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Motivation

Safety-critical software is pervasive.

Typically verified using simulation and testing.

But how can we cover all possible interactions?

Deductive verification (e.g. using theorem provers) is not
cost-effective and requires a lot of expertise.

For finite state systems model checking is a viable alternative:
exhaustive search of the state space to check if a
specification is valid.

But how to deal with the state space explosion problem?
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The Process of Model Checking

Modeling Convert the design into a formalism accepted by the
verification tool, abstracting irrelevant details. For
reactive systems formalisms like Petri nets are
popular.

Specification State the properties that the design must specify in
some logical formalism. When we need to describe
how the behavior of the system evolves over time
temporal logic is a viable formalism.

Verification Check that the specified properties hold in the model.
Ideally this process should be automatic. To tackle
the state explosion problem, most tools rely on
symbolic model checking.

Manuel Alcino Cunha A Perspective on Model Checking



Introduction
Modeling

Specification
Verification

Kripke Structures
Petri Nets

Modeling Reactive Systems

Reactive systems interact frequently with their environment
and usually do not terminate.

Cannot be modeled by their input-output behavior.

Key ingredients:
States Snapshots of the system variables.

Transitions Describe the effect of actions.
Computations Infinite sequences of states.

Kripke structures provide the desirable level of abstraction to
capture these ingredients.

Other higher-level modeling languages can be compiled to
Kripke structures.
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Kripke Structures

Definition
Let A be a set of atomic propositions. A Kripke structure is a tuple:

(S, I,R , L)

where

S is a finite set of states.

I ⊆ S is the set of initial states.

R ⊆ S × S is a total transition relation:

∀s ∈ S · R(s) , ∅, where R(s) = {s′ | sRs′}

L : S → 2A is a function that labels each state with the set of
atomic propositions true in that state.
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Kripke Structures

A path in a structure (S, I,R , L) starting in a state s is an
infinite sequence of states π = s0s1s2 . . ., such that s0 = s
and ∀i ≥ 0 · si+1 ∈ R(si).

Given a path π its i-th state will be denoted by πi .

The suffix of π starting at its i-th state will be denoted by πi .
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Petri Nets

Modeling reactive systems directly in terms of Kripke
structures is impractical.

Even if an action is local to a component we must prescribe its
effect in the global state.

Petri nets allow us to model each component independently,
leaving concurrency implicit.

Unlike transition systems, where the modeling emphasis is on
states, and algebraic methods, that focus on actions, Petri
nets capture both.
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Key Ingredients of Petri Nets

Places Denote passive elements (e.g. variables, conditions,
resources, channels) and are represented by circles.

Transitions Denote active elements (e.g. actions, events,
instructions) and are represented by boxes.

Arcs Capture causality and are represented by arrows
connecting places and transitions.
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Static Nets

Definition
A net is a tuple

(P,T ,F)

where

P is a set of places.

T is a set of transitions, such that T ∩ P = ∅.

F ⊆ (P × T) ∪ (T × P) is the flow relation that captures arcs.

If P and T are finite the net is said to be finite.

Given a ∈ P ∪ T , •a = F−1(a) denotes its pre-set and
a• = F(a) its pos-set.

This definitions trivially extend to sets.
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A Taxonomy of Petri Nets

Elementary Each place contains at most one token. A transition
is enabled if all pre-conditions hold (i.e. are marked
by a token) and no post-condition holds.

Place/Transition Places can have multiple tokens (optionally
limited to a given capacity). Arcs can “carry” several
tokens at once.

Colored Tokens may have different types. Arcs can restrict
the type of tokens they carry.
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Elementary Nets

Definition
An elementary net is a tuple

(P,T ,F ,M0)

where

(P,T ,F) is net.

M0 ⊆ P is the initial marking.
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Dynamics of Elementary Nets

Given an elementary net (P,T ,F ,M0):

Any subset M ⊆ P is a global state of Σ.

A transition t is enabled in a given state M iff •t ⊆ M and

t• ∩ (M − •t) = ∅. This fact will be denoted by M
t
→.

When a transition fires all tokens from the pre-conditions are
consumed and tokens for all post-conditions are produced.
Firing is atomic.

The firing of t in state M leads to state M′ = (M − •t) ∪ t•.

This fact will be denoted by M
t
→ M′.
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From Elementary Nets to Kripke Structures

Given an elementary net (P,T ,F ,M0) we can determine its
semantics using Kripke structures as follows:

S = 2P

I = {M0}

R = {(M,M′) | ∃t ∈ T ·M
t
→ M′} ∪ {(M,M) |@t ∈ T ·M

t
→}

L = id
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Mutual Exclusion

wait1

idle1

req1

critical1 critical2

wait2

req2

idle2

Mutual exclusion Both agents cannot be simultaneously at their
critical sections.

Evolution An agent cannot wait indefinitely to enter the critical
section.
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Mutual Exclusion With Semaphores

w1

i1

req1 c1 c2

w2

req2

i2

in1

out1

in2

out2

sem

Mutual exclusion holds trivially.

Evolution only holds if some external fairness restriction is
imposed on the system.
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Temporal Logic

Properties of reactive systems usually fall under two
categories:

Safety A safety property states that “bad things” do not
happen.

Liveness A liveness property states that “good things” do
happen (eventually).

Most safety properties can be easily stated directly on Kripke
structures. For example, mutual exclusion:

{c1, c2} < R∗(M0)

But how to express safety properties like “an agent cannot be
in its critical section without requesting it before”?

Manuel Alcino Cunha A Perspective on Model Checking



Introduction
Modeling

Specification
Verification

Temporal Logic
CTL*
LTL and CTL

Temporal Logic

We can also state some animation properties directly on
Kripke structures. For example, reversibility:

∀s ∈ R∗(M0) ·M0 ∈ R∗(s)

But how to express properties like evolution in mutual
exclusion problems?
We need a richer formalism in which to express properties
that restrict the valid computations of the system.
Temporal logic can be such formalism: although time is not
mentioned explicitly, modal operators allow us to express rich
causal orders within computations.
Standard temporal logic is state oriented: the particular
sequence of actions that lead to a computation is irrelevant.
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Models of Time

There are two basic models of time in temporal logic:
Linear Time The behavior of the system is the set of all

infinite paths starting in initial states.
Branching Time The behavior of the system is the set of all

infinite computation trees unrolled from initial
states.

Both can be determined from a Kripke structure.
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Linear Time
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Branching Time

s0
u0

s1
u2

s1
u1

s0
u0

s1
u2

s1
u2

s1
u2

s1
u2

s1
u2

s1
u1

s0
u0

s1
u2

s1
u2

s1
u2

s1
u1

s0
u0

s1
u2

s1
u1

Manuel Alcino Cunha A Perspective on Model Checking



Introduction
Modeling

Specification
Verification

Temporal Logic
CTL*
LTL and CTL

CTL*

CTL* is a branching time temporal logic:

Full Computation Tree Logic

Besides classical operators, CTL* has:
Path quantifiers Used to describe the branching structure in

the computation tree.
Temporal operators Used to describe properties of a path

through the tree.

There are two type of formulas in CTL*:
State formulas Which are true in a specific state.
Path formulas Which are true along a specific path.
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Path Quantifiers and Temporal Operators

Path quantifiers:

A f f holds for all computation paths.
E f f holds for some computation path.

Temporal operators:

X f f holds in the next state.
F f Eventually (or in the future) f holds.
G f f always (or globally) holds.

f U g g eventually holds and until then f always holds.
g R f f holds up to a state where g holds, although g

is not required to hold eventually.

Temporal operators X, F, and G are sometimes denoted using
©, ^, and �, respectively.
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Syntax

Let A be the set of atomic propositions. State formulas are
built from the following rules:

If p ∈ A , then p is a state formula.
If f and g are state formulas, then ¬f , f ∨ g, f ∧ g, and f ⊃ g are
state formulas.
If f is a path formula, then E f , and A f are state formulas.

The syntax of path formulas is given by the following rules:
If f is a state formula, then f is also a path formula.
If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, f ⊃ g, X f , F f ,
G f , f U g, and g R f are path formulas.
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Semantics of State Formulas

We will define the semantics of CTL* with respect to a Kripke
structure M = (S, I,R , L).
If f is a state formula, M, s |= f means that f holds at state s in
M. The relation |= is defined inductively as follows (p is an
atomic proposition, f and g are state formulas, and h is a path
formula):

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬f ⇔ M, s 6|= f
M, s |= f ∨ g ⇔ M, s |= f or M, s |= g
M, s |= f ∧ g ⇔ M, s |= f and M, s |= g
M, s |= f ⊃ g ⇔ M, s 6|= f or M, s |= g
M, s |= A h ⇔ ∀ π ∈ M, π0 = s ·M, π |= h
M, s |= E h ⇔ ∃ π ∈ M, π0 = s ·M, π |= h
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Semantics of Path Formulas

If f is a path formula, M, π |= f means that f holds along path π
in M. The relation |= is defined inductively as follows (f and g
are path formulas, and h is a state formula):

M, π |= h ⇔ M, π0 |= h
M, π |= ¬f ⇔ M, π 6|= f
M, π |= f ∨ g ⇔ M, π |= f or M, π |= g
M, π |= f ∧ g ⇔ M, π |= f and M, π |= g
M, π |= f ⊃ g ⇔ M, π 6|= f or M, π |= g
M, π |= X f ⇔ M, π1 |= f
M, π |= F f ⇔ ∃i ≥ 0 ·M, πi |= f
M, π |= G f ⇔ ∀i ≥ 0 ·M, πi |= f
M, π |= f U g ⇔ ∃i ≥ 0 ·M, πi |= g and ∀0 ≤ j < i ·M, πj |= f
M, π |= g R f ⇔ ∀i ≥ 0 · (∃0 ≤ j < i ·M, πj |= g) or M, πi |= f
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LTL and CTL

LTL is a linear time sublogic of CTL* in which all formulas are
of the form A f , where f is a path formula whose syntax is
given by the following rules:

If p ∈ A , then p is a path formula.
If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, f ⊃ g, X f , F f ,
G f , f U g, and g R f are path formulas.

CTL is a branching time sublogic of CTL* in which temporal
operators must be immediately preceded by a path quantifier.
Path formulas are restricted using the following rule:

If f and g are state formulas, then X f , F f , G f , f U g, and g R f
are path formulas.
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Basic CTL operators: AG f

f

f

f

f

f f

f f f

f f ff f
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Basic CTL operators: EG f

f

f

f

f
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Basic CTL operators: AF f

f

f f

f f
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Basic CTL operators: f AU g

f

g f f

f g g

g g
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Basic CTL operators: g AR f

f

g 
f f f

f g
f f

f f g
f f
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Minimal Set of CTL Operators

All CTL formulas can be expressed using five operators: ¬, ∨,
EX, EU e EG.

f ∧ g ≡ ¬(¬f ∨ ¬g)

f ⊃ g ≡ ¬f ∨ g

AX f ≡ ¬EX¬f

EF f ≡ true EU f

AG f ≡ ¬EF¬f

AF f ≡ ¬EG¬f

f AR g ≡ ¬(¬f EU ¬g)

f ER g ≡ EG g ∨ g EU (f ∧ g)

f AU g ≡ ¬(¬f ER ¬g)
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Examples of CTL formulas

w1

i1

req1 c1 c2

w2

req2

i2

in1

out1

in2

out2

sem

Mutual exclusion: AG¬(c1 ∧ c2)

Evolution: AG(w1 ⊃ AF c1) ∧ AG(w2 ⊃ AF c2)

Reversibility: AG EF(i1 ∧ i2 ∧ sem ∧ . . .)

No takeover: AG((w1 ∧ i2) ⊃ (c1 AR ¬c2)) ∧ . . .
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LTL vs CTL

Most properties can be expressed both in LTL and CTL, but
the expressive power of both logics is incomparable.
For example, reversibility cannot be expressed in LTL:

AG EF init

LTL formulas are also not equivalent to the CTL formulas
obtained by preceding each temporal operator by A. For
example, AF AX p and F X p have different semantics.

p

p p

p
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LTL vs CTL

Although a computation tree is more expressive than a set of
computations, there are properties that can only be expressed
in LTL.
For example, F G p cannot be expressed in CTL. Namely, its
not equivalent to AF AG p.

p p

s1 s2 s3

p

p

pp

p

p
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Model Checking

We will focus on model checking techniques for CTL.
Given a Kripke structure M = (S, I,R , L) and a CTL formula f ,
the goal of model checking is to find the set of all states in M
that satisfy f :

~f�M ≡ {s ∈ S |M, s |= f }

Formula f holds in a model M iff it holds in its initial states:

M |= f ⇔ I ⊆ ~f�M

Two different approaches to model checking:
Explicit Based on an explicit enumeration and traversal

of the Kripke structure.
Symbolic When the Kripke structure is implicitly modeled

by propositional formulas.
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Explicit Model Checking

It suffices to handle six cases: atomic propositions and
operators ¬, ∨, EX, EG, and EU.

Given a Kripke structure M = (S, I,R , L), an atomic
proposition p, and state formulas f and g we have:

~p�M = L−1(p) = {s ∈ S | p ∈ L(s)}

~¬f�M = S − ~f�M
~f ∨ g�M = ~f�M ∪ ~g�M

The states that satisfy EX f are the predecessors of states
that satisfy f :

~EX f�M = R−1(~f�M) ≡ {s ∈ S | ∃t ∈ S · (s, t) ∈ R ∧ t ∈ ~f�M}
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Model Checking EG: A Naive Approach

A recursive algorithm to model check EG f can be derived
from its expansion law:

EG f ≡ f ∧ EX EG f

~EG f�M is the largest solution to the following recursive
equation in the domain (2S ,⊆).

X = ~f�M ∩ R−1(X)

Alternatively, ~EG f�M is the largest fixpoint of Π : 2S → 2S :

~EG f�M = ν(Π), where Π(X) = ~f�M ∩ R−1(X)

This set can be computed as the limit of the following series:

S,Π(S),Π(Π(S)),Π(Π(Π(S))), . . .
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Example: ~EG w1�

w1

i1

req1 c1 c2

w2

req2

i2

in1

out1

in2

out2

sem
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Example: ~EG w1�

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π0(S) = S
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Example: ~EG w1�

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π1(S) = ~w1� ∩ R−1(Π0(S)) = {s1, s4, s6}
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Example: ~EG w1� = {s1, s4, s6}

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π2(S) = ~w1�∩R−1(Π1(S)) = {s1, s4, s6}∩{s0, s1, s2, s4, s5, s6} = Π1(S)
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Model Checking EU: A Naive Approach

Similarly, we can derive a recursive algorithm to model check
f EU g from its expansion law:

f EU g ≡ g ∨ (f ∧ EX(f EU g))

~f EU g�m is the least fixpoint of Π : 2S → 2S .

~f EU g�M = µ(Π), where Π(X) = ~g�M ∪ (~f�M ∩ R−1(X))

This set can be computed as the limit of the following series:

∅,Π(∅),Π(Π(∅)),Π(Π(Π(∅))), . . .
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Example: ~w1 EU c1�

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π0(∅) = ∅
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Example: ~w1 EU c1�

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π1(∅) = ~c1� ∪ (~w1� ∩ R−1(Π0(∅))) = {s3, s7}
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Example: ~w1 EU c1�

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π2(∅) = ~c1� ∪ (~w1� ∩ R−1(Π1(∅))) = {s1, s3, s4, s7}
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Example: ~w1 EU c1�

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π3(∅) = ~c1� ∪ (~w1� ∩ R−1(Π2(∅))) = {s1, s3, s4, s6, s7}
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Example: ~w1 EU c1� = {s1, s3, s4, s6, s7}

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Π4(∅) = ~c1� ∪ (~w1� ∩ R−1(Π3(∅))) = {s1, s3, s4, s6, s7}
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Example: M |= AG¬(c1 ∧ c2)

AG¬(c1∧c2) ≡ ¬EF¬¬(c1∧c2) ≡ ¬EF(c1∧c2) ≡ ¬(trueEU(c1∧c2))

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

~c1� = {s3, s7}

~c2� = {s5, s6}

~c1 ∧ c2� = ∅
~true EU (c1 ∧ c2)�

0 = ∅
~true EU (c1 ∧ c2)�

1 = S ∩ (~c1 ∧ c2� ∪ R−1(∅))
~¬(true EU (c1 ∧ c2))� = S
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Example: M 6|= AG(w1 ⊃ AF c1)

AG(w1 ⊃ AF c1) ≡ AG(¬w1 ∨ AF c1) ≡ ¬EF¬(¬w1 ∨ AF c1) ≡
¬EF(w1 ∧ ¬AF c1) ≡ ¬EF(w1 ∧ ¬¬EG¬c1) ≡ ¬EF(w1 ∧ EG¬c1)

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

~w1� = {s1, s4, s6}

~c1� = {s3, s7}

~¬c1� = {s0, s1, s2, s4, s5, s6}

~EG¬c1�
0 = S

~EG¬c1�
1 = ~¬c1� ∩ R−1(S) = ~¬c1�

~EG¬c1�
2 = . . . = ~¬c1�

~w1 ∧ EG¬c1� = ~w1� ∩ ~¬c1� = ~w1�
~EF(w1 ∧ EG¬c1)�

0 = ∅
~EF(w1 ∧ EG¬c1)�

1 = . . . = {s1, s4, s6}

~EF(w1 ∧ EG¬c1)�
2 = . . . = {s0, s1, s2, s4, s5, s6}

~EF(w1 ∧ EG¬c1)�
4 = . . . = S

~¬EF(w1 ∧ EG¬c1)� = ∅
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Complexity Issues

Given a CTL formula f and a Kripke structure M = (S, I,R , L),
the naive model checking algorithm presented above has
complexity

O(|f | · |S | · (|S |+ |R |))

With some clever tricks it is possible to lower the complexity to

O(|f | · (|S |+ |R |))
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Model Checking f EU g

To compute ~f EU g� we start from set ~g� and successively
add predecessors that satisfy f :

checkEU (~f�, ~g�) ≡
T ← ~g�;
~f EU g�← ~g�;
while T , ∅

choose s ∈ T ;
T ← T − {s};
for t ∈ R−1(s)

if t < ~f EU g� ∧ t ∈ ~f�
~f EU g�← ~f EU g� ∪ {t};
T ← T ∪ {t};

return ~f EU g�;
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Model Checking EG f

Given a Kripke structure M = (S, I,R , L), to model check EG f
it suffices to restrict M to the states that satisfy f :

Mf = (~f�, I ∩ ~f�,R ∩ (~f� × ~f�), L |~f�)

Lemma
M, s |= EG f iff s ∈ ~f� and there exists a path in Mf from s to
some node t in a nontrivial strongly connected component of Mf .

A SCC (strongly connected component) C is a maximal
subgraph where every node is reachable from every other
node along a directed path entirely contained in C.
C is also nontrivial iff it has more than one node or it contains
one node with a self-loop.
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Model Checking EG f

To compute ~EF f� we first compute all states belonging to
nontrivial SCCs and successively add all predecessors in ~f�.
scc uses Tarjan algorithm with complexity O(|~f�|+ |Rf |).

checkG (~f�) ≡
T ← ∪{C |C ∈ scc(Mf ) ∧ ¬trivial(C)};
~EG f�← T ;
while T , ∅

choose s ∈ T ;
T ← T − {s};
for t ∈ R−1

f (s)
if t < ~EG f�
~EG f�← ~EG f� ∪ {t};
T ← T ∪ {t};

return ~EG f�;
Manuel Alcino Cunha A Perspective on Model Checking



Introduction
Modeling

Specification
Verification

Explicit Model Checking
Symbolic Model Checking
Ordered Binary Decision Diagrams
Further Reading

Example: EG(w1 ∨ sem)

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7
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Example: EG(w1 ∨ sem)

w1 w2
sem

w1 c2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s4

s6
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Example: EG(w1 ∨ sem)

w1 w2
sem

w1 c2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s4

s6
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Example: EG(w1 ∨ sem)

w1 w2
sem

w1 c2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s4

s6
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Fairness

Some liveness properties can only be satisfied assuming that
some kind of fairness constraints hold in the system.

For example, evolution in the mutual exclusion with a
semaphore only holds if we assume that an agent cannot stay
indefinitely in the waiting state.

In action oriented specification logics, fairness constraints are
usually divided in two categories:

Weak A computation is weakly fair to an action iff it
cannot be continuously enabled without ever
executing.

Strong A computation is strongly fair to an action iff it
executes infinitely often whenever it is enabled
infinitely often.
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Fairness in CTL

In CTL we can model fairness constraints by a set of formulas
f1, . . . , fn that must hold infinitely often in a path for it to be
considered fair.
A fair Kripke structure is tuple M = (S, I,R , L ,F), where
F ⊆ 2S = {~f1�, . . . , ~fn�}.
Assuming that inf(π) extracts all states that occur infinitely
often in π, we can define a predicate to test for fairness as
follows:

fair(π) = ∀P ∈ F · inf(π) ∩ P , ∅

Semantics of CTL can be easily adapted to capture fairness.

M, s |=F p ⇔ ∃ π ∈ M, fair(π), π0 = s · p ∈ L(s)
M, s |=F A h ⇔ ∀ π ∈ M, fair(π), π0 = s ·M, π |= h
M, s |=F E h ⇔ ∃ π ∈ M, fair(π), π0 = s ·M, π |= h
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Direct Model Checking With Fairness

To model check the operator EG it suffices to restrict the
model to fair SCCs. An SCC is fair iff

∀P ∈ F · C ∩ P , ∅

Assuming a fair semantics, the formula EG true holds in a
state s iff there is a fair path starting from s.
Given that a path is fair iff any of its suffixes is fair, we can
reuse the standard model checking algorithms as follows:

M, s |=F p ≡ M, s |= p ∧ EG true
M, s |=F EX f ≡ M, s |= EX(f ∧ EG true)

M, s |=F f EU g ≡ M, s |= f EU (g ∧ EG true)

Complexity of model checking under fairness raises to

O(|f | · (|S |+ |R |) · |F |)
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Symbolic Model Checking

Although explicit model checking is rather efficient it cannot
cope with the state explosion that occurs in many reactive
systems.

Symbolic model checking tackles this problem by avoiding the
explicit construction of the state space: the states and the
transition relation of a Kripke structure are captured by
propositional formulas.

CTL formulas can also be encoded in propositional logic
thanks to the fixpoint definition of temporal operators.

Model checking of CTL formulas is reduced to checking the
validity of propositional formulas.

This can be done very efficiently by using techniques like
Ordered Binary Decision Diagrams.
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Encoding states

When a Kripke structure is derived from a an elementary net
its states can be seen as models (valuations) of propositional
logic, with variables taken from the set of places P.
For each state s it is possible to define a formula that is valid
only in the respective model.

φs ≡ (∧x∈sx) ∧ (∧x<s¬x)

w1

i1

req1 c1 c2

w2

req2

i2

in1

out1

in2

out2

sem

φI ≡ i1 ∧ ¬w1 ∧ ¬c1 ∧ sem ∧ i2 ∧ ¬w2 ∧ ¬c2
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Encoding Transitions

A similar technique can be used to encode transitions, but we
need an additional set of variables P′: each variable x ∈ P
has a corresponding next state variable x′ ∈ P′.
Models will now be ordered pairs of states (s, s′): variables in
P should be valuated in s, while variables in P′ should be
valuated in s′.

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

¬i1 ∧ w1 ∧ ¬c1 ∧ sem ∧ i2 ∧ ¬w2 ∧ ¬c2

∧

¬i′1 ∧ ¬w′1 ∧ c′1 ∧ ¬sem′ ∧ i′2 ∧ ¬w′2 ∧ ¬c′2

¬i1 ∧ w1 ∧ ¬c1 ∧ sem ∧ ¬i2 ∧ w2 ∧ ¬c2

∧

¬i′1 ∧ ¬w′1 ∧ c′1 ∧ ¬sem′ ∧ ¬i′2 ∧ w′2 ∧ ¬c′2
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Encoding Transitions

The formula φR that encodes the transition relation is the
disjunction of all formulas that encode each individual
transition.
With a bit of syntactic sugar we can have a direct encoding for
each transition in the net: only variables in the neighborhood
of a transition are affected.

w1 ∧ ¬c1 ∧ sem ∧ ¬w′1 ∧ c′1 ∧ ¬sem′

∧

i′1 = i1 ∧ i′2 = i2 ∧ w′2 = w2 ∧ c′2 = c2

The following notation will be used to model the variables
whose value is not affected by a transition.

X ≡
∧
x∈X

(x′ = x)
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Example
w1

i1

req1 c1 c2

w2

req2

i2

in1

out1

in2

out2

sem

req1 ≡ i1 ∧ ¬w1 ∧ ¬i′1 ∧ w′1 ∧ {c1, sem, i2,w2, c2}

in1 ≡ w1 ∧ ¬c1 ∧ sem ∧ ¬w′1 ∧ c′1 ∧ ¬sem′ ∧ {i1, i2,w2, c2}

out1 ≡ c1 ∧ ¬i1 ∧ ¬sem ∧ ¬c′1 ∧ i′1 ∧ sem′ ∧ {w1, i2,w2, c2}

req2 ≡ i2 ∧ ¬w2 ∧ ¬i′2 ∧ w′2 ∧ {c2, sem, i1,w1, c1}

in2 ≡ w2 ∧ ¬c2 ∧ sem ∧ ¬w′2 ∧ c′2 ∧ ¬sem′ ∧ {i2, i1,w1, c1}

out2 ≡ c2 ∧ ¬i2 ∧ ¬sem ∧ ¬c′2 ∧ i′2 ∧ sem′ ∧ {w2, i1,w1, c1}

φR ≡ req1 ∨ in1 ∨ out1 ∨ req2 ∨ in2 ∨ out2
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Symbolic Model Checking for CTL

The set of states ~f� where a formula f is valid is no longer
represented extensionally: instead it is represented by a
propositional formula that is valid precisely in those states.
This means that classical connectives are no longer encoded
in terms of set operations.
The validity of temporal operators EG and EU will again be
determined by fixpoints:

~EG f� = ν(Π), where Π(h) = ~f� ∧ ~EX h�

~f EU g� = µ(Π), where Π(h) = ~g� ∨ (~f�M ∧ ~EX h�)

Notice that fixpoints are now computed symbolically: for
example, to compute a least fixpoint we start with formula
false and perform disjunctions until two equivalent formulas
are computed in successive iterations.
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Model Checking EX f

To model check EX f an (temporary) existential quantifier is
used.

~EX f� = ∃x′ · ~f�′ ∧ φR

~f�′ is the formula obtained from ~f� by replacing all variables
x ∈ P by the corresponding x′ ∈ P′.

Intuitively, ~EX f� will be valid in a state s if there is some
valuation to all variables x′ ∈ P′ accessible from s in which f
is valid.

The existential quantifier is then eliminated by using the
following expansion:

∃x · f ≡ f |x←true ∨ f |x←false
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Example

a

b

φR ≡ (a ∧ ¬b ∧ ¬a′ ∧ b ′) ∨ (¬a ∧ b ∧ ¬a′ ∧ b ′)

~EX b� ≡ ∃a′, b ′ · φR ∧ b ′

≡ ∃a′, b ′ · φR

≡ ∃a′ · φR |b′←true ∨ φR |b′←false

≡ ∃a′ · (a ∧ ¬b ∧ ¬a′) ∨ (¬a ∧ b ∧ ¬a′)

≡ (a ∧ ¬b) ∨ (¬a ∧ b)

~EX a� ≡ ∃a′, b ′ · φR ∧ a′

≡ ∃a′, b ′ · (a ∧ ¬b ∧ ¬a′ ∧ b ′ ∧ a′) ∨ . . .

≡ false
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Ordered Binary Decision Diagrams

For symbolic model checking to be effective we need efficient
mechanisms to represent, manipulate, and validate
propositional formulas.

Ordered Binary Decision Diagrams (OBDDs) are a canonical
representation for propositional formulas, where the model
checking operations can be implemented efficiently.

This representation imposes additional constrains on
traditional Binary Decision Diagrams (BDDs) to achieve
canonical forms.
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Binary Decision Diagrams

A BDD represents a boolean function by a Directed Acyclic
Graph (DAG) with a single root.

If the DAG is a tree we have a Binary Decision Tree.

Each terminal node v is either 0 or 1.
Each nonterminal node v is labeled by a variable var(v) and
has two successors:

low(v) corresponding to the case where v is assigned 0.
high(v) corresponding to the case where v is assigned 1.

Given a valuation for the variables, the value of the formula
can be determined by traversing the tree from the root to a
terminal node.
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Example

f ≡ (x1 ∨ x2) ∧ x3

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x1

x2

x3 x3 x3 x3

x2

0 0 0 1 0 1 0 1
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Ordered Binary Decision Diagrams

In a ordered BDD a total ordering is imposed on the variables:
each path in the graph must respect this order.

Any ordering is possible, but size of an OBDD can vary
significantly with the particular order chosen.
Besides being ordered, an OBDD must be reduced:

No nodes with equal successors.
No duplicate subtrees.
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Reducing Binary Decision Diagrams

Given an ordered BDD we can reduce it to an OBDD by
successively applying the following transformation rules:

Remove duplicate terminals: delete all but one terminal with a
given value, and redirect all arcs pointing to deleted terminals
to the remaining one.
Remove duplicate nonterminals: if two nodes u and v have
var(u) = var(v), low(u) = low(v), and high(u) = high(v),
delete one of them and redirect all incoming arcs to the other.
Remove redundant tests: if nonterminal v has
low(v) = high(v), delete v and redirect all incoming arcs to
low(v).

Reducing an ordered BDD can be done in a bottom-up
manner by a procedure linear in its size.
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Example

x1

x2

x3 x3 x3 x3

x2

0 1

x1

x2

x3 x3

x2

0 1

x1

x2

x3

0 1
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The Utility of Canonical Representations

The representation of a boolean function by an OBDD is
canonical: given a particular variable ordering two OBDDs
that represent the same function are necessarily isomorphic.
This fact has important consequences for model checking:

Checking equivalence is reduced to checking isomorphism.
Any tautology is equivalent to the OBDD with a single
(terminal) node labeled 1.
A formula is satisfiable if its not equivalent to the OBDD with a
single (terminal) node labeled 0.
If the value of a function does not depend on a particular
variable x, then the OBDD that represents it cannot contain x.
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Variable Ordering

The shape and size of an OBDD varies according to the
particular ordering imposed on variables.
This ordering can even change the complexity class of the
representation. Consider the following expression.

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

If the ordering is x1 < y1 < . . . < xn < yn the number of
non-terminals is 2n.
If the ordering is x1 < . . . < xn < y1 < . . . < yn that number
raises to 2(2n − 1).

Checking that a particular ordering is optimal is NP-complete.
Several heuristics have been developed to find good
orderings to particular classes of problems.
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Example

(x1 ∧ y1) ∨ (x2 ∧ y2)

x1 < y1 < x2 < y2

x1

x2

y1

y2

0 1

x1 < x2 < y1 < y2

x1

x2 x2

y1y1

y2

0 1
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Implementing OBDDs

Its not efficient to compute an ordered BDD from an
expression and only afterwards reduce it to obtain an OBDD:
the intermediate tree has an exponential size on the number
of variables.

Ideally we want the OBDDs to be reduced incrementally every
time an operation is performed.

When dealing with several expressions we also want to have
a single graph with several entry points to increase sharing.

Equivalence between expressions amounts to test for the
same root.
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Implementing OBDDs

OBDD nodes will be identified by a natural, with 0 and 1
reserved for the terminals.

Variables x1 < x2 < . . . < xn have an associated index that
determines the ordering.

A set of OBDDs can be stored in a single table T, that maps a
node u to a triple of naturals (i, l, h), where i = var(u),
l = low(u), and h = high(u).

Assume that the variable of a terminal node is xn+1.
This table has the following methods:

T .init() that initializes T with nodes 0 and 1.
T .add(i, l, h) that creates a new node and returns its identifier.
T .var(u), T .low(u), and T .high(u) to search for the attributes
of a node.
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Implementing OBDDs

(x1 ⇔ x2) ∨ x3

x1

x2 x2

x3

0 1

u var lo hi
0 4
1 4
2 3 0 1
3 2 1 2
4 2 2 1
5 1 3 4

To guarantee that no duplicates are created we need to invert
T using a hash table.

We assume the existence of a function mk(i, l, h) that creates
a node only if it does not exist already.
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Shannon Expansion

Let x → y, z be an if-then-else defined as follows.

x → y, z ⇔ (x ∧ y) ∨ (¬x ∧ z)

It is possible to redefine all boolean expressions using only
this operator. Additionally it can be guaranteed that variables
appear only on tests and never negated.

¬x ≡ x → 0, 1

x ⊃ y ≡ x → (y → 1, 0), 1

This encoding corresponds to a decision tree and can be
derived using the Shannon expansion.

f ≡ x → f |x←1, f |x←0
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Implementing Binary Operations

Given to boolean expressions f and g, with root nodes u and
v, respectively, the OBDD that encodes f ? g for a given
binary operator ? can be computed by apply(?, u, v).
Due to Shannon expansion, if both expressions share a
variable x we have

f ? g ≡ x → f |x←1 ? g|x←1, f |x←0 ? g|x←0

If g does not depend on x we have

f ? g ≡ x → f |x←1 ? g, f |x←0 ? g

Since the algorithm is birecursive a memoization table G is
used.
Negation can be implemented as ¬f ≡ f ⊕ 1.
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Implementing Binary Operations

apply(?, u, v) ≡
G.init(); return aux(u, v);

aux(u, v) ≡
if G.member(u, v) return G.lookup(u, v);
if u ∈ {0, 1} ∧ v ∈ {0, 1} return(u ? v);
if T .var(u) = T .var(v)

w ← mk(T .var(u),aux(T .low(u),T .low(v)),
aux(T .high(u),T .high(v)));

if T .var(u) < T .var(v)
w ← mk(T .var(u), aux(T .low(u), v), aux(T .high(u), v));

if T .var(u) > T .var(v)
w ← mk(T .var(v), aux(u,T .low(v)), aux(u,T .high(v)));

G.insert(u, v ,w);
return w;
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