
info@sig.nl
www.sig.nl

December 2010
Joost Visser

Software Analysis and Testing
Métodos Formais em Engenharia de Software

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

2

Me

CV
•  Technical University of Delft, Computer Science, MSc 1997

• University of Leiden, Philosophy, MA 1997

• CWI (Center for Mathematics and Informatics), PhD 2003

•  Software Improvement Group, developer, consultant, etc, 2002-2003

• Universidade do Minho, Post-doc, 2004-2007

•  Software Improvement Group, Head of Research, 2007-…

Research

• Grammars, traversal, transformation, generation

•  Functional programming, rewriting strategies

•  Software quality, metrics, reverse engineering

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

3

Software Improvement Group

Company
•  Spin-off from CWI in 2000, self-owned, independent

• Management consultancy grounded in source code analysis

•  Innovative, strong academic background, award-winning, profitable

Services

•  Software Risk Assessments (snapshot) and Software Monitoring (continuous)

•  Toolset enables to analyze source code in an automated manner

•  Experienced staff transforms analysis data into recommendations

• We analyze over 50 systems annually

•  Focus on technical quality, primarily maintainability / evolvability

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

4

Services

DocGen

Software Monitoring

•  Automated generation of technical documentation
•  Reduce learning time, assist impact analysis, support migration, …

Software Risk Assessment

•  Continuous measurement, feedback, and decision support
•  Guard quality from start to finish

•  In-depth investigation of software quality and risks
•  Answers specific research questions

Software Product Certification
•  Five levels of technical quality
•  Evaluation by SIG, certification by TÜV Informationstechnik

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

5

Financials & insurance companies	
 Technology Retail/Logistics	
 Utilities/Telco	
Public	

Who is using our services?

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

6

Structure of the lecture

•  Introduction SIG

• General overview of software analysis and testing

•  Testing

•  Patterns

• Quality & metrics

• Reverse engineering

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

7

Software Engineering

requirements analysis
design, code, compile

configure, install

Create Change Analyze

refactor, fix, patch
maintain, renovate

evolve, update, improve

understand, assess
evaluate, test

measure, audit

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

8

Software Analysis
(and Testing)

Analysis

Static
Analysis

Dynamic
Analysis

syntax checking
type checking
code metrics

style checking
verification

reverse engineering
decompilation

testing
debugging

program spectra
instrumentation

profiling
benchmarking
log analysis

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

9

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

•  “Program testing can be used to show the presence of bugs,

 but never to show their absence!”
Notes On Structured Programming, 1970

•  “Program testing can be a very effective way to show the presence of bugs,
 but is hopelessly inadequate for showing their absence.”
The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

10

Is testing un-cool?

Industry
•  Testers earn less then developers

•  Testing is “mechanical”, developing is “creative”

•  Testing is done with what remains of the budget in what remains of the time

Academia

•  Testing is not part of the curriculum, or very minor part

•  Verification is superior to testing

•  Verification is more challenging than testing

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

11

Software Analysis. How much?

50 - 75%

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

12

Software Analysis. Enough?

 $60 × 109

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

13

Software Analysis. More?

high profile
low frequency

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

14

Software Analysis
Room for improvement?

Standish Group, “The CHAOS Report”

1994

Succeeded
16%

Challenged
53%

Failed
31%

2004

Succeeded
29%

Challenged
53%

Failed
18%

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

15

So

•  Testing ⊂ Dynamic analysis ⊂ Analysis ⊂ S.E.

•  Analysis is a major and essential part of software engineering

•  Inadequate analysis costs billions

⇒

• More effective and more efficient methods are needed

•  Interest will keep growing in both industry and research

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

16

Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testing metrics models patterns

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

17

TESTING

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

18

Testing

Kinds
• Conformance
•  Interoperability
•  Performance
•  Functional
• White-box
•  Black-box
•  Acceptance
•  Integration
• Unit
• Component
•  System
•  Smoke
•  Stress

Ways
• Manual
•  Automated
• Randomized
•  Independent
• User
• Developer

With
•  Plans
• Harness
• Data
• Method
•  Frameworks

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

19

Testing
V-model

V-model =
 waterfall-1 • waterfall

No testing while
programming!

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

20

Testing
Eliminate waste

Waste
• Coding and debugging go hand-in-hand

• Coding effort materializes in the delivered program

• Debugging effort? Evaporates!

Automated tests

•  Small programs that capture debugging effort.

•  Invested effort is consolidated …

• … and can be re-used without effort ad-infinitum

Unit testing

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

21

What is unit testing?

A unit test is …
•  fully automated and repeatable
•  easy to write and maintain
•  non-intrusive
•  documenting
•  applies to the simplest piece of software

Tool support
•  JUnit and friends

TestCase

public void testMyMethod {
 X x = …;
 Y y = myMethod(x);
 Y yy = …;
 assertEquals(“WRONG”,yy,y)
}

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

22

Testing goals

Unit testing has the following goals:
•  Improve quality
• Test as specification
• Test as bug repellent
• Test as defect localization

• Help to understand
• Test as documentation

• Reduce risk
• Test as a safety net
• Remove fear of change

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

23

Observing unit-testing maturity in the wild
(characterization of the population)

Organization
•  public, financial, logistics
•  under contract, in house, product software
• with test departments, without test departments

Architecture & Process
•  under architecture, using software factories
• model driven, handwritten
•  open source frameworks, other frameworks
•  using use-cases/requirements
• with blackbox tools, t-map

Technology
•  information systems, embedded
• webbased, desktop apps
•  java, c#, 4GL’s, legacy
•  latest trend: in-code asserts (java.spring)

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

24

Stage 1
No unit testing

Observations:
•  Very few organizations use unit testing
•  Also brand new OO systems without any unit tests
•  Small software shops and internal IT departments
•  In legacy environments: programmers describe in words what tests they have

done.

Symptoms:
• Code is instable and error-prone
•  Lots of effort in post-development testing phases

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

25

Stage 1
No unit testing

Excuses:
•  “It is just additional code to maintain”
•  “The code is changing too much”
•  “We have a testing department”
•  “Testing can never prove the absence of errors”
•  “Testing is too expensive, the customer does not want to pay for it”
•  “We have black-box testing”

Action
•  Provide standardized framework to lower

threshold
•  Pay for unit tests as deliverable, not as effort

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

26

Stage 2
Unit test but no coverage measurement

Observations
• Contract requires unit testing, not enforced
• Revealed during conflicts
• Unit testing receives low priority
• Developers relapse into debugging practices without unit testing
• Good initial intentions, bad execution
•  Large service providers

Symptoms:
•  Some unit tests available
•  Excluded from daily build
• No indication when unit testing is sufficient
•  Producing unit test is an option, not a requirement

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

27

Stage 2
Unit test but no coverage measurement

Excuses:
•  “There is no time, we are under pressure”
•  “We are constantly stopped to fix bugs”

Actions
•  Start measuring coverage
•  Include coverage measurement into nightly build
•  Include coverage result reports into process

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

28

Stage 3
Coverage, not approaching 100%

Observations
• Coverage is measured but gets stuck at 20%-50%
•  Ambitious teams, lacking experience
• Code is not structured to be easily unit-testable

Symptoms:
• Complex code in GUI layer
•  Libraries in daily build, custom code not in daily build

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

29

Stage 3
Coverage, not approaching 100%

Excuses
•  “we test our libraries thoroughly, that affects more customers”

Actions:
• Refactor code to make it more easily testable
•  Teach advance unit testing patterns
•  Invest in set-up and mock-up

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

30

Stage 4
Approaching 100%, but no test quality

Observations
•  Formal compliance with contract
• Gaming the metrics
• Off-shored, certified, bureaucratic software factories

Symptoms:
•  Empty tests
•  Tests without asserts.
•  Tests on high-level methods, rather than basic units

• Need unit tests to test unit tests

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

31

Stage 4
Approaching 100%, but no test quality

Anecdotes:
•  Tell me how you measure me, and I tell you how I behave
• We have generated our unit tests (at first this seems a stupid idea)

Action:
• Measure test quality
• Number of asserts per unit test
• Number of statements tested per unit test
• Ratio of number of execution paths versus number of tests

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

32

Stage 5
Measuring test quality

Enlightenment:
• Only one organization: a Swiss company
• Measure:
•  Production code incorporated in tests
•  number of assert and fail statements
•  low complexity (not too many ifs)

•  The process
•  part of daily build
•  “stop the line process”, fix bugs first by adding more tests
•  happy path and exceptions
•  code first, test first, either way

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

33

Testing
Intermediate conclusion

Enormous potential for improvement:
• Do unit testing
• Measure coverage
• Measure test quality

• May not help Ariane 5
• Does increase success ratio for “normal” projects

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

34

Randomized Testing
(quickcheck)

Randomized testing:
• QuickCheck: initially developed for Haskell
•  Parameterize tests in the test data
•  Property = parameterized test
• Generate test data randomly
•  Test each property in 100 different ways each time

Test generation

Model-driven testing

Fault-injection

-- | Range of inverse is domain.
prop_RngInvDom r
 = rng (inv r) == dom r
 where
 types = r::Rel Int Integer

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

35

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

•  “Program testing can be used to show the presence of bugs,

 but never to show their absence!”

Martin Fowler
•  “Don’t let the fear that testing can’t catch all bugs stop you

from writing the tests that will catch most bugs.”

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

36

Simple test metrics

Line coverage
• Nr of test lines / nr of tested lines

Decision coverage
• Nr of test methods / Sum of McCabe complexity index

Test granularity
• Nr of test lines / nr of tests

Test efficiency
• Decision coverage / line coverage

I 120

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

37

Testing
Exercises

Write unit tests
• Using JUnit
•  E.g. for one of your own projects

Measure coverage
•  E.g. using Emma plug-in for Eclipse

Randomize one of your unit tests
•  Turn test into property with extract method refactoring
• Write generator for test data
•  Instantiate property 100 times with random test data
•  Solution to j.visser@sig.eu

