Exercises 1: Software Architecture for Reactive Systems

Exercise I. 1

Given $\left\langle S_{1}, \mathcal{N}, \downarrow_{\infty}, \longrightarrow \infty\right\rangle$ and $\left\langle S_{2}, \mathcal{N}, \downarrow \in, \longrightarrow \in\right\rangle$ over \mathcal{N}, two states p and q are mutually similar iff

$$
p \doteqdot q \Leftrightarrow p \lesssim q \wedge q \lesssim p
$$

1. Show that \doteqdot is an equivalence relation.
2. Compare this relation with bisimilarity ans language equivalence.

Exercise I. 2

Consider the following transition space

$$
\{\langle 1, a, 2\rangle,\langle 1, a, 3\rangle,\langle 2, a, 3\rangle,\langle 2, b, 1\rangle,\langle 3, a, 3\rangle,\langle 3, b, 1\rangle,\langle 4, a, 5\rangle,\langle 5, a, 5\rangle,\langle 5, b, 6\rangle,\langle 6, a, 5\rangle,\langle 7, a, 8\rangle,\langle 8, a, 8\rangle,\langle 8, b, 7\rangle\}
$$

Show or refute that $1 \sim 4 \sim 6 \sim 7$.

Exercise I. 3

Show that

- bisimilarity is an equivalence relation
- bisimilarity is is closed to union
- bisimilarity is is closed to intersection

Exercise I. 4

A relation R over states of a transition space is a word bisimulation if, whenever $\langle p, q\rangle \in R$ e $s \in \mathcal{N}^{*}$,

$$
\begin{aligned}
& p \xrightarrow{s} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{s} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle \\
& q \xrightarrow{s} q^{\prime} \Rightarrow\left\langle\exists p^{\prime}: p^{\prime} \in S_{1}: p \xrightarrow{s} p^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
\end{aligned}
$$

1. Define formally relation \xrightarrow{s}, for any $s \in \mathcal{N}^{*}$
2. Two states p and q are word bisimilar iff there exist a word bisimulation R such that $\langle p, q\rangle \in R$. Discuss whether two states p and q are word bisimilar iff $p \sim q$.

Exercise I. 5

In a transition space $\langle S, \mathcal{N}, \downarrow, \longrightarrow\rangle$, the set of traces of a state s is the least set including

$$
\begin{aligned}
& \epsilon \in \operatorname{Tr}(s) \\
& \checkmark \in \operatorname{Tr}(s) \text { if } \downarrow s \\
& a \sigma \in \operatorname{Tr}(s) \quad \text { if } \exists_{t} \cdot s \xrightarrow{a} t \wedge \sigma \in \operatorname{Tr}(t)
\end{aligned}
$$

1. Show that two bisimilar states have the same traces? Is the converse true?

Exercise I. 6

In what sense can the definitions of morphism of transition spaces and bisimulation be related?

Exercise I. 7

Consider the following transition systems:

Are they branching or rooted branching bisimilar?

Exercise I. 8

Which of the following pairs of transition systems are branching and/or rooted branching bisimilar.

Exercise I. 9

With regard to the two previous exercises, which τ-transitions are inert wrt branching bisimulation (i.e., for which τ transitions $p \xrightarrow{\tau} p^{\prime}$ are $p \approx p^{\prime}$)?

