
Universidade do Minho

Department of Informatics

Formal Methods in Software Engineering

Analyzing and Improving Darcs Quality

Iago Abal

iago.abal@gmail.com

February 23, 2011

Maintainability Analysis of Darcs 2.5

1 Volume

2 Complexity per Unit

3 Code duplication

4 Unit size

5 Module coupling

6 Unit testing

7 Maintainability rating

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 2 / 43

Overview

Functional code metrics?

Self developed code for take metrics.

Parsing: haskell-src-exts.
Queries on ASTs: syb, uniplate.

Comparison with
A small and (supposedly) high-quality Haskell project.

XMonad: a tiling window manager for X.

A big and (supposedly) hard to maintain Haskell project.

GHC: a state-of-the-art, open source, compiler and interactive
environment for the functional language Haskell.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 3 / 43

Volume

Volume

Darcs 2.5 FFFFF
XMonad 0.9.2 FFFFF

GHC 7.0.1 FFFF

Does some big Haskell project exist?

656 Haskell KLOCs?

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 4 / 43

Volume

KLOCs vs AST Nodes

10K Nodes ≈ 2× KLOC ?

5 Nodes ≈ 1 LOC ?

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 5 / 43

Complexity per Unit

CC of functional code?

cleverCommute :: CommuteFunction -> CommuteFunction

cleverCommute c (p1:<p2) =

case c (p1 :< p2) of

Succeeded x -> Succeeded x

Failed -> Failed

Unknown -> case c (invert p2 :< invert p1) of

Succeeded (p1’ :< p2’) -> Succeeded (invert p2’ :< invert p1’)

Failed -> Failed

Unknown -> Unknown

Cyclomatic complexity of 5

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 6 / 43

Complexity per Unit

CC of functional code?

cleverCommute :: CommuteFunction -> CommuteFunction

cleverCommute c (p1:<p2) =

case c (p1 :< p2) of

Succeeded x -> Succeeded x

Failed -> Failed

Unknown -> case c (invert p2 :< invert p1) of

Succeeded (p1’ :< p2’) -> Succeeded (invert p2’ :< invert p1’)

Failed -> Failed

Unknown -> Unknown

Cyclomatic complexity of 5

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 6 / 43

Complexity per Unit

CC of functional code?

removeSubsequenceRL :: (MyEq p, Commute p) => RL p C(ab abc)

-> RL p C(a abc) -> Maybe (RL p C(a ab))

removeSubsequenceRL a b | lengthRL a > lengthRL b = Nothing

| otherwise = rsRL a b

where rsRL :: (MyEq p, Commute p) => RL p C(ab abc)

-> RL p C(a abc)

-> Maybe (RL p C(a ab))

rsRL NilRL ys = Just ys

rsRL (x:<:xs) yys = removeRL x yys >>= removeSubsequenceRL xs

Cyclomatic complexity of 4

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 7 / 43

Complexity per Unit

CC of functional code?

removeSubsequenceRL :: (MyEq p, Commute p) => RL p C(ab abc)

-> RL p C(a abc) -> Maybe (RL p C(a ab))

removeSubsequenceRL a b | lengthRL a > lengthRL b = Nothing

| otherwise = rsRL a b

where rsRL :: (MyEq p, Commute p) => RL p C(ab abc)

-> RL p C(a abc)

-> Maybe (RL p C(a ab))

rsRL NilRL ys = Just ys

rsRL (x:<:xs) yys = removeRL x yys >>= removeSubsequenceRL xs

Cyclomatic complexity of 4

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 7 / 43

Complexity per Unit

Complexity per unit

Darcs 2.5 FF
XMonad 0.9.2 FFFFF

GHC 7.0.1 F

An approximation to CC.

Darcs: Sometimes abuse of complex local definitions, sometimes no
refactoring effort.

XMonad: Simply simple.

GHC: Lot of data types with lot of data constructors.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 8 / 43

Code duplication

Code duplication

Darcs 2.5 FFFF
XMonad 0.9.2 FFFFF

GHC 7.0.1 FFF

Duplicated blocks of at least 4 lines.

Darcs: A bad choice implied one star less.

XMonad: All duplicated code is in tests.

GHC: Most (Haskell) duplicated code in code generation.

Intermediate code generation has 25% of duplicated code.
Native code generation has 18% of duplicated code.
For C code RTS parallel support is an important source of duplication.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 9 / 43

Unit size

Unit Size ∈ (0, 300]: Low Risk

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 10 / 43

Unit size

Unit Size ∈ (300, 600]: Moderate Risk

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 11 / 43

Unit size

Unit Size ∈ (600, 1100]: High Risk

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 12 / 43

Unit size

Unit Size > 1100: Very High Risk

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 13 / 43

Unit size

Unit size

Darcs 2.5 F
XMonad 0.9.2 FF

GHC 7.0.1 F

Darcs: Sometimes abuse of local definitions, sometimes no refactoring
effort.

XMonad: Little refactoring effort and it would receive four stars...

GHC: Sometimes pattern matching against large data types,
sometimes no refactoring effort.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 14 / 43

Module coupling

Module coupling

How many code is affected if module M is modified?

Volume of code depending on a given module:

Dependent Code Risk

0%-10% Low
10%-30% Moderate
30%-60% High

60%-100% Very high

Module coupling (mainly) influences changeability and stability.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 15 / 43

Module coupling

Module coupling

Darcs 2.5 FF
XMonad 0.9.2 F

GHC 7.0.1 FFFF

Rates were reversed... GHC is the best, XMonad is the worst.

GHC modules are (40%/70%) bigger than Darcs/XMonad ones.

Correlated with volume?

Is GHC more stable than Darcs and XMonad?

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 16 / 43

Unit testing

Unit testing

Only for Darcs 2.5 (no comparison needed)

FF rate.

29% of top-level declarations, 28% of expressions.

System tests cover about 75% of code.

Darcs.Patch coverage

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 17 / 43

Maintainability rating

Maintainability

A
n

al
ys

ab
ili

ty

C
h

an
ge

ab
ili

ty

S
ta

b
ili

ty

T
es

ta
b

ili
ty

M
ai

n
ta

in
ab

ili
ty

Darcs 2.5 FFF FFF FF FF FF
XMonad 0.9.2 FFFF* FFFF F* FFFF* FFF*

GHC 7.0.1 FFF* FFF FFFF* F* FFF*

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 18 / 43

Testing Darcs’ Patch Theory Kernel

8 Current state of Darcs unit tests

9 Improving coverage of existing QuickCheck generators
Reducing generation of empty trees
Rejecting useless test cases

10 Re-design and development of primitive patches testing
A new repository model
Generation of Primitive Patches
Coverage analysis
Summary

11 Conclusions and future work

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 19 / 43

Background: QuickCheck

A tool for testing Haskell programs automatically.
The programmer provides properties which functions should satisfy.
prop_take n xs = take n xs ‘isPrefixOf‘ xs

QuickCheck tests that the properties hold in a number of randomly
generated cases.
+++ OK, passed 100 tests

QuickCheck provides combinators to define properties, observe the
distribution of test data, and define test data generators.
vectorOf 5 (choose (1,10))

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 20 / 43

Current state of Darcs unit tests

Existing test code

Darcs.Test.Patch.* modules

Check: Some kind of repository model.

Examples: Check interesting properties on a set of pre-defined
patches.

Examples2: Set of interesting patches to test.

Info: Generators and properties for patches metadata
(encoding/decoding).

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 21 / 43

Current state of Darcs unit tests

Existing test code

Darcs.Test.Patch.* modules

Properties: Interesting properties about patches.

Properties2: Interesting properties about V1 patches using Test

generators.

QuickCheck: Generators for Prim and V2 patches (patches are valid
by construction).

Test: Generators for Prim and V1 (filter valid patches) based on
Check module.

Unit: HUnit test suite.

Unit2: QuickCheck test suite.

Utils: A few utilities.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 22 / 43

Current state of Darcs unit tests

Coverage of V2 patches

data RealPatch prim C(x y) where

Duplicate :: Non (RealPatch prim) C(x) -> RealPatch prim C(x x)

Etacilpud :: Non (RealPatch prim) C(x) -> RealPatch prim C(x x)

Normal :: prim C(x y) -> RealPatch prim C(x y)

Conflictor :: [Non (RealPatch prim) C(x)] -> FL prim C(x y)

-> Non (RealPatch prim) C(x) -> RealPatch prim C(y x)

InvConflictor :: [Non (RealPatch prim) C(x)] -> FL prim C(x y)

-> Non (RealPatch prim) C(x) -> RealPatch prim C(x y)

In short:

Changes are represented by primitive patches.

In case of conflict a special conflictor patch is used to represent the
conflict.

Merge always “succeeds”, but may produce conflicts.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 23 / 43

Current state of Darcs unit tests

Coverage of V2 patches

Generation of V2 patch pairs (aims to produce conflicts)
1 Generate a tree of hunk patches.

Simulating branches.

2 Flatten the tree using merge.

3 Take the last pair of patches.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 24 / 43

Current state of Darcs unit tests

Coverage of V2 patches

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 25 / 43

Improving coverage of existing QuickCheck generators Reducing generation of empty trees

Excessive number of empty trees

Trees with size ≤ 1 cannot produce any patch pair.

In these cases commutePairFromTree use a default patch pair.

Useless for testing purposes.
Non commutable.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 26 / 43

Improving coverage of existing QuickCheck generators Reducing generation of empty trees

Reducing generation of empty trees

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 27 / 43

Improving coverage of existing QuickCheck generators Rejecting useless test cases

Useless test cases problem

Most interesting properties are of the form
∀P,Q,R,S : PQ ↔ RS : . . .
Darcs properties result type is Maybe Doc
<property> :: Patchy p => (p :> p) -> Maybe Doc

<property> = case commute (x :> y) of

Nothing -> Nothing -- Useless

Just (y’ :> x’) ->

...

case <Some Expression> of

<Failed> -> Just <Error Message>

<Succeeded> -> Nothing

Generators produce low rate of commutable pairs.

Properties must be testable with any testing tool: QuickCheck,
HUnit, ...

Prevents use of QuickCheck ==> operator.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 28 / 43

Improving coverage of existing QuickCheck generators Rejecting useless test cases

Testable TestResult

data TestResult = TestSucceeded

| TestFailed Doc

| TestRejected

succeeded :: TestResult

failed :: Doc -- ^ Error message

-> TestResult

-- | Rejects test case

rejected :: TestResult

...

isFailed :: TestResult -> Bool

-- | A test is considered OK if it does not fail.

isOk :: TestResult -> Bool

instance Testable TestResult where

property = ...

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 29 / 43

Re-design and development of primitive patches testing

Current strategy

How Darcs.Test.Patch.QuickCheck generate primitive patches ?

data RepoModel

= RepoModel {

rmFileName :: !FileName,

rmFileContents :: [B.ByteString]

} deriving (Eq)

arbitraryFP :: RepoModel -> Gen (Prim, RepoModel)

arbitraryHunk :: [B.ByteString] -> Gen (FilePatchType, [B.ByteString])

Strengths:

Test cases are valid by construction.

It is possible to reproduce a test case on disk.

Weaknesses:

Only hunks are covered.

Low rate of commutable pairs.

Needs custom code for patch application.

No way to test apply code.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 30 / 43

Re-design and development of primitive patches testing A new repository model

Hashed Storage

“Support code for reading and manipulating hashed file storage (where each file
and directory is associated with a cryptographic hash, for corruption-resistant
storage and fast comparisons).”

Storage.Hashed.Tree: “The abstract representation of a Tree and

useful abstract utilities to handle those.”

data Blob m = Blob !(m BL.ByteString) !Hash

data TreeItem m = File !(Blob m)

| SubTree !(Tree m)

| Stub !(m (Tree m)) !Hash

data Tree m = Tree { items :: (M.Map Name (TreeItem m))

, treeHash :: !Hash }

Darcs repositories are handled through Hashed Storage.
It is possible to apply a patch to a Hashed Storage Tree!

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 31 / 43

Re-design and development of primitive patches testing A new repository model

Repository model

New module Darcs.Test.Patch.RepoModel:

A repository model is a wrapper over a Hashed Storage Tree.
newtype RepoModel = RepoModel { repoTree :: Tree Maybe }

newtype RepoItem = RepoItem { treeItem :: TreeItem Maybe }

type Content = [B.ByteString]

type File = RepoItem

type Dir = RepoItem

It offers a simplified and more specific API.
It is possible to compare trees;
instance Eq RepoModel where

repo1 == repo2 = ...

and apply patches to them.
applyPatch :: Apply patch => patch -> RepoModel -> Maybe RepoModel

applyPatch patch (RepoModel tree) = RepoModel <$> applyToTree patch tree

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 32 / 43

Re-design and development of primitive patches testing A new repository model

Generation of repositories

aRepo :: Int → Int → Gen RepoModel
aRepo files#max dirs#max

1 Arbitrarily choose files# ∈ [0, files#max].

2 Arbitrarily choose subdirs# ∈ [0, dirs#max].

3 filesPerDir# := files#max−files#
subdirs# .

4 subdirsPerDir# := dirs#max−subdirs#
subdirs# .

5 Generate files# files.

6 Generate subdirs# directories with up to filesPerDir# files and up to
subdirsPerDir# subdirectories.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 33 / 43

Re-design and development of primitive patches testing Generation of Primitive Patches

Generating primitive patches

Strategy:

Generate a (small) repository.

Generate a patch applicable to that repository.

Problem: patches have pre-conditions, it is only possible to generate a
subset of patch types given a repository.

(a) Select a patch type arbitrarily, fail if pre-conditions are violated.

Gen (Maybe Prim)

Less robust, potentially inefficient.

(b) Frequencies table for selecting patches, whose entries are conditionally
enable.
[(if isJust mbFile then 15 else 0

, aHunkP $ fromJust mbFile)

, ...]

More robust, efficient.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 34 / 43

Re-design and development of primitive patches testing Coverage analysis

Coverage analysis

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 35 / 43

Re-design and development of primitive patches testing Coverage analysis

Improving coverage for commutable hunks

-- Try to generate commutable pairs of hunks

hunkPairP :: (AnchoredPath,File) -> Gen (Prim :> Prim)

aPrimPair :: RepoModel -> Gen (Prim :> Prim, RepoModel)

aPrimPair repo

= do mbFile <- maybeOf repoFiles

frequency

[(if isJust mbFile then 1 else 0

, ""use hunkPairP""

)

, (1

, ""use the default generator for Prim pairs""

)

]

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 36 / 43

Re-design and development of primitive patches testing Coverage analysis

Improving coverage for commutable hunks

Now:

Before:

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 37 / 43

Re-design and development of primitive patches testing Summary

Summary

Properties like invert rollback or effect preserving are now being
tested.

Now we know empty-hunks break effect preserving property.

Darcs.Patch.V1.Apply is now almost fully tested.

Darcs.IO Hashed Storage implementation is now being tested.

Darcs.Test.Patch.QuickCheck and
Darcs.Test.Patch.Examples2 rewritten to make use of new
repository model and patch generators.

Thanks to this we have found a possible bug in V2 commute/merge
which breaks commute symmetry.

Automatic generation of coverage report for both system and unit
tests.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 38 / 43

Conclusions and future work

Conclusions

Darcs is not easy to maintain.

Metrics and experience agree.

A possible short-term plan:

Avoid local declarations when they make sense as top-level.

Facilitates testing; reduces complexity and unit size.

Avoid module “private utilities”.

Use unit tests to ensure contracts are never broken.

Write more unit tests (important Darcs weakness).

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 39 / 43

Conclusions and future work

Conclusions

Patch logic is hard to test.

Some refactoring may help.
Write QuickCheck generators is tricky.
Small changes have a big impact in coverage.
Properties depend on conditions which are hard to fulfill.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 40 / 43

Conclusions and future work

Future work

Refine code metrics and write proper tools.

Integrate code metrics into development process.

Run code metrics to guarantee code quality.
Just as you run tests to guarantee code correctness.

Refactor, clean up and re-organize Darcs.Test.Patch.*.

100% coverage for Darcs.Patch.*.

Extend/explore the usefulness of the new repository model.

More properties involving repository state.
Could we fully simulate Darcs in memory?

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 41 / 43

Conclusions and future work

Thanks to

Ganesh Sittampalam.

Petr Rockai.

Jason Dagit.

All FreeNode #darcs people.

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 42 / 43

Conclusions and future work

Questions?

Shoot!

Iago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 43 / 43

	Quality Analysis: Maintainability
	Volume
	Complexity per Unit
	Code duplication
	Unit size
	Module coupling
	Unit testing
	Maintainability rating

	Testing Darcs Patch Logic Kernel
	Current state of Darcs unit tests
	Improving coverage of existing QuickCheck generators
	Reducing generation of empty trees
	Rejecting useless test cases

	Re-design and development of primitive patches testing
	A new repository model
	Generation of Primitive Patches
	Coverage analysis
	Summary

	Conclusions and future work

