
An introduction to Alloy
Alcino Cunha

“I conclude there are two ways of constructing a software
design: one way is to make it so simple there are
obviously no deficiencies, and the other way is to make it
so complicated that there are no obvious deficiencies.”

Tony Hoare

“The first principle is that you must not fool yourself, and
you are the easiest person to fool.”

Richard Feynman

“The core of software development is the design of
abstractions.”

“An abstraction is not a module, or an interface, class, or
method; it is a structure, pure and simple - an idea
reduced to its essential form.”

“I use the term ‘model’ for a description of a software
abstraction.”

Daniel Jackson

“Simplicity does not precede complexity, but follows it.”

Alan Perlis

“Design is not just what it looks like and feels like. Design
is how it works.”

Steve Jobs

Alloy in a nutshell

Declarative modeling language

Automated analysis

Lightweight formal methods

http://alloy.mit.edu

http://alloy.mit.edu
http://alloy.mit.edu

Key ingredients

Everything is a relation

Non-specialized logic

Counterexamples within scope

Analysis by SAT

Small scope hypothesis
Most bugs have small counterexamples

Instead of building a proof look for a refutation

A scope is defined that limits the size of instances

Relations

A1 B1
A1 B2
A2 B1
A3 B2

{(A1,B1),(A1,B2),(A2,B1),(A3,B2)}

A1 A2 A3

B1 B2 B3

Relations
Sets are relations of arity 1

Scalars are relations with size 1

Relations are first order... but we have multirelations

File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
Time = {(T1),(T2),(T3),(T4)}
root = {(D1)}
now = {(T4)}
path = {(D2)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
log = {(T1,F1,D1),(T3,D2,D1),(T4,F2,D2)}

The special ones
none empty set
univ universal set
iden identity relation

File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
none = {}
univ = {(F1),(F2),(F3),(D1),(D2)}
iden = {(F1,F1),(F2,F2),(F3,F3),(D1,D1),(D2,D2)}

Composition
A1 A2 A3

B1 B2 B3

C1 C2 C3

A1 A2 A3

C1 C2 C3

R = {(A1,B1),(A1,B2),(A2,B1),(A3,B2)}
S = {(B1,C2),(B1,C3),(B2,C2),(B3,C1)}
R.S = {(A1,C2),(A1,C3),(A2,C2),(A2,C3),(A3,C2)}

Composition
The swiss army knife of Alloy

It subsumes function application

Encourages a navigational (point-free) style

 R.S[x] = x.(R.S)

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
parent.parent[me] = {(P4)}
Person.parent = {(P2),(P3),(P4)}

Operators
. composition
+ union
++ override
& intersection
- difference
-> cartesian product
<: domain restriction
:> range restriction
~ converse
^ transitive closure
* transitive-reflexive closure

Operators
File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
root = {(D1)}
new = {(F3,D2),(F1,D1),(F2,D1)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
File + Dir = {(F1),(F2),(F3),(D1),(D2)}
parent + new = {(F1,D1),(D2,D1),(F2,D2),(F3,D2),(F2,D1)}
parent ++ new = {(F1,D1),(D2,D1),(F3,D2),(F2,D1)}
parent - new = {(D2,D1),(F2,D2)}
parent & new = {(F1,D1)}
parent :> root = {(F1,D1),(D2,D1)}
File -> root = {(F1,D1),(F2,D1),(F3,D1)}
new -> Dir = {(F3,D2,D1),(F3,D2,D2),(F1,D1,D1),...}
~parent = {(D1,F1),(D1,D2),(D2,F2)}

Closures
No recursion... but we have closures

^R = R + R.R + R.R.R + ...

*R = ^R + iden

P1 P2

P4

P3

P5 P6

Multiplicities

A m -> m B

set any number
one exactly one
some at least one
lone at most one

Bestiary

A lone -> some B A -> one B A some -> lone B

representation function abstraction
A lone -> one B A some -> one B

injection surjection
A one -> one B

bijection

A lone -> B A -> some B A -> lone B A some -> B

injective entire simple surjective

Signatures
Signatures allow us to introduce sets

Top-level signatures are mutually disjoint

sig File {}
sig Dir {}
sig Name {}

Signatures
A signature can extend another signature

The extensions are mutually disjoint

Signatures can be constrained with a multiplicity

sig Object {}
sig File extends Object {}
sig Dir extends Object {}
sig Exe,Txt extends File {}
one sig Root extends Dir {}

Signatures
A signature can be abstract

They have no elements outside extensions

Arbitrary subset relations can also be declared

abstract sig Object {}
abstract sig File extends Object {}
sig Dir extends Object {}
sig Exe, Txt extends File {}
one sig Root extends Dir {}
sig Temp in Object {}

Fields
Relations can be declared as fields

By default binary relations are functions

The range can be constrained with a multiplicity

abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File extends Object {}
sig Dir extends Object {}
sig Name {}

Fields
Multirelations can also be declared as fields

Fields can depend on other fields

Overloading is allowed for non-overlapping signatures

abstract sig Object {}
sig File, Dir extends Object {}
sig Name {}
sig FileSystem {
objects: set Object,
parent: objects -> lone (Dir & objects),
name: objects lone -> one Name

}

Command run
Instructs analyser to search for instances within scope

Scope can be fine tunned for each signature

The default scope is 3

Instances are built by populating sets with atoms up to
the given scope

Atoms are uninterpreted, indivisible, immutable

It returns all (non-symmetric) instances of the model

Command run
abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
run {} for 3 but 2 Dir, exactly 3 Name

Dir0 File Dir1

Name0 Name1 Name2

Facts
Constraints that are assumed to always hold

Be careful what you wish for...

First-order logic + relational calculus

abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {}
fact ParentIsATree {}

Operators

! not negation
&& and conjunction
|| or disjunction
=> implies implication
<=> iff equivalence
A => B else C <=> (A && B) || (!A && C)

Operators

= equality
!= inequality
in is subset
no is empty

some is not empty
one is a singleton
lone is empty or a singleton

Quantifiers

∆ x:A | P[x]
all P holds for every x in A
some P holds for at least one x in A
lone P holds for at most one x in A
one P holds for exactly one x in A
no P holds for no x in A

∆ disj x,y:A | P[x,y] <=> ∆ x,y:A | x!=y => P[x,y]

A question of style
The classic (point-wise) logic style

The navigational style

The multiplicities style

The relational (point-free) style

all disj x,y : Object | name[x] != name[y]

name in Object lone -> Name

name.~name in iden

all x : Name | lone name.x

A static filesystem
abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {
 name in Object lone -> Name // name is injective
}
fact ParentIsATree {
	 all f : File | some f.parent // no orphan files
	 lone r : Dir | no r.parent // only one root
	 no o : Object | o in o.^parent // no cycles
}

Assertions and check
Assertions are constraints intended to follow from facts
of the model

check instructs analyser to search for counterexamples
within scope

assert AllDescendFromRoot {
	 lone r : Object | Object in *parent.r
}

check AllDescendFromRoot for 6

check {name in Object lone -> Name <=> name.~name in iden}

Predicates and functions
A predicate is a named formula with zero or more
declarations for arguments

A function also has a declaration for the result

fun content [d : Dir] : set Object {
	 parent.d
}

pred leaf [o : Object] {
	 o in File || no content[o]
}

Lets and comprehensions

fun siblings [o : Object] : set Object {
	 let p = o.parent | parent.p
}
check {all o : Object | o in siblings[o]}

fun iden : univ -> univ {
 {x,y : univ | x = y}
}

let x = e | P[x]

{x1 : A1, ..., xn : An | P[x1,...,xn]}

Dynamic modeling
Define the signatures that capture your state

Define the invariants that constrain valid states

Model operations with predicates

Relationship between pre and post-states

Do not forget frame conditions

Check that operations are safe

Check for consistency using run

Be careful with over-specification

A dynamic filesystem
abstract sig Object {}
sig File, Dir extends Object {}
sig FS {
	 objects : set Object,
	 parent : Object -> lone Dir
}

pred inv [fs : FS] {
	 fs.parent in fs.objects -> fs.objects
	 all f : fs.objects & File | some fs.parent[f]
	 lone r : fs.objects & Dir | no fs.parent[r]
	 no o : fs.objects | o in o.^(fs.parent)
}
run inv for 3 but exactly 1 FS

A dynamic filesystem
pred rmdir [fs,fs' : FS, d : Dir] {
	 d in fs.objects && no fs.parent.d
	 fs'.objects = fs.objects - d
	 fs'.parent = fs.parent - (d -> Object)
}
pred rmdir_consistent [fs,fs' : FS, d : Dir] {
	 inv[fs] && rmdir[fs,fs',d]
}
run rmdir_consistent for 3 but 2 FS
assert rmdir_safe {
	 all fs,fs':FS,d:Dir | inv[fs]&&rmdir[fs,fs',d]=>inv[fs']
}
check rmdir_safe for 3 but 2 FS

Modules

util/ordering[elem]

Creates a single linear ordering over atoms in elem

Constrains all the permitted atoms to exist

Good for abstracting time, model traces, ...

util/integer

Collection of utility functions over integers

Integers
Scope limits bitwidth

2’s complement arithmetic: be careful with overflows

Int versus int

open util/integer
check {all x,y : Int | pos[y] => gt[add[x,y],x]}
sig Student {partial : set Int} {
	 all i : partial | nonneg[i]
}
fun total[s : Student] : Int {
	 Int[int[s.partial]]
}

State transition systems
Impose ordering on the state

Constrain initial state and valid transitions

Bounded model checking on finite traces

Be careful to add nop transitions to deadlock states

open util/ordering[FS]
fact {
	 one first.objects and no first.parent
	 all fs : FS, fs' : fs.next |
 some p,d : Dir | mkdir[fs,fs',p,d] or rmdir[fs,fs',d]
}
check { all fs : FS | inv[fs] } for 4 but 8 FS

Generator axioms

Counterexamples are found

Set is not saturated enough

A generator axiom can be enforced

sig Set { elems : set Elem }
sig Elem {}

check {
 all s0, s1 : Set |
 some s2 : Set | s2.elems = s0.elems + s1.elems
}

Generator axioms

Unfortunately the scope explodes

To verify a model with n elements 2n sets are needed

Sometimes generator axioms force infinite scopes

The risk of inconsistency is very high

fact SetGenerator {
 some s : Set | no s.elems
 all s : Set, e : Elem |
 some s’ : Set | s’.elems = s.elems + e
}

Generator axioms
As long as universal quantifiers (in runs) are bounded
we can live without generator axioms

Bounded means that the quantifier scope does not
mention names of generated signatures

check {
 all s0, s1, s2 : Set |
 s0.elems + s1.elems = s2.elems =>
 s1.elems + s0.elems = s2.elems
}

Demos
I'm my own grandpa

Filesystem

River crossing

Exercises
Peterson’s mutual exclusion algorithm

Ebay

Gossips

Peterson
Model Peterson’s mutual exclusion algorithm.

Is Alloy adequate to check mutual exclusion? Deadlock
absence? Liveness properties?

 while (true) {
idle : // non critical section
 flag[0] = 1; turn = 1;
wait : while (flag[1] && turn = 1);
critical : // critical section
 flag[0] = 0;
 }

Ebay
Clients can create auctions for products or bid on
other clients’ auctions.

Define a simple Ebay model with at least the following
invariants:

Clients do not bid on auctions for products they are also selling

All bids in an auction must be different

Define and check the soundness and correctness of
the following operations:

Create a new auction

Make a winning bid on a product

Gossips
A number of girls initially know one distinct secret
each. Each girl has access to a phone which can be
used to call another girl to share their secrets. Each
time two girls talk to each other they always exchange
all secrets with each other. The girls can communicate
only in pairs (no conference calls) but it is possible that
different pairs of girls talk concurrently.

How long does it take for n girls to know all of the
secrets?

Kernel syntax
form := some expr
 | expr in expr
 | not form
 | form and form
 | some var : expr [, var : expr]* | form

expr := var
 | ~ expr
 | ^ expr
 | expr + expr
 | expr & expr
 | expr . expr
 | expr -> expr
 | { var : expr [, var : expr]* | form }

Kernel semantics

binding := var ↦ relation
relation := ℙ tuple
tuple := <atom [, atom]*>

F : form × binding $ bool
E : expr × binding $ relation

Everything is a relation

Relations are sets of tuples

Tuples are sequences of atoms

Denotational semantics

Kernel semantics

F(some r, Γ) := E(r,Γ) ≠ {}
F(r in s, Γ) := E(r,Γ) ⊆ E(s,Γ)
F(not f, Γ) := ¬ F(f,Γ)
F(f and g, Γ) := F(f,Γ) ∧ F(g,Γ)
F(some x1:r1,…,xn:rn | f, Γ) := F(some {x1:r1,…,xn:rn | f}, Γ)

Kernel semantics
E(x, Γ) := ∪ {Γ(r) | name(r) = x}
E(~ r, Γ) := { <a2,a1> | <a1,a2> ∈ E(r,Γ) }
E(^ r, Γ) := E(r,Γ) ∪ E(r.r,Γ) ∪ E(r.r.r,Γ) ∪ …
E(r + s, Γ) := E(r,Γ) ∪ E(s,Γ)
E(r & s, Γ) := E(r,Γ) ∩ E(s,Γ)
E(r . s, Γ) :=
 { <a1,…,an-1,b2,…,bm> | <a1,…,an> ∈ E(r,Γ) ∧ <b1,…,bm> ∈ E(s,Γ) ∧ an = b1 }
E(r -> s, Γ) :=
 { <a1,…,an,b1,…,bm> | <a1,…,an> ∈ E(r,Γ) ∧ <b1,…,bm> ∈ E(s,Γ) }
E({x:r | f}, Γ) :=
 { <a> | <a> ∈ E(r,Γ) ∧ F(f, Γ⊕x↦{<a>}) }
E({x1:r1,…,xn:rn | f}, Γ) :=
 { <a1,…,an> | <a1> ∈ E(r,Γ) ∧ <a2,…,an> ∈ E({x2:r2,…,xn:rn | f}, Γ⊕x1↦{<a1>}) }

Type system

Detect irrelevant (empty) expressions

Low burden (no casts, overloading, ...)

Syntactic robustness (subject reduction)

Semantic independence (types are just warnings)

Soundness (no false alarms)

No completeness

Type system
Semantic types: types are also relations

The bounding type approximates the value of the
expression from above

The relevance type refines the bounding type given the
context

Computed by abstract interpretation

Relevance resolves overloading: only one of the
relations with the same name should be relevant

Type system
sig Name, Block {}
abstract sig Object { name : Name }
sig Dir extends Object { contents : set Object }
sig File extends Object { contents : set Block }
sig Link extends Object { to : Object }
one sig Root extends Dir {}
fact {
 all o : Object | some o.name
 all b : Block | some b.name
 Root.contents in Dir
 all o : Object | some o.contents
 all o : Object | some o.(File <: contents)
 all d : Dir | d not in d.^contents.to
 no (Root.to + Root.contents.to)
 no (Root + Root.contents).to
}

Type system
Atomic types: signatures that are not supertypes + for
each non-abstract supertype T a reminder type $T

Types are represented in disjunctive normal form as
unions of products of atomic types

to : {<Link,Link>,<Link,File>,<Link,$Dir>,<Link,Root>}

This canonical representation avoids subtype
comparisons

Relational operators can be used to compute types

Bounding types
Γ ⊢ r in s ⇐ Γ ⊢ r : T ∧ Γ ⊢ s : U
Γ ⊢ not f ⇐ Γ ⊢ f
Γ ⊢ f and g ⇐ Γ ⊢ f ∧ Γ ⊢ g
Γ ⊢ some x:r | f ⇐ Γ ⊢ r : T ∧ Γ⊕x↦T ⊢ f
Γ ⊢ x : T ⇐ Γ(x) = T
Γ ⊢ ~r : ~T ⇐ Γ ⊢ r : T
Γ ⊢ ^r : ^T ⇐ Γ ⊢ r : T
Γ ⊢ r + s : T + U ⇐ Γ ⊢ r : T ∧ Γ ⊢ s : U
Γ ⊢ r & s : T & U ⇐ Γ ⊢ r : T ∧ Γ ⊢ s : U
Γ ⊢ r . s : T . U ⇐ Γ ⊢ r : T ∧ Γ ⊢ s : U
Γ ⊢ r -> s : T -> U ⇐ Γ ⊢ r : T ∧ Γ ⊢ s : U
Γ ⊢ { x:r | f } : T ⇐ Γ ⊢ r : T ∧ Γ⊕x↦T ⊢ f

Bounding types
(Root + Root.contents).to =
(Root + Root.(contentsD+contentsF)).to

Root : {<R>}
contentsD : {<D,L>,<D,F>,<D,D>,<D,R>,
 <R,L>,<R,F>,<R,D>,<R,R>}
contentsF : {<F,B>}
to : {<L,L>,<L,F>,<L,D>,<L,R>}
contentsD+contentsF : {<D,L>,<D,F>,<D,D>,<D,R>,
 <R,L>,<R,F>,<R,D>,<R,R>,<F,B>}
Root.(contentsD+contentsF) : {<L>,<F>,<D>,<R>}
Root + Root.(contentsD+contentsF) : {<L>,<F>,<D>,<R>}
(Root + Root.(contentsD+contentsF)).to : {<L>,<F>,<D>,<R>}

Relevance types
The relevance type of an expression is relative to its
context

It is always a subset of the bounding type

The same expression in two different contexts can have
different relevance types

A context is a term containing at most one hole,
denoted by ⦁

Given context C and term t, C[t] denotes the term that
results from filling the hole in C with t

Relevance types
Γ ⊢ C[⦁ in s] + r : T ⇐
 Γ ⊢ r : T ∧ Γ ⊢ s : U ∧ Γ ⊢ C + r in s
Γ ⊢ C[r in ⦁] + s : T & U ⇐
 Γ ⊢ r : T ∧ Γ ⊢ s : U ∧ Γ ⊢ C + r in s

Γ ⊢ C[⦁ + s] + r : T & B ⇐
 Γ ⊢ r : T ∧ Γ ⊢ s : U ∧ Γ ⊢ C + r + s : B
Γ ⊢ C[r + ⦁] + r : U & B ⇐
 Γ ⊢ r : T ∧ Γ ⊢ s : U ∧ Γ ⊢ C + r + s : B

Γ ⊢ C[⦁ . s] + r : {a ∈ T | ∃ b ∈ U | a.b ∈ B} ⇐
 Γ ⊢ r : T ∧ Γ ⊢ s : U ∧ Γ ⊢ C + r . s : B
Γ ⊢ C[r . ⦁] + s : {b ∈ U | ∃ a ∈ T | a.b ∈ B} ⇐
 Γ ⊢ r : T ∧ Γ ⊢ s : U ∧ Γ ⊢ C + r . s : B

Relevance types

⦁ . to + Root + Root.(contentsD+contentsF) : {<L>}
⦁ + Root.(contentsD+contentsF) + Root : {}
Root + ⦁ + Root.(contentsD+contentsF) : {<L>}
Root . ⦁ + (contentsD+contentsF) : {<R,L>}
⦁ . (contentsD+contentsF) + Root : {<R>}
⦁ + contentsF + contentsD : {<R,L>}
contentsD + ⦁ + contentsF : {}

The real implementation
Computations are performed on base instead of atomic
types to get better error messages

This forces subtype comparisons

Empty bounding types are immediately reported as
errors

Expressions of mixed arity are rejected

Relevance types are only used for resolving
overloading: no syntactic robustness

Satisfiability
Given propositional formula A find a model M (or
valuation to boolean variables) such that M ⊨ A

Dual problem to validity: formula A is valid iff ¬A is
unsatisfiable

The quintessential NP-complete problem: any problem
in NP can be reduced to SAT in polynomial-time

Naive approach using truth tables requires 2n space for
a formula with n variables

Conjunctive normal form
A formula in CNF is conjunction of clauses, which are
disjunctions of literals (variables or their negation)

A formula in CNF can be represented as a set of sets of
literals: it is true if it is empty; false if it has an empty set

Any formula can reduced to CNF by applying De
Morgan and distribution laws

Unfortunately, a formula can grow exponentially

Can be avoided by generating equisatisfiable normal
forms instead

The DPLL algorithm
Davis-Putnam-Logemann-Loveland algorithm

Iteratively fix the value of a variable and simplify the
CNF accordingly; backtrack if unsatisfiable

DPLL(A) | {} ≣ A = False
 | {} ∈ A = True
 | otherwise = DPLL(splitx(A)) ∧ DPLL(split¬x(A))

splitx(A) = {c \ {-x} | c ∈ A, x ∉ c}
-(x) = ¬x
-(¬x) = x

A is satisfiable iff ¬DPLL(A)

The DPLL algorithm
Exponential in the worst case

Highly dependent on the order variables are chosen

Highly dependent on the data structures chosen for
implementation

Extra heuristics to avoid unnecessary branches, like
unit propagation or pure literal elimination

DPLL(A) | {l} ∈ A = DPLL(splitl(A))
 | ∀ c ∈ A . -l ∉ c = DPLL(splitl(A))

Reducing Alloy to SAT

sig A {R : set B, S : set B}
sig B {}
run {R in R + S} for 3 but exactly 2 A, exactly 3 B

R := { R1,1, R1,2, R1,3, R2,1, R2,2, R2,3 }
S := { S1,1, S1,2, S1,3, S2,1, S2,2, S2,3 }
R + S := { R1,1 ∨ S1,1, R1,2 ∨ S1,2, …, R2,3 ∨ S2,3 }
R in R + S := (R1,1 ⇒ R1,1 ∨ S1,1) ∧ … ∧ (R2,3 ⇒ R2,3 ∨ S2,3)

Relational expressions are represented by matrices of
boolean variables

Relational operations are generalized to matrices

Formulas yield boolean formulas over these variables

Symmetry breaking
Several optimizations are performed

The most significant is symmetry breaking

Since atoms are uninterpreted any instance is also valid
for a permutation

Symmetry-breaking constraints are conjoined to the
analysis constraint

For efficiency reasons it is not complete

Skolemization

sig A {}
run {some x : A | f} for 3 but exactly 3 A

A := { A1, A2, A3 }
some x : A | f ≡ f[A1/x] or f[A2/x] or f[A3/x]

Since scope is finite, quantifiers could be handled by an
expansion

When an instance is generated it may not be clear
which x made the formula true

Skolemization
Free variables are implicitly existentially quantified

Replace the bound variable by a new free variable

some x : A | f ↝ (fx in A) and f[fx/x]

all x : A | some y : B | f ↝
(fy in A -> one B) and (all x : A | f[x.fy/y])

Witnesses to bound variables are now generated

It can handle some higher-order quantifications

Generates smaller (equisatisfiable) formulas

Bibliography
D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, 2006.

J. Edwards, D. Jackson, and E. Torlak. A Type System
for Object Models. FSE. ACM, 2004.

E. Torlak and D. Jackson. Kodkod: A Relational Model
Finder. TACAS. Springer, 2007.

J. Almeida, M. Frade, J. Pinto, S. de Sousa. Rigorous
Software Development: an Introduction to Program
Verification. Springer, 2011.

