Introduction to mCRL2

Luis S. Barbosa

DI-CCTC
Universidade do Minho
Braga, Portugal

May, 2011

Introduction The underlying process algebra Data Modal and temporal properties The toolset

mCRL2: A toolset for process algebra

mCRL2 provides:

® a generic process algebra, based on AcP (Bergstra & Klop, 82), in
which other calculi can be embedded

e extended with data and (real) time
e the full p-calculus as a specification logic

e powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Introduction The underlying process algebra Data Modal and temporal properties The toolset

mCRL2: A toolset for process algebra

Our aim

e To use mCRL2 to animate CCS models and verify modal and
temporal properties

e To introduce a method and a language to describe software
architectures on top of mCRL2

This lecture provides an overview and a demo
Refer to recommended reading for semantics
and the toolset algorithms

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Actions

Interaction through multisets of actions
e A multiaction is an elementary unit of interaction that can execute

itself atomically in time (no duration), after which it terminates
successfully

a = 7| ald) | ala

® actions may be parametric on data

e the structure (N, |, 7) forms an Abelian monoid

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Sequential processes

Sequential, non deterministic behaviour

The set [P of processes is the set of all terms generated by the following
BNF, for a € NV,

pi=oal|d|p+tpl|pp]|Pd)

e atomic process: a for all a € N
e choice: +

e sequential composition: -

e inaction or deadlock: §

e process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Sequential Processes

Exercise

Describe the behaviour of
e ab.d.c+a

(a+ b).d.c

(a+ b).e+d.c

a+(d+a)

a.(b+c).d.(b+c)

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Parallel composition

| = interleaving + synchronization

e modelling principle: interaction is the key element in software design

e modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

e mCRL2: supports flexible synchronization discipline (# CCS)

pu=-—|plplprlplerl,

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Parallel composition

e parallel p || g: interleaves and synchronises the actions of both
processes.

e synchronisation p | g: synchronises the first actions of p and g and
combines the remainder of p with g with ||, cf axiom:

(a.p) [(b.g) ~ (a] b).(p Il q)

e left merge p||g: executes a first action of p and thereafter combines
the remainder of p with g with ||.

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this
process algebra with || modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

o left merge: ||

e synchronous product: |

such that

[Pt~ (plt+tlp)+p]t]

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Interaction

Communication I'¢(p) (com)

e applies a communication function C forcing action synchronization
and renaming to a new action:

al--lan = ¢

e data parameters are retained in action c, e.g.

[alb—cy(a(8) | b(8)) = c(8)
Mapsey(a(12) | b(8)) = a(12) | b(8)
[alb—cy(a(8) | a(12) [b(8)) = a(12) | ¢(8)

e left hand-sides in C must be disjoint: e.g., {a|b— c,a|d — j}is
not allowed

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Interface control

Restriction: Vg (p) (allow)

e specifies which multiactions from a non-empty multiset of action
names are allowed to occur

e disregards the data parameters of the multiactions
Vid,a61(d(12) + a(8) + (b(false, 4) | c)) = d(12)+ (b(false,4) | c)

e 7 is always allowed to occur

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Interface control

Block: dg(p) (block)

e specifies which multiactions from a set of action names are not
allowed to occur

e disregards the data parameters of the multiactions
Oqpy(d(12) + a(8) + (b(false,4) | c)) = d(12) + a(8)

o the effect is that of renaming to §

e 7 cannot be blocked

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Interface control

Renaming pu(p) (rename)

® renames actions in p according to a mapping M

e also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

Otd—ny(d(12) + s(8) | d(false) + d.a.d(T7))
= h(12) + s(8) | h(false) + h.a.h(7)

e 7 cannot be renamed

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Interface control

Hiding 74(p) (hide)

e hides (or renames to 7) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

e disregards the data parameters

7143 (d(12) + s(8) | d(false) + h.a.d(7))
= 7+58)| 7+ har = 7+5(8)+ hart

e 7 and J cannot be renamed

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Example

New buffers from old

act inn,outt,ia,ib,o0a,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob}, comm({oalib -> c}, BufferA || BufferB));

init hide({c}, 9);

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Data types

e Equalities: equality, inequality, conditional (if (-,-,-))

e Basic types: booleans, naturals, reals, integers, ... with the usual
operators

e Sets, multisets, sequences ... with the usual operators
e Function definition, including the A-notation

e Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

Introduction

The underlying process algebra Data Modal and temporal properties

Signatures and definitions

Sorts, functions, constants, variables ...

sort

cons

map

var

eqn

S, A;
s,t:S, b:set(d);

f: S xS ->A4;
c: A;

x:S;

f(x,s) = s;

The toolset

Introduction

The underlying process algebra Data Modal and temporal properties

Signatures and definitions

A full functional language ...

sort

map

var

eqn

BTree = struct leaf(Pos) | node(BTree, BTree);
flatten: BTree -> List(Pos);
n:Pos, t,r:BTree;

flatten(leaf(n))

= [n];
flatten(node(t,r)) =

t++r;

The toolset

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Processes with data

Why?

e Precise modeling of real-life systems

e Data allows for finite specifications of infinite systems

How?

e data and processes parametrized
e summation over data types: > s(n)

e processes conditional on data: b — pogq

Introduction The underlying process algebra Data Modal and temporal properties

Examples

A counter

act up, down;
setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)
+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos. (setcounter(m) .Ctr(m))

init Ctr(345);

The toolset

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Overview

The verification problem

Given a specification of the system's behaviour is in mCRL2

and the system's requirements are specified as properties in a
temporal logic,

a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted,;

® sometimes, witnesses or counter examples can be provided

Which logic?

p-calculus with data, time and regular expressions

Introduction The underlying process algebra Data Modal and temporal properties The toolset

From modal logic ...
Hennessy-Milner logic

... propositional logic with action modalities

¢ == true | false | =9 | oA ¢ | 6V | (a)¢ | [a]¢

Laws

~(a)¢ = [a]-¢
-[a]¢ = (a)—¢
(a)false = false
[a]true = true
(a) (o V) = (a)¢ Vv (a)y
[al(p A) = [a]o A [a]y
(o Alaly = (a)(dAY)

Introduction The underlying process algebra Data Modal and temporal properties The toolset

From modal logic ...

Hennessy-Milner logic + regular expressions
ie, with regular expressions within modalities

pu=eclalpplptpl|p|p
where
e « is an action formula and € is the empty word

e concatenation p.p, choice p + p and closures p* and p™

Laws

(p1+p2)p = (p1)9 V (p2)¢
[p1 +p2¢ = [p1]o A [p2]o
(p1-p2)9 = (p1)(p2)¢
[p1-p2]0 = [p1][p2]o

Introduction The underlying process algebra Data Modal and temporal properties The toolset

From modal logic ...

Action formulas

o n=ay|---|a | true | false | —a | aUa | anNa

where
® a; |-+ a,is a set with this single multiaction
e true (universe), false (empty set)

e —q is the set complement

Modalities with action formulas:

(o = \[(@¢ [ade = /\lalé

acwo acwo

Introduction The underlying process algebra Data Modal and temporal properties The toolset

... to temporal logic

Examples of properties

° () = [do = ¢
* (a.a.b)¢ = (a){a)(b)¢
e (a.b+g.d)o
Safety
o [true*]o

e it is impossible to do two consecutive enter actions without a leave
action in between:
[true*.enter. — leave*.enter]false

e absence of deadlock:
[true*](true)true

Introduction The underlying process algebra Data Modal and temporal properties The toolset

... to temporal logic

Examples of properties

Liveness

o (true*)¢o

e after sending a message, it can eventually be received:
[send](true*.receive)true

e after a send a receive is possible as long as it has not happened:
[send. — receive*|(true*.receive)true

Introduction The underlying process algebra Data Modal and temporal properties The toolset

... to temporal logic

The modal p-calculus

e modalities with regular expressions are not enough in general

e ... but correspond to a subset of the modal p-calculus [Kozen83]

’Add explicit minimal/maximal fixed point operators to Hennessy- Milner |ogic‘

¢ == X |true |false | =6 | oAd | Vo | 6=6 | (a)o | [alé | uX .6 | vX .0

Introduction The underlying process algebra Data Modal and temporal properties The toolset

... to temporal logic

The modal p-calculus (intuition)

e 11X .¢ is valid for all those states in the smallest set X that satisfies
the equation X = ¢ (finite paths, liveness)

e vX . ¢ is valid for the states in the largest set X that satisfies the
equation X = ¢ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.

Introduction The underlying process algebra Data Modal and temporal properties The toolset

... to temporal logic
Laws & Notes (but see the pi-calculus slides!)

uX.p = vX.o
and self-duals:

—uX.p = vX.-¢
wvX.p = puX.¢

Translation of regular formulas with closure

(R)$ = nX . (RIXV &
[R*]¢ = vX.[RIX A
(R")¢ = (R)(R")¢
[R*]¢ = [RI[R"]¢

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Example: The dining philosophers problem

Formulas to verify

e No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[truex]<true>true
e No starvation (a philosopher cannot acquire 2 forks):
forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true
® A philosopher can only eat for a finite consecutive amount of time:
forall p:Phil. nu X. mu Y. [eat(p)]Y && ['eat(p)]X

® there is no starvation: for all reachable states it should be possible to
eventually perform an eat (p) for each possible value of p:Phil.

[truex] (forall p:Phil. mu Y. (['eat(p)]Y && <true>true))

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Overview

Strategies to deal with infinite models and specifications

o A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

e The specification is converted to a stricter format called Linear
Process Specification (x.1ps)

e In this format the specification can be transformed and simulated

e In particular a Labelled Transition System (x.1ts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)

Introduction

The underlying process algebra

Data

Modal and temporal properties

Architecture

mCRL2
specification

Linearizer Simulators
Linear
}]:/[OE,EI process Manipulators
checking specification
LTS Theorem
generator proving
Labeled
Mod'e ! transition Manipulators
checking

system

Visualizers

The toolset

Introduction The underlying process algebra Data Modal and temporal properties The toolset

Mini-project

Aim: becoming proficient in mCRL2

o Choose examples from the exercises sheets
e Model and simulate in mCRL2
e Specify relevant properties and test them

e ... within 2 weeks

	Introduction
	The underlying process algebra
	Data
	Modal and temporal properties
	The toolset

