An introduction to Alloy Alcino: Cunha

I conclude there are two ways of constructing a software design: one way is to make it so simple there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies"

Tony Hoare

The first principle ss that you must not fool yourself, and you are the easiest person to fool?
Richard Feynman
"The core of software development is the design of abstractions."
"An abstractionis not a module or an interface class, or method; is a stricture, pure and simple an idea reduced to its essential form

T use the term model for a description of a software abstraction?

> Daniel Jackson
"Simplicity does not precede complexty, but follows it"
Alan Perlis
"Design is not ust what it looks like and feels like Design is how it works

> Steve Jobs

Alloy in a nutshell

- Declarative modéling language
- Automated analysis
- Lightweight formal methods

htorlallovinituedu

Key ingredients

- Everything is a relation
- Non-specialized logic
- Counterexamples within scope
- Analysis by SAT

Small scope hypothesis

- Most bugs have small counterexamples
- Instead of buileing a proof look for a a refutation
- A scope is defined thatinits the size of instances

Relations

$\{(A 1, B 1),(A 1, B 2),(A 2, B 1),(A 3, B 2)\}$

Relations

* Sets are relations of arity 1
- Scalars are relations with size 1
- Relations are first order. blit we have multirelations

$$
\begin{aligned}
& \text { File }=\{(\mathrm{F} 1),(\mathrm{F} 2),(\mathrm{F} 3)\} \\
& \text { Dir }=\{(\mathrm{D} 1),(\mathrm{D} 2)\} \\
& \text { Time }=\{(\mathrm{T} 1),(\mathrm{T} 2),(\mathrm{T} 3),(\mathrm{T} 4)\} \\
& \text { root }=\{(\mathrm{D} 1)\} \\
& \text { now }=\{(\mathrm{T} 4)\} \\
& \text { path }=\{(\mathrm{D} 2)\} \\
& \text { parent }=\{(\mathrm{F} 1, \mathrm{D} 1),(\mathrm{D} 2, \mathrm{D} 1),(\mathrm{F} 2, \mathrm{D} 2)\} \\
& \text { log }
\end{aligned}=\{(\mathrm{T} 1, \mathrm{~F} 1, \mathrm{D} 1),(\mathrm{T} 3, \mathrm{D} 2, \mathrm{D} 1),(\mathrm{T} 4, \mathrm{~F} 2, \mathrm{D} 2)\}, 1 \text {. }
$$

The special ones

none	empty set
univ	universal set
iden	identity relation

$$
\begin{aligned}
& \text { File }=\{(F 1),(F 2),(F 3)\} \\
& \text { Dir }=\{(D 1),(D 2)\} \\
& \text { none }=\{ \} \\
& \text { univ }=\{(F 1),(F 2),(F 3),(D 1),(D 2)\} \\
& \text { iden }=\{(F 1, F 1),(F 2, F 2),(F 3, F 3),(D 1, D 1),(D 2, D 2)\}
\end{aligned}
$$

Composition

Composition

* The swiss army knife of Alloy
- It subsumes function application
- Encourages a navigational (pointfree) style
$\because R . S[X]=x \cdot(\mathrm{R} . \mathrm{S})$

```
Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me ={(P1)}
me.parent = {(P2),(P3)}
parent.parent[me] = {(P4)}
Person.parent = {(P2),(P3),(P4)}
```


Operators

•	composition
+	union
++	override
$\&$	intersection
-	difference
$->$	cartesian product
$<$ domain restriction	
$>$	range restriction
\sim	converse
\wedge	transitive closure
$*$	transitive-reflexive closure

Operators

```
File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
root = {(D1)}
new = {(F3,D2),(F1,D1),(F2,D1)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
File + Dir = {(F1),(F2),(F3),(D1),(D2)}
parent + new = {(F1,D1),(D2,D1),(F2,D2),(F3,D2),(F2,D1)}
parent ++ new = {(F1,D1),(D2,D1),(F3,D2),(F2,D1)}
parent - new = {(D2,D1),(F2,D2)}
parent & new = {(F1,D1)}
parent :> root = {(F1,D1),(D2,D1)}
File -> root = {(F1,D1),(F2,D1),(F3,D1)}
new -> Dir = {(F3,D2,D1),(F3,D2,D2),(F1,D1,D1), ..}
~parent = {(D1,F1),(D1,D2),(D2,F2)}
```


Closures

- No recursion. but we have closures
$\leadsto \wedge R=R+R \cdot R+R \cdot R \cdot R+$
$* * R=\Delta R+t$ den

Multiplicities

A m -> m B	
set	any number
one	exactly one
some	at least one
lone	at most one

Bestiary

| A lone $->$ B | A \rightarrow some B | A \rightarrow lone B | A some $->$ B |
| :---: | :---: | :---: | :---: | :---: |
| injective | entire | simple | Surjective |

A lone -> some B	A -> one B	A some -> lone B
representation	function	abstraction
A lone -> one B		me -> one B
injection		urjection
A one -> one B		
bijection		

Signatures

* Signatures allow us to introduce sets
- Top-level signatures are mutually isjoint

$$
\begin{aligned}
& \text { sig File }\} \\
& \text { sig Dir }\} \\
& \text { sig Name }\}
\end{aligned}
$$

Signatures

* A signature can extend another signature
- The extensions are mitually ois oint
- Signatures can be constraned with a muiltiplicity

```
sig Object {}
sig File extends Object {}
sig Dir extends Object {}
sig Exe,Txt extends File {}
one sig Root extends Dir {}
```


Signatures

- A signature can be abstract
- They have no elements outside extensions
- Arbitrary subset reelations can also be declared

```
abstract sig Object {}
abstract sig File extends Object {}
sig Dir extends Object {}
sig Exe, Txt extends File {}
one sig Root extends Dir {}
sig Temp in Object {}
```


Fields

- Relations can be declared as fiéds
- By default binary relations are functions
- The range can be constrained with a muiltiplicity

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File extends Object {}
sig Dir extends Object {}
sig Name {}
```


Fields

- Multirelations can also be declared as fields
- Fields can depend on otherfields
- Overloading is allowed for non overlapping signatures

```
abstract sig Object {}
sig File, Dir extends Object {}
sig Name {}
sig FileSystem {
    objects: set Object,
    parent: objects -> lone (Dir & objects),
    name: objects lone -> one Name
}
```


Command run

- Instructs analyser to search forinstances within scope
- Scope can be fine tunned for eachisignature
- The default scope is 3
- Instances are built by populating sets with atoms up to the given scope
- Atoms are uninterpreted, indivisible, immutable
- It returns all (non-symmetric) instances of the model

Command run

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
run {} for 3 but 2 Dir, exactly 3 Name
```


Facts

* Constraints that are assumed to always hold
- Be careful what you wish for:
- First-order logíc y relational calcuilus

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {}
fact ParentIsATree {}
```


Operators

$!$	not	negation	
$\& \&$	and	conjunction	
$\|\mid$	or	disjunction	
\Rightarrow	implies	implication	
\Rightarrow	iff	equivalence	
A B else C $\Leftrightarrow(A \& \& B)$ \|	(!A \&\& C)		

Operators

$=$	equality
$!=$	inequality
in	is subset
no	is empty
some	is not empty
one	is a singleton
lone	is empty or a singleton

Quantifiers

$\Delta x: A \mid P[x]$	
all	P holds for every x in A
some	P holds for at least one x in A
lone	P holds for at most one x in A
one	P holds for exactly one x in A
no	P holds for no x in A

A question of style

* The classic (point-wise) logic style

$$
\text { all disj } x, y \text { : Object } \mid \text { name }[x] \text { ! }=\text { name }[y]
$$

- The navigational style

$$
\text { all } \mathrm{x} \text { : Name } \mathrm{I} \text { Lone name. } \mathrm{x}
$$

- The multiplicites style
name in Object lone \rightarrow Name
- The relational (point-free) style
name. nname in iden

A static filesystem

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {
    name in Object lone }->\mathrm{ Name // name is injective
}
fact ParentIsATree {
    all f : File I some f.parent // no orphan files
    lone r : Dir I no r.parent // only one root
    no o : Object | o in o.^parent // no cycles
```

\}

Assertions and check

- Assertions are constraints intended: to follow from facts of the model
* check instructs analyser to search for counterexamples within scope

```
assert AllDescendFromRoot {
    lone r : Object | Object in *parent.r
}
```

check AllDescendFromRoot for 6
check \{name in Object lone \rightarrow Name <<> name. nname in iden\}

Predicates and functions

- A predicate is a named formula with zero or more declarations for arguments
- A function also has a declaration for the result

```
fun content [d : Dir] : set Object {
    parent.d
}
pred leaf [o : Object] {
    o in File || no content[0]
}
```


Lets and comprehensions

$$
\begin{gathered}
\text { let } x=\mathrm{e} \mid \mathrm{P}[\mathrm{x}] \\
\left\{\mathrm{x}_{1}: A_{1}, \ldots, x_{n}: A_{n} \mid P\left[x_{1}, \ldots, x_{n}\right]\right\}
\end{gathered}
$$

fun siblings [o : Object] : set Object \{ let $p=0$.parent \mid parent. p
\} check \{all o: Object 10 in siblings[0]\}
fun iden : univ \rightarrow univ $\{$

$$
\{x, y: \text { univ } \mid x=y\}
$$

\}

Dynamic modeling

- Define the signatures that capture your state
- Define the invariants that constrain valid states
- Model operations with predicates
- Relationship between pre and post-states
- Do not forget frame conoitions
- Check that operations are safe
- Check for consistency using run
- Be careful with over-specification

A dynamic filesystem

```
abstract sig Object {}
sig File, Dir extends Object {}
sig FS {
    objects : set Object,
    parent : Object -> lone Dir
}
pred inv [fs : FS] {
    fs.parent in fs.objects -> fs.objects
    all f : fs.objects & File I some fs.parent[f]
    lone r : fs.objects & Dir I no fs.parent[r]
    no o: fs.objects 1 o in 0.^(fs.parent)
}
run inv for 3 but exactly 1 FS
```


A dynamic filesystem

```
pred rmdir [fs,fs' : FS, d : Dir] {
    d in fs.objects && no fs.parent.d
    fs'.objects = fs.objects - d
    fs'.parent = fs.parent - (d -> Object)
}
pred rmdir_consistent [fs,fs' : FS, d : Dir] {
    inv[fs] && rmdir[fs,fs',d]
}
run rmdir_consistent for 3 but 2 FS
assert rmdir_safe {
    all fs,fs':FS,d:Dir | inv[fs]&&rmdir[fs,fs',d]=>inv[fs']
}
check rmdir_safe for 3 but 2 FS
```


Modules

* util/ordering [elem
- Creates a single linear ordering over atoms in elem
- Constrains all the permitted atoms to exist
- Good for abstracting time model traces,....
- util/integer

Collection of utility functions over integers

Integers

* Scope limits bitwidth
- 2's complement arithmetic be careful with overifows
\checkmark Int versus int

```
open util/integer
check {all x,y : Int I pos[y] => gt[add[x,y],x]}
sig Student {partial : set Int} {
    all i : partial | nonneg[i]
}
fun total[s : Student] : Int {
    Int[int[s.partial]]
}
```


State transition systems

- Impose ordering on the state
- Constrain initial state and valid transitions
- Bounded model checking on finite traces
- Be careful to ado nop transitions to deadlock states

```
open util/ordering[FS]
fact {
    one first.objects and no first.parent
    all fs : FS, fs': fs.next |
    some p,d : Dir I mkdir[fs,fs',p,d] or rmdir[fs,fs',d]
}
check { all fs : FS | inv[fs] } for 4 but }8\mathrm{ FS
```


Generator axioms

```
sig Set { elems : set Elem }
sig Elem {}
check {
    all s0, s1 : Set |
        some s2 : Set 1 s2.elems = s0.elems + s1.elems
}
```

- Counterexamples are found
- Set is not saturated enough
- A generator axiom can be enforced

Generator axioms

```
fact SetGenerator {
    some s : Set I no s.elems
    all s : Set, e : Elem I
        some s': Set | s'.elems = s.elems + e
}
```

- Unfortunately the scope explodes
- To verify a model with elements $2 n$ sets are needed
- Sometimes generator axioms force infinite scopes
- The risk of inconsistency is very high

Generator axioms

* As long as universal quantifiers (nirins) are bounded we can live without generator axioms
- Bounded means that the quantifier scope does not mention names of generated signatires

```
check {
    all s0, s1, s2 : Set l
        s0.elems + s1.elems = s2.elems =>
            s1.elems + s0.elems = s2.elems
```

\}

Demos

* I'm my own grandpa
* Filesystem
* River crossing

Exercises

- Peterson's mutual exclusion algorithm
- Ebay
- Gossips

Peterson

- Model Petersons mutual exclusion algorithna
- Is Alloy adequate to check muttil exclusion? Deadlock absence? Liveness properties?

```
while (true) {
idle : // non critical section
    flag[0] = 1; turn = 1;
wait : while (flag[1] && turn = 1);
critical : // critical section
    flag[0] = 0;
}
```


Ebay

- Clients can create auctions for products or bid on other clients auctions.
- Define a simple Ebay model with at least the following invariants:
- Clients do not bid: onauctions for products they are also selling
- All bids in an auction must be different
- Define and check the soundness and correctness of the following operations:
- Create a new auction
- Make a winning bid on a product

Gossips

- A number of girls initially know one distinct secret each. Each gin has access to a phone which can be used to call another gir to share their secrets. Each time two girls talk to each other they always exchange all secrets with each other The girls can communicate only in pairs (no conference calls) but it is possible that different pairs of gins talk concurrently
- How long does it take for n girls to know all of the secrets?

Kernel syntax

```
form := some expr
    | expr in expr
    | not form
    I form and form
    | some var : expr [,var : expr]* I form
expr := var
    l ~ expr
    | ^ expr
    | expr + expr
    | expr & expr
    | expr. expr
    | expr -> expr
    | {var: expr [,var : expr]* | form }
```


Kernel semantics

* Denotational semantics

F : form \times binding \rightarrow bool
E : expr \times binding \rightarrow relation

- Everything is a relation
- Relations are sets of tuples
- Tuples are sequences of atoms

```
binding := var }\mapsto\mathrm{ relation
relation := P tuple
tuple := <atom [, atom]*>
```


Kernel semantics

$$
\begin{aligned}
& F(\text { some } r, \Gamma):=E(r, \Gamma) \neq\{ \} \\
& F(r \text { in } s, \Gamma):=E(r, \Gamma) \subseteq E(s, \Gamma) \\
& F(\text { (not } f, r):=-F(f, \Gamma) \\
& F(f \text { and } g, r):=F(f, \Gamma) \wedge F(g, \Gamma) \\
& F\left(\text { some } x_{1}: r_{1}, \ldots, x_{n}: r_{n} \mid f, r\right):=F\left(\text { some }\left\{x_{1}: r_{1}, \ldots, x_{n}: r_{n} \mid f\right\}, \Gamma\right)
\end{aligned}
$$

Kernel semantics

$$
\begin{aligned}
& E(x, \Gamma) \quad:=u\{\Gamma(r) \mid \text { name }(r)=x\} \\
& E(\sim r, \Gamma) \quad:=\left\{\left\langle a_{2}, a_{1}\right\rangle \mid\left\langle a_{1}, a_{2}\right\rangle \in E(r, \Gamma)\right\} \\
& E(\wedge r, \Gamma):=E(r, \Gamma) \cup E(r, r, \Gamma) \cup E(r, r, r, \Gamma) \cup \ldots \\
& E(r+s, \Gamma):=E(r, \Gamma) \cup E(s, \Gamma) \\
& E(r \& s, \Gamma):=E(r, \Gamma) \cap E(s, \Gamma) \\
& E(r, s, \Gamma):= \\
& \left\{\left\langle a_{1}, \ldots, a_{n-1}, b_{2}, \ldots, b_{m}\right\rangle \mid\left\langle a_{1}, \ldots, a_{n}\right\rangle \in E(r, \Gamma) \wedge\left\langle b_{1}, \ldots, b_{m}\right\rangle \in E(s, \Gamma) \wedge a_{n}=b_{1}\right\} \\
& E(r->s, \Gamma):= \\
& \left.\left\{\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\rangle\left|<a_{1}, \ldots, a_{n}\right\rangle \in E(r, \Gamma) \wedge<b_{1}, \ldots, b_{m}\right\rangle \in E(S, \Gamma)\right\} \\
& E(\{x: r \mid f\}, \Gamma):= \\
& \{\langle a\rangle|<a\rangle \in E(r, \Gamma) \wedge F(f, \Gamma \oplus x \mapsto\{<a\rangle\})\} \\
& E\left(\left\{x_{1}: r_{1}, \ldots, x_{n}: r_{n} \mid f\right\}, \Gamma\right):= \\
& \left.\left.\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle\left|<a_{1}\right\rangle \in E(r, \Gamma) \wedge<a_{2}, \ldots, a_{n}\right\rangle \in E\left(\left\{x_{2}: r_{2}, \ldots, x_{n}: r_{n} \mid f\right\}, \Gamma \oplus x_{1} \mapsto\left\{<a_{1}\right\rangle\right\}\right)\right\}
\end{aligned}
$$

Type system

* Detect irrelevant (empty) expressions
- Low burden (no casts overloading,
- Syntactic robustness (subject reduction)
- Semantic independence (types are just warnings)
- Soundness (no false alarms)
- No completeness

Type system

* Semantic types types are also relations
- The bounding type approximates the value of the expression from above
- The relevance type refines the bounding type given the context
- Computed by abstract interpretation
- Relevance resolves overloading: only one of the relations with the same name should be relevant

Type system

sig Name, Block \{\}
abstract sig Object \{ name : Name \}
sig Dir extends Object \{ contents : set Object \}
sig File extends Object \{ contents : set Block \}
sig Link extends Object \{ to : Object \}
one sig Root extends Dir \{\}
fact \{
all o : Object I some o. name
all b: Block some b name
Root. contents in Dir
all o: Object 1 some o. contents
all o : Object I some o. (File <: contents)
all d : Dir I d not in d.^contents.to
no (Root. to + Root. contents. to)
no (Root + Root.contents). to
\}

Type system

* Atomic types signatures that are not supertypes + for each non-abstract supertype a reminoer type $\$ T$
- Types are represented in disfunctive normal formas unions of products of atomic types

$$
\text { to : \{<Link, Link>,<Link, File>,<Link, \$Dir>, <Link, Root>\} }
$$

-This canonical representation avoids subtype comparisons

- Relational operators can be used to compute types

Bounding types
$\Gamma \vdash r$ in s
$\Gamma \vdash \operatorname{not} f$
$\Gamma \vdash f$ and g
$\Gamma \vdash$ some $x: r \mid f \quad \Leftarrow \Gamma \vdash r: T \wedge \Gamma \oplus X \mapsto T \vdash f$
$\Gamma \vdash x: T \quad \Leftarrow \Gamma(x)=T$
$\Gamma \vdash \sim r: \sim T \quad \Leftarrow \Gamma \vdash r: T$
$\Gamma \vdash \wedge r: \wedge T \quad \Leftarrow \quad \Gamma \vdash r: T$
$\Gamma \vdash r+s: T+U \leqslant \Gamma \vdash r: T \wedge \Gamma \vdash s: U$
$\Gamma \vdash r \& s: T \& U \& \Gamma \vdash r: T \wedge \Gamma \vdash s: U$
$\Gamma \vdash r: s: T, U \leqslant \Gamma \vdash r: T \wedge \Gamma \vdash s: U$
$\Gamma \vdash r \rightarrow s: T \rightarrow U \Leftarrow \Gamma \vdash r: T \wedge \Gamma \vdash s: U$
$\Gamma \vdash\{x: r \mid f\}: T \Leftarrow \Gamma \vdash r: T \wedge \Gamma \oplus x \mapsto T \vdash f$

Bounding types

(Root + Root.contents).to =
(Root + Root. (contentso+contentsf)). to
Root : $\{<R>\}$
contentsD : $\{<D, L\rangle,\langle D, F\rangle,<D, D\rangle,<D, R\rangle$, $<R, L>,<R, F\rangle,<R, D>,<R, R>\}$
contentsF: $\{<\mathcal{F}, \mathrm{B}\rangle\}$
to : $\{<L, L>,<L, F\rangle,<L, D>,<L, R\rangle\}$
contents ${ }_{D}+$ contentsF : $\{<D, L\rangle,\langle D, F\rangle,\langle D, D\rangle,\langle D, R\rangle$,

$$
\langle R, L\rangle,\langle R, F\rangle,\langle R, D\rangle,\langle R, R\rangle,<F, B\rangle\}
$$

Root. (contentsD+contentsF) : $\{\langle L\rangle,\langle F\rangle,\langle D\rangle,\langle R\rangle\}$
Root + Root. (contentsD+contentsF) : \{<L>,<F>,<D>,<R>\}
(Root + Root. (contentsD+contentsF)).to : \{<L>,<F>,<D>,<R>\}

Relevance types

* The relevance type of an expression is relative to its context
- It is always a subset of the bounding type
- The same expression in two different contexts can have different relevance types
- A context is a term containing at most one hole, denoted by:
- Given context C and term t, C $[t]$ denotes the term that results from filling the hole in C with t

Relevance types
$\Gamma \vdash C[\cdot$ in $s] \downarrow r: T \Leftarrow$
$\Gamma \vdash r: T \wedge \Gamma \vdash s: U \wedge \Gamma \vdash C \downarrow r$ in s
$\Gamma \vdash C[r$ in $\cdot] \downarrow s: T \& U \Leftarrow$
$\Gamma \vdash r: T \wedge \Gamma \vdash s: U \wedge \Gamma \vdash C \downarrow r$ in s
$\Gamma \vdash C[\cdot+s] \downarrow r: T \& B \Leftarrow$
$\Gamma \vdash r: T \wedge \Gamma \vdash s: U \wedge \Gamma \vdash C \downarrow r+s: B$
$\Gamma \vdash C[r+\cdot] \downarrow r: U \& B \Leftarrow$
$\Gamma \vdash r: T \wedge \Gamma \vdash s: U \wedge \Gamma \vdash C \downarrow r+s: B$
$\Gamma \vdash C[0, s] \downarrow r:\{a \in T|\exists b \in U| a \cdot b \in B\} \Leftarrow$
$\Gamma \vdash r: T \wedge \Gamma \vdash s: U \wedge \Gamma \vdash C \downarrow r, s: B$
$\Gamma \vdash C[r, \cdot] \downarrow s:\{b \in U|\exists a \in T| a \cdot b \in B\} \Leftarrow$
$\Gamma \vdash r: T \wedge \Gamma \vdash s: U \wedge \Gamma \vdash C \downarrow r$. $s: B$

Relevance types

- . to \downarrow Root + Root. (contentSD+contentsf) : $\{<L\rangle\}$
- + Root. (contentsD+contentsF) \downarrow Root : \{\} Root $+\bullet \downarrow$ Root. (contentsD+contentsF) : $\{<L\rangle\}$
Root . • \downarrow (contentsD+contentsF) : $\{<R, L\rangle\}$
- . (contentSD+contentsf) \downarrow Root : $\{<R>\}$
- + contentsF \downarrow contentsD $:\{<R, L\rangle\}$
contentSD $+\bullet \downarrow$ contentsF : $\}$

The real implementation

* Computations are performed on base nstead of atomic types to get better error messages
- This forces subtype comparisons
- Empty bounding types are minediately reported as errors
- Expressions of mixed arity are rejected
- Relevance types are only used for resolving overloading no syntactic robustness

Satisfiability

* Given propositional formila A find a model M (or valuation to boolean variables) such that M A
- Dual problem to valiolity formila A is valid if A is Unsatisfiable
- The quintessential NP complete problem any problem in NP can be reduced to SAT in polynomial-time
- Naive approach using truth tables requires 2^{n} space for a formula with n variables

Conjunctive normal form

* A formula in GNF is coniunction of clauses, which are disjunctions of ilterals (variables or their negation)
* A formula in CNF can be represented as a set of sets of literals. it is true if it is empty false if it has an empty set
- Any formula can rediced to GNF by applying De Morgan and distribution laws
- Unfortunately a formula can grow exponentially
- Can be avoided by generating equisatisfiable normal forms instead

The DPLL algorithm

* Davis-Putnam Logemann Eveland algorithm
- Iteratively fix the value of a variable and simplify the CNF accordingly: backtrack if unsatisfiable

$$
\text { I otherwise }=\operatorname{DPLL}\left(s p l i t^{\times}(A)\right) \wedge \operatorname{DPLL}(s p l i t-x(A))
$$

- A is satisfiable iff DPE (A)

$$
\begin{aligned}
& \operatorname{DPLL}(\mathrm{A}) \left\lvert\, \begin{array}{ll}
\{ \} \in A & =\text { False } \\
& \{ \} \in A=\text { True }
\end{array}\right. \\
& \operatorname{split}{ }^{x}(A)=\{c \backslash\{-x\} \mid c \in A, x \notin c\} \\
& -(x)=-x \\
& -(-x)=x
\end{aligned}
$$

The DPLL algorithm

* Exponential in the worst case
- Highly dependent on the order variables are chosen
- Highly dependent on the data structures chosen for implementation
- Extra heuristics to avoid unnecessary branches, like unit propagation or pure Iteral elimination

$$
\begin{aligned}
\operatorname{DPLL}(A) & :\{l\} \in A=\operatorname{DPLL}\left(s p l i t^{1}(A)\right) \\
& \mid \forall c \in A .-l \notin c=\operatorname{DPLL}\left(s p l i t^{1}(A)\right)
\end{aligned}
$$

Reducing Alloy to SAT

* Relational expressions are represented by matrices of boolean variables.
- Relational operations are generalized to matrices
- Formulas yield boole an formilas over these variables

```
sig A {R: set B, S: set B}
sig B {}
run {R in R + S} for 3 but exactly 2 A, exactly 3 B
R:={ R R,1, R1,2, R1,3, R2,1, R2,2, R R2,3 }
S:={ S S,1, S S ,2, S S,3, S S,1, S S2,2, S2,3 }
```


Symmetry breaking

- Several optimizations are peiformed
- The most significant is symmethy breaking
- Since atoms are cininterpreted any instance is also valid for a permutation
- Symmetry breaking constraints are conjoined to the analysis constraint
- For efficiency reasons it is not complete

Skolemization

- Since scope is finite, quantifieis could be handled by an expansion

```
sig A {}
run {some x : A | f} for 3 but exactly 3 A
A:={\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\mp@subsup{A}{3}{}}
some x:A | f=f[A/ /x] or f[A2/x] or f[A/ 
```

- When an instance is generated it may not be clear which x made the formula true

Skolemization

- Free variables are implicitly existentially quantified
* Replace the bound variable by a new free variable

```
some x : A | f }->(fx\mathrm{ in A) and f[fx/x]
all x : A | some y : B | f }
(fy in A }->\mathrm{ one B) and (all x:A | f[x.fy/y])
```

Witnesses to bound variables are now generated

- It can hanole some higher order quantifications
- Generates smaller (equisatisfiable) formulas

Bibliography

* D. Jackson. Software Abstractions Logic. Language, and Analysis MIT Press. 2006.
- J. Edwards D. Jackson and ETorlak A Type System for Object Mode/s ESE AGM 2004
- E. Torlak and D. Jackson. Kodkod A Relational Model Finder TAGAS. Springer 2007.
- J. Almeida, M. Frade, J Pinto, S. de Sousa. Rigorous Software Development: an Introduction to Program Verification. Springer, 2011.

