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Composition as coordination

Object-orientation

e In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction and configuration

e Objects are wired at a very low level and the description of
the wiring patterns is distributed among them
e The semantics of method invocation is heavy and non-trivial:
e The caller must know the callee and the caller must know the
method.
e The callee must (pretend) to interpret the message.

e The caller suspends while the callee (pretends to) perform the
method and resumes when the callee returns a result.



Composition as coordination

Object-orientation

The operations/methods provided by a class-interface impose a
tight semantic binding which, at the inter-component level

e Weakens independence of components;

e Contributes to breaking of encapsulation;

e Tightens component inter-dependence.
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Component-orientation

e CBD retains the basic encapsulation of data and code
principle to increase modularity

e ... but shifts the emphasis from class inheritance to object
composition

e to avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components



Composition as coordination

Component-orientation

’CBD: the visual metaphor‘

a palette of computational units (eg robust collections of
objects) treated as black boxes

and a canvas into which they can be dropped
connections are established by drawing wires

inter-component communication is through messages that
invoke remote methods, typically given some suitable
triggering condition on the source.
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Software as a service

‘entails the need of managing an open-ended structure of
autonomous components, possibly distributed and highly
heterogeneous.

This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.” (Fiadeiro, 05)

e interaction as a first-class citizen

e composition as exogenous coordination



Composition as coordination

Composition as coordination

e interacting components need not know each other.

(cf traditionally communication is targeted, making the sender
semantically dependent on (the scheme used to identify) the
receiver)

e communication becomes anonymous: components exchange
identifiable sequences of passive messages with the
environment only

e therefore third parties can coordinate interactions between
senders and receivers of their own choice
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Composition as coordination

Connectors

e Connectors are interaction controllers: the glue code that
makes components interact

e Traditionally, glue code is the most rigid, component specific,
special purpose software in component based systems!

e ... component-independent and agnostic, with a well-defined
semantics

e ... built compositionally.

e Components communicate with the environment only through
read and write operations on the connector ends (or ports),
possibly according some behavioural interface description.
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Coordination

Carriero and Gelernter, 1986
Coordination is the process of building programs by gluing together
active pieces

e distinguish computation from interaction
(in massive parallel networks)

e focus on the emergent behaviour

e amenable to external, third-party control

Peter Wegner, 2000

Coordination is constrained interaction
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REO

’reo.project.cwi.nl/ ‘

A compositional, connector-based coordination language for
plugging together components in an exogenous discipline
(from outside and without participants’ knowledge);

Primitive circuit-like connectors are composed to build
complex coordination patterns

Key concepts are synchrony ("happens together’) and mutual
exclusion;

Connectors implement interaction protocols (dealing with
aspects of concurrency, buffering, ordering, data flow and
manipulation);
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REO

‘reo.project.cwi.nl/ ‘

e Several formal semantics:

relations between timed streams (2002)

constraint automata (2004) and several variants
colours (2004) to capture context awareness

reo automata (2009) and intensional automata (2010)

e Eclipse toolset available
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REO connectors
Characterized by

e a number of ends and a constraint defines its interaction
protocol through these ends

Ends

e source end: through which data enters the connector

e sink end: through which data comes out of the connector

Examples (channels)

Sync SyncDrain SyncSpout LossySync

AsyncDrain  AsyncSpout FIFOq FIFO1(x)

Semantics
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Connector composition

Connectors are composed by conjoining their ends to form nodes
with multiple ends

<o
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Connector composition

Nodes

e source node: superposes only source ends and atomically
copies incoming data items to all of its outgoing source ends

e sink node: superposes only sink ends and acts as a
non-deterministic merger, randomly choosing a data item
from one of the sink ends for delivery

e mixed node: combines both acting as pumping station by
atomically consuming a data item from one sink end and
replicating it to all source ends (1 : n synchronization)

Note: synchrony propagates through connectors
... because nodes do not perform any buffering
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Components

e active (computational) entities with a fixed interface that
consists of a number of source and sink ends

e often (but not necessarily) interpreted as black boxes, i.e., no
assumptions about their behavior

e actually, for analysis it is often beneficial to take into account
the behavior of components (e.g. to detect potential
deadlocks or to validate temporal properties) — may be
annotated with a specification that reflects its behaviour

Write and Take operations
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The exclusive router

e routes data items synchronously from the source to exactly
one of the two sinks;

e if both of them are ready to accept data, the choice of where
the data item goes is made non-deterministically (merge goes
without a priority)
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The alternator

. Reader
)

e enforces an ordered output of the data items provided by the
two sources

e inputs synchronized through a synchronous drain

e the FIFO1 stores the data item and makes it available in the
next execution step; and guarantees alternation (why?)

Semantics
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Messenger patterns

Messages exchanged through two buffered channels
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Messenger patterns

Messenger with automatic acknowledgments

:
[] [ ]

Clients get, as an acknowledgment, a copy of their own message
when the other client has successfully received it
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Timed data streams

Time streams
constrained streams over (positive) real numbers, representing
moments in time such that

e strictly increasing: a(i) < a(i + 1)

e progressive: V,3y a(n) > N

Timed data stream

pair («, a) consisting of a data stream « and a time stream a, with
the interpretation that for for all i € N, the input/output of data
item (/i) occurs at time a(/)
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Timed data streams

Connectors
are relations over timed data streams:

(a,a) [Sync] (8, b) < (a,a) = (B,b)
(a,a) [FIFO] (B,b) & a=p Na<b
(a,a) [FIFO1] (B8,b) & a=B ANa<b<ad

e coalgebraic semantics [Arbab, Rutte, 2002; Arbab 2003] with
incipient calculus

e cannot capture context-awareness
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Constraint automata

The states represent the configurations of the corresponding
circuit, while transitions encode its maximally-parallel stepwise
behavior.

Semantics
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Constraint automata

e cannot capture context-awareness [Baier, Sirjani, Arbab,
Rutten 2006], but forms the basis for more elaborated models
(eg, Reo automata)

e captures all behavior alternatives of a connector; useful to
generate a statemachine implementing the connector's
behavior

e basis for several tools, including models checker Vereofy
[Kluppelholz, Baier 2007]
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Coulorings

Based on the set of all of dataflow alternatives of the connector,
represented by different colours meaning data flowing and no data
flowing
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Coulorings

e first to capture context-awareness [Clarke, Costa, Arbab 2007]
e basis for the animation tools

e calculus???



Composition as coordination Introduction to REO Examples & demo Semantics

Concluding

e tools ... & case studies
e several semantic models ... & incipient calculus

e extensions: timed, stochastic, QoS annotated



	Composition as coordination
	Introduction to Reo
	Examples & demo
	Semantics

