequencer of the
appropriate size.

9.5. Constant replacer

Fig. 4 shows aReo connector (encapsulated in the outermost thick box, hiding mixed
nodes N1 and N2) with one exposed input (i.e., source node A) and one exposed output
(i.e., sink node B) nodes. This connector is composed out of four chanrssigcdrain
(A-N1), aSync (N1-B), aFIF0; (N1-N2), and a filledrIF01(T) (N2-N1) that contains
an initial valueT. Of course, the constructor of this connector can be parameterized to
initialize thisFIF0; channel with any supplied value, insteadIpgeverytime it creates a
new instance of this circuit.
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Fig. 4. Constant replacer.

Using the ABT definitions of these channels and those of its nodes, we can find the
relationship bateen the two timed data strearg a) and (3, b) that pass through the
nodes A and B, respectively. As a side note, it is interesting to observe that this relationship
and other insights we gain, below, through a formal treatment of the behavioral equations of
this connector, all correspond to and confirm the intuitive impression that we get through
an informal reasoning using the schematic of this connectéiign4. This observation
underscores the usefulness and the significance of visual representation of Reo connectors.

From the definition of th€yncDrain channel inSection 9.3we have:
SyncDrain({e, @), (x,C);) =a==C. (1)

By lettingm = 1 andn = 3 in the ABT equation of mixed nodes Bection 9.2we derive
for N1:

Noder«3((e, €);(x, c), (¢, ), (5,d)) =
Mrgl((e, );(¥, p)) o RPB(E, a);(x, ), (¢, T), (3, d)) = @
{{{e. €)3(x. 0), (&,F), (5, ) | {(e, €)5{(y, p)) € Mrg1n
(&, a)s{x, ), (@, 1), (3,d)) €e RpBA (¢, p) = (£, 0)}.
From the definition oMrgl in Section 9.2 we get((¢, €);(y¥, p)) € Mrgl = (¢,€) =
(¥, p) and from the definition oRpi3 in the sae section, we havgé, q);(x, c), (¢, ),

8,d)) e Rpl3= (£,0) = (x,¢) = (¢, f) = (8, d). Subdituting these back in Eq2j and
simplifying the result yields:

X 3
{{e. &)i(x, c), (@, 1), (8, d)) [ (e, €) = (x.¢) = (o, ) = (5,d)}, )
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or

NOde.|.><3(<ev e)!(X’ C)v (¢ﬂ f), <8, d)) =
{{{e.&);(x.0), (@, F), 0, d)) [e=x=dp=6re=c=f=d}

Similarly, for the node N2, we derive:

Noderx1({y, 9):(n, h) = {{{y,9):(n.h)) |y =nAg=h}. ©))

From the definition of th&€ IF0; channel inSection 8.2.1we have:

“4)

(8,d) FIFO1 (y,9) =8 =y nd<g<d, (6)
and the definition of the initializeBIF0; channel in the same section yields:

(n, ) FIF01(T) (6,8) = () =TAn=€ Ane<h<¥. @)
The definition of theSync channel inSection 8.2. hives:

(¢.f) Sync (B,b) = (¢, f) = (B.b)=¢=BAf=h. (8)
From Egs. {) and @) we getd = a, which tbgether vith Eq. (6) yields:

a<g<a. 9)
From Eqg. 8) we havef = b, which together vith Egs. @) and (), yields:

b=a (10)

From Eq. ) we havee(0) = T A n = ¢/ and from Eqgs.4) and 8) we havec = ¢ = B.
This gives us:

BO) =TAB =n. (11)

From Eg. 6) we haven = y and from Eq. §) we havey = §. Butfrom Eq. @) we have
8 = ¢ and from Eq. 8) we havep = 8, therdoren = 8, which simpifies Eq. (L1) into:

BO) =TAp =p. (12)

Observe thiethe steam equatioB’ = B is just a shorthand for hinfinite set of equations
B =BO)YABR) =B ABR) =B ALK =BB)A.... This gmplifies Eq. (L2)
into B(0) =TABQL) =BO)ABR) =B ABR) =B ABAH =BB)A...,0r

VieN, B()=T. (13)

Eq. (13) clearly shows that there is no relationship between the stream of input values,
and the stream of output values, of this connector: whatever value comes through the
node A, its corresponding output value through the node B is the constantlvalurethe
other hand, Eq.10) relates the input/outputimings” of this connector: passage of each
pair of values through the nodes A and B is atomic.

Eqg. () shows an iternal subtlety of the belvior of this @nnector. For > 0, the value
a(i) (and its corresponding valys(i)) can pass through A (and B) only aftgi — 1). In
other words, the constant val@emust cycle through the node N2 once before the next
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Sum

Fig. 5. Computing the Fibonacci series.

pair of values passes through the nodes A and B. In theory, it is always possible to use
“fast enough” internal channels such that this cycling of value through the node N2 does
not “slow down” the passing of values through A and B. On the other hand, the relational

nature of our behavioral equations impligst, in practice, the internal cycling af will

delay value transfers through A and B, if necessary, such tha®Ehkolds.

9.6. Fibonacci series

A simple example of how a composition of a set of components yields a system that
delivers more than the sum of its parts is thenpmitation of the classical Fibonacci series.

To assemble a component based application to deliver this series we actually need only
one (instance of one) component plus a nundbehannels. The component we need is a
realizaion of theSUmABT that we already saw ifection 8.2

Fig. 5 shows acomponent (the outermost thick enclosing box) with only one output
port (the only exposed node on the right border of the box). This is our component based
application for computing the Fibonaccirgss. Peeking inside this component, we see
how it is made out of an instance 8tim aFIF0;(1), aFIF0;(0), aFIF0;, and fiveSync
channels.

As long as theFIF01(0) channel is full, nothing can happen: there is no way for the
value inFIF01(1) to move out. At ®me point in time, the value iRIF01(0) moves into
theFIFO0; channel. Thereafter, ttREF01(0) channel becomes empty and the two values in
theFIF01(1) and theFIF01 channels become available feumto consume. The intake of
the value inFIF01(1) by Suminserts a copy of the same value into #101(0) channel.
WhenSumis ready to write its computed value out, it suspends waiting for some entity in
the environment to accept this value. Transfer of this value to the entity in the environment
also inserts a copy of the same value into the now erApRp1(1) channel. At this point
we are back to the initial state, but with different values in the buffers of 1i#@41(1) and
theFIF01(0) channels.

The ABT models of the compone®tum channels, and Reo nodes that we presented
earlier suffice for a formal analysis of the behavior of their composition in this example.
Observe that all entities involved in this composed application are completely generic
and, of course, neither knows anythinigoat the Fibonacci series, nor the fact that it
is “cooperating” with other entities to compuit. It is the specific glue code of this
application, made by composing 8 simplengec channels in a specific topology in Reo,
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that coordinates the communication of the components (in this case, only one) with one
another (in this case, with itself) and the environment to compute this series.

9.7. Dining philosophers

We can vividly demonstrate the significance of exogenous coordination in component
based system composition through the cleadstdining philosophers problem. In this
section we use instances of two components, adalihich is a realization of one of the
two ABTSs Phil andChop defined inSection 8.2.4to (1) compose a dining philosophers
application that exhibits the famous deadlock problem; and (2) compose another dining
philosophers application that prevents the deadlock.

Fig. 6a shows 4 philosophers and 4 chopsticks around a virtual round table. Each
philosopher has 4 output ports, corresponding tolth, rt, andrf portds of the Phil
ABT in Section 8.2.4In this figure, philosophers face the table, thus their sense of left and
right is obvious. Each chopstick has two input ports, corresponding tb dnelf input
portds of theChop ABT in Section 8.2.4In Fig. 6a, chopstick ports on the outer-edge of
the table are theirports and the ones closer to the center of the table areftpeits. The
t (take) port of each chopstick is connected te thke ports of its adjacent philosophers,
and itsf port to their respective free ports. All channels are of typec.

Consider what happens in the node at the three-way junction connectect todtief
Chopr. If Chop, is free and is ready to accept a token through fisrt, as it initially is,
whichever one of the two philosophephil; andPhil, happens to writéts take request
token first will succeed to tak€hop. Of course, it is possible foPhil; and Phils to
attempt to takeChop, at the same time. In this case, the semantics of this mixed node
(by the definition of the ABT Mrg) guarantees that only one of them succeeds, non-
deterministically; the write operation of the other remains pending @hdp is free
again. Because the definition of the ABhil states that a philosopher frees a chopstick
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only after it has taken it, there is never argntention at the three-way junction connected
to thef port of a chopstick.

The composition of channels in this Reo apption enables philosophers to repeatedly
go through their “eat” and “think” cycles at thidieisure, resolving thir contentions for
taking the same chopsticks non-determinidlycd he possibility of starvation is ruled out
because the non-determinisiming is assumed to be fair. Thssmple glie code composed
of nothing but common generignc channels directly renders a faithful implementation of
the dining philosophers problem; all theawdown to its possibilityf deadlock. Because
all philosophers are instances of the same component, they all attempt to fetch their
chopsticks in the same order. TRBil ABT defines this to be left-first. If all chopsticks are
free and all philosophers attempt to take their left chopsticks at the same time, of course,
they will all succeed. However, this leaves no free chopstick for any philosopher to take
before it can eat. No philosopher will relinquish its chopstick before it finishes its eating
cycle. Therefore, this appliti@n deadlocks, as expected.

9.7.1. Avoiding the deadlock

Interestingly, with Reo, solving the deadlock problem requires no extra code, central
authority, or modification to any of the companis. In order to preva the possibility of
a deadlock, all we need to do is to change the way in which we compose our application
out of the very same componenisg. b shows a slightly different composition topology
of the same set &ync channels comprising the glue code that connects the exact same
instances ofhil and Chop as before. We have flipped one philosopher’s left and right
connections to its adjacent chopsticks this particular case, those &hily) without its
knowledgeNone of the components in the system are aware of this change, nor is any of
them modified in any way to accommodate it.r@lipping of these connections is purely
external to all components.

It is not difficult to see why this new topology prevents deadlock. If all philosophers
attempt to take their left chopsticks now at the same time, one of them, n&mi&lywill
actually reach for the one on its right-hand-side. Of coulP$gl, is unaware of the fact
that as it reaches out through its left port to take its first chopstick, it is actually the one on
its righthand-side it competes to take. In this case it competes®ithy, whichis also
attempting to take its first chopstick. It makes no difference which one of the two wins this
competition, one will be denied access to its first chopstick. This ensures that at least one
chopstick will remain free (no philosopher attempts to t@&kep, as its first chopstick)
to enable at least one philosopher to obtain its second chopstick as well and complete its
eating cycle.

Comparing the composition topologieshig. 6a andb, we see that in Reo (1) different
glue code connecting the same components produces different system behavior; and (2)
coordination protocols are imposed byiglcode on components that cooperate with one
another through the glue code, without beimgage of each other or their cooperation. The
two fundamental notions that underpin this pair of highly desirable provisions are:

e The underlying notion of componen&éction § in the ABT model prevents a
component from distinguishing individuahtities within its enwionment directly.
Components can exchange only passive data with their environment through
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Fig. 7. Inside of a chopstick.

communication primitives that (1) do not allow them to discern specific targets
as communication partners, and (2) do notadrany further obligation on behalf

of the environment. The ABT model of components, thus, grants the environment
great flexibility in making late, evemlynamic, decisions kmut how components

are composed. This makes ABT components highly susceptible to exogenous
coordination, although the ABT model itself offers no non-trivial coordination
primitives.

e Reo is a coordination model that takes full advantage of the composition flexibility
inherent in the ABT model and offers a calculus of connector composition based on a
user-defined set of primitive channels, @difined as ABTs. The crux of this calculus
is the join operator in Reo for composing channel ends into composite nodes, and
the gecific semantics it defines for these nodes as ABSec{ion 9.2 Connector
composition in Reo offers a simple yet stigingly expressivexogenous coordination
modd tha effectively exploits the flexibility of behavior specification in the ABT
model.

The two swtems inFig. 6a and b are made of the same number of constituent parts of
the same types: the same number of component instances of the same kinds, and the same
number of primitive connectorsync channels). The only difference between the two is
in thetopologyof their inter-connections. This topological difference is the only cause of
the difference between the “more than sum of the parts” in these two systems.

9.7.2. Making of a chopstick

A moment of eflection reveals that, especially since there is ho computation involved
in the behavior of a chopstick, it should be easy to realize the behavior defined by the
ABT Chop through channel composition. The behavior definedChsp is indeed all
coordination: it must alternate enabling the write operations on prieén m the other
(f) of its two input ports. Indeed, we can easily use a two-port sequeRiterd) plus two
SyncDrain channels to realize this behavior. But a much simpler construction is possible
as well.

The connector hidden inside the enclosing boxFig. 7 is a simplified two-port
sequencer which exactly implements the behavior of the ABibp. This mnnector
consists of two channelsFAF0; and aSyncDrain. Initially, the FIF0; is empty, therefore
enabling the first write to its pottto succeed immediately. While this channel is empty, a
write to itsf port suspends because there is no data item to be “simultaneously” consumed
by the opposite (source) end of tBgncDrain. Once awrite tot succeeds, th&IF0;
channel becomes full and the next write operation onfpwill suspend until this channel
becomes empty again. When theF0; channel is full, a write td succeeds, causing the
SyncDrain channel to consume the contents of Hi&0, channel as well. This returns
the connector to its original state allowing it to cyclically repeat the same behavior.
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9.7.3. Adaptation of a philosopher

As a simple example of the usefulnesFafiter(P) channels, suppose the interface of
the philosopher component we acquire for our kpation does not exactly match that of
our Phil ABT. The component we obtaiRhiloshas only one output port and it writes all
its tokens to the same poRig. 8 shows howPhiloscan be adapted to fit the interface of
Phil, using bur filter channels.

The wiggly segment in the representation of a filter channel suggests a “resistor” that
inhibits the transmission of values that do not match its filter pattern. The text above the
wiggly line is the filter pattern. Becaus$thiloswrites all of its tokens to the same port, it
must distinguish them by their values. We assume it writes the four vatyas, rt, and
rf to identify these tokens. Every value written to the output poRttfosis automatically
replicated into the source ends of the four channel filters that coincide on this node. This
copying happens whenever all four source channel ends are ready to consume the replicated
value. Whatever the value is, three of the falmannels will always be ready to accept it
unconditionally, because it will not match thdiiters and they will immediately lose the
value. The fourth channel, the one whose pattern matches the written value, is the one
whose acceptance triggers the actual refibedtransfer. This happens only when the node
at the sink end of this filter channel can synchronously dispose of the value, which is
possible only when there is a read on that node.

9.8. Microwave oven interface

In this section we present a number of generally useful connectors and show how they
can be combined with a number of equally generic — plus some application specific —
components to compose the user interface of a simple microwave oven. Of course, any of
these connectors can be programmed as a black-box component as well, but in order to
show the expressive power ofR in practice, we construct them here out of the set of
primitive channels oBection 9.3In the sequel, we use the terms “input node” and “output
node” of a connector or component as synonyms for, respectively, “source node” and “sink
node” through which that component or connector consumes and produces data. For a
component, its input and output nodes are its input and output ports, respectively.

9.8.1. Exclusive router
Fig. 9a shows a very u$el generic connector, calleexclusive router The dashed
arrows are our graphical symbols representingsySync channels. A data item arriving
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Fig. 9. An exclusive router and a selector.

at the input node A flows through to only one of the output nodes B or C, depending on
which one is ready to consume it. If both output nodes are prepared to consume a data
item, then one is selected non-deterministically (by the merger ABT inherent in the mixed
node in the middle of this connector). The input data is never lost nor replicated to more
than one of the output nodes.

The behavior of this connector is the counterpart of the primitive non-deterministic
sdection inherent in the merge that a Retnksor mixed) node performs on its multiple
input. In [LO] we show this by deriving the constraint automaton for this connector through
composition of the constraint automata of its constituent channels.

9.8.2. Selector

Fig. 9 shows aother generically useful connector, callsdector, which uses an
exclusive router ofSection 9.8.1Availability of a value at its input node E “enables” this
connector to select a value available on one of the input nodes B1 or B2 for transfer through
its respective output node S1 or S2. The prerequisite for a transfer of a value from B1 to
S1is the availability of a value at E and another at B1, plus the readiness of a consumer at
S1. Likewise, the prerequisite for a transfer of a value from B2 to S2 is the availability of
a valueat E and another at B2, plus the readiness of a consumer at S2. As long as no value
is available on E, all input values on B1 and B2 are lost, while consumers at S1 and S2, if
any, wait. If a value is available on E while a value and a ready consumer are available for
only one of the two pairs B-S, then a value tnasfer takes place for that pair and the value
on the @her B node, if any, is lost. If both pairs have available values and ready consumers
(when a value is available on E), then the exclusive router non-deterministically enables
the value transfer fapne of the two pairs and the value on the othen&de is lost.

9.8.3. Shft-lossyFIF01
Fig. 10a (due to J. Rutten) shows a connector that is often used as a simple channel in
the construction of other connectors. It is calldft-lossyFIF0; because its behavior is
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Fig. 11. Overflow-loss¥IF04 channel.

very sinilar to ourFIF04 primitive channel ofSection 9.3except that itdses its current
value if its buffer is full to accept a new input value instead. Thus, unlike the case of a
FIF01, no wite to thein node of this connector/channel is ever delayed: as far as the
writer is corcerned, a shift-lossyIF01 channel behaves the same as an unbouRTEQ.
However, this channel keeps only the last of its input values for transfer througbuits
node.

The connector irFig. 10a is conposed out of an exclusive router,FaF01 channel
initialized to contain a token value), aFIF0, channel, &yncDrain channel, and 8ync
channels. We derive the constraint automaton describing the behavior of this connector
in [10] by composng the constraint automata of its constituent channels.

Because this connector is so commonly useful, we treat it as a channel and use the
graphical symbol shown ifig. 10b to represent it. Tis symbol is intentionally similar
to that of aFIF0s1 primitive channel. The dashed half of the box representing its buffer
suggests data loss. The fact that the sink-side of the box is dashed suggests that older
valuesin the buffer are lost in favor of newer values, i.e., the buffer contents shift to the
sink side, bsing older values, to make room for newer arrivals.

9.8.4. Overflow-lossyIF01

The counterpart of the shift-los§IF01 channel ofSection 9.8.3s the connector in
Fig. 11a. Recall that the dashed arrow used in this connector represeritssthgSync
primitive channel ofSection 9.3 Although we do not use this connector to compose our
microwave oven interface presentedsaction 9.8.9it is gererally useful, interesting, and
so complementary to the shift-losBgF0; channel, that it deserves to be mentioned here.

The connector inFig. 11a is conposed out of d.ossySync channel and &IF0;
channel. It, too, behaves as a lo&5F01 channel, but contrary to the shift-losB§F01
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channel ofSection 9.8.3its data-loss policy fawrs retaining older buffer values over newer
arrivals. We call this connector/chanogkrflow-lossy¥IF0; and use the graphical symbol

in Fig. 11b to represenit. The dashedaurce-side half of the box representing the buffer
of this channel symbol suggests that when its buffer is full, the newer arrivals simply
“overflow” and are lost.

9.8.5. Sequencer with reset

Fig. 12 shows yetanother generally useful connector that uses the exclusive router of
Section 9.8.1This mnnector behaves almost the same as our sequen&exctibn 9.4.4
Aslong as no input value is available onitsset node, the exclusive router following the
FIFO; channel that contains the token has no choice but to “decide” to forward the token
through its upper output node down the chain, as if it were a sirgypde channel. This
makes the transfer of the token conditional only on the availability of a ready consumer
on the respective output node of the sequencer connector, exactly as in the case of the
sgjuencer ofSection 9.4.4

When an input value is available on theset node of this connector, the exclusive
router following the token can allow it to “escape” the sequence chain through its lower
output node back to the leftmoBIF0; channel, regardless of whether or not a ready
consumer is available on its corresponding output node of the sequencer connector. This
“resets” the sequencer to restart its sequence from the left. Observe that a race condition
between reset and a ready sequenced output is non-deterministically resolved by the
exclusiwe router.

The sequencer ifrig. 12 has 4 output nodes and thus repeats a sequence of length 4.
Clearly, just as the case for the sequence&axtion 9.4.4the onstructor of this connector
can be parameterized to instantiate a sequeheérepeats a sequence of any (finite) size.

9.8.6. Cycler

The connector iffrig. 13is calledcycler. It uses three instances of the constant replacer
connector ofSection 9.5in this case, initialized with constant valuBsgh, Med andLow,
respectively. It also uses an exclusive routderaary version of theegjuencer with reset
of Section 9.8.5and a kift-lossy FIF01 channel (ofSection 9.8.3 The exclusive router
here has three output nodes. This ternaryapigtobtained by a simple composition of two
(binary) exclusive routers dfig. 9a, where one of the output nodes of one is connected
with aSync channel to the input node of the other.
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The cycler connector behaves as follows. The first input value through its node B places
the valuedigh in its shift-lossyFIF0; channel, ready for output through the V node of the
cycler connector. Successive input values through B “cycle” through the remaining values
in the sequenceled andLow, restating the cycle again froriiigh, and make each value
awailable, in turn, for output through V, by overriding the previous contents of the shift-
lossyFIF0; channel. Whenever a value is consumed through V, the sequencer resets the
connector to restart the cycle from its leftmdatgh, value.

Clearly, the constructor of this connector can be parameterized such that it takes a
(finite) list of values to create a cycler instance of the proper size, initialized with exactly
those values.

9.8.7. Valves

Fig. 14a shows a @nnector that behaves as a vali.uses two exclusive routers and
threeFIF0; channels, two of which are initialized to contain token vakiesd0. As long
as there is no value available on the input nad# this valve connector, values can flow
from its nodec to noded; the “valve” is initially open. The first input value through
say a toke valueY, causes the upp@yncDrain channel in this connector to consume
theX token, asy moves to fill the (upper) emp®IF01 channel. As long as the tWwRIF01
channels on the left of this connector are full, no data can flow betweenld: the valve
is closed. A second input value through the nadalows the lowelSyncDrain channel
to consume the& token, while this second value itself fills the buffer of thEr0; channel
on the right. Now the connector configuratianback to its original state and the valve is
open again. In this way, successive values through the input hatternately close and
open the valve, enabling and disabling the flow of data feaimd, without any data loss.

The valve inFig. 14b is the samas the one iffrig. 14a, except that it is initially closed.
Swccessive values through its input nadelternately open and close this valve.

3 Different valve connectors are presented 3h [This particular, more elegant connector circuit is due to
Andrei Popescu of Nokia Research Center who is also.B.Pudent at the Computer Science Department of
the University of Helsinki.
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9.8.8. Value menu

The connector irfFig. 15 uses an initially closed valve and a cycler initialized with the
parameter vectdiigh, Med, Low. Initially, values on node B are lost, because the valve
is closed, until an input value through A, say'activates” this connector. The tokerfirst
opens the valve, and then passes through the valve to kick the cycler, causing it to make
High avdlable as he output value of the connector. Arrival of another value on A before
an input value on D is unacceptable for this ceator; the environment must ensure that
input to the nodes A and D alternate. Once thus activated, input tokens through B bump
the cycler to make theequence of values in its list avdila as the output of the connector.
The actual output of the “current value” of the connector through the node V is possible
only when a token, say, arrives through the node D. The tokemallows the output of
the @nnector’s current value and simultaneously closes the valve, disabling the connector.
Observe that the output of its value also resets the cycler to start again with the first item
in its list.

A race condition is possible when two tokens are simultaneously available on the
nodes A and B. In this case, the mixed node at the sink of.#sySync channel non-
deterninistically resolves the race condition. However, this resolution is not symmetric:
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if the A token is selected, then the B tokenlost and the value menu connector will
haveHigh as its current value. On the other hand, if the B token is selected, then the
A token isnot lost and it will subsequently bumpettycler to st the current value of

the valuemenu connector tdled. While this asymmetric beavior may be a “bug” or

a “feature” of this connector when used in different environments, in the context of our
intended application, itauses no problem (s&ection 9.8.1 It is, of course, possible to
eliminate this asymmetric aspect of the behavior of our connector, at the cost of a few more
channels (essentially, an exclusive route3yacDrain and someync channels), but we
prefer our simpler connector here because it is sufficient for our purpose.

9.8.9. Composing the microwave interface

Fig. 16 shows the composition of the interface of a simple microwave oven. Physically,
this interface consists of four special-purpose buttons, plus a numeric input device. The
four buttons ar&ime, Defrost, Power, andStart. Theoutput of this inteface is a pair
of values indicating the radiation-tim&ime node) and the power-settingdwer node)
that are to be fed to the microwave engine. This interface allows an end-user to first press
one of the two buttongime or Defrost (if both are pressed, the interface selects one
non-deterministically). Pressing tieime button indicates that both radiation-time and
power-setting will be specified explicitly. Pressing thefrost button, on the other hand,
indicates that the microwave oven is to operate in its defrost mode. In this case, the end-
user is expected to enter the weight of the item that is to be defrosted and the microwave
oven is expected to calculate the proper radiation-time and power-setting automatically.
When required, the same numeric input device is used to explicitly enter time as well as
weight. Explicit power settig, when required, must be selected from a menu of the three
alternative valueHigh, Med, andLow, by swccessively pressing the power button to cycle
through them. Once the proper selections are made and the values are entered, the end-user
presses th8tart button to confirm them and start the microwave engine.

Our interface inFig. 16 uses four generic button components, a defrost calculator
component, and a wght/time nput component. These components are shown as solid-
color boxes inFig. 16. A button component is expected to interact with its corresponding
physical button and produce a single token through its output node every time its button is
pressed. The defrost calculator component has one input and two output nodes. Whenever
a value is available on its input node, it consumes it and interprets it as a weight value. It
then proceeds to compute the appropriate radiation-time and power-setting for defrosting
this weight and makes them availableghgh its respective output nodes. The weight/time
input component has two inpand a single output nodes. &lability of a token on one
of its input nodes (the upper one fig. 16) activates this component to interact with the
end-user and obtain a weight (e.g., in 100 g incremental units). A token through the other
input node (the lower one in the figure) activates the component to interact with the end-
user to obtain a radiation-time (e.g., in minutes and seconds). If tokens are available on
both of its input nodes (a case that does not arise in our context) then the component non-
deterministically consumes one and acts adicmly. The component eventually makes
the value it obtains through its interaction with the end-user available through its output
node.



46 F. Arbab / Science of Computer Programming 55 (2005) 3-52

Def

——>e Selector

Defrost Calculator
—T—I

ﬁ
g
&

>0

12IN0Y
JAISN[IXE]

Weight/Time Input Device

190uanbag
|
|
‘
|
\
‘

L

Powen "'High" "ML:‘AJ” "Low"
Setting

19100y
AAISN[OXH

Power )

d

Time

Fig. 16. The interface for a simple microwave oven.

The core of the interface iRig. 16 is a four-step sguencer connector that produces
tokens on its output nodes from top to bottom. In its first step, it enables the selector
connector to let the user press one of the two buthafxost or Time. Its seond step,
allows the user to press ttgtart button. The last two steps of the sequencer allow
the consumption of the two output valuesog@uced by this interface, in any order. To
accomplish this, th&ime andPower output nodes are connected to the last two nodes of
the sguencer by a variant of the write-cue regulator connect@saftion 9.4.1

In the first step of the sequencer, pressingiiberost button enables the weight/time
input component to produce a wéit, and places a token in the tBprF0; channel to allow
the proper disposition of the eventual (weigbtitput of this component as the input for the
defrost calculator component. Similarly, pressingThe button enables the weight/time
input component to produce a time, and places a token in the b@tt®oy channel to
allow the activation of the power value menu connector after the (time) output of the
weight/time input component is available. Obaethe use of the barrier synchronization
construct ofSection 9.4.2in the coordination of theoutput of the weight/time input
component.

Pressing thétart button has no effect unless the sequencer is in its second step and
the lower exclusive router ithe figure can dispose of its token one way or the other. If
Defrost was prased in the first step, this exclusiveuter can dispose of its token as



F. Arbab / Science of Computer Programming 55 (2005) 3-52 47

soon as the (weight) output of the weight/timmput component is available. On the other
hand, ifTime was prased in the first step, this exsiue outer can dispose of itStart)

token only by deactivating the power value mueconnector, which implies some value is
available through its value output node. In the interval between the pressing of the two
buttonsTime andStart, the exd-user has the option of pressing Hwaver button to cycle
through the three settings of the power value menu. Observe that a default vaitugi{pf

is available foroutput by this value menu connector as soon as it is activated.

An aspect of the interface that is not reflected in our connector showkigin6
is its display. One can assume that there is a built-in display under the control of the
weight/time input canponent, and connect a separate display to show the current setting
of the power menu connector. The race condition mentioneskiction 9.8.8s possble
in this environmenonly if the end-user presses thewer button exactly when the (time)
output of the weighitime input component is available. Assuming that the power setting
display shows a value only while the menu connector is enabled, it is reasonable to expect
that, normally, theuser presses th®wer button only after this time-output is available (to
enable the menu coentor). When th@ower button is pressed at the same time that the
time-output is available, the non-determiigsesolution of the race condition in the menu
connector either ignores the pressing of Blager button (as if the menu connector is not
activated yet) or behaves as if thewer button was pressed immediately after the menu
connector was activated (bumping the power settinggtt). Both of these alternatives are
acceptable in this situation.

This example shows the ease with which a coordinator for such non-trivial concurrent
behavior can be composed out of “ignorant” components and connectors in Reo. While the
generality of the value menu connector@éction 9.8.8nay be somewhat questionable,
there is no question thai¢ connectors described$ection 9.8.1hrough9.8.7are generic
and useful in a wide variety of applications. The button components used here are also
generic. The only application specific entities in this example are the defrost calculator and
to a lesser extent, the weight/time input compunaAlthough they are clearly application
specific, these components are “ignorant” of the environment in which they cooperate
with each other and other entities to enact the coordinated protocol of their collective
behavior.

10. Conclusion

The operational interface that is inherent in the Abstract Data Type model and object
oriented programming introduces two very different concepts for (1) entities, and (2) the
mechanism of their composition. To their outside world, entities are what their interfaces
advertise them to be: a set of operations. The mechanism that composes entities is based on
performingthe operations of other entities. iShmakes composition endogenous (i.e., an
entity internally decides what operations of which other entities to perform) and relies on
rather strong assumptions about the envirorir(ien, the actual availability of appropriate
other entities to support those operations whthir expected semantics). Unlike the ADT
model, main-stream object oriented models do not offer any formal semantics in their
object/class interfaces. The purely syntactic natf their interfaces becomes the weakest



48 F. Arbab / Science of Computer Programming 55 (2005) 3-52

link in the reliability of the assumptions d&h underlie the validity of each composition:
unless the entity that invokes the operation knows the entity whose operation it invokes
rather intimately, the semantics that one assumes may be different than what the other
guarantees; even subtle differences here can sabotage a composition. Furthermore, the
composition of two objects de@ot produce another object.

Components are expected to inelependent commaodities, viable in their binary forms
in the (not necessarily commercial) marketplaseyeloped, offered x@loited, deployed,
integrated, maintained, and evolved by separate autonomous organizations in mutually
unknown and unknowable contexts, over very long spans of time. The level of intimacy that
is implicitly required of objects that compesy invoking each other’s methods, is simply
too unrealistic in the world of such components. Component models that rely on (variations
of) object oriented programming (e.g., components as fortified collections of objects) and
its composition mechanism of method invocation must, on the one hand, ameliorate its
inherent endogenous rigidity (e.g., by intercegtiinterpreting, retargeting, or suppressing
messages), and on the other hand yield quite brittle compositions. Composition of two
components, in such models, does not by itself yield another component.

Abstract Behwaior Types presented in this paper offer a simpler and far more flexible
model of components—and of their compasmiti An ABT is a mathematical construct
that defines and/or constrains the behawgican entity without any mention of operations
or data types that may be used to realize that behavior. This puts the ABT model at a
higher-level of abstraction than ADTs and makes it more suitable for components. The
endogenous nature of their composition means thatiot possible for a third party, e.qg.,
an entity in the environment, to compose two objects (or two ADTS) “against their own
will” so to speak. In contrast, the composition of any two ABTSs is always well-defined and
yields another ABT.

The building blocks in the mathematical construction of the ABT model are the
(generally) infinite streams that represent the externally observable sequences of I/0O events
that occur at an entity’mteraction points (e.g., ports) through which it exchanges data
with its environment. Such infinite structures, and thus the ABT model, naturally lend
themselves to coalgebraic techniques and the coinduction reasoning principle. The ABT
model supports a much looser coupling than is possible with ADT and is inherently
amenable to exogenous coordination. We advocate both of these as highly desirable, if
not essential, properties for component based systems.

The ABT model provides a simple formfmlundation for definition and composition of
components. However, direct composition of component ABTs does not generally provide
much of an opportunity to systematically wield exogenous coordination. Reo is a channel-
based exogenous coordination model that barused as a glue language for dynamic
compositional construction of component connectors in (non-)distributed and/or mobile
systems. Connectopastruction in Reo can be seen as an application of the ABT model.
A channel in Reo is just a special kind of an atomic connector (i.e., component): whereas
components and connectors offer one or more ports to exchange information with their
environment, a channel is an ABT that offers exactly two ports (i.e., its channel-ends) for
interaction with its environmnt. Because all Reo connectors are ABTS, the semantics of
channel composition in Reo can be defined in terms of ABT composition.
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