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Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions
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Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?
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Labelled Transition Space

Definition
A labelled transition space over a set N of names is a tuple 〈S ,N, ↓,−→〉
where

• S = {s0, s1, s2, ...} is a set of states

• ↓⊆ S is the set of terminating or final states

↓ s ⇔ s ∈↓

• −→⊆ S × N × S is the transition relation, often given as an
N-indexed family of binary relations

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈−→
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Labelled Transition Space

Morphism
A morphism relating two labelled transition spaces over N, 〈S ,N, ↓,−→〉
and 〈S ′,N, ↓′,−→′〉, is a function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→′ h s ′

s ↓ ⇒ h s ↓′

morphisms preserve transitions and termination
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Reachability

Definition
The reachability relation, −→∗⊆ S × N × S , is defined inductively

• s
ε−→
∗
s ′ for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
σ−→
∗
s ′′ and s ′′

a−→ s ′ then s
σa−→
∗
s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→
∗
t
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Labelled Transition System

Labelled Transition System
Given a labelled transition space 〈S ,N, ↓,−→〉, each state s ∈ S
determines a labelled transition system (LTS) over all states reachable
from s and the corresponding restrictions of −→ and ↓.

LTS classification

• deterministic

• non deterministic

• finite

• image finite

• ...
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Labelled Transition System

Deadlock state
a reachable state that does not terminate and has no outgoing
transitions.

Termination vs deadlock
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Trace equivalence

Trace (from language theory)
A word σ ∈ N∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→
∗
t

Trace (using X to witness final states)
Tr(s), the set of traces of state s, is the minimal set including

ε ∈Tr(s)

X ∈Tr(s) if ↓ s

aσ ∈Tr(s) if ∃t · s
a−→ t ∧ σ ∈ Tr(t)

Trace equivalence

• Two states are trace equivalent if Tr(s) = Tr(s ′)

• Two systems are trace equivalent if their initial states are.
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Trace equivalence

In any case, fails to preserve deadlock
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Language equivalence

Language (from language theory)
A word σ ∈ N∗ is a run (or a complete trace) of a state s ∈ S iff there is

another state t ∈ S , such that s
σ−→
∗
t and ↓ t. The language

recognized by a state s ∈ S is the set of runs of s

Language (using X to witness final states)
Lang(s), the language recognized by a state s, is the minimal set
including

ε ∈ Lang(s) if s is a deadlock state

X ∈ Lang(s) if ↓ s

aσ ∈ Lang(s) if ∃t · s
a−→ t ∧ σ ∈ Lang(t)
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Language equivalence

Language equivalence

• Two states are language equivalent if Lang(s) = Lang(s ′), i.e., if
both recognize the same language.

• Two systems are language equivalent if their initial states are.
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Automata

Back to old friends?

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)
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Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1
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After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.
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Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic

form of observation

Simulation

A state q simulates another state p if every transition from q is
corresponded by a transition from p and this capacity is kept along
the whole life of the system to which state space q belongs to.
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Simulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a simulation iff, for all 〈p, q〉 ∈ R and a ∈ N,

(1) p ↓1 ⇒ q ↓2

(2) p
a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q

a−→2 q′ ∧ 〈p′, q′〉 ∈ R〉

p

a

��

R q ⇒ q

a

��
p′ p′ R q′
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Example
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Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)
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Bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation R ⊆ S1× S2

is a bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N,

(1) p ↓1 ⇔ q ↓2

(2.1) p
a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q

a−→2 q′ ∧ 〈p′, q′〉 ∈ R〉

(2.1) q
a−→2 q′ ⇒ 〈∃ p′ : p′ ∈ S1 : p

a−→1 p′ ∧ 〈p′, q′〉 ∈ R〉
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Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy
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Examples
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Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation
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Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.
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Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0
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Notes

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)
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Notes

Complexity

• Virtually all forms of bisimulation can be determined in polynomial
time on finite state transition systems

• ... whereas trace, or language equivalence are in general difficult
(P-space hard)



Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

&&LLLLLLLLLL

xxrrrrrrrrrr

· · ·

&&LLLLLLLLLL · · ·

xxrrrrrrrrrr

Language Eq

��
Trace Eq

... collapses for deterministic transition systems: why?



Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Abstraction

Main idea:
Take a set of actions as internal or non-observable

Approaches

• R. Milner’s weak bisimulation [Mil80]

• Van Glabbeek and Weijland’s branching bisimulation [GW96]
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Internal actions

τ abstracts internal activity

inert τ : internal activity is undetectable by observation

non inert τ : internal activity is indirectly visible
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Branching bisimulation

• Intuition similar to that of strong bisimulation: But now, instead of
letting a single action be simulated by a single action, an action can
be simulated by a sequence of internal transitions, followed by that
single action.

• An internal action τ can be simulated by any number of internal
transitions (even by none).

• If a state can terminate, it does not need to be related to a
terminating state: it suffices that a terminating state can be
reached after a number of internal transitions.



Basic definitions Traces and language equivalence Bisimilarity Behavioural abstraction

Branching bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

1. If p
a−→1 p′, then

• either a = τ and p′Rq
• or, there is a sequence q

τ−→2 · · ·
τ−→2 q′ of (zero or

more) τ -transitions such that pRq′ and q′
a−→2 q′′

with p′Rq′′.

2. If p ↓1, then there is a sequence q
τ−→2 · · ·

τ−→2 q′ of
(zero or more) τ -transitions such that pRq′ and q′ ↓2.

1’., 2’. symmetrically ...
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Branching bisimilarity

Definition

p ≈b q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉
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Branching bisimulation

... preserves the branching structure
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Branching bisimilarity

... does not preserve τ -loops

��������
a

��

τ << ��������
a

������������������ ����������������

satisfying a notion of fairness: if a τ -loop exists, then no infinite
execution sequence will remain in it forever if there is a possibility to leave
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Branching bisimilarity

Problem
If an alternative is added to the initial state then transition systems that
were branching bisimilar may cease to be so.

Example: add a b-labelled branch to the initial states of
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Rooted branching bisimilarity

Startegy
Impose a rootedness condition [R. Milner, 80]:

Initial τ -transitions can never be inert, i.e., two states are equivalent if
they can simulate each other?s initial transitions, such that the resulting
states are branching bisimilar.
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Rooted branching bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a rooted branching bisimulation iff

1. it is a branching bisimulation

2. for all 〈p, q〉 ∈ R and a ∈ N,

• If p
a−→1 p′, then there is a q′ ∈ S2 such that

q
a−→2 q′ and p′ ≈ q′

• If q
a−→2 q′, then there is a p′ ∈ S1 such that

p
a−→1 p′ and p′ ≈ q′
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Rooted branching bisimilarity

Definition

p ≈rb q ⇔ 〈∃ R :: R is a rooted branching bisimulation and 〈p, q〉 ∈ R〉

Lemma

∼ ⊆ ≈rb ⊆ ≈b

Of course, in the absence of τ actions, ∼ and ≈b coincide.
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Example

branching but not rooted
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Example

rooted branching bisimilar
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Weak bisimulation

Definition [Milner,80]
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation
R ⊆ S1 × S2 is a weak bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

1. If p
a−→1 p′, then

• either a = τ and p′Rq
• or, there is a sequence

q
τ−→2 · · ·

τ−→2 t
a−→2 t ′

τ−→2 · · ·
τ−→2 q′ involving

zero or more τ -transitions, such that p′Rq′.

2. If p ↓1, then there is a sequence q
τ−→2 · · ·

τ−→2 q′ of
(zero or more) τ -transitions such that q′ ↓2.

1’., 2’. symmetrically ...
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Weak bisimulation

... does not preserve the branching structure
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Weak bisimilarity

Definition

p ≈w q ⇔ 〈∃ R :: R is a branching bisimulation and 〈p, q〉 ∈ R〉
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Example

weak but not branching
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Rooted weak bisimulation

Definition
Given 〈S1,N, ↓1,−→1〉 and 〈S2,N, ↓2,−→2〉 over N, relation R ⊆ S1× S2

is a rooted branching bisimulation iff for all 〈p, q〉 ∈ R and a ∈ N,

• If p
τ−→1 p′, then there is a non empty sequence of τ such that

q
τ−→2

τ−→2 ...
τ−→2

τ−→2 q′ and p′ ≈w q′

• Symmetrically ...
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Rooted weak bisimilarity

Definition

p ≈rw q ⇔ 〈∃ R :: R is a rooted weak bisimulation and 〈p, q〉 ∈ R〉

Lemma

≈w

FFFFFFFF
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xxxxxxxx

≈rb

∼ (ordered by ⊆)
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The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others

 modal (temporal, hybrid) logics
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