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Instantiating the framework

CCS: a prototypical process algebra

o Calculus of Communicating Systems [Milner, 1980]

e Actions:
Act == a|a |

for a € N, N denoting a set of names
e Processes:

e No sequential composition: but action prefix a.

Solving equations

e No distinction between termination and deadlock (why?)

e Communication by binary handshake
(of complementary actions)
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Examples

Buffers

1-position buffer: A(in, out) £ in.out.0
. non terminating: B(in, out) = in.out.B
. with two output ports: C(in, 01, 02) £ in.(01.C 4 0,.C)
. non deterministic: D(in, 01,02) = in.01.D + in.;.D

. with parameters: B(in, out) £ in(x).out(x).B
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Examples

n-position buffers

1-position buffer:
S 2 new{m} (B{in,m) | B{m,out))

n-position buffer:

Bn = new {m;|i < n} (B{in,my) | B{my,my) | --- | B(m,_1, out))
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Examples

mutual exclusion

Sem £ get.put.Sem

P,‘ £ gﬁ.c;.m.P,'

)
I

2 new {get, put} (Sem | (|ics P;))

Solving equations
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CCS Syntax

The set IP of processes is the set of all terms generated by the following
BNF:

E = A(x1,....x) | a.E | ZE,- | Eo | E1 | newK E
icl
forac Actand K C L

Abbreviatures

Ey+ E; agv Z E;
ie{0,1}

0 agv Z E;

i€d
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CCS Syntax

Process declaration

A(X) £ Ea
with fn(Ea) C X (where fn(P) is the set of free variables of P).

e used as, eg., |A(a,b,c) = a.b.0+c.Ald, e, f)

Process declaration: fixed point expression

fix (X = Ex)

e syntactic substitution over P, cf.,

e {c/b}a.b.0
e (internal variables renaming)
{x/y}new{x} y.x.0 = new{x'} x.x".0
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CCS Syntax

Process declaration

A(X) £ Ea
with fn(Ea) C X (where fn(P) is the set of free variables of P).

e used as, eg., |A(a,b,c) = a.b.0+c.Ald, e, f)

Process declaration: fixed point expression

fix (X = Ex)

e syntactic substitution over P, cf.,

e {c/b}a.b.0
e (internal variables renaming)
{x/y}new{x} y.x.0 = new{x'} x.x".0
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Sort

The sort of a process P is its interface, i.e., its iteraction possibilities

e minimal sort: ([{K C L|P: K}

® syntactic sort, i.e., the set of free variables:

fn(a.P) = {a} Ufn(P)
fn(7.P) = fn(P)
(> P) = Jf(P:)
icl iel
fn(P| Q) =fn(P)Ufn(Q)
fn(new K P) = fn(P) — (K U K)

and, for each P(X) £ E, fn(E) C fn(P(X)) = X.
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Sort

Warning

e new {a} (a.b.c.0) has no transitions, so its sort is ()

e however: fn((new {a} a.b.c.0)) = {b, ¢}
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Semantics

Two-level semantics

e arquitectural, expresses a notion of similar assembly configurations
and is expressed through a structural congruence relation;

e behavioural given by transition rules which express how system'’s
components interact
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Semantics

Structural congruence
= over PP is given by the closure of the following conditions:

e forall A(X) £ Ea, A(Y) = {X/7}Ea,
(i.e., folding/unfolding preserve =)

e a-conversion (i.e., replacement of bounded variables).

e both | and + originate, with 0, abelian monoids
e forall a ¢ fn(P) new{a} (P| Q)= P | new{a} Q
e new{a}0=0



Syntax & Semantics Modelling in CCS A ~-calculus Observational equivalence

Semantics

— (prefix)
ap—p

{k/%} pa = p/

— (ident) (if A(X) £ pa)
A(k) = p

p—p qg—4q
—(sum—/) —(sum—r)
a / a /
p+q—p p+q—q

Solving equations



Syntax & Semantics

Semantics
p-—p -4
———(par - ) ———— (par—r)
plga—p|q plg—plq

a / a /
p-=p q-gq

— (react)
pla—p'lq

p—p

(res) (ifa ¢ {k,k})

new {k} p -2+ new {k} p
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Compatibility

Lemma
Structural congruence preserves transitions:

if p — p’ and p = g there exists a process g’ such that ¢ — ¢’ and
pr=q.
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Semantics
These rules define a LTS
{5 C PxP|ac Act}

Relation —= is defined inductively over process structure entailing a
semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its
Sup-processes

Complete i.e., all possible transitions are infered from these rules

static vs dynamic combinators
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Graphical representations

Synchronization diagram

e represent interfaces of processes

e static combinators are an algebra of synchronization diagrams

Transition graph

e derivative, n-derivative, transition tree

e folds into a transition graph
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Transition tree

B £ in.ol.B + in.02.B

in.ol.B + in.02.B

in.ol.B + in.02.B

in.ol.B + in.02.B
/ in / in
m m
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Transition graph

B £ in.ol.B + in.02.B

/ /nolB+Ino2B

/

ol.B

compare with B’ £ in.(0o1.B' + 02.B')
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Data parameters

Language P is extended to Py, over a data universe V, a set V. of
expressions over V' and a evaluation Val: V, —» V

Example

’ B~ in(x).,

B! £ out(v).B

e Two prefix forms: a(x).E and 3(e).E (actions as ports)
e Data parameters: As(xy, ..., X,) = Ea, with S € V and each x; € L

e Conditional combinator: if bthen P, if bthen P; else P,

Clearly

if bthen Py else P, 2’ (if bthen Py) + (if ~bthen P,)
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A ~-calculus Observational equivalence

Data parameters

Additional semantic rules

E =5 F

if bthen E else E, —5 E’

E, 2 F

(ify)

if bthen F; else B, —25 E'

(if2)

forveV

for Val(e) = v

for Val(b) = true

for Val(b) = false

Solving equations
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Back to PP

Encoding in the basic language: 7( ) : P +— Py

Z a,. T({v/x}E)

veV
T(3(e).E) = 3..T(E)
T _E)=) T(E)
icl icl
T(E|F)=T(E)| T(F)
T(newK E) =new{a, |ae K,ve V} T(E)

and
T(E) if Val(b) = true

T(if bthen E) = {0 if Val(b) = false
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EX1: Canonical concurrent form

PénewK(El ‘ E2‘|En)

The chance machine

10 £ m.bank.(lost.loss.IO + rel(x).win(x).I0)
B, = bank.max(n+ 1).left(x).Bx

Dc £ max(z).(lost.left(z).Dc + Z rel(x).left(z — x).Dc)
1<x<z

(1>

M, £ new {bank, max, left, lost, rel} (10 | B, | Dc)
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EX2: Sequential patterns

1. List all states (configurations of variable assignments)
2. Define an order to capture systems's evolution

3. Specify an expression in IP to define it

A 3-bit converter

A£rq.B

B £0ut0.C + outl.odd.A

C £0ut0.D + outl.even.A

D £out0.zero.A + outl.even.A
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Processes are 'prototypical’ transition systems

... hence all definitions apply:

E~F

e Processes E, F are bisimilar if there exist a bisimulation S st
{{E,F)} €S.

e A binary relation S in P is a (strict) bisimulation iff, whenever
(E,F) € S and a € Act,

) E-SE = F-5F A(EL,F)ES
i) F-5F = E-SE A(E,F)ES

~ = |J{SCPxP|S isa (strict) bisimulation}
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Processes are 'prototipycal’ transition systems

Example: S ~ M

T=ikT
R2 kj.R
S 2 new{k} (T |R)

M2 TN
N2jirN+ijr.N

through bisimulation

R ={(S, M)), (new {k} (k.T | R),7.N), (new {k} (T | j.R), N),
(new [k} (k.T | j.R),j.m.N)}
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Example: Semaphores

A semaphore

Sem & get.put.Sem

n-semaphores

Sem, & Semn o
Sem,o = get.Sem, 1
Sem, £ get.Semy, i1 + put.Semp i1
(for 0 < i< n)

A
Semp , = put.Semp 51

Solving equations

Sem,, can also be implemented by the parallel composition of n Sem

processes:
Sem” & Sem | Sem | ... | Sem



Introduction Syntax & Semantics Modelling in CCS A ~-calculus Observational equivalence Solving equations

Example: Semaphores

Is Sem, ~ Sem"?

For n = 2:

{(Semy,0, Sem | Sem), (Sem; 1, Sem | put.Sem),
(Sema 1, put.Sem | Sem)(Sems o, put.Sem | put.Sem)}

is a bisimulation.

e but can we get rid of structurally congruent pairs?
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Bisimulation up to =

Definition
A binary relation S in P is a (strict) bisimulation up to = iff, whenever
(E,F) € S and a € Act,

) E-SE = F-5F A(ELF)

S
i) FF = E-SE AN(E,F)e=-S

Lemma
If S is a (strict) bisimulation up to =, then S C ~

e To prove Sem, ~ Sem" a bisimulation will contain 2" pairs, while a
bisimulation up to = only requires n + 1 pairs.
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A ~-calculus
Lemma E=F = E~F

e proof idea: show that {(E + E,E) | E € P} U Idp is a bisimulation

Lemma
new K’ (new K E) ~ new (K U K') E
newK E~E if LE)N(KUK) =10
newK (E|F)~newK E | newK F if L(E)NL(F)Nn(KUK) =0

e proof idea: discuss whether S is a bisimulation:

S = {(newK E,E) |EEPAL(E)N (KUK) =0}
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~ IS a congruence

congruence is the name of modularity in Mathematics

® process combinators preserve ~

Lemma
Assume E ~ F. Then,

a.E~aF
E+P~F+P
E|P~F|P
new K E ~newK F

e recursive definition preserves ~

Solving equations



Introduction Syntax & Semantics Modelling in CCS A ~-calculus Observational equivalence Solving equations

~ IS a congruence
e First ~ is extended to processes with variables:
E~F & V5. {P/X}E~{P/X}F
e Then prove:

Lemma

) PAE = P~E )
where E is a family of process expressions and P a family
of process identifiers.

ii) Let E~ F, where E and F are families of recursive
process expressions over a family of process variables X,
and define:

Then
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The expansion theorem

Every process is equivalent to the sum of its derivatives

E~> {aE'|E-5E}

understood?
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The expansion theorem

Every process is equivalent to the sum of its derivatives

E~> {aE'|E-5E}

understood?
E~)> {aE|E-E}

clear?



A ~-calculus

The expansion theorem

Every process is equivalent to the sum of its derivatives

E~> faE'|E-5E}

understood?
E~)> {aE|E-E}

clear?

E~ ) {aE'|E-E)
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The expansion theorem

The usual definition (based on the concurrent canonical form):

E~ {f(a)newK ({A}Er | ... [ {f}E] | ... | {f} Ep) |
E. 25 E AN fi(a) g KUK}
n
> {rnewK ({A}Ex | [{6YE/ | [{EYE] | . [ {fa} En) |
E -2 E A E -2 E A fi(a) =7(b) }

for E2newK ({Ai} E1 | ... | {fa} En), with n>1
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The expansion theorem

Corollary (for n =1 and f; = id)

newK (E+ F)~newK E +newK F

0 if ae(KUK)
a.(new K E) otherwise

new K (a.E) ~ {

Solving equations
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Example

S~M
S~new{k} (T |R)
~inew{k} (k.T | R)
~iT.new{k} (T | j.R)
~i.7.(inew {k} (k.T | j.R) + jnew {k} (T | R))
~i.r.(ij.new{k} (k.T | R) +j.inew {k} (k.T | R))
~ir.(ijrnew{k} (T |j.R)+j.im.new{k} (T | j.R))
Let N =new {k} (T | j.R).

This expands into N’ ~ i.j.r.new{k} (T | j.R) +j.i.r.new {k} (T | j.R),
Therefore N' ~ N and S ~i.7.N ~ M

e requires result on unique solutions for recursive process equations



Solving equations
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Observable transitions
= C PxP
o LU{e}
e A ==-transition corresponds to zero or more non observable
transitions
e inference rules for ==
— (O1)
E—E
E-SF EF=<F
(02)

E==F

E==E E-5LF F=F
(03) forael

E=F
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Example

To2jTi+iTs
T1=iT;
T, j.T3
T3 T.To

> >

>

and

ALijA+]iA
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Example

From their graphs,

and

i.A J-

we conclude that Ty = A (why?).

Solving equations
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Observational equivalence

Ex~F
e Processes E, F are observationally equivalent if there exists a weak
bisimulation S st {(E,F)} € S.
e A binary relation S in P is a weak bisimulation iff, whenever
(E,F) e S and ae LU({e},
VE==E = F=F A (E,F)eS
i) F=F = E=E A (E,F)cS

le.,
~ = | J{SCPxP|S isa weak bisimulation}
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Observational equivalence

Properties
e as expected: = is an equivalence relation
e basic property: for any E € P,
E ~ 1.E

(proof idea: idp U {(E,T.E) | E € P} is a weak bisimulation

e \weak vs. strict:

~ C=
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Is ~ a congruence?

Lemma
Let E~ F. Then, for any P Pand K C L,

a.E~aF
E|P~F|P
new K E ~new K F

but
E+P~F+P

does not hold, in general.
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Is ~ a congruence?
Example (initial 7 restricts options 'menu’)

i0 ~ 1.0

However

jO+i0%.0+7.i0

Actually,

j0+i.0 jO+7.i0

O TN,
]

0
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Forcing a congruence: E = F

’Solution: force any initial 7 to be matched by another 7"

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) Ex~F
i) E-SE = F-5 X=Fand E'~F

i) FF = E-"X=>Eand E'~F'

e note that E # 7.E, but 7.E = 7.7.E
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Forcing a congruence: E = F

= can be regarded as a restriction of & to all pairs of processes
which preserve it in additive contexts

Lemma
Let E and F be processes st the union of their sorts is distinct of L. Then,

E=F & VGGP.(EJrG%FqLG)
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Properties of =

Lemma

E=F & (E=F)V (E=7.F) V (LE=F)

e note that E # 7.E, but 7.E = 7.7.E
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Properties of =

Lemma
So,

’the whole ~ theory remains valid
Additionally,

Lemma (additional laws)

atE=akE
E+rE=1E
a(E+71.F)=a(E+7.F)+aF

Solving equations



Solving equations

Solving equations

’ Have equations over (P, ~) or (P,=) (unique) solutions?‘

Lemma o o
Recursive equations X = E(X) or X ~ E(X), over P, have unique
solutions (up to = or ~, respectively). Formally,

i) Let E = {E; | i€ I} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is weakly guarded. Then

P~{P/X}YE N Q~{Q/X}E = P~Q

i) Let E={E; |i eI} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is guarded and sequential. Then

P={P/X}E N Q={Q/X}E = P=Q
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Conditions on variables

guarded :
X occurs in a sub-expression of type a.E’ for
ae€Act—{r}

weakly guarded :
X occurs in a sub-expression of type a.E’ for a € Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable

example: X is weakly guarded in both 7.X and 7.0 + a.X + b.a.X but
guarded only in the second
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Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E’, for a € Act, or LE.

avoids X to become guarded by a 7 as a result of an interaction

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that

example: X is not sequential in X = new {a} (a.X | a.0)
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Example (1)

Consider
Sem £ get.put.Sem
'Dl £ a.cl.m.Pl
P2 £ E.CQ.W. P2
S = new {get, put} (Sem | Py | Py)
and

S22 7.0.5+71.0.5

to prove S ~ S’, show both are solutions of

X = T.Cl.X+T.C2.X
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Example (1)

proof

S = 7newK (¢1.put.Py | Py | put.Sem) + T.new K (Py | cp.put.Py | put.Sem)

T.c1.new K (put.Py | P, | put.Sem) + 7.co.new K (Py | put.P> | put.Sem)
= 1.cp.7new K (Py | Py | Sem) + T.cp.7.new K (Py | P2 | Sem)

7.c1.7.S +7.6,.7.S

7.c1.S +17.6.5

= {S/X}E

for S’ is immediate
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Example (2)

Consider,

<

B2 inB B' 2 newm (G | G)
Bl £ in.82 + out.B Cl £ in.ﬁ.Cl

C2 e mWCz
B’ is a solution of
X =E(X,Y,Z)=inY

Y = E(X,Y,Z) =inZ + out.X
Z=Es(X,Y,Z)=out.Y

through o = {B/X,By/Y,B,/Z}
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Example (2)
To prove B =B’

B = newm (G | Q)
= innewm (M.C | G3)
= in.t.newm (Cy | out.C3)

= in.newm (C; | out.Gy)
Let S; = newm (G | out.(C,) to proceed:
51 = newm (C1 |TMC2)

innew m (m.Cy | out.Gy) + out.newm (G | )
= in.newm (m.C; | out.C,) + out.B’
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Example (2)

Finally, let, S, = newm (.G | out.G,). Then,

Sy

new m (m.Cy | out.(y)
out.newm (M.C; | Q)
out.T.new m (Cy | out.G,)
out.7.5;

out.S;

Solving equations
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Example (2)

Note the same problem can be solved with a system of 2 equations:

X = E(X,Y)=inY
Y = E'(X,Y) = inout.Y + out.in.Y

Clearly, by substitution,

B = in.81
Bl = IHﬁB1 +W/nBl



Solving equations

Example (2)

On the other hand, it's already proved that B’ = ... = in.5;.
S0,

S1 = newm (G | out.()
= in.newm (m.C; | out.C;) + out.B’
= in.out.newm (m.Cy | G;) + out.B’
= in.out.T.new m (C; | out.G,) + out.B’
= in.out.7.5; + out.B’
= in.out.S; + out.B’

= in.out.S; + out.in.5;

Hence, B = {B'/X,S1/Y}E and S; = {B'/X, S,/ Y }E'
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