Labelled Transition Systems

Luís S. Barbosa
DI-CCTC
Universidade do Minho
Braga, Portugal

3 March, 2011

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment along its overall computation

- in contrast to sequential systems whose meaning is defined by the results of finite computations, the behaviour of reactive systems is mainly determined by interaction and mobility of non-terminating processes, evolving concurrently.
- observation \Leftrightarrow interaction
- behaviour \Leftrightarrow a structured record of interactions

Reactive systems

Concurrency vs interaction

$$
\begin{aligned}
& x:=0 \\
& x:=x+1 \mid x:=x+2
\end{aligned}
$$

- both statements in parallel could read x before it is written
- which values can x take?
- which is the program outcome if exclusive access to memory and atomic execution of assignments is guaranteed?

Labelled Transition Space

Definition

A labelled transition space over a set N of names is a tuple $\langle S, N, \downarrow, \longrightarrow\rangle$ where

- $S=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$ is a set of states
- $\downarrow \subseteq S$ is the set of terminating or final states

$$
\downarrow s \Leftrightarrow s \in \downarrow
$$

- $\longrightarrow \subseteq S \times N \times S$ is the transition relation, often given as an N -indexed family of binary relations

$$
s \xrightarrow{a} s^{\prime} \Leftrightarrow\left\langle s^{\prime}, a, s\right\rangle \in \longrightarrow
$$

Labelled Transition Space

Morphism
A morphism relating two labelled transition spaces over $N,\langle S, N, \downarrow, \longrightarrow\rangle$ and $\left\langle S^{\prime}, N, \downarrow^{\prime}, \longrightarrow\right\rangle$, is a function $h: S \longrightarrow S^{\prime}$ st

$$
\begin{aligned}
s \xrightarrow{a} s^{\prime} & \Rightarrow h s{ }^{a}{ }^{\prime} h s^{\prime} \\
s \downarrow & \Rightarrow h s \downarrow^{\prime}
\end{aligned}
$$

morphisms preserve transitions and termination

Reachability

Definition
The reachability relation, $\longrightarrow^{*} \subseteq S \times N \times S$, is defined inductively

- $s \xrightarrow{\epsilon}{ }^{*} s^{\prime}$ for each $s \in S$, where $\epsilon \in N^{*}$ denotes the empty word;
- if $s \xrightarrow{\sigma}{ }^{*} s^{\prime \prime}$ and $s^{\prime \prime} \xrightarrow{a} s^{\prime}$ then $s \xrightarrow{\sigma a *} s^{\prime}$, for $a \in N, \sigma \in N^{*}$

Reachable state $t \in S$ is reachable from $s \in S$ iff there is a word $\sigma \in N^{*}$ st $s \xrightarrow{\sigma}{ }^{*} t$

Labelled Transition System

Labelled Transition System
Given a labelled transition space $\langle S, N, \downarrow, \longrightarrow\rangle$, each state $s \in S$ determines a labelled transition system (LTS) over all states reachable from s and the corresponding restrictions of \longrightarrow and \downarrow.

LTS classification

- deterministic
- non deterministic
- finite
- image finite
- ...

Labelled Transition System

Deadlock state

a reachable state that does not terminate and has no outgoing transitions.

Termination vs deadlock

Trace equivalence

Trace (from language theory)
A word $\sigma \in N^{*}$ is a trace of a state $s \in S$ iff there is another state $t \in S$ such that $s \xrightarrow{\sigma} t$

Trace (using \checkmark to witness final states)
$\operatorname{Tr}(s)$, the set of traces of state s, is the minimal set including

$$
\begin{aligned}
& \epsilon \in \operatorname{Tr}(s) \\
& \checkmark \in \operatorname{Tr}(s) \text { if } \downarrow s \\
& a \sigma \in \operatorname{Tr}(s) \text { if } \exists_{t} \cdot s \xrightarrow{a} t \wedge \sigma \in \operatorname{Tr}(t)
\end{aligned}
$$

Trace equivalence

- Two states are trace equivalent if $\operatorname{Tr}(s)=\operatorname{Tr}\left(s^{\prime}\right)$
- Two systems are trace equivalent if their initial states are.

Trace equivalence

In any case, fails to preserve deadlock

although preserving sequencing
e.g. before every c an a action b must be done

Language equivalence

Language (from language theory)

A word $\sigma \in N^{*}$ is a run (or a complete trace) of a state $s \in S$ iff there is another state $t \in S$, such that $s \xrightarrow{\sigma}^{*} t$ and $\downarrow t$. The language recognized by a state $s \in$ Sis the set of runs of s

Language (using \checkmark to witness final states)
Lang(s), the language recognized by a state s, is the minimal set including

$$
\begin{aligned}
& \epsilon \in \operatorname{Lang}(s) \\
& \text { if } s \text { is a deadlock state } \\
& \checkmark \in \operatorname{Lang}(s) \text { if } \downarrow s \\
& a \sigma \in \operatorname{Lang}(s) \text { if } \exists_{t} \cdot s \xrightarrow{a} t \wedge \sigma \in \operatorname{Lang}(t)
\end{aligned}
$$

Language equivalence

Language equivalence

- Two states are language equivalent if $\operatorname{Lang}(s)=\operatorname{Lang}\left(s^{\prime}\right)$, i.e., if both recognize the same language.
- Two systems are language equivalent if their initial states are.

Automata

Back to old friends?

```
automaton behaviour }\Leftrightarrow\mathrm{ accepted language
```

Recall that finite automata recognize regular languages, i.e. generated by

- $L_{1}+L_{2} \triangleq L_{1} \cup L_{2} \quad$ (union)
- $L_{1} \cdot L_{2} \triangleq\left\{s t \mid s \in L_{1}, t \in L_{2}\right\} \quad$ (concatenation)
- $L^{*} \triangleq\{\epsilon\} \cup L \cup(L \cdot L) \cup(L \cdot L \cdot L) \cup \ldots$ (iteration)

Automata

There is a syntax to specify such languages:

$$
E::=\epsilon|a| E+E|E E| E^{*}
$$

where $a \in \Sigma$.

- which regular expression specifies $\{a, b c\}$?
- and $\{c a, c b\}$?
and an algebra of regular expressions:

$$
\begin{aligned}
\left(E_{1}+E_{2}\right)+E_{3} & =E_{1}+\left(E_{2}+E_{3}\right) \\
\left(E_{1}+E_{2}\right) E_{3} & =E_{1} E_{3}+E_{2} E_{3} \\
E_{1}\left(E_{2} E_{1}\right)^{*} & =\left(E_{1} E_{2}\right)^{*} E_{1}
\end{aligned}
$$

After thoughts

... need more general models and theories:

- Several interaction points (\neq functions)
- Need to distinguish normal from anomolous termination (eg deadlock)
- Non determinisim should be taken seriously: the notion of equivalence based on accepted language is blind wrt non determinism
- Moreover: the reactive character of systems entail that not only the generated language is important, but also the states traversed during an execution of the automata.

Simulation

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

Simulation

> A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \longrightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a simulation iff, for all $\langle p, q\rangle \in R$ and $a \in N$,
(1) $p \downarrow_{1} \Rightarrow q \downarrow_{2}$
(2) $p \xrightarrow{a} 1 p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} 2 q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle$

Example

Similarity

Definition

$$
p \lesssim q \Leftrightarrow\langle\exists R:: R \text { is a simulation and }\langle p, q\rangle \in R\rangle
$$

Lemma
The similarity relation is a preorder (ie, reflexive and transitive)

Bisimulation

Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \longrightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a bisimulation iff both R and its converse R° are simulations.
I.e., whenever $\langle p, q\rangle \in R$ and $a \in N$,
(1) $p \downarrow_{1} \Leftrightarrow q \downarrow_{2}$
(2.1) $p \xrightarrow{a}{ }_{1} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} 2 q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle$
(2.1) $q \xrightarrow{a} 2 q^{\prime} \Rightarrow\left\langle\exists p^{\prime}: p^{\prime} \in S_{1}: p \xrightarrow{a}{ }_{1} p^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle$

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are mutually corresponding

- R starts by chosing a transition
- I replies trying to match it
- if I succeeds, R plays again
- R wins if I fails to find a corresponding match
- I wins if it replies to all moves from R and the game is in a configuration where all states have been visited or R can't move further. In this case is said that I has a wining strategy

Examples

$$
q_{1} \xrightarrow{a} q_{2} \xrightarrow{a} q_{3} \xrightarrow{a} \cdots
$$

Bisimilarity

Definition

$$
p \sim q \Leftrightarrow\langle\exists R:: R \text { is a bisimulation and }\langle p, q\rangle \in R\rangle
$$

Lemma

1. The identity relation id is a bisimulation
2. The empty relation \perp is a bisimulation
3. The converse R° of a bisimulation is a bisimulation
4. The composition $S \cdot R$ of two bisimulations S and R is a bisimulation
5. The $\bigcup_{i \in I} R_{i}$ of a family of bisimulations $\left\{R_{i} \mid i \in I\right\}$ is a bisimulation

Bisimilarity

Lemma

The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim.

Bisimilarity

Warning
The bisimilarity relation \sim is not the symmetric closure of \lesssim

Example

$$
q_{0} \lesssim p_{0}, p_{0} \lesssim q_{0} \text { but } p_{0} \nsim q_{0}
$$

$$
p_{0} \xrightarrow{a} p_{1} \xrightarrow{b} p_{3}
$$

Notes

Similarity as the greatest simulation

$$
\lesssim \triangleq \bigcup\{S \mid S \text { is a simulation }\}
$$

Bisimilarity as the greatest bisimulation

$$
\sim \triangleq \bigcup\{S \mid S \text { is a bisimulation }\}
$$

cf relational translation of definitions
\lesssim and \sim as greatest fix points (Tarski's theorem)

Notes

Complexity

- Virtually all forms of bisimulation can be determined in polynomial time on finite state transition systems
- ... whereas trace, or language equivalence are in general difficult (P-space hard)

Notes

The Van Glabbeek linear - branching time spectrum

... collapses for deterministic transition systems: why?

Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

- R. Milner's weak bisimulation [Mil80]
- Van Glabbeek and Weijland's branching bisimulation [GW96]

Internal actions

τ abstracts internal activity
inert τ : internal activity is undetectable by observation non inert τ : internal activity is indirectly visible

Branching bisimulation

- Intuition similar to that of strong bisimulation: But now, instead of letting a single action be simulated by a single action, an action can be simulated by a sequence of internal transitions, followed by that single action.
- An internal action τ can be simulated by any number of internal transitions (even by none).
- If a state can terminate, it does not need to be related to a terminating state: it suffices that a terminating state can be reached after a number of internal transitions.

Branching bisimulation

Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \longrightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a branching bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p \xrightarrow{a} 1 p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence $q \xrightarrow{\tau}{ }_{2} \cdots \xrightarrow{\tau}{ }_{2} q^{\prime}$ of (zero or more) τ-transitions such that $p R q^{\prime}$ and $q^{\prime} \xrightarrow{a} 2 q^{\prime \prime}$ with $p^{\prime} R q^{\prime \prime}$.

2. If $p \downarrow_{1}$, then there is a sequence $q \xrightarrow{\tau} 2 \cdots \xrightarrow{\tau} 2 q^{\prime}$ of (zero or more) τ-transitions such that $p R q^{\prime}$ and $q^{\prime} \downarrow_{2}$.

1'., 2'. symmetrically ...

Branching bisimilarity

Definition

$$
p \approx_{b} q \Leftrightarrow\langle\exists R:: R \text { is a branching bisimulation and }\langle p, q\rangle \in R\rangle
$$

Branching bisimulation

... preserves the branching structure

©

Branching bisimilarity

... does not preserve τ-loops

satisfying a notion of fairness: if a τ-loop exists, then no infinite execution sequence will remain in it forever if there is a possibility to leave

Branching bisimilarity

Problem

If an alternative is added to the initial state then transition systems that were branching bisimilar may cease to be so.

Example: add a b-labelled branch to the initial states of

Rooted branching bisimilarity

Startegy

Impose a rootedness condition [R. Milner, 80]:
Initial τ-transitions can never be inert, i.e., two states are equivalent if they can simulate each other?s initial transitions, such that the resulting states are branching bisimilar.

Rooted branching bisimulation

Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \longrightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a rooted branching bisimulation iff

1. it is a branching bisimulation
2. for all $\langle p, q\rangle \in R$ and $a \in N$,

- If $p \xrightarrow{a} 1 p^{\prime}$, then there is a $q^{\prime} \in S_{2}$ such that $q \xrightarrow{a} 2 q^{\prime}$ and $p^{\prime} \approx q^{\prime}$
- If $q \xrightarrow{a} q_{2} q^{\prime}$, then there is a $p^{\prime} \in S_{1}$ such that
$p \xrightarrow{a}{ }_{1} p^{\prime}$ and $p^{\prime} \approx q^{\prime}$

Rooted branching bisimilarity

Definition

$p \approx_{r b} q \Leftrightarrow\langle\exists R:: R$ is a rooted branching bisimulation and $\langle p, q\rangle \in R\rangle$

Lemma

$$
\sim \subseteq \approx_{r b} \subseteq \approx_{b}
$$

Of course, in the absence of τ actions, \sim and \approx_{b} coincide.

Example

branching but not rooted

Example

rooted branching bisimilar

Weak bisimulation

Definition [Milner,80]

Given $\left\langle S_{1}, N, \downarrow_{1}, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \longrightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a weak bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p \xrightarrow{a} 1 p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence
$q \xrightarrow{\tau}{ }_{2} \cdots \xrightarrow{\tau}{ }_{2} t \xrightarrow{a} 2 t^{\prime} \xrightarrow{\tau}{ }_{2} \cdots \xrightarrow{\tau} q^{\prime}$ involving zero or more τ-transitions, such that $p^{\prime} R q^{\prime}$.

2. If $p \downarrow_{1}$, then there is a sequence $q \xrightarrow{\tau} 2 \cdots \xrightarrow{\tau} 2 q^{\prime}$ of (zero or more) τ-transitions such that $q^{\prime} \downarrow_{2}$.

1'., 2'. symmetrically ...

Weak bisimulation

... does not preserve the branching structure

○

Weak bisimilarity

Definition

$$
p \approx_{w} q \Leftrightarrow\langle\exists R:: R \text { is a branching bisimulation and }\langle p, q\rangle \in R\rangle
$$

Example

weak but not branching

Rooted weak bisimulation

Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \longrightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \longrightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a rooted branching bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

- If $p \xrightarrow{\tau}{ }_{1} p^{\prime}$, then there is a non empty sequence of τ such that $q \xrightarrow{\tau} \xrightarrow{\tau}_{2} \ldots \xrightarrow{\tau} \xrightarrow{\tau}_{2} q^{\prime}$ and $p^{\prime} \approx_{w} q^{\prime}$
- Symmetrically ...

Rooted weak bisimilarity

Definition

$$
p \approx_{r w} q \Leftrightarrow\langle\exists R:: R \text { is a rooted weak bisimulation and }\langle p, q\rangle \in R\rangle
$$

Lemma

(ordered by \subseteq)

The questions to follow ...

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?
\rightsquigarrow process languages and calculi cf. Ccs (Milner, 80), Csp (Hoare, 85), Acp (Bergstra \& Klop, 82), π-calculus (Milner, 89), among many others
\rightsquigarrow modal (temporal, hybrid) logics

