

Software Quality Process

Software Improvement Group

Capability Maturity Model® Integration (CMMI®)

49 | 120

- "... is a process improvement approach that provides organizations with the essential elements of effective processes.." (SEI)
- CMMI for Development (CMMI-DEV), Version 1.2, August 2006.
- consists of <u>22 process areas</u> with capability or maturity levels.
- CMMI was created and is maintained by a team consisting of members from industry, government, and the <u>Software Engineering Institute</u> (SEI)
- http://www.sei.cmu.edu/cmmi

The Standard CMMI Appraisal Method for Process Improvement (SCAMPI)

• "... is the official SEI method to provide benchmark-quality ratings relative to CMMI models."

Software Quality Process

Software Improvement Group

Software Engineering Institute | Carnegie Mellon

Organization

Organization Name:	Accenture
Appraisal Sponsor Name:	Jack Ramsay, Marco Spaziani Testa, Maria Angeles Ramirez
Lead Appraiser Name:	John Voss
SEI Partner Name:	Accenture LLP
Lead Appraiser Name: SEI Partner Name:	John Voss Accenture LLP

Model Scope and Appraisal Ratings

Leve	el 2	Lev	el 3	Leve	el 4	Level 5					
Satisfied	REQM	Satisfied	RD	Out of Scope	OPP	Out of Scope	OID				
Satisfied	PP	Satisfied	TS	Out of Scope	QPM	Out of Scope	CAR				
Satisfied	PMC	Satisfied	PI								
Not Applicable	SAM	Satisfied	VER								
Satisfied	MA	Satisfied	VAL								
Satisfied	PPQA	Satisfied	OPF								
Satisfied	СМ	Satisfied	OPD								
		Satisfied	ОТ								
		Satisfied	IPM								
		Satisfied	RSKM								
		Satisfied	DAR								
Drganizational Unit Maturity Level Rating: 3 Additional Information for Appraisals Resulting in Capability or Maturity Level 4 or 5 Ratings:											

Software Quality Process

Software Improvement Group

CMMI

Levels

- L1: Initial
- L2: Managed
- L3: Defined
- L4: Quantitatively Managed
- L5: Optimizing

http://www.cmmi.de (browser)

Process Areas

- Causal Analysis and Resolution
- Configuration Management
- Decision Analysis and Resolution
- Integrated Project Management
- Measurement and Analysis
- Organizational Innovation and Deployment
- Organizational Process Definition
- Organizational Process Focus
- Organizational Process Performance
- Organizational Training
- Product Integration
- Project Monitoring and Control
- CMMI Project Planning
- Process and Product Quality Assurance
- Quantitative Project Management
- Requirements Development
- Requirements Management
- Risk Management
- Supplier Agreement Management
- Technical Solution
- Validation
- Verification

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

51 | 120

Software engineering -- Product quality

- 1. Quality model
- 2. External metrics
- 3. Internal metrics
- 4. Quality in use metrics

ISO/IEC 14598

Information technology -- Software product evaluation

- 1. General overview
- 2. Planning and management
- 3. Process for developers
- 4. Process for acquirers
- 5. Process for evaluators
- 6. Documentation of evaluation modules

External metrics, e.g.:

Software Improvement Group

517

60 | 120

- Changeability: "change implementation elapse time", time between diagnosis and correction
- Testability: "re-test efficiency", time between correction and conclusion of test

Internal metrics, e.g.:

- Analysability: "activity recording", ratio between actual and required number of logged data items
- Changeability: "change impact", number of modifications and problems introduced by them

Critique

- Not pure *product* measures, rather *product in its environment*
- Measure after the fact
- No clear distinction between functional and technical quality

Software with high technical quality can evolve with low cost and risk to keep meeting functional and non-functional requirements.

A Challenge

Software Improvement Group

Use source code metrics to measure technical quality?

65 | 120

Plenty of metrics defined in literature

- LOC, cyclomatic complexity, fan in/out, coupling, cohesion, ...
- Halstead, Chidamber-Kemener, Shepperd, ...

Plenty of tools available

- Variations on Lint, PMD, FindBugs, ...
- Coverity, FxCop, Fortify, QA-C, Understand, ...
- Integrated into IDEs

<u>But</u>:

• Do they measure technical quality of a system?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Im

Software Metrics

A Rigorous & Practical Approach

Norman E. Fenton Shari Lawrence Pfleeger

- Logical (≈ statements)
- Blank lines, comment lines, lines with only "}"
- Generated versus manually written
- Measure effort / productivity: specific to programming language

Software Improvement Group

67 | 120

- A.J. Albrecht IBM 1979
- Objective measure of <u>functional size</u>
- Counted manually
 - IFPUG, Nesma, Cocomo
 - Large error margins
- Backfiring
 - Per language correlated with LOC
 - SPR, QSM
- Problematic, but popular for estimation

Table 2. Sample Function Point Calculations

Raw Data	Weights		Function Points
1 Input	X 4	=	4
1 Output	X 5	=	5
1 Inquiry	X 4	=	4
1 Data File	X 10	=	10
1 Interface	X 7	=	7
Unadjusted Total			30
Compexity Adjustment			None
Adjusted Function Points			30

Source code metrics Coupling

Software Improvement Group

- Efferent Coupling (Ce)
 - How many classes do I depend on?
- Afferent Coupling (Ca)
 - How many classes depend on me?
- Instability = Ce/(Ca+Ce) \in [0,1]
 - Ratio of efferent versus total coupling
 - 0 = very stable = hard to change
 - 1 = very instable = easy to change

Table 1. Results of compiling a single class

Class to Compile	Other Classes Compiled	Afferent Couplings	Efferent Couplings	Instability Factor		
A	B,C,D,E	0	4	1		
B	C,D,E	1	3	0.75		
С	-	2	0	0		
D	E	3	1	0.25		
E	D	3	1	0.25		

Software metrics crisis How does measurement data lead to information?

Software Improvement Group

72 | 120

- Plethora of software metrics
 - Ample definitions in literature
 - Ample tools that calculate

Measurement yields data, not information

- How to aggregate individual measurement values?
- How to map aggregated values onto quality attributes?
- How to set thresholds?
- How to act on results?

SIG quality model handles these issues in a pragmatic way

Observe for all:

- Systems are similar in low percentiles. Systems differ in higher percentiles.
- Interesting differences occur mostly above the 70% percentile

Establish thresholds for file-level

- What would the risk categories be for file level LOC if we want at most 10% of code in *moderate*, 10% in *high*, and 10% in *very high*?
- Sort files on LOC
- Compute *relative volume* for each file
- Read-off thresholds

SIG Quality Model *Empirical validation*

Software Improvement Group

83 | 120

Research

- Data: 16 open source systems (2.5 MLOC)
- Mining issues from issue trackers (50K issues)
- Analyzing source code (150 versions)
- Internal quality: maintainability of source code
- External quality: issue handling
- 1. Correlation analysis
- 2. Quantification of impact
- The Influence of Software Maintainability on Issue Handling MSc thesis, Technical University Delft
- Indicators of Issue Handling Efficiency and their Relation to Software Maintainability, MSc thesis, University of Amsterdam
- Faster Defect Resolution with Higher Technical Quality of Software, SQM 2010

SIG **SIG** Quality Model Quantification **Software Improvement Group Resolution time for defects and enhancements** 84 | 120 **Defect Resolution Time Enhancement Resolution Time** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** 21 35 0 7 14 28 42 49 56 21 28 35 42 49 0 14 56 7 days days • Faster issue resolution with higher quality

• Between 2 stars and 4 stars, resolution speed increases by factors 3.5 and 4.0

- Higher productivity with higher quality
- Between 2 stars and 4 stars, productivity increases by factor 10

Evaluation results

Software Improvement Group

88 | 120

- Evaluation report
 - Defines scope of the evaluation
 - Summarizes measurement results
 - Provides ratings (properties, quality, and overall)
 - May provide hints for the producer to improve ratings

Certificate

- States conformance to SIG/TÜViT Evaluation Criteria
- Confers right to use quality mark "TÜViT Trusted Product Maintainability"

A pragmatic model for measuring maintainability. Heitlager, T. Kuipers, J. Visser. QUATIC 2007.

Certification of Technical Quality of Software. J.P. Correia, J.Visser. OpenCert 2008.

Mapping System Properties to ISO/IEC 9126 Maintainability Characteristics J.P. Correia, Y. Kanellopoulos, J.Visser. SQM 2009.

- "Can we scale from 100 to 100,000 customers?"
- "Should we accept delay and cost overrun, or cancel the project?"

Analysis

- Source code: understanding (reverse engineering) + evaluation (quality)
- Interviews: technical + strategic

Reporting

- Quality judgment using star ratings
- Risk analysis putting quality findings in business perspective
- Recommendations to mitigate risks

Software Risk Assessment Example: stagnation before go-live

Software Improvement Group

Results

- Insurmountable stability issues, untestable, excessive maintenance burden
- Now: reduce technical complexity, partially automate deployment
- Start planning replacement

Software Monitoring service Signature Software Improvement Group Software Improvement Group 93 I 120 • "complexity from 2 to 4 stars by 3rd month" in maintenance project

• "final product shall be 4 stars" in development project

Dashboard

- Regular analysis of source code typically once per week
- Shown on dashboard with overviews and drill down possibilities

Consultancy

- Regular reports (presentation and/or written)
- Guard quality agreements, meet quality targets.
- Identify risks and opportunities

Software Monitor Dashboard

Software Improvement Group

Software Monitor - sig-java

Home	Metri	cs table	Explana	tion	of metrics	Com	pare sn	apshots	Viola	ations	SRA dashboar	d 🔻 📕						
Lines of code /java McCabe c		McCabe con	mplexity /java Nr. o		Nr. of m	of methods /java		Nr. of methods /javatest		Nr. of classes /java		Number of asserts /javatest	Severe violati	Severe violations /java				
Ana	alyses		99,4	422		10	8,146			11,849		8,933		2,101	23,037		6 🥌	•
N	lonitor		4,3	206			807			545		408		73	888		5 🧉	• —
Mo	onitor2		8,	996			1,546			976		570		124	2,095	· ~	0	
Net	works		9,4	498		·	1,317			809	~~~~~	282		141	448		~ 24 🧲	. —
PLSqlAna	alyses		10,	587		- :	2,017			1,395		989		183	2,275		6 6	. —
StudentAna	alyses		2,9	904	~~~~		505		_	294		58		63		·	2 🔵	
	Utils		22,9	977		—	5,412			3,418		1,361		351	4,711		8 6	. —
d	ocaen		74.	029		- 14	4.543			10.992		3.457		1.368	11.183		46	
		Nr. of catc	h blocks /i	iva	Illegal catche	es /iava		Lines /c	onfia		Code churn /iav	/a	File churn /iava	.,	Method length /iava	Complexity /ia	va	Fan-o
Ana	alyses			232		L	3			2,746	Amerika	781	American	54				
N	Ionitor			13			3			34,574		0		0				
Mo	onitor2			58			0			43,585	1	363	a har an a	11				
Net	works		-h	50			12			49.776	1.10 has	296	A AM Dub	8				
PL SolAna	alvses			18			3			238		- 0		0				
StudentAns	alvees		-	18			1		_	463		232	1.1.	4				
otacono-ine	Litile			71		_			~	1 716		206						
	Ouis									1,710		/ 200	- man	9	-			
0	ocgen			134			20			093		29	A	4				
Top 5 Mos	t compl	ex units /A						Top 5	Biggest	files /All			Top 5 Biggest	t units /A	di			
StatementExtractorParse.setEnd(int) 40			Perfor	mGraph	Test.java		4,659	CodeBlockPa	rserTes	t.testRealCode()	1,267 🔴							
StatementExtractorParse.setStart(int) 37			Monito	r2SqlDa	oTest.java	3	4,155	McCabeCoun	terTest.	testRealCode()	1,208 🔴							
DateConverter.determineMonthNumber(String) 34 (Cobol	ModelTe	st.java		3,337 (SybaseParserTest.testFile()			536 🔴						
QueueMaker.processArgs(String[]) 23 🧶				CallGr	aphMak	erTest.jav	а	3,041 (software_imp	rovers.u	til.SQLUtils.\$block1	420 🔴						
CommentRemoverUtils.handleStatusWith(char,char,char) 19			19	MdxAggFactsTableCreate			torTest.java	2,173	LOCMethods	Test.tes	tClientFileHandlers()	401 🔴						
Top 5 Bigg	est dup	licates /jav	a					Top 5	Most fre	quently ch	nanged files /All		Top 5 Method	l fan-in //	All			

From client testimonial:

- "Technical quality: as it improves adding functionality is made easier"
- "As quality was increasing, productivity was going up"

• Automated unit testing!

Patterns

• Run tools!

Quality and metrics

- Technical quality matters in the long run
- A few simple metrics are sufficient
- If aggregated in well-chosen, meaningful ways
- The simultaneous use of distinct metrics allows zooming in on root causes