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mCRL2: A toolset for process algebra

mCRL2 provides:

® a generic process algebra, based on AcP (Bergstra & Klop, 82), in
which other calculi can be embedded

e extended with data and (real) time
e the full p-calculus as a specification logic

e powerful toolset for simulation and verification of reactive systems

www.mcrl2.org
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mCRL2: A toolset for process algebra

Our aim

e To use mCRL2 to animate CCS models and verify modal and
temporal properties

e To introduce a method and a language to describe software
architectures on top of mCRL2

This lecture provides an overview and a demo
Refer to recommended reading for semantics
and the toolset algorithms
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Actions

Interaction through multisets of actions
e A multiaction is an elementary unit of interaction that can execute

itself atomically in time (no duration), after which it terminates
successfully

a = 7| ald) | ala

® actions may be parametric on data

e the structure (N, |, 7) forms an Abelian monoid
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Sequential processes

Sequential, non deterministic behaviour

The set [P of processes is the set of all terms generated by the following
BNF, for a € NV,

pi=oal|d|p+tpl|pp]|Pd)

e atomic process: a for all a € N
e choice: +

e sequential composition: -

e inaction or deadlock: §

e process references introduced through definitions of the form
P(x : D) = p, parametric on data
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Sequential Processes

Exercise

Describe the behaviour of
e ab.d.c+a

(a+ b).d.c

(a+ b).e+d.c

a+(d+a)

a.(b+c).d.(b+c)
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Parallel composition

| = interleaving + synchronization

e modelling principle: interaction is the key element in software design

e modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

e mCRL2: supports flexible synchronization discipline (# CCS)

pu=-—|plplprlplerl,
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Parallel composition

e parallel p || g: interleaves and synchronises the actions of both
processes.

e synchronisation p | g: synchronises the first actions of p and g and
combines the remainder of p with g with ||, cf axiom:

(a.p) [ (b.g) ~ (a] b).(p Il q)

e left merge p||g: executes a first action of p and thereafter combines
the remainder of p with g with ||.
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Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this
process algebra with || modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

o left merge: ||

e synchronous product: |

such that

[Pt~ (plt+tlp)+p]t]
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Interaction

Communication I'¢(p) (com)

e applies a communication function C forcing action synchronization
and renaming to a new action:

al--lan = ¢

e data parameters are retained in action c, e.g.

[ alb—cy(a(8) | b(8)) = c(8)
Mapsey(a(12) | b(8)) = a(12) | b(8)
[ alb—cy(a(8) | a(12) [ b(8)) = a(12) | ¢(8)

e left hand-sides in C must be disjoint: e.g., {a|b— c,a|d — j}is
not allowed
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Interface control

Restriction: Vg (p) (allow)

e specifies which multiactions from a non-empty multiset of action
names are allowed to occur

e disregards the data parameters of the multiactions
Vid,a61(d(12) + a(8) + (b(false, 4) | c)) = d(12)+ (b(false,4) | c)

e 7 is always allowed to occur
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Interface control

Block: dg(p) (block)

e specifies which multiactions from a set of action names are not
allowed to occur

e disregards the data parameters of the multiactions
Oqpy(d(12) + a(8) + (b(false,4) | c)) = d(12) + a(8)

o the effect is that of renaming to §

e 7 cannot be blocked
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Interface control

Renaming pu(p) (rename)

® renames actions in p according to a mapping M

e also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

Otd—ny(d(12) + s(8) | d(false) + d.a.d(T7))
= h(12) + s(8) | h(false) + h.a.h(7)

e 7 cannot be renamed
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Interface control

Hiding 74(p) (hide)

e hides (or renames to 7) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

e disregards the data parameters

7143 (d(12) + s(8) | d(false) + h.a.d(7))
= 7+58)| 7+ har = 7+5(8)+ hart

e 7 and J cannot be renamed
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Example

New buffers from old

act inn,outt,ia,ib,o0a,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob}, comm({oalib -> c}, BufferA || BufferB));

init hide({c}, 9);
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Data types

e Equalities: equality, inequality, conditional (if (-,-,-))

e Basic types: booleans, naturals, reals, integers, ... with the usual
operators

e Sets, multisets, sequences ... with the usual operators
e Function definition, including the A-notation

e Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort

cons

map

var

eqn

S, A;
s,t:S, b:set(d);

f: S xS ->A4;
c: A;

x:S;

f(x,s) = s;

The toolset
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Signatures and definitions

A full functional language ...

sort

map

var

eqn

BTree = struct leaf(Pos) | node(BTree, BTree);
flatten: BTree -> List(Pos);
n:Pos, t,r:BTree;

flatten(leaf(n))

= [n];
flatten(node(t,r)) =

t++r;

The toolset
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Processes with data

Why?

e Precise modeling of real-life systems

e Data allows for finite specifications of infinite systems

How?

e data and processes parametrized
e summation over data types: > s(n)

e processes conditional on data: b — pogq
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Examples

A counter

act up, down;
setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)
+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos. (setcounter(m) .Ctr(m))

init Ctr(345);

The toolset
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Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc  X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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Overview

The verification problem

Given a specification of the system's behaviour is in mCRL2

and the system's requirements are specified as properties in a
temporal logic,

a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted,;

® sometimes, witnesses or counter examples can be provided

Which logic?

p-calculus with data, time and regular expressions
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From modal logic ...
Hennessy-Milner logic

... propositional logic with action modalities

¢ == true | false | =9 | oA ¢ | 6V | (a)¢ | [a]¢

Laws

~(a)¢ = [a]-¢
-[a]¢ = (a)—¢
(a)false = false
[a]true = true
(a) (o V) = (a)¢ Vv (a)y
[al(p A ) = [a]o A [a]y
(o Alaly = (a)(dAY)
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From modal logic ...

Hennessy-Milner logic + regular expressions
ie, with regular expressions within modalities

pu=eclalpplptpl|p|p
where
e « is an action formula and € is the empty word

e concatenation p.p, choice p + p and closures p* and p™

Laws

(p1+p2)p = (p1)9 V (p2)¢
[p1 +p2¢ = [p1]o A [p2]o
(p1-p2)9 = (p1)(p2)¢
[p1-p2]0 = [p1][p2]o
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From modal logic ...

Action formulas

o n=ay|---|a | true | false | —a | aUa | anNa

where
® a; |-+ a,is a set with this single multiaction
e true (universe), false (empty set)

e —q is the set complement

Modalities with action formulas:

(o = \[(@¢ [ade = /\lalé

acwo acwo
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... to temporal logic

Examples of properties

° () = [do = ¢
* (a.a.b)¢ = (a){a)(b)¢
e (a.b+g.d)o
Safety
o [true*]o

e it is impossible to do two consecutive enter actions without a leave
action in between:
[true*.enter. — leave*.enter]false

e absence of deadlock:
[true*](true)true
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... to temporal logic

Examples of properties

Liveness

o (true*)¢o

e after sending a message, it can eventually be received:
[send](true*.receive)true

e after a send a receive is possible as long as it has not happened:
[send. — receive*|(true*.receive)true
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... to temporal logic

The modal p-calculus

e modalities with regular expressions are not enough in general

e ... but correspond to a subset of the modal p-calculus [Kozen83]

’Add explicit minimal/maximal fixed point operators to Hennessy- Milner |ogic‘

¢ == X |true |false | =6 | oAd | Vo | 6=6 | (a)o | [alé | uX .6 | vX .0
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... to temporal logic

The modal p-calculus (intuition)

e 11X .¢ is valid for all those states in the smallest set X that satisfies
the equation X = ¢ (finite paths, liveness)

e vX . ¢ is valid for the states in the largest set X that satisfies the
equation X = ¢ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.
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... to temporal logic
Laws & Notes (but see the pi-calculus slides!)

uX.p = vX.o
and self-duals:

—uX.p = vX.-¢
wvX.p = puX.¢

Translation of regular formulas with closure

(R)$ = nX . (RIXV &
[R*]¢ = vX.[RIX A
(R")¢ = (R)(R")¢
[R*]¢ = [RI[R"]¢
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Example: The dining philosophers problem

Formulas to verify

e No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[truex]<true>true
e No starvation (a philosopher cannot acquire 2 forks):
forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true
® A philosopher can only eat for a finite consecutive amount of time:
forall p:Phil. nu X. mu Y. [eat(p)]Y && ['eat(p)]X

® there is no starvation: for all reachable states it should be possible to
eventually perform an eat (p) for each possible value of p:Phil.

[truex] (forall p:Phil. mu Y. (['eat(p)]Y && <true>true))
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Overview

Strategies to deal with infinite models and specifications

o A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

e The specification is converted to a stricter format called Linear
Process Specification (x.1ps)

e In this format the specification can be transformed and simulated

e In particular a Labelled Transition System (x.1ts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)
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Architecture

mCRL2
specification

Linearizer Simulators
Linear
}]:/[ OE,EI process Manipulators
checking specification
LTS Theorem
generator proving
Labeled
Mod'e ! transition Manipulators
checking

system

Visualizers

The toolset
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Mini-project

Aim: becoming proficient in mCRL2

o Choose examples from the exercises sheets
e Model and simulate in mCRL2
e Specify relevant properties and test them

e ... within 2 weeks
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