Software architecture for reactive systems:
the coordination perspective
(An introduction to REO)

Luis S. Barbosa

DI-CCTC
Universidade do Minho
Braga, Portugal

May 2011

Composition as coordination

Object-orientation

e In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction and configuration

e Objects are wired at a very low level and the description of
the wiring patterns is distributed among them
e The semantics of method invocation is heavy and non-trivial:
e The caller must know the callee and the caller must know the
method.
e The callee must (pretend) to interpret the message.

e The caller suspends while the callee (pretends to) perform the
method and resumes when the callee returns a result.

Composition as coordination

Object-orientation

The operations/methods provided by a class-interface impose a
tight semantic binding which, at the inter-component level

e Weakens independence of components;

e Contributes to breaking of encapsulation;

e Tightens component inter-dependence.

Composition as coordination Introduction to REO Examples & demo Semantics

Component-orientation

e CBD retains the basic encapsulation of data and code
principle to increase modularity

e ... but shifts the emphasis from class inheritance to object
composition

e to avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components

Composition as coordination

Component-orientation

’CBD: the visual metaphor‘

a palette of computational units (eg robust collections of
objects) treated as black boxes

and a canvas into which they can be dropped
connections are established by drawing wires

inter-component communication is through messages that
invoke remote methods, typically given some suitable
triggering condition on the source.

Composition as coordination Introduction to REO Examples & demo Semantics

Software as a service

‘entails the need of managing an open-ended structure of
autonomous components, possibly distributed and highly
heterogeneous.

This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.” (Fiadeiro, 05)

e interaction as a first-class citizen

e composition as exogenous coordination

Composition as coordination

Composition as coordination

e interacting components need not know each other.

(cf traditionally communication is targeted, making the sender
semantically dependent on (the scheme used to identify) the
receiver)

e communication becomes anonymous: components exchange
identifiable sequences of passive messages with the
environment only

e therefore third parties can coordinate interactions between
senders and receivers of their own choice

Composition as coordination Introduction to REO Examples & demo Semantics

Composition as coordination

Connectors

e Connectors are interaction controllers: the glue code that
makes components interact

e Traditionally, glue code is the most rigid, component specific,
special purpose software in component based systems!

e ... component-independent and agnostic, with a well-defined
semantics

e ... built compositionally.

e Components communicate with the environment only through
read and write operations on the connector ends (or ports),
possibly according some behavioural interface description.

Composition as coordination Introduction to REO Examples & demo Semantics

Coordination

Carriero and Gelernter, 1986
Coordination is the process of building programs by gluing together
active pieces

e distinguish computation from interaction
(in massive parallel networks)

e focus on the emergent behaviour

e amenable to external, third-party control

Peter Wegner, 2000

Coordination is constrained interaction

Introduction to REO

REO

’reo.project.cwi.nl/ ‘

A compositional, connector-based coordination language for
plugging together components in an exogenous discipline
(from outside and without participants’ knowledge);

Primitive circuit-like connectors are composed to build
complex coordination patterns

Key concepts are synchrony ("happens together’) and mutual
exclusion;

Connectors implement interaction protocols (dealing with
aspects of concurrency, buffering, ordering, data flow and
manipulation);

Composition as coordination Introduction to REO Examples & demo Semantics

REO

‘reo.project.cwi.nl/ ‘

e Several formal semantics:

relations between timed streams (2002)

constraint automata (2004) and several variants
colours (2004) to capture context awareness

reo automata (2009) and intensional automata (2010)

e Eclipse toolset available

Composition as coordination Introduction to REO Examples & demo

REO connectors
Characterized by

e a number of ends and a constraint defines its interaction
protocol through these ends

Ends

e source end: through which data enters the connector

e sink end: through which data comes out of the connector

Examples (channels)

Sync SyncDrain SyncSpout LossySync

AsyncDrain AsyncSpout FIFOq FIFO1(x)

Semantics

Composition as coordination Introduction to REO Examples & demo Semantics

Connector composition

Connectors are composed by conjoining their ends to form nodes
with multiple ends

<o

Composition as coordination Introduction to REO Examples & demo Semantics

Connector composition

Nodes

e source node: superposes only source ends and atomically
copies incoming data items to all of its outgoing source ends

e sink node: superposes only sink ends and acts as a
non-deterministic merger, randomly choosing a data item
from one of the sink ends for delivery

e mixed node: combines both acting as pumping station by
atomically consuming a data item from one sink end and
replicating it to all source ends (1 : n synchronization)

Note: synchrony propagates through connectors
... because nodes do not perform any buffering

Introduction to REO

Components

e active (computational) entities with a fixed interface that
consists of a number of source and sink ends

e often (but not necessarily) interpreted as black boxes, i.e., no
assumptions about their behavior

e actually, for analysis it is often beneficial to take into account
the behavior of components (e.g. to detect potential
deadlocks or to validate temporal properties) — may be
annotated with a specification that reflects its behaviour

Write and Take operations

Composition as coordination Introduction to REO Examples & demo Semantics

The exclusive router

e routes data items synchronously from the source to exactly
one of the two sinks;

e if both of them are ready to accept data, the choice of where
the data item goes is made non-deterministically (merge goes
without a priority)

Composition as coordination Introduction to REO Examples & demo

The alternator

. Reader
)

e enforces an ordered output of the data items provided by the
two sources

e inputs synchronized through a synchronous drain

e the FIFO1 stores the data item and makes it available in the
next execution step; and guarantees alternation (why?)

Semantics

Composition as coordination Introduction to REO Examples & demo Semantics

Messenger patterns

Messages exchanged through two buffered channels

Composition as coordination Introduction to REO Examples & demo Semantics

Messenger patterns

Messenger with automatic acknowledgments

:
[] []

Clients get, as an acknowledgment, a copy of their own message
when the other client has successfully received it

Composition as coordination Introduction to REO Examples & demo Semantics

Timed data streams

Time streams
constrained streams over (positive) real numbers, representing
moments in time such that

e strictly increasing: a(i) < a(i + 1)

e progressive: V,3y a(n) > N

Timed data stream

pair («, a) consisting of a data stream « and a time stream a, with
the interpretation that for for all i € N, the input/output of data
item (/i) occurs at time a(/)

Composition as coordination Introduction to REO Examples & demo Semantics

Timed data streams

Connectors
are relations over timed data streams:

(a,a) [Sync] (8, b) < (a,a) = (B,b)
(a,a) [FIFO] (B,b) & a=p Na<b
(a,a) [FIFO1] (B8,b) & a=B ANa<b<ad

e coalgebraic semantics [Arbab, Rutte, 2002; Arbab 2003] with
incipient calculus

e cannot capture context-awareness

Composition as coordination Introduction to REO Examples & demo

Constraint automata

The states represent the configurations of the corresponding
circuit, while transitions encode its maximally-parallel stepwise
behavior.

Semantics

Composition as coordination Introduction to REO Examples & demo Semantics

Constraint automata

e cannot capture context-awareness [Baier, Sirjani, Arbab,
Rutten 2006], but forms the basis for more elaborated models
(eg, Reo automata)

e captures all behavior alternatives of a connector; useful to
generate a statemachine implementing the connector's
behavior

e basis for several tools, including models checker Vereofy
[Kluppelholz, Baier 2007]

Composition as coordination Introduction to REO Examples & demo Semantics

Coulorings

Based on the set of all of dataflow alternatives of the connector,
represented by different colours meaning data flowing and no data
flowing

Composition as coordination Introduction to REO Examples & demo Semantics

Coulorings

e first to capture context-awareness [Clarke, Costa, Arbab 2007]
e basis for the animation tools

e calculus???

Composition as coordination Introduction to REO Examples & demo Semantics

Concluding

e tools ... & case studies
e several semantic models ... & incipient calculus

e extensions: timed, stochastic, QoS annotated

	Composition as coordination
	Introduction to Reo
	Examples & demo
	Semantics

