
Labelled Transition Systems

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

3 March, 2011

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Labelled Transition Space

Definition
A labelled transition space over a set N of names is a tuple 〈S ,N, ↓,−→〉
where

• S = {s0, s1, s2, ...} is a set of states

• ↓⊆ S is the set of terminating or final states

↓ s ⇔ s ∈↓

• −→⊆ S × N × S is the transition relation, often given as an
N-indexed family of binary relations

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈−→

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Labelled Transition Space

Morphism
A morphism relating two labelled transition spaces over N, 〈S ,N, ↓,−→〉
and 〈S ′,N, ↓′,−→′〉, is a function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→′ h s ′

s ↓ ⇒ h s ↓′

morphisms preserve transitions and termination

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Reachability

Definition
The reachability relation, −→∗⊆ S × N × S , is defined inductively

• s
ε−→
∗
s ′ for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
σ−→
∗
s ′′ and s ′′

a−→ s ′ then s
σa−→
∗
s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→
∗
t

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Labelled Transition System

Labelled Transition System
Given a labelled transition space 〈S ,N, ↓,−→〉, each state s ∈ S
determines a labelled transition system (LTS) over all states reachable
from s and the corresponding restrictions of −→ and ↓.

LTS classification

• deterministic

• non deterministic

• finite

• image finite

• ...

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Labelled Transition System

Deadlock state
a reachable state that does not terminate and has no outgoing
transitions.

Termination vs deadlock

?>=<89:;q1
d // ?>=<89:;76540123q2

?>=<89:;q0

a

>>}}}}}}}}}

a
 A

AA
AA

AA
AA

?>=<89:;q4 e
// ?>=<89:;q3

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Trace equivalence

Trace (from language theory)
A word σ ∈ N∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→
∗
t

Trace (using X to witness final states)
Tr(s), the set of traces of state s, is the minimal set including

ε ∈Tr(s)

X ∈Tr(s) if ↓ s

aσ ∈Tr(s) if ∃t · s
a−→ t ∧ σ ∈ Tr(t)

Trace equivalence

• Two states are trace equivalent if Tr(s) = Tr(s ′)

• Two systems are trace equivalent if their initial states are.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Trace equivalence

In any case, fails to preserve deadlock

/.-,()*+ d ///.-,()*+��������

?>=<89:;p0

a

>>~~~~~~~~~

a

 @
@@

@@
@@

@@
?>=<89:;q0

a

 @
@@

@@
@@

@@

/.-,()*+
d
///.-,()*+ /.-,()*+

d
///.-,()*+��������

although preserving sequencing
e.g. before every c an a action b must be done

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Language equivalence

Language (from language theory)
A word σ ∈ N∗ is a run (or a complete trace) of a state s ∈ S iff there is

another state t ∈ S , such that s
σ−→
∗
t and ↓ t. The language

recognized by a state s ∈ S is the set of runs of s

Language (using X to witness final states)
Lang(s), the language recognized by a state s, is the minimal set
including

ε ∈ Lang(s) if s is a deadlock state

X ∈ Lang(s) if ↓ s

aσ ∈ Lang(s) if ∃t · s
a−→ t ∧ σ ∈ Lang(t)

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Language equivalence

Language equivalence

• Two states are language equivalent if Lang(s) = Lang(s ′), i.e., if
both recognize the same language.

• Two systems are language equivalent if their initial states are.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Automata

Back to old friends?

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic

form of observation

Simulation

A state q simulates another state p if every transition from q is
corresponded by a transition from p and this capacity is kept along
the whole life of the system to which state space q belongs to.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Simulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a simulation iff, for all 〈p, q〉 ∈ R and a ∈ N,

(1) p ↓1 ⇒ q ↓2

(2) p
a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q

a−→2 q′ ∧ 〈p′, q′〉 ∈ R〉

p

a

��

R q ⇒ q

a

��
p′ p′ R q′

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Example

q1
d // q2 p2

q0

a

>>}}}}}}}}

a
 A

AA
AA

AA
A p0

a // p1

d

>>}}}}}}}}

e
 A

AA
AA

AA
A

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation R ⊆ S1× S2

is a bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N,

(1) p ↓1 ⇔ q ↓2

(2.1) p
a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q

a−→2 q′ ∧ 〈p′, q′〉 ∈ R〉

(2.1) q
a−→2 q′ ⇒ 〈∃ p′ : p′ ∈ S1 : p

a−→1 p′ ∧ 〈p′, q′〉 ∈ R〉

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Examples

q1

a

~~}}
}}

}}
}} a

 A
AA

AA
AA

A m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a

>>}}}}}}}}

a

 A
AA

AA
AA

A p0
a // p1

b // p3

q2
b // q3

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Notes

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Notes

Complexity

• Virtually all forms of bisimulation can be determined in polynomial
time on finite state transition systems

• ... whereas trace, or language equivalence are in general difficult
(P-space hard)

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

&&LLLLLLLLLL

xxrrrrrrrrrr

· · ·

&&LLLLLLLLLL · · ·

xxrrrrrrrrrr

Language Eq

��
Trace Eq

... collapses for deterministic transition systems: why?

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

• R. Milner’s weak bisimulation [Mil80]

• Van Glabbeek and Weijland’s branching bisimulation [GW96]

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Internal actions

τ abstracts internal activity

inert τ : internal activity is undetectable by observation

non inert τ : internal activity is indirectly visible

�������� b //���������������� ��������
a

����������
τ (no inert)

??��������

a
��?

??
??

??
? ��������

τ (inert)

����������
a

//���������������� ��������
b

������������������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimulation

• Intuition similar to that of strong bisimulation: But now, instead of
letting a single action be simulated by a single action, an action can
be simulated by a sequence of internal transitions, followed by that
single action.

• An internal action τ can be simulated by any number of internal
transitions (even by none).

• If a state can terminate, it does not need to be related to a
terminating state: it suffices that a terminating state can be
reached after a number of internal transitions.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

1. If p
a−→1 p′, then

• either a = τ and p′Rq
• or, there is a sequence q

τ−→2 · · ·
τ−→2 q′ of (zero or

more) τ -transitions such that pRq′ and q′
a−→2 q′′

with p′Rq′′.

2. If p ↓1, then there is a sequence q
τ−→2 · · ·

τ−→2 q′ of
(zero or more) τ -transitions such that pRq′ and q′ ↓2.

1’., 2’. symmetrically ...

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimilarity

Definition

p ≈b q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimulation

... preserves the branching structure

��������

τ

��

��������
��������

��������

τ∗

��

��������
a

���������� ��������
a

����������

��������

τ∗

��

����������������
����������������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimilarity

... does not preserve τ -loops

��������
a

��

τ << ��������
a

������������������ ����������������

satisfying a notion of fairness: if a τ -loop exists, then no infinite
execution sequence will remain in it forever if there is a possibility to leave

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimilarity

Problem
If an alternative is added to the initial state then transition systems that
were branching bisimilar may cease to be so.

Example: add a b-labelled branch to the initial states of

��������
τ

��

��������
a

����������
a

��

����������������
����������������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Rooted branching bisimilarity

Startegy
Impose a rootedness condition [R. Milner, 80]:

Initial τ -transitions can never be inert, i.e., two states are equivalent if
they can simulate each other?s initial transitions, such that the resulting
states are branching bisimilar.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Rooted branching bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a rooted branching bisimulation iff

1. it is a branching bisimulation

2. for all 〈p, q〉 ∈ R and a ∈ N,

• If p
a−→1 p′, then there is a q′ ∈ S2 such that

q
a−→2 q′ and p′ ≈ q′

• If q
a−→2 q′, then there is a p′ ∈ S1 such that

p
a−→1 p′ and p′ ≈ q′

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Rooted branching bisimilarity

Definition

p ≈rb q ⇔ 〈∃ R :: R is a rooted branching bisimulation and 〈p, q〉 ∈ R〉

Lemma

∼ ⊆ ≈rb ⊆ ≈b

Of course, in the absence of τ actions, ∼ and ≈b coincide.

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Example

branching but not rooted

'&%$!"#s
a

��?
??

??
??

?
τ

����
��

��
��

��������
a

����
��

��
�� b

 A
AA

AA
AA

A ��������
�������� ��������

'&%$!"#t

τ

����������
b

 A
AA

AA
AA

A
a

~~}}
}}

}}
}}

�������� ��������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Example

rooted branching bisimilar

'&%$!"#s

d

����������
a

 A
AA

AA
AA

A
τ

~~}}
}}

}}
}}

��������
a

����
��

��
�� b

 A
AA

AA
AA

A ��������
�������� ��������

'&%$!"#t

d

����������
b

 A
AA

AA
AA

A
a

~~}}
}}

}}
}}

�������� ��������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Weak bisimulation

Definition [Milner,80]
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a weak bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

1. If p
a−→1 p′, then

• either a = τ and p′Rq
• or, there is a sequence

q
τ−→2 · · ·

τ−→2 t
a−→2 t ′

τ−→2 · · ·
τ−→2 q′ involving

zero or more τ -transitions, such that p′Rq′.

2. If p ↓1, then there is a sequence q
τ−→2 · · ·

τ−→2 q′ of
(zero or more) τ -transitions such that q′ ↓2.

1’., 2’. symmetrically ...

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Weak bisimulation

... does not preserve the branching structure

��������

τ

��

��������
��������

��������
τ∗

����������
a

��

��������
a

���������� ��������
τ∗

����������

��������

τ∗

��

����������������
����������������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Weak bisimilarity

Definition

p ≈w q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Example

weak but not branching

'&%$!"#s
a

��?
??

??
??

?
a

����
��

��
��

��������
τ

����
��

��
��

c

��

��������
b

����������
b

��

�������� ��������
��������

'&%$!"#t

a

����������
c

 A
AA

AA
AA

A
τ

~~}}
}}

}}
}}

��������
b

��

��������
��������

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Rooted weak bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation R ⊆ S1× S2

is a rooted branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

• If p
τ−→1 p′, then there is a non empty sequence of τ such that

q
τ−→2

τ−→2 ...
τ−→2

τ−→2 q′ and p′ ≈w q′

• Symmetrically ...

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Rooted weak bisimilarity

Definition

p ≈rw q ⇔ 〈∃ R :: R is a rooted weak bisimulation and 〈p, q〉 ∈ R〉

Lemma

≈w

FFFFFFFF

zz
zz

zz
zz

≈b

DD
DD

DD
DD

≈rw

xxxxxxxx

≈rb

∼ (ordered by ⊆)

Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others

 modal (temporal, hybrid) logics

	Basic definitions
	Traces and language equivalence
	Bisimilarity
	Behavioural abstraction

