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Maintainability Analysis of Darcs 2.5

© Volume

© Complexity per Unit
© Code duplication
@ Unit size

© Module coupling
© Unit testing

@ Maintainability rating
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Overview

e Functional code metrics?
o Self developed code for take metrics.
e Parsing: haskell-src-exts.
e Queries on ASTs: syb, uniplate.
@ Comparison with
o A small and (supposedly) high-quality Haskell project.
o XMonad: a tiling window manager for X.
o A big and (supposedly) hard to maintain Haskell project.

o GHC: a state-of-the-art, open source, compiler and interactive
environment for the functional language Haskell.
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@ Does some big Haskell project exist?
@ 656 Haskell KLOCs?
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KLOCs vs AST Nodes

KLOCs vs AST Modes
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@ 10K Nodes ~ 2x KLOC ?
@ 5 Nodes ~ 1 LOC?
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CC of functional code?

cleverCommute :: CommuteFunction -> CommuteFunction
cleverCommute ¢ (pl:<p2) =
case ¢ (pl :< p2) of
Succeeded x -> Succeeded x
Failed -> Failed
Unknown -> case ¢ (invert p2 :< invert pl) of
Succeeded (pl’ :< p2’) -> Succeeded (invert p2’ :< invert pl’)
Failed -> Failed
Unknown -> Unknown
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CC of functional code?

cleverCommute :: CommuteFunction -> CommuteFunction
cleverCommute ¢ (pl:<p2) =
case ¢ (pl :< p2) of
Succeeded x -> Succeeded x
Failed -> Failed
Unknown -> case ¢ (invert p2 :< invert pl) of
Succeeded (pl’ :< p2’) -> Succeeded (invert p2’ :< invert pl’)
Failed -> Failed
Unknown -> Unknown

Cyclomatic complexity of 5
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Complexity per Unit

CC of functional code?

removeSubsequenceRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc) -> Maybe (RL p C(a ab))
removeSubsequenceRL a b | lengthRL a > lengthRL b = Nothing
| otherwise = rsRL a b

where rsRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc)
-> Maybe (RL p C(a ab))

rsRL NilRL ys = Just ys
rsRL (x:<:xs) yys = removeRL x yys >>= removeSubsequenceRL xs
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Complexity per Unit

CC of functional code?

removeSubsequenceRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc) -> Maybe (RL p C(a ab))
removeSubsequenceRL a b | lengthRL a > lengthRL b = Nothing
| otherwise = rsRL a b

where rsRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc)
-> Maybe (RL p C(a ab))

rsRL NilRL ys = Just ys
rsRL (x:<:xs) yys = removeRL x yys >>= removeSubsequenceRL xs

Cyclomatic complexity of 4

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

7/43



Complexity per unit
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@ An approximation to CC.
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@ Darcs: Sometimes abuse of complex local definitions, sometimes no

refactoring effort.

@ XMonad: Simply simple.

@ GHC: Lot of data types with lot of data constructors.
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Code duplication

Code Duplication
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@ Duplicated blocks of at least 4 lines.
@ Darcs: A bad choice implied one star less.
@ XMonad: All duplicated code is in tests.

@ GHC: Most (Haskell) duplicated code in code generation.

o Intermediate code generation has 25% of duplicated code.
o Native code generation has 18% of duplicated code.
e For C code RTS parallel support is an important source of duplication.
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Unit Size € (0, 300]: Low Risk

nontrivialTriple :: RealPatch := RealPatch :> RealPatch -> Bool
nontrivialTriple {a :> b :>c) =
case commute (a :> b} of
Nothing -> False
Just (b :>a') -»
case commute (a' :>c) of
Nothing -> False
Just (c'' = a'') -»
case commute (b :=> c) of
Mothing -> False
Just (¢' :>b'') -= (not (a “unsafeCompare™ a') || not (b “unsafeCompare” b')) &&
(not (c' ‘unsafeCompare® c) || not (b'' “unsafeCompare” b)) &&
(not (c'' “unsafeCompare™ c) || not (a'' “unsafeCompare™ a')
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Unit Size € (300, 600]: Moderate Risk

checkknownshifts (ca, cb. sa, sb, ca', ch') = runsT (
do ca_arr <- newlistArray (0, length ca) § toBool (G:ca)
ch_arr <- newlistArray (0, length cb) $ toBool (G:ch)
let p_a = listArray (0. length sa) § B.empty: (toPS sa)
p_b = listArray (0, length sb) § B.empty: (toPS sh)
shiftBoundaries ca_arr ch_arrp al1l
shiftBoundaries cb_arr ca_arr p_b 11
ca_res <- fmap (fromBool . tail) $ getElems ca_arr
cb_res <- fmap (fromBool . tail) $ getElems cb_arr
return § 1f ca_res == ca' && ch_res == cb' then []
else ["shiftBoundaries failed on "++sa++" and "++sh++" with *
++(show (ca,ch))++" expected "++(show (ca', cb'))
+" got "++(show (ca_res, cb_res))+"n"])
where toPS = map (\c -» if ¢ == ' ' then B.empty else BC.pack [c])
toBool = map (=0)
fromBool = map (\b -= if b then 1 else Q)
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t s

Unit Size € (600, 1100]: High Risk

encode ps _ _ bufi | Binull ps = return bufi
encode ps 1 Buf bufi = case B.head ps of
¢ | ¢ == newline -»
do poke (buf ‘plusPtr® bufi) newline
encode ps’ qlinebax buf (bufi+l)
| n==0 && B.length ps > 1 -=
do poke (buf plusPtr’ bufi) equals
poke (buf “plusptr’ (bufi+1]) newline
encode ps alineMax buf (bufi + 2]
| {c == tab || c = space] -=
if B.null ps* || B.head ps' == newline
then do poke (buf "plusPtr® bufi] c
poke (buf “plusPtr’ (bufisl)) equals
poke (buf “plusptr® (bufi+2)) newline
encode ps’ glineax buf (bufi + 3
else do poke (buf “plusPtr’ bufi] c
encode ps* (n - 1] buf (bufi + 1]
| c == bang && c /= equals && c <= tilde) -=
do poke (buf “plusPtr’ bufi) c
encode ps’ (n - 1] buf [bufi + 1]
| n=3->
encode ps @ buf bufi
| otherwise -=
do let (x, y) = c “divMod” 16
hl intToUDigit x
h2 = intToUDigit y
poke (buf “plusPtr  bufi) equals
poke (buf “plusPtr’ (bufi+1]) hl
poke (buf “plusPtr’ (bufi=2)) hz
encode ps’ (n - 31 buf (bufi + 3]
where ps' = B.tail ps
2w '\n'

T .
n

equals
1ntTolDigit
li=o0 =B.caw ‘0 + i
| i>=106&i == 15=B.c2v 'A' +1i - 10
| otherwise = error § "intToUDigit: '"++show i++"'not a digit"
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Unit Size > 1100: Very High Risk
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Unit size
Darcs 2.5 %
XMonad 0.9.2 %%
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@ Darcs: Sometimes abuse of local definitions, sometimes no refactoring

effort.

@ XMonad: Little refactoring effort and it would receive four stars...

@ GHC: Sometimes pattern matching against large data types,

sometimes no refactoring effort.
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Module coupling

@ How many code is affected if module M is modified?

@ Volume of code depending on a given module:

Dependent Code Risk

0%-10% Low
10%-30% Moderate
30%-60% High

60%-100% Very high

@ Module coupling (mainly) influences changeability and stability.
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Module coupling

Darcs 2.5 %%
XMonad 0.9.2 %
GHC 7.0.1 % %%

Correlated with volume?
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Rates were reversed... GHC is the best,
GHC modules are (40%/70%) bigger than Darcs/XMonad ones.

XMonad is the worst.

Is GHC more stable than Darcs and XMonad?
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Unit testing

Only for Darcs 2.5 (no comparison needed)

@ Y% rate.

@ 29% of top-level declarations, 28% of expressions.

@ System tests cover about 75% of code.

@ Darcs.Patch coverage

lago Abal ago.abal@gmail.com
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Maintainability
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-
Testing Darcs’ Patch Theory Kernel

© Current state of Darcs unit tests

© Improving coverage of existing QuickCheck generators
@ Reducing generation of empty trees
@ Rejecting useless test cases

@ Re-design and development of primitive patches testing
@ A new repository model
@ Generation of Primitive Patches
@ Coverage analysis
@ Summary

@ Conclusions and future work
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|
Background: QuickCheck

tested with
QuickCheck

A tool for testing Haskell programs automatically.
The programmer provides properties which functions should satisfy.

prop_take n xs = take n xs ‘isPrefix0f‘ xs

QuickCheck tests that the properties hold in a number of randomly
generated cases.

+++ 0K, passed 100 tests

QuickCheck provides combinators to define properties, observe the
distribution of test data, and define test data generators.

vector0f 5 (choose (1,10))
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Existing test code

Darcs.Test.Patch.* modules
@ Check: Some kind of repository model.

o Examples: Check interesting properties on a set of pre-defined
patches.

o Examples2: Set of interesting patches to test.

@ Info: Generators and properties for patches metadata
(encoding/decoding).
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Existing test code

Darcs.Test.Patch.* modules

4

Properties: Interesting properties about patches.

Properties2: Interesting properties about V1 patches using Test
generators.

QuickCheck: Generators for Prim and V2 patches (patches are valid
by construction).

Test: Generators for Prim and V1 (filter valid patches) based on
Check module.

Unit: HUnit test suite.
Unit2: QuickCheck test suite.
Utils: A few utilities.
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Coverage of V2 patches

data RealPatch prim C(x y) where

Duplicate :: Non (RealPatch prim) C(x) -> RealPatch prim C(x x)
Etacilpud :: Non (RealPatch prim) C(x) -> RealPatch prim C(x x)

Normal :: prim C(x y) -> RealPatch prim C(x y)

Conflictor :: [Non (RealPatch prim) C(x)] -> FL prim C(x y)

-> Non (RealPatch prim) C(x) -> RealPatch prim C(y x)
InvConflictor :: [Non (RealPatch prim) C(x)] -> FL prim C(x y)
-> Non (RealPatch prim) C(x) -> RealPatch prim C(x y)

In short:

@ Changes are represented by primitive patches.

@ In case of conflict a special conflictor patch is used to represent the
conflict.
o Merge always “succeeds”, but may produce conflicts.
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Coverage of V2 patches

Generation of V2 patch pairs (aims to produce conflicts)
@ Generate a tree of hunk patches.
e Simulating branches.

@ Flatten the tree using merge.
© Take the last pair of patches.
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Coverage of V2 patches
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Improving coverage of existing QuickCheck generators Reducing generation of empty trees

Excessive number of empty trees

commutePairFromTree
Treesize
100%
|
0% ;ﬁ
% ) m4
0% m3
0% 2
0% : 1
0% g
0%
0%
10% /
0%

@ Trees with size < 1 cannot produce any patch pair.

@ In these cases commutePairFromTree use a default patch pair.

o Useless for testing purposes.
e Non commutable.
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Improving coverage of existing QuickCheck generators Reducing generation of empty trees

Reducing generation of empty trees
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Useless test cases problem

@ Most interesting properties are of the form
VP,Q,R,S: PQ <+ RS : ...

@ Darcs properties result type is Maybe Doc
<property> :: Patchy p => (p :> p) -> Maybe Doc
<property> = case commute (x :> y) of
Nothing -> Nothing -- Useless
Just (y’ :> x’) —>
case <Some Expression> of
<Failed> -> Just <Error Message>
<Succeeded> -> Nothing

@ Generators produce low rate of commutable pairs.

Properties must be testable with any testing tool: QuickCheck,
HUnit, ...

o Prevents use of QuickCheck ==> operator.
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Improving coverage of existing QuickCheck generators Rejecting useless test cases
Testable TestResult

data TestResult = TestSucceeded

| TestFailed Doc

| TestRejected
succeeded :: TestResult
failed :: Doc -- 7 Error message

-> TestResult
-- | Rejects test case
rejected :: TestResult

isFailed :: TestResult -> Bool
-- | A test is considered 0K if it does not fail.
isOk :: TestResult -> Bool

instance Testable TestResult where
property =
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Current strategy

How Darcs.Test.Patch.QuickCheck generate primitive patches ?

data RepoModel
= RepoModel {
rmFileName :: !FileName,
rmFileContents :: [B.ByteString]
} deriving (Eq)
arbitraryFP :: RepoModel -> Gen (Prim, RepoModel)

arbitraryHunk :: [B.ByteStringl -> Gen (FilePatchType, [B.ByteStringl)

Strengths:

@ Test cases are valid by construction.

@ It is possible to reproduce a test case on disk.
Weaknesses:

@ Only hunks are covered.

@ Low rate of commutable pairs.
@ Needs custom code for patch application.
o No way to test apply code.
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Re-design and development of primitive patches testing A new repository model

Hashed Storage

“Support code for reading and manipulating hashed file storage (where each file
and directory is associated with a cryptographic hash, for corruption-resistant
storage and fast comparisons).”

@ Storage.Hashed.

Tree: “The abstract representation of a Tree and

useful abstract utilities to handle those.”

Cree
Lo 0 e e el
\‘/oo./,c-/ l éml,h ) WA \
data Blob m = Blob !(m BL.ByteString) !Hash - =
data Treeltem m = File !(Blob m) L
| SubTree !(Tree

| Stub !(m (Tree

data Tree m = Tree { items :: (M.

, treeHash ::

:;) 'Hash .:'/ W {_j MM\,(\

— g
Map Name (Treeltem m)) \ E

s B «;L:;

Wy

@ Darcs repositories are handled through Hashed Storage.
o It is possible to apply a patch to a Hashed Storage Tree!
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Repository model

New module Darcs.Test.Patch.RepoModel:

@ A repository model is a wrapper over a Hashed Storage Tree.
newtype RepoModel = RepoModel { repoTree :: Tree Maybe }

newtype Repoltem = Repoltem { treeltem :: Treeltem Maybe }

type Content = [B.ByteString]

type File = Repoltem

type Dir = Repoltem
o It offers a simplified and more specific API.
@ It is possible to compare trees;

instance Eq RepoModel where
repol == repo2 = ...

@ and apply patches to them.

applyPatch :: Apply patch => patch -> RepoModel -> Maybe RepoModel
applyPatch patch (RepoModel tree) = RepoModel <$> applyToTree patch tree
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Generation of repositories

aRepo :: Int — Int — Gen RepoModel
aRepo files# max dirs# max

©00 00O

Arbitrarily choose files# € [0, files# max].
Arbitrarily choose subdirs# € [0, dirs# max|-

filesPerDir# = W'

dirs# max—subdirs#
subdirsPerDir# := ——Fra> =" 7
Generate files# files.

Generate subdirs# directories with up to filesPerDir# files and up to
subdirsPerDir# subdirectories.
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Re-design and development of primitive patches testing Generation of Primitive Patches

Generating primitive patches

Strategy:

@ Generate a (small) repository.

@ Generate a patch applicable to that repository.
Problem: patches have pre-conditions, it is only possible to generate a
subset of patch types given a repository.

(a) Select a patch type arbitrarily, fail if pre-conditions are violated.
e Gen (Maybe Prim)
o Less robust, potentially inefficient.

(b) Frequencies table for selecting patches, whose entries are conditionally
enable.

[ ( if isJust mbFile then 15 else O
, aHunkP $ fromJust mbFile )
s een ]

o More robust, efficient.

34 /43



Coverage analysis

aPrim
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Re-design and development of primitive patches testing Coverage analysis

Improving coverage for commutable hunks

-- Try to generate commutable pairs of hunks
hunkPairP :: (AnchoredPath,File) -> Gen (Prim :> Prim)

aPrimPair :: RepoModel -> Gen (Prim :> Prim, RepoModel)
aPrimPair repo
= do mbFile <- maybeOf repoFiles
frequency
[ ( if isJust mbFile then 1 else O
""use hunkPairP""

~

1

""use the default generator for Prim pairs""
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Re-design and development of primitive patches tes Coverage analy:

Improving coverage for commutable hunks

Now:

Before:

lago Abal ago.abal@gmail.com
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Re-design and development of primitive patches testing IESIIWINELG
Summary

Properties like invert rollback or effect preserving are now being
tested.

o Now we know empty-hunks break effect preserving property.
@ Darcs.Patch.V1.Apply is now almost fully tested.

@ Darcs.I0 Hashed Storage implementation is now being tested.

@ Darcs.Test.Patch.QuickCheck and
Darcs.Test.Patch.Examples2 rewritten to make use of new
repository model and patch generators.

e Thanks to this we have found a possible bug in V2 commute/merge
which breaks commute symmetry.

@ Automatic generation of coverage report for both system and unit
tests.
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Conclusions

@ Darcs is not easy to maintain.
e Metrics and experience agree.

A possible short-term plan:
@ Avoid local declarations when they make sense as top-level.
e Facilitates testing; reduces complexity and unit size.
@ Avoid module “private utilities”.

e Use unit tests to ensure contracts are never broken.

@ Write more unit tests (important Darcs weakness).
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Conclusions

@ Patch logic is hard to test.

Some refactoring may help.

o Write QuickCheck generators is tricky.

e Small changes have a big impact in coverage.

o Properties depend on conditions which are hard to fulfill.
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Conclusions and future work

Future work

Refine code metrics and write proper tools.

Integrate code metrics into development process.

e Run code metrics to guarantee code quality.
e Just as you run tests to guarantee code correctness.

Refactor, clean up and re-organize Darcs.Test.Patch. *.

100% coverage for Darcs.Patch. *.

Extend /explore the usefulness of the new repository model.

e More properties involving repository state.
e Could we fully simulate Darcs in memory?
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Thanks to

Ganesh Sittampalam.

Petr Rockai.

Jason Dagit.

All FreeNode #darcs people.
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Questions?

Shoot!
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