' 7\
N7
I~ 1\/

Universidade do Minho

Department of Informatics

Formal Methods in Software Engineering

Analyzing and Improving Darcs Quality

lago Abal

iago.abal@gmail.com

February 23, 2011

-
Maintainability Analysis of Darcs 2.5

© Volume

© Complexity per Unit
© Code duplication
@ Unit size

© Module coupling
© Unit testing

@ Maintainability rating

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 2/43

Overview

e Functional code metrics?
o Self developed code for take metrics.
e Parsing: haskell-src-exts.
e Queries on ASTs: syb, uniplate.
@ Comparison with
o A small and (supposedly) high-quality Haskell project.
o XMonad: a tiling window manager for X.
o A big and (supposedly) hard to maintain Haskell project.

o GHC: a state-of-the-art, open source, compiler and interactive
environment for the functional language Haskell.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 3/43

Volume

Volume

Volume
350000
300000
Darcs 2.5 Yk kk %k S e b
200000 W Perl

XMonad 0.9.2 ***** - B Pascal

D

GHC 70]_ **** 100000 i :Easkell
e =

50000

i}

HWonad 0.8.2
Darcs 2.5 GHC7.01

@ Does some big Haskell project exist?
@ 656 Haskell KLOCs?

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 4 /43

KLOCs vs AST Nodes

KLOCs vs AST Modes

250

200

150
EKLOCs
M 10K Modes

100

. —
¥Monad 092
Darcs 25 GHC 701

@ 10K Nodes ~ 2x KLOC ?
@ 5 Nodes ~ 1 LOC?

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

5/ 43

CC of functional code?

cleverCommute :: CommuteFunction -> CommuteFunction
cleverCommute ¢ (pl:<p2) =
case ¢ (pl :< p2) of
Succeeded x -> Succeeded x
Failed -> Failed
Unknown -> case ¢ (invert p2 :< invert pl) of
Succeeded (pl’ :< p2’) -> Succeeded (invert p2’ :< invert pl’)
Failed -> Failed
Unknown -> Unknown

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 6 /43

CC of functional code?

cleverCommute :: CommuteFunction -> CommuteFunction
cleverCommute ¢ (pl:<p2) =
case ¢ (pl :< p2) of
Succeeded x -> Succeeded x
Failed -> Failed
Unknown -> case ¢ (invert p2 :< invert pl) of
Succeeded (pl’ :< p2’) -> Succeeded (invert p2’ :< invert pl’)
Failed -> Failed
Unknown -> Unknown

Cyclomatic complexity of 5

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 6 /43

Complexity per Unit

CC of functional code?

removeSubsequenceRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc) -> Maybe (RL p C(a ab))
removeSubsequenceRL a b | lengthRL a > lengthRL b = Nothing
| otherwise = rsRL a b

where rsRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc)
-> Maybe (RL p C(a ab))

rsRL NilRL ys = Just ys
rsRL (x:<:xs) yys = removeRL x yys >>= removeSubsequenceRL xs

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

7/43

Complexity per Unit

CC of functional code?

removeSubsequenceRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc) -> Maybe (RL p C(a ab))
removeSubsequenceRL a b | lengthRL a > lengthRL b = Nothing
| otherwise = rsRL a b

where rsRL :: (MyEq p, Commute p) => RL p C(ab abc)
-> RL p C(a abc)
-> Maybe (RL p C(a ab))

rsRL NilRL ys = Just ys
rsRL (x:<:xs) yys = removeRL x yys >>= removeSubsequenceRL xs

Cyclomatic complexity of 4

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

7/43

Complexity per unit

Darcs 2.5 %%
XMonad 0.9.2 ek k%
GHC7.01 %

@ An approximation to CC.

10

Complexity per Unit

WDares 25
W XMonad

GHC7.01

0 -—‘I-"-_ll/

Low Moderste High Very high

@ Darcs: Sometimes abuse of complex local definitions, sometimes no

refactoring effort.

@ XMonad: Simply simple.

@ GHC: Lot of data types with lot of data constructors.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

8 /43

Code duplication

Code Duplication

Ahonad0.9.2
25 GH

O s MmwE G o N Do S

Darcs 2.5 Yk k%k
XMonad 0.9.2 Yk kK%
GHC 7.0.1 %%

W Duplizated
code

Dares C701

@ Duplicated blocks of at least 4 lines.
@ Darcs: A bad choice implied one star less.
@ XMonad: All duplicated code is in tests.

@ GHC: Most (Haskell) duplicated code in code generation.

o Intermediate code generation has 25% of duplicated code.
o Native code generation has 18% of duplicated code.
e For C code RTS parallel support is an important source of duplication.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 9 /43

Unit Size € (0, 300]: Low Risk

nontrivialTriple :: RealPatch := RealPatch :> RealPatch -> Bool
nontrivialTriple {a :> b :>c) =
case commute (a :> b} of
Nothing -> False
Just (b :>a') -»
case commute (a' :>c) of
Nothing -> False
Just (c'' = a'') -»
case commute (b :=> c) of
Mothing -> False
Just (¢' :>b'') -= (not (a “unsafeCompare™ a') || not (b “unsafeCompare” b')) &&
(not (c' ‘unsafeCompare® c) || not (b'' “unsafeCompare” b)) &&
(not (c'' “unsafeCompare™ c) || not (a'' “unsafeCompare™ a')

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 10 / 43

Unit Size € (300, 600]: Moderate Risk

checkknownshifts (ca, cb. sa, sb, ca', ch') = runsT (
do ca_arr <- newlistArray (0, length ca) § toBool (G:ca)
ch_arr <- newlistArray (0, length cb) $ toBool (G:ch)
let p_a = listArray (0. length sa) § B.empty: (toPS sa)
p_b = listArray (0, length sb) § B.empty: (toPS sh)
shiftBoundaries ca_arr ch_arrp al1l
shiftBoundaries cb_arr ca_arr p_b 11
ca_res <- fmap (fromBool . tail) $ getElems ca_arr
cb_res <- fmap (fromBool . tail) $ getElems cb_arr
return § 1f ca_res == ca' && ch_res == cb' then []
else ["shiftBoundaries failed on "++sa++" and "++sh++" with *
++(show (ca,ch))++" expected "++(show (ca', cb'))
+" got "++(show (ca_res, cb_res))+"n"])
where toPS = map (\c -» if ¢ == ' ' then B.empty else BC.pack [c])
toBool = map (=0)
fromBool = map (\b -= if b then 1 else Q)

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 11 / 43

t s

Unit Size € (600, 1100]: High Risk

encode ps _ _ bufi | Binull ps = return bufi
encode ps 1 Buf bufi = case B.head ps of
¢ | ¢ == newline -»
do poke (buf ‘plusPtr® bufi) newline
encode ps’ qlinebax buf (bufi+l)
| n==0 && B.length ps > 1 -=
do poke (buf plusPtr’ bufi) equals
poke (buf “plusptr’ (bufi+1]) newline
encode ps alineMax buf (bufi + 2]
| {c == tab || c = space] -=
if B.null ps* || B.head ps' == newline
then do poke (buf "plusPtr® bufi] c
poke (buf “plusPtr’ (bufisl)) equals
poke (buf “plusptr® (bufi+2)) newline
encode ps’ glineax buf (bufi + 3
else do poke (buf “plusPtr’ bufi] c
encode ps* (n - 1] buf (bufi + 1]
| c == bang && c /= equals && c <= tilde) -=
do poke (buf “plusPtr’ bufi) c
encode ps’ (n - 1] buf [bufi + 1]
| n=3->
encode ps @ buf bufi
| otherwise -=
do let (x, y) = c “divMod” 16
hl intToUDigit x
h2 = intToUDigit y
poke (buf “plusPtr bufi) equals
poke (buf “plusPtr’ (bufi+1]) hl
poke (buf “plusPtr’ (bufi=2)) hz
encode ps’ (n - 31 buf (bufi + 3]
where ps' = B.tail ps
2w '\n'

T .
n

equals
1ntTolDigit
li=o0 =B.caw ‘0 + i
| i>=106&i == 15=B.c2v 'A' +1i - 10
| otherwise = error § "intToUDigit: '"++show i++"'not a digit"

lago Abal (iago.abal@gmail.com Analyzing and Improving Darcs Quality February 23, 2011 12 / 43

Unit Size > 1100: Very High Risk

urlhresd eh = db sk = : 0 rrae
e crire (e Pt -y mra 0 hek)
e e = (0 208 e}
urUhresd
=pir = T5%t0 § ismptrdon o
-

reas = 11 ot ety || (0w sl =0
then 14420 el i

cloe tky "rmring Uit o Fie e Slready cimmd.
ot et

3l ey o e u = c
= LLRI0 § withiar urlfbt ifications (retum . (K. lodkap 1))
af

At v wmot fp isEptyMar v
Nothing - retum True

lago Abal (iago.abal@gmail.co: Analyzing and Improving Darcs Quality

February 23, 2011

13 / 43

Unit size
Darcs 2.5 %
XMonad 0.9.2 %%
GHC7.01 %

&0

50

g

30

20

10

1}

Unit Size

MDaics 25
W XMonad

GHC7.01

binel

Low Moderste High Wery high

@ Darcs: Sometimes abuse of local definitions, sometimes no refactoring

effort.

@ XMonad: Little refactoring effort and it would receive four stars...

@ GHC: Sometimes pattern matching against large data types,

sometimes no refactoring effort.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

14 / 43

Module coupling

@ How many code is affected if module M is modified?

@ Volume of code depending on a given module:

Dependent Code Risk

0%-10% Low
10%-30% Moderate
30%-60% High

60%-100% Very high

@ Module coupling (mainly) influences changeability and stability.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

15 / 43

Module coupling

Darcs 2.5 %%
XMonad 0.9.2 %
GHC 7.0.1 % %%

Correlated with volume?

Ivlodule coupling

IXI don ad
92

|
|
|

50 | MW Daics 25
I GH 701
|

0 —_/
Low Woderate High Very high

Rates were reversed... GHC is the best,
GHC modules are (40%/70%) bigger than Darcs/XMonad ones.

XMonad is the worst.

Is GHC more stable than Darcs and XMonad?

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

16 / 43

Unit testing

Only for Darcs 2.5 (no comparison needed)

@ Y% rate.

@ 29% of top-level declarations, 28% of expressions.

@ System tests cover about 75% of code.

@ Darcs.Patch coverage

lago Abal ago.abal@gmail.com

Analyzing and Improving Darcs Quality

nodule Darcs. Patch for0 Toro Joro
nodule 1 o%f0r27 0%[0/158 | ——] O%0/1144 [E—
nodule Patch.Braced Sowfara Sowlar 35%[320

nodule Darcs.Patch. Connute 75%[6/8 100%[14/14 | E— 83%[103/123 | E—
nodule Darcs.Patch. Cont’ o osfono [owl0/2a1

wodule Patch.Filel: Sswl11/20 A1{16/35 3a%[1101249

nodule Patch. t 100%[171 lor T00%1/1 | —
nodule Patch Tnf 2511745 l5/61 24%[166670

nodule Darcs. Patch Inspect 2 fons

nodule Darcs Patch Invert 66%[2/3 100%4/4. B0%[12115 | E—
nodule chDat. o2 or owl0/6

nodule 66%[2/3 80%[a/5 | — | 76%[48/63 | —
nodule 175128 259174 2r9la7n72

nodule D 00730 o037 0%[0/922

nodule ch Joro

nodule B B oo

‘module Darcs.Patch.Pernutations ST96[16/31 49%[35/71 j— | S0%[264/518 — |
nodule Darcs. Patch.Pr; Sasl7on 4 191605511 So%[1 42672401

wodule Patch.Read S3%(31/33 6B%[11/16 B6%[350/404

nodule Patch. ReadMonad: 85%[36/42 60%[23/38 j— | 79%[283/355 | —
nodule Patch.Reqch Too%[5/5 20%{615. a2[37/87

nodule Darcs. Patch.RepoPatch jor0 - Joro

nodule Darcs. Patch. Show osfors “loro [AE]

nodule o0 oo —[or0

nodule 1l o%fo/3 0%J0/a | | 0%]0/26 | e
nodule R Sowl26/a4 61%[57/105 55%[526/545

nodule B0%[4/5 S7lary 33[518

nodule d 100%[a/a 75%[3/4 | — | 92%[51/55 1
nodule DarcsPatd oy 204215 66%[2/3 68%[22/35

nodule 25%[1/a 0%for2 1 %[C—
wodule T 53%[20/24 Tou[2231 T3%[216/252

nodule Real 67%[43/64 S8%[130/221 j— | 68%[1331/1933 [— |
nodule R 3[47106 24[25/871

February 23, 2011

17 / 43

Maintainability

>

>, > =

2 E z 2 =

g 2 = s £

© @ 2 0 =

< S & A =

Darcs 2.5 * %k 2. 0.8.¢ * X * % * %

XMonad 0.9.2 | Y%k * | dkkxk ** 2. 0. 0. 0. clIN ¢ ¢ &
GHC7.0.1 | Yhx* *hkh | hkkk* ** * Kk *

lago Abal (iago.abal@gmail.com)

Analyzing and Improving Darcs Quality

February 23, 2011

18 / 43

-
Testing Darcs’ Patch Theory Kernel

© Current state of Darcs unit tests

© Improving coverage of existing QuickCheck generators
@ Reducing generation of empty trees
@ Rejecting useless test cases

@ Re-design and development of primitive patches testing
@ A new repository model
@ Generation of Primitive Patches
@ Coverage analysis
@ Summary

@ Conclusions and future work

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 19 / 43

|
Background: QuickCheck

tested with
QuickCheck

A tool for testing Haskell programs automatically.
The programmer provides properties which functions should satisfy.

prop_take n xs = take n xs ‘isPrefix0f‘ xs

QuickCheck tests that the properties hold in a number of randomly
generated cases.

+++ 0K, passed 100 tests

QuickCheck provides combinators to define properties, observe the
distribution of test data, and define test data generators.

vector0f 5 (choose (1,10))

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 20 / 43

Existing test code

Darcs.Test.Patch.* modules
@ Check: Some kind of repository model.

o Examples: Check interesting properties on a set of pre-defined
patches.

o Examples2: Set of interesting patches to test.

@ Info: Generators and properties for patches metadata
(encoding/decoding).

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 21 /43

Existing test code

Darcs.Test.Patch.* modules

4

Properties: Interesting properties about patches.

Properties2: Interesting properties about V1 patches using Test
generators.

QuickCheck: Generators for Prim and V2 patches (patches are valid
by construction).

Test: Generators for Prim and V1 (filter valid patches) based on
Check module.

Unit: HUnit test suite.
Unit2: QuickCheck test suite.
Utils: A few utilities.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 22 /43

Coverage of V2 patches

data RealPatch prim C(x y) where

Duplicate :: Non (RealPatch prim) C(x) -> RealPatch prim C(x x)
Etacilpud :: Non (RealPatch prim) C(x) -> RealPatch prim C(x x)

Normal :: prim C(x y) -> RealPatch prim C(x y)

Conflictor :: [Non (RealPatch prim) C(x)] -> FL prim C(x y)

-> Non (RealPatch prim) C(x) -> RealPatch prim C(y x)
InvConflictor :: [Non (RealPatch prim) C(x)] -> FL prim C(x y)
-> Non (RealPatch prim) C(x) -> RealPatch prim C(x y)

In short:

@ Changes are represented by primitive patches.

@ In case of conflict a special conflictor patch is used to represent the
conflict.
o Merge always “succeeds”, but may produce conflicts.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 23 /43

Coverage of V2 patches

Generation of V2 patch pairs (aims to produce conflicts)
@ Generate a tree of hunk patches.
e Simulating branches.

@ Flatten the tree using merge.
© Take the last pair of patches.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 24 / 43

Coverage of V2 patches

commutePairFromTree

0%
%
0%
0%
2% |
Q0%
0%
20% |

0% —
0% &

@ Non
commutable
W Commutakle

100%

} g /.L

commutePairFromTree
Coverage of commute V2

| ©u mFwGi
m, mg
i WF
| mH WE
| TR
| my mB
WG HaA
|G

commuteHunk

commutePairFromTree
Conflictars in comm utable pairs

No

conflictor
W Some

conflictar

lago Abal (iago.abal@gmail.com Analyzing and Improving Darcs Quality February 23, 2011

25 / 43

Improving coverage of existing QuickCheck generators Reducing generation of empty trees

Excessive number of empty trees

commutePairFromTree
Treesize
100%
|
0% ;ﬁ
%) m4
0% m3
0% 2
0% : 1
0% g
0%
0%
10% /
0%

@ Trees with size < 1 cannot produce any patch pair.

@ In these cases commutePairFromTree use a default patch pair.

o Useless for testing purposes.
e Non commutable.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 26 / 43

Improving coverage of existing QuickCheck generators Reducing generation of empty trees

Reducing generation of empty trees

commutePairFromiree
commutePairFromTree

. Commutable pairs
Tree size 4
- 1m%
100% | W5 ke
e 2 i [Non
35: :; "' [iommutabie
i ¢ % B Commutable
0% L&l 0% |
0% | mo 0%
30% I 0% | |
% 7~} D% |
10% / 10% 4
0% > o% -

commutePairFromTres
Coverage of commute V2

100%
0%
®%
0% |
%
=%
0% f
0%
0%
0%

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 27 / 43

Useless test cases problem

@ Most interesting properties are of the form
VP,Q,R,S: PQ <+ RS : ...

@ Darcs properties result type is Maybe Doc
<property> :: Patchy p => (p :> p) -> Maybe Doc
<property> = case commute (x :> y) of
Nothing -> Nothing -- Useless
Just (y’ :> x’) —>
case <Some Expression> of
<Failed> -> Just <Error Message>
<Succeeded> -> Nothing

@ Generators produce low rate of commutable pairs.

Properties must be testable with any testing tool: QuickCheck,
HUnit, ...

o Prevents use of QuickCheck ==> operator.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 28 / 43

Improving coverage of existing QuickCheck generators Rejecting useless test cases
Testable TestResult

data TestResult = TestSucceeded

| TestFailed Doc

| TestRejected
succeeded :: TestResult
failed :: Doc -- 7 Error message

-> TestResult
-- | Rejects test case
rejected :: TestResult

isFailed :: TestResult -> Bool
-- | A test is considered 0K if it does not fail.
isOk :: TestResult -> Bool

instance Testable TestResult where
property =

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 29 / 43

Current strategy

How Darcs.Test.Patch.QuickCheck generate primitive patches ?

data RepoModel
= RepoModel {
rmFileName :: !FileName,
rmFileContents :: [B.ByteString]
} deriving (Eq)
arbitraryFP :: RepoModel -> Gen (Prim, RepoModel)

arbitraryHunk :: [B.ByteStringl -> Gen (FilePatchType, [B.ByteStringl)

Strengths:

@ Test cases are valid by construction.

@ It is possible to reproduce a test case on disk.
Weaknesses:

@ Only hunks are covered.

@ Low rate of commutable pairs.
@ Needs custom code for patch application.
o No way to test apply code.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 30/ 43

Re-design and development of primitive patches testing A new repository model

Hashed Storage

“Support code for reading and manipulating hashed file storage (where each file
and directory is associated with a cryptographic hash, for corruption-resistant
storage and fast comparisons).”

@ Storage.Hashed.

Tree: “The abstract representation of a Tree and

useful abstract utilities to handle those.”

Cree
Lo 0 e e el
\‘/oo./,c-/ l éml,h) WA \
data Blob m = Blob !(m BL.ByteString) !Hash - =
data Treeltem m = File !(Blob m) L
| SubTree !(Tree

| Stub !(m (Tree

data Tree m = Tree { items :: (M.

, treeHash ::

:;) 'Hash .:'/ W {_j MM\,(\

— g
Map Name (Treeltem m)) \ E

s B «;L:;

Wy

@ Darcs repositories are handled through Hashed Storage.
o It is possible to apply a patch to a Hashed Storage Tree!

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

31/ 43

Repository model

New module Darcs.Test.Patch.RepoModel:

@ A repository model is a wrapper over a Hashed Storage Tree.
newtype RepoModel = RepoModel { repoTree :: Tree Maybe }

newtype Repoltem = Repoltem { treeltem :: Treeltem Maybe }

type Content = [B.ByteString]

type File = Repoltem

type Dir = Repoltem
o It offers a simplified and more specific API.
@ It is possible to compare trees;

instance Eq RepoModel where
repol == repo2 = ...

@ and apply patches to them.

applyPatch :: Apply patch => patch -> RepoModel -> Maybe RepoModel
applyPatch patch (RepoModel tree) = RepoModel <$> applyToTree patch tree

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 32 /43

Generation of repositories

aRepo :: Int — Int — Gen RepoModel
aRepo files# max dirs# max

©00 00O

Arbitrarily choose files# € [0, files# max].
Arbitrarily choose subdirs# € [0, dirs# max|-

filesPerDir# = W'

dirs# max—subdirs#
subdirsPerDir# := ——Fra> =" 7
Generate files# files.

Generate subdirs# directories with up to filesPerDir# files and up to
subdirsPerDir# subdirectories.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 33 /43

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

Re-design and development of primitive patches testing Generation of Primitive Patches

Generating primitive patches

Strategy:

@ Generate a (small) repository.

@ Generate a patch applicable to that repository.
Problem: patches have pre-conditions, it is only possible to generate a
subset of patch types given a repository.

(a) Select a patch type arbitrarily, fail if pre-conditions are violated.
e Gen (Maybe Prim)
o Less robust, potentially inefficient.

(b) Frequencies table for selecting patches, whose entries are conditionally
enable.

[(if isJust mbFile then 15 else O
, aHunkP $ fromJust mbFile)
s een]

o More robust, efficient.

34 /43

Coverage analysis

aPrim
Patch type
100%
a0% - Emove
rmelir
Hox W ekl
0% | = rmfile
60% addfile
50% M tokreplace
P o hunk
0%
20%
10%
03 S
Prim pairs generator Prim pairs generator
Commutable pairs Commute coverage ™ mv.=my
W clprsmy
W dp>dp
i i W rulhunk:>fp
0% 0% fpr>nulihunkc
B80% ™ B0% W fp=my
. non :
0% commutable 7 . :j’ ’;‘F‘ "
60% W commutable 60% bty
tok:tok
S, % W trivial FP
40% 40% hunks D
0% 30% hunks €
SN 0% o hunks B
SEe / e W hunks A
0% 0% =

lago Abal (iago.abal@gmail.co: Analyzing and Improving Darcs Quality February 23, 2011 35 /43

Re-design and development of primitive patches testing Coverage analysis

Improving coverage for commutable hunks

-- Try to generate commutable pairs of hunks
hunkPairP :: (AnchoredPath,File) -> Gen (Prim :> Prim)

aPrimPair :: RepoModel -> Gen (Prim :> Prim, RepoModel)
aPrimPair repo
= do mbFile <- maybeOf repoFiles
frequency
[(if isJust mbFile then 1 else O
""use hunkPairP""

~

1

""use the default generator for Prim pairs""

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 36 / 43

Re-design and development of primitive patches tes Coverage analy:

Improving coverage for commutable hunks

Now:

Before:

lago Abal ago.abal@gmail.com

Prim pairs generator
Coammutable pairs

Prim pairs generator
Cammute coverage B mv.=mv

lp:>mv
W dp>dp
= = bk >fp
0% | 0% fpr=nulihunkc
B0% B0% LR
. e
0% commutable 0% - hp kp‘ "
0% ' commutable 0% upk ol
sy iy tolc-tol
W trivial FP
40% 40% | W hunks D
30% 30% hunks C
20% 20% B hurks B
10% g 0% e
03 e 0%
Prim pairs generator Prim pairs generator
Caommutable pairs Commute caverage ®mv>my
mdpmy
W dp>dp
s A B ik >t
0% 0% fpr=nulihunkc
80% 80% W fpmy
™ non
AT commutahle 0% Tt
0% M commutable 0% M hlc ool
tolcstolc
Al ik W trivial FP
0% 40% hurks D
30% 30% hunks C
20% 20% : :“”:S 2
10% / 10% e SIS
0% 0%

Analyzing and Improving Darcs Quality

February 23, 2011

37 /43

Re-design and development of primitive patches testing IESIIWINELG
Summary

Properties like invert rollback or effect preserving are now being
tested.

o Now we know empty-hunks break effect preserving property.
@ Darcs.Patch.V1.Apply is now almost fully tested.

@ Darcs.I0 Hashed Storage implementation is now being tested.

@ Darcs.Test.Patch.QuickCheck and
Darcs.Test.Patch.Examples2 rewritten to make use of new
repository model and patch generators.

e Thanks to this we have found a possible bug in V2 commute/merge
which breaks commute symmetry.

@ Automatic generation of coverage report for both system and unit
tests.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 38 /43

Conclusions

@ Darcs is not easy to maintain.
e Metrics and experience agree.

A possible short-term plan:
@ Avoid local declarations when they make sense as top-level.
e Facilitates testing; reduces complexity and unit size.
@ Avoid module “private utilities”.

e Use unit tests to ensure contracts are never broken.

@ Write more unit tests (important Darcs weakness).

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

39 /43

Conclusions

@ Patch logic is hard to test.

Some refactoring may help.

o Write QuickCheck generators is tricky.

e Small changes have a big impact in coverage.

o Properties depend on conditions which are hard to fulfill.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011

40 / 43

Conclusions and future work

Future work

Refine code metrics and write proper tools.

Integrate code metrics into development process.

e Run code metrics to guarantee code quality.
e Just as you run tests to guarantee code correctness.

Refactor, clean up and re-organize Darcs.Test.Patch. *.

100% coverage for Darcs.Patch. *.

Extend /explore the usefulness of the new repository model.

e More properties involving repository state.
e Could we fully simulate Darcs in memory?

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 41 /43

Thanks to

Ganesh Sittampalam.

Petr Rockai.

Jason Dagit.

All FreeNode #darcs people.

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 42 /43

Questions?

Shoot!

lago Abal (iago.abal@gmail.com) Analyzing and Improving Darcs Quality February 23, 2011 43 / 43

	Quality Analysis: Maintainability
	Volume
	Complexity per Unit
	Code duplication
	Unit size
	Module coupling
	Unit testing
	Maintainability rating

	Testing Darcs Patch Logic Kernel
	Current state of Darcs unit tests
	Improving coverage of existing QuickCheck generators
	Reducing generation of empty trees
	Rejecting useless test cases

	Re-design and development of primitive patches testing
	A new repository model
	Generation of Primitive Patches
	Coverage analysis
	Summary

	Conclusions and future work

