
Software architecture for reactive systems:
the coordination perspective
(An introduction to Reo)

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

May 2011



Composition as coordination Introduction to Reo Examples & demo Semantics

Object-orientation

• In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction and configuration

• Objects are wired at a very low level and the description of
the wiring patterns is distributed among them

• The semantics of method invocation is heavy and non-trivial:
• The caller must know the callee and the caller must know the

method.
• The callee must (pretend) to interpret the message.
• The caller suspends while the callee (pretends to) perform the

method and resumes when the callee returns a result.



Composition as coordination Introduction to Reo Examples & demo Semantics

Object-orientation

The operations/methods provided by a class-interface impose a
tight semantic binding which, at the inter-component level

• Weakens independence of components;

• Contributes to breaking of encapsulation;

• Tightens component inter-dependence.



Composition as coordination Introduction to Reo Examples & demo Semantics

Component-orientation

• CBD retains the basic encapsulation of data and code
principle to increase modularity

• ... but shifts the emphasis from class inheritance to object
composition

• to avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components



Composition as coordination Introduction to Reo Examples & demo Semantics

Component-orientation

CBD: the visual metaphor

• a palette of computational units (eg robust collections of
objects) treated as black boxes

• and a canvas into which they can be dropped

• connections are established by drawing wires

• inter-component communication is through messages that
invoke remote methods, typically given some suitable
triggering condition on the source.



Composition as coordination Introduction to Reo Examples & demo Semantics

Software as a service

’entails the need of managing an open-ended structure of
autonomous components, possibly distributed and highly
heterogeneous.
This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.’ (Fiadeiro, 05)

• interaction as a first-class citizen

• composition as exogenous coordination



Composition as coordination Introduction to Reo Examples & demo Semantics

Composition as coordination

• interacting components need not know each other.
(cf traditionally communication is targeted, making the sender
semantically dependent on (the scheme used to identify) the
receiver)

• communication becomes anonymous: components exchange
identifiable sequences of passive messages with the
environment only

• therefore third parties can coordinate interactions between
senders and receivers of their own choice



Composition as coordination Introduction to Reo Examples & demo Semantics

Composition as coordination

Connectors

• Connectors are interaction controllers: the glue code that
makes components interact

• Traditionally, glue code is the most rigid, component specific,
special purpose software in component based systems!

• ... component-independent and agnostic, with a well-defined
semantics

• ... built compositionally.

• Components communicate with the environment only through
read and write operations on the connector ends (or ports),
possibly according some behavioural interface description.



Composition as coordination Introduction to Reo Examples & demo Semantics

Coordination

Carriero and Gelernter, 1986
Coordination is the process of building programs by gluing together
active pieces

• distinguish computation from interaction
(in massive parallel networks)

• focus on the emergent behaviour

• amenable to external, third-party control

Peter Wegner, 2000

Coordination is constrained interaction



Composition as coordination Introduction to Reo Examples & demo Semantics

Reo

reo.project.cwi.nl/

• A compositional, connector-based coordination language for
plugging together components in an exogenous discipline
(from outside and without participants’ knowledge);

• Primitive circuit-like connectors are composed to build
complex coordination patterns

• Key concepts are synchrony (’happens together’) and mutual
exclusion;

• Connectors implement interaction protocols (dealing with
aspects of concurrency, buffering, ordering, data flow and
manipulation);



Composition as coordination Introduction to Reo Examples & demo Semantics

Reo

reo.project.cwi.nl/

• Several formal semantics:
• relations between timed streams (2002)
• constraint automata (2004) and several variants
• colours (2004) to capture context awareness
• reo automata (2009) and intensional automata (2010)
• ...

• Eclipse toolset available



Composition as coordination Introduction to Reo Examples & demo Semantics

Reo connectors
Characterized by

• a number of ends and a constraint defines its interaction
protocol through these ends

Ends

• source end: through which data enters the connector

• sink end: through which data comes out of the connector

Examples (channels)

14 component connectors

2.2 Reo

Reo has been proposed by F. Arbab [6, 7] as an exogenous coordination language
based on a calculus of channel composition to construct component connectors.
Each connector in Reo represents an interaction protocol that constrains the com-
ponents that connect to its ports. Reo supports synchronous, asynchronous, and
context-dependent dataflow behaviour.

2.2.1 Channels

The simplest connectors of degree 2 in Reo are channels. Reo does not define any
specific channels. Users can define the channel types and their dataflow behaviour.
A channel in Reo is a medium of communication with exactly two ends, and a con-
straint that defines its interaction protocol through these ends. Reo recognises two
types of channel ends: source ends, through which data enter channels, and sink
ends through which data come out of channels. That is all Reo defines about chan-
nels. Users define the different channel types and their dataflow behaviour in terms
of specific constraints that relate their data exchanges through their respective ends.
These constraints define, for example, whether a channel is synchronous or asyn-
chronous, whether or not it has a buffer, whether or not its buffer is bounded,
whether or not it retains the order of the data items it receives, whether it loses
some of its data, or generates fresh data items, etc. Reo does not even require a
channel to have a source and a sink. It is perfectly content with a channel that has
two sources or two sinks, with whatever behaviour a user may define for it. Reo
supports two I/O operations to perform requests—write and take—one requests an
input from a sink end, and the other requests an output from a source end, respect-
ively1.

Sync SyncDrain SyncSpout LossySync

AsyncDrain AsyncSpout FIFO1 FIFO1(x)

Table 1: Reo channel types.

Table 1 contains the Reo channel types we use throughout this thesis. We provide
their formal semantics in the following chapters. At this stage, we give an informal

1 The terms source and sink designate the senses of the ends of a channel from the point of view of the
channel itself. Obviously, the sense of a channel end must be reversed from the point of a user of a
channel, i. e., a component that performs an I/O operation on a channel end. Thus, a component writes
to the source end of a channel and takes from the sink end of a channel.



Composition as coordination Introduction to Reo Examples & demo Semantics

Connector composition

Connectors are composed by conjoining their ends to form nodes
with multiple ends

16 component connectors

Note: Connector ports in Reo correspond to nodes. In the context of Reo connectors
we might interchangebly use both terms.

(a) source
node
(replicate).

(b) sink node
(merge).

(c) mixed node (pump). (d) another mixed node
(merge,pump,replicate).

Figure 3: Reo nodes.

A write operation to a source node fires only if all source channel ends coincident
on the node accept the data item, in which case the data item is written to every
source end coincident on the node. A source node thus acts as a replicator (Figure 3a).
A take operation on a sink node fires only if at least one of the sink channel ends co-
incident on the node offers a suitable data item; if more than one coincident channel
end offers suitable data, one is selected non deterministically, at the exclusion of all
others. A sink node, thus, acts as a merger (Figure 3b). A mixed node behaves, like
a self-contained “pumping-station” that combines the behaviour of a sink (merger)
and a source node (replicator). A mixed node selects a value through one of its sink
ends and replicates it to all of its source ends (Figure 3c and 3d). The subtlety is
that nodes have no buffer to hold any data. Therefore, before a mixed node selects
a value out of one of its coincident sink ends, it must ensure that this value can be
replicated into all of its coincident source ends.

Figure 4: Replicator and Merger primitive connectors.

To model the behaviour of Reo nodes accurately, we make the merge and replic-
ate behaviour that is inherent in Reo nodes explicit and, without loss of general-
ity, model them using two additional primitive connectors: a Replicator and a Mer-
ger (Figure 4). The Replicator primitive captures the replicator behaviour of a source



Composition as coordination Introduction to Reo Examples & demo Semantics

Connector composition

Nodes

• source node: superposes only source ends and atomically
copies incoming data items to all of its outgoing source ends

• sink node: superposes only sink ends and acts as a
non-deterministic merger, randomly choosing a data item
from one of the sink ends for delivery

• mixed node: combines both acting as pumping station by
atomically consuming a data item from one sink end and
replicating it to all source ends (1 : n synchronization)

Note: synchrony propagates through connectors

... because nodes do not perform any buffering



Composition as coordination Introduction to Reo Examples & demo Semantics

Components

• active (computational) entities with a fixed interface that
consists of a number of source and sink ends

• often (but not necessarily) interpreted as black boxes, i.e., no
assumptions about their behavior

• actually, for analysis it is often beneficial to take into account
the behavior of components (e.g. to detect potential
deadlocks or to validate temporal properties) — may be
annotated with a specification that reflects its behaviour

Write and Take operations

18 component connectors

component that has the capability to perform take operations. From that perspective
without loss of generality Writer and Taker can also be seen as connectors, namely
connectors of degree 1, where one has a single source node and the other has a
single sink node.

(a) Writer. (b) Taker.

Figure 7: Abstract components.

2.2.4 Primitive Connectors

The connectors of degree 1 Writer and Taker, the connectors of degree 2 given by
the channels of Table 1, and finally the connectors of degree 3 Replicator and Merger,
constitute our set of primitive connectors that we denote by Primitives.

2.2.5 Reo Operations

The calculus of connector composition in Reo has two fundamental operations. The
operation join that permits to compose connectors, and the operation hide that per-
mits to perform information hiding on connectors.

join

In this thesis _ join _ is a binary operation that takes two Reo connectors and re-
turns another Reo connector that results from composing the boundary nodes that
share the same name in both connectors as follows: to compose one sink node with
a source node we just conjoin the nodes, as depicted in Figure 8a; to compose two
sink (source) nodes we use the Merger (Replicator) primitive, as depicted in Fig-
ure 8b (8c). It is important to note that the result of joining two boundary nodes is
an internal node. Hence the resulting node is black.

hide

In this thesis, hide _ is a unary operation that takes one Reo connector and returns
another Reo connector that results from removing all the information about the
internal nodes of the given connector. In Figure 9a it is depicted how the result of
the hide operation is represented visually.



Composition as coordination Introduction to Reo Examples & demo Semantics

The exclusive router
10 Chapter 2. Channel-based coordination with Reo

Figure 2.1: example network: exclusive router

EXAMPLE 2.3 (ordering). Figure 2.2 shows a network of two Writers, one Reader and
a connector referred to as ordering or alternator (cf. [1]). This connector enforces an
ordered output of the data items provided by the two Writers. The SyncDrain is used to
synchronize the inputs. The FIFO1 stores the data item from B and makes it available
in the next execution step. Since the FIFO1 cannot store more than one data item, a
stored data item has to be released first before new data items can be read. This way,
an alternating output is guaranteed. �

Figure 2.2: example network: ordering

EXAMPLE 2.4 (simple messenger). Figure 2.3 depicts three variations of a simple
messenger application. Two Client components exchange messages via a connector. In
variant 2.3a messages are simply exchanged using two buffered channels, in this case
two FIFO1 channels. In variant 2.3b an additional SyncDrain is used to ensure that
message retrievals are synchronized, i.e., one client may receive a message only if it
also sends one to the other client. Finally, variant 2.3c shows a case where the clients
get –as an acknowledgment– a copy of their own message when the other client has
successfully received it. �

• routes data items synchronously from the source to exactly
one of the two sinks;

• if both of them are ready to accept data, the choice of where
the data item goes is made non-deterministically (merge goes
without a priority)



Composition as coordination Introduction to Reo Examples & demo Semantics

The alternator

10 Chapter 2. Channel-based coordination with Reo

Figure 2.1: example network: exclusive router

EXAMPLE 2.3 (ordering). Figure 2.2 shows a network of two Writers, one Reader and
a connector referred to as ordering or alternator (cf. [1]). This connector enforces an
ordered output of the data items provided by the two Writers. The SyncDrain is used to
synchronize the inputs. The FIFO1 stores the data item from B and makes it available
in the next execution step. Since the FIFO1 cannot store more than one data item, a
stored data item has to be released first before new data items can be read. This way,
an alternating output is guaranteed. �

Figure 2.2: example network: ordering

EXAMPLE 2.4 (simple messenger). Figure 2.3 depicts three variations of a simple
messenger application. Two Client components exchange messages via a connector. In
variant 2.3a messages are simply exchanged using two buffered channels, in this case
two FIFO1 channels. In variant 2.3b an additional SyncDrain is used to ensure that
message retrievals are synchronized, i.e., one client may receive a message only if it
also sends one to the other client. Finally, variant 2.3c shows a case where the clients
get –as an acknowledgment– a copy of their own message when the other client has
successfully received it. �

• enforces an ordered output of the data items provided by the
two sources

• inputs synchronized through a synchronous drain

• the FIFO1 stores the data item and makes it available in the
next execution step; and guarantees alternation (why?)



Composition as coordination Introduction to Reo Examples & demo Semantics

Messenger patterns

Messages exchanged through two buffered channels2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [19, 57]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 56]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.

Message retrievals are synchronized

2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [19, 57]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 56]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.



Composition as coordination Introduction to Reo Examples & demo Semantics

Messenger patterns

Messenger with automatic acknowledgments

2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [19, 57]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 56]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.

Clients get, as an acknowledgment, a copy of their own message
when the other client has successfully received it



Composition as coordination Introduction to Reo Examples & demo Semantics

Timed data streams

Time streams
constrained streams over (positive) real numbers, representing
moments in time such that

• strictly increasing: a(i) < a(i + 1)

• progressive: ∀n∃N a(n) > N

Timed data stream
pair 〈α, a〉 consisting of a data stream α and a time stream a, with
the interpretation that for for all i ∈ IN, the input/output of data
item α(i) occurs at time a(i)



Composition as coordination Introduction to Reo Examples & demo Semantics

Timed data streams

Connectors
are relations over timed data streams:

〈α, a〉 [[Sync]] 〈β, b〉 ⇔ 〈α, a〉 = 〈β, b〉
〈α, a〉 [[FIFO]] 〈β, b〉 ⇔ α = β ∧ a < b

〈α, a〉 [[FIFO1]] 〈β, b〉 ⇔ α = β ∧ a < b < a′

• coalgebraic semantics [Arbab, Rutte, 2002; Arbab 2003] with
incipient calculus

• cannot capture context-awareness



Composition as coordination Introduction to Reo Examples & demo Semantics

Constraint automata

The states represent the configurations of the corresponding
circuit, while transitions encode its maximally-parallel stepwise
behavior.

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10



Composition as coordination Introduction to Reo Examples & demo Semantics

Constraint automata

• cannot capture context-awareness [Baier, Sirjani, Arbab,
Rutten 2006], but forms the basis for more elaborated models
(eg, Reo automata)

• captures all behavior alternatives of a connector; useful to
generate a statemachine implementing the connector’s
behavior

• basis for several tools, including models checker Vereofy
[Kluppelholz, Baier 2007]



Composition as coordination Introduction to Reo Examples & demo Semantics

Coulorings

Based on the set of all of dataflow alternatives of the connector,
represented by different colours meaning data flowing and no data
flowing

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10



Composition as coordination Introduction to Reo Examples & demo Semantics

Coulorings

• first to capture context-awareness [Clarke, Costa, Arbab 2007]

• basis for the animation tools

• calculus???



Composition as coordination Introduction to Reo Examples & demo Semantics

Concluding

• tools ... & case studies

• several semantic models ... & incipient calculus

• extensions: timed, stochastic, QoS annotated


	Composition as coordination
	Introduction to Reo
	Examples & demo
	Semantics

